A PERSONAL COOLING SYSTEM FOR HELICOPTER PILOTS. (U)

NOV 77 5 M REEPS

UNCLASSIFIED
NADC-77289-60

END

DATE
FILED
78
DOC
A PERSONAL COOLING SYSTEM FOR HELICOPTER PILOTS

Suzanne M. Reeps
Aircraft and Crew Systems Technology Directorate
NAVAL AIR DEVELOPMENT CENTER
Warminster, Pennsylvania 18974

21 NOVEMBER 1977

PHASE REPORT
AIRTASK NO. A340-0000/0010/7F51-523-000
Work Unit No. ZB104

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for
NAVAL AIR SYSTEMS COMMAND
Department of the Navy
Washington, D.C. 20361
NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteenth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

<table>
<thead>
<tr>
<th>CODE</th>
<th>OFFICE OR DIRECTORATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Commander, Naval Air Development Center</td>
</tr>
<tr>
<td>01</td>
<td>Technical Director, Naval Air Development Center</td>
</tr>
<tr>
<td>02</td>
<td>Comptroller</td>
</tr>
<tr>
<td>10</td>
<td>Directorate Command Projects</td>
</tr>
<tr>
<td>20</td>
<td>Systems Directorate</td>
</tr>
<tr>
<td>30</td>
<td>Sensors & Avionics Technology Directorate</td>
</tr>
<tr>
<td>40</td>
<td>Communication & Navigation Technology Directorate</td>
</tr>
<tr>
<td>50</td>
<td>Software Computer Directorate</td>
</tr>
<tr>
<td>60</td>
<td>Aircraft & Crew Systems Technology Directorate</td>
</tr>
<tr>
<td>70</td>
<td>Planning Assessment Resources</td>
</tr>
<tr>
<td>80</td>
<td>Engineering Support Group</td>
</tr>
</tbody>
</table>

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY: ________________________________ DATE: 31 Nov 77
The NAVAIRDEVCE (Naval Air Development Center) is developing a personal cooling system for helicopter pilots to alleviate the heat stress encountered during exposure to high ambient temperatures. The major components of this system are a lightweight, constant-wear, liquid circulating garment (LCG) outfitted with skin temperature sensors, a cooling generator, and an automatic controller. The liquid circulation garment is designed for wear under a standard flight coverall and is connected, upon aircraft entry, to the
20. generator and automatic controller. During flight, the system automatically maintains the pilot and copilot in thermal comfort thereby enabling more effective performance of flight duties. The system is currently under a development contract.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>A PERSONAL COOLING SYSTEM FOR HELICOPTER PILOTS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>CONCEPT OF THE SYSTEM</td>
<td>2</td>
</tr>
<tr>
<td>DESCRIPTION OF THE LIQUID CIRCULATING GARMENT</td>
<td>2</td>
</tr>
<tr>
<td>DESCRIPTION OF THE COOLING GENERATOR</td>
<td>5</td>
</tr>
<tr>
<td>DESCRIPTION OF THE AUTOMATIC CONTROLLER</td>
<td>5</td>
</tr>
<tr>
<td>PROGRESS TO DATE</td>
<td>5</td>
</tr>
<tr>
<td>FUTURE PLANS</td>
<td>7</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proposed Helicopter Pilot Cooling System Configuration</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Personal Cooling System for Helicopter Pilots</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Generalized Schematic End-View of the ROVAC Circulator</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Milestone Schedule</td>
<td>8</td>
</tr>
</tbody>
</table>
INTRODUCTION

Naval helicopter pilots and copilots are currently faced with assigned flight duties which involve the exercise of intellective and psychomotor skills rather than distinct physical work. This requires a high degree of skill and coordination. One major problem which seriously degrades their performance and effectiveness is the excessive heat buildup resulting from exposure to ambient temperatures of up to 46°C (115°F). Since no air conditioning of the helicopter is possible due to lack of air tight integrity, alleviation of the heat stress must be dealt with on a personal equipment basis.

The planned approach to this problem is to develop a personal cooling system. The cooling system will consist of an aircraft mounted personal cooling generator and automatic controller and a constant wear liquid circulating garment (LCG) outfitted with skin temperature sensors. The total system shall maintain each of two individual users in thermal comfort thereby enabling the aircrewmen to more effectively perform their flight duties. The personal cooling system is being developed for the Naval Air Systems Command (AIR-340B) under Airtask No. A340-0000/001D/7FS1-523-000, Work Unit No. ZB104.

CONCEPT OF THE SYSTEM

As conceived, the system will function as follows: Under normal flight conditions, the aircrewmen will wear a liquid circulating garment (LCG) through which a 50/50 water/glycol solution will be circulated. The LCG will be a closed loop system which is connected, upon aircraft entry, to the cooling generator and automatic controller. Operation of the system will be airman initiated once the pilot and copilot are seated and ready for flight. Once initiated, the system will work automatically to maintain the two users in thermal comfort as evidenced by maintenance of their mean skin temperatures between 30°C and 34.5°C (86°F - 94°F), stabilizing at an individually selected set point of 32°C, 33°C or 34°C. No adjustments or judgments will be required of the aircrewmen during the flight mission. A general description of each of the major components of the system follows. Figure 1 provides a schematic description and figure 2 illustrates an artist's conception of the system configuration.

DESCRIPTION OF THE LIQUID CIRCULATING GARMENT (LCG)

The liquid circulating garment, which will initially be used for evaluation of the system concept, is constructed of a nylon spandex fabric with an

FIGURE 2 - Personal Cooling System for Helicopter Pilots.
integral capillary-like system of small diameter flexible plastic tubing. The tubing will permit continuous circulation of the cooled liquid between the cooling generator and the garment. The full length garment which weighs approximately 3.5 pounds will provide cooling to all portions of the body with the exception of the head, neck, hands and feet. Future program efforts in the development of an operational garment will be aimed at improving its comfort, mobility, reliability, maintainability and fire resistance. Four skin temperature sensors will be installed in the garment to provide the physiological feedback required by the automatic controller. The garment will be worn under a standard flight coverall.

DESCRIPTION OF THE COOLING GENERATOR

The cooling generator which is currently under development\(^3\) is a variable capacity air cycle system which uses two heat exchangers in conjunction with a compressor-expander circulator (figure 3)\(^2\). During operation, ambient air enters the compressor side of the circulator where it is pressurized thereby raising its temperature to approximately 121.5°C (250°F). The hot, compressed air then passes through the primary heat exchanger where it is cooled by fan air to approximately 46.5°C (115°F). Still at high pressure, the cooled air passes into the expander side of the circulator where it is depressurized. This cools the air temperature greatly (to 0°C). This cold air then passes into the secondary heat exchanger where it extracts heat from the warmed liquid returning from the LCG. The warmed air then returns to the compressor side of the circulator thus completing the cycle.

Connected to the cooling generator will be a positive displacement pump which will maintain a constant flow rate of cooled liquid through the LCG of 56.8 liters (15 gallons) per hour. The cooling generator will use no fluorocarbons or refreezable ice packs for refrigeration. It will be powered by available power sources in the aircraft.

DESCRIPTION OF THE AUTOMATIC CONTROLLER

The automatic controller currently under development\(^3\), will be an analog type containing the electronic logic to average the temperatures from the four skin temperature sensors. It will provide temperature control by sending a current to a flow mixing valve which will proportionately mix warmed returning liquid from the LCG with cooled liquid from the generator. This approach will provide "fast response to load changes induced by system and pilot environmental effects"\(^2\). A single controller will monitor both helicopter pilots simultaneously and independently. It will continuously monitor changes in mean skin temperature and respond with stable and dynamic control of the water coolant temperature.

PROGRESS TO DATE

The program for development of a personal cooling system was initiated during FY-77. To date, a development contract has been awarded for development

FIGURE 3 - Generalized Schematic End-View of the ROVAC Circulator.
of a prototype generator, controller and two sets of skin temperature sensors\(^3\). Delivery of hardware is scheduled for April 1978. Upon delivery, this hardware will be subjected to extensive testing to determine the ability of the system to maintain thermal comfort for 6 hours in ambient temperatures up to 46°C (115°F).

Additionally, an ILS Plan has been drafted and is awaiting approval. A Test and Evaluation Master Plan (TEMP) is also being prepared in conjunction with the Operational Test and Evaluation Force.

FUTURE PLANS

During FY-78, efforts will be focused on development of a fire resistant fabric for use in the LCG. Procurement of prototype garments using the developed fabric will also be initiated during FY-78. The garment design will be based on technology being developed under contract to NASA with appropriate modifications as required for military use. Figure 4 provides details of follow-on development work as currently scheduled through Fleet Approval for service use and release for production.
<table>
<thead>
<tr>
<th>Activity</th>
<th>FY-78</th>
<th>FY-79</th>
<th>FY-80</th>
<th>FY-81</th>
<th>FY-82</th>
<th>FY-83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery of Prototype, Generator,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controller, and Skin Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator and Controller Testing</td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development Contract - LCG Fabric</td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development Contract - LCG Garment</td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG Garment Testing</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Decision to proceed with Full Scale Development</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Full Scale System Development</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>TCHEVAL</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Specification Preparation</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Procurement of OPEVAL Quantities</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>OPEVAL</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Approval for Service Use; Release for Production</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

Figure 4 - Milestone Schedule.
<table>
<thead>
<tr>
<th>Institution</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Institutes for Research, Pittsburgh</td>
<td>1</td>
</tr>
<tr>
<td>Biological Abstracts</td>
<td>1</td>
</tr>
<tr>
<td>University of California (Director), Davis</td>
<td>1</td>
</tr>
<tr>
<td>Calspan Corp. (Library), Buffalo</td>
<td>1</td>
</tr>
<tr>
<td>Countway Library of Medicine, Boston</td>
<td>1</td>
</tr>
<tr>
<td>Drexel University (Dr. Beard), Philadelphia</td>
<td>2</td>
</tr>
<tr>
<td>University of Illinois, Chicago</td>
<td>1</td>
</tr>
<tr>
<td>Indiana University, Indianapolis</td>
<td>1</td>
</tr>
<tr>
<td>Library of College of Physicians of Philadelphia</td>
<td>1</td>
</tr>
<tr>
<td>Ohio State University (Dr. Weiss), Columbus</td>
<td>1</td>
</tr>
<tr>
<td>Presbyterian-U. of Pa. Medical Center</td>
<td>1</td>
</tr>
<tr>
<td>Wayne State University, Detroit</td>
<td>1</td>
</tr>
<tr>
<td>Institute of Marine Biomedical Research</td>
<td>1</td>
</tr>
<tr>
<td>David Clark Co., Worcester</td>
<td>1</td>
</tr>
<tr>
<td>Convair Aerospace Div., San Diego</td>
<td>1</td>
</tr>
<tr>
<td>Grumman Aerospace Corp., Bethpage, LI</td>
<td>1</td>
</tr>
<tr>
<td>Hageman Consulting Services, Fort Worth</td>
<td>1</td>
</tr>
<tr>
<td>Lockheed-California, Burbank</td>
<td>1</td>
</tr>
<tr>
<td>Rockwell International, Los Angeles</td>
<td>1</td>
</tr>
<tr>
<td>Fairchild Republic, Farmingdale, NY</td>
<td>1</td>
</tr>
<tr>
<td>Vought Corp., Dallas</td>
<td>2</td>
</tr>
<tr>
<td>Paul Webb, M.D., Webb Associates, Yellow Springs</td>
<td>1</td>
</tr>
<tr>
<td>ROVAC Corp., Rockledge, FL (Mr. Ecker)</td>
<td>1</td>
</tr>
<tr>
<td>Carl C. Clark, Ph.D., Baltimore, MD</td>
<td>1</td>
</tr>
<tr>
<td>RADM Richard A. Kern, Wynnewood, PA</td>
<td>1</td>
</tr>
<tr>
<td>CAPT H.G. Shepler, MC, USN, Bremerton, WA</td>
<td>1</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

REPORT NO. NADC-77289-60

AIRTASK NO. A340-0000/001D/7F51-523-000

Work Unit No. ZB104

<table>
<thead>
<tr>
<th>Distribution List</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDC</td>
<td>12</td>
</tr>
<tr>
<td>NAVAIRSYSCOM, AIR-954</td>
<td>5</td>
</tr>
<tr>
<td>(2 for retention)</td>
<td></td>
</tr>
<tr>
<td>(1 for AIR-340B)</td>
<td></td>
</tr>
<tr>
<td>(1 for AIR-340)</td>
<td></td>
</tr>
<tr>
<td>(1 for AIR-531)</td>
<td></td>
</tr>
<tr>
<td>Naval Medical R&D Command</td>
<td>8</td>
</tr>
<tr>
<td>(3 for Code 71)</td>
<td></td>
</tr>
<tr>
<td>(3 for Code 7113)</td>
<td></td>
</tr>
<tr>
<td>(2 for Code 42)</td>
<td></td>
</tr>
<tr>
<td>National Library Of Medicine</td>
<td>1</td>
</tr>
<tr>
<td>CNO (OP-098E)</td>
<td>1</td>
</tr>
<tr>
<td>NAMRL, Pensacola</td>
<td>2</td>
</tr>
<tr>
<td>NAMRL, Pensacola (Code 09)</td>
<td>1</td>
</tr>
<tr>
<td>Naval Training Equipment Center (Tech. Library), Orlando</td>
<td>2</td>
</tr>
<tr>
<td>Naval Submarine Medical Center (Library), Groton</td>
<td>1</td>
</tr>
<tr>
<td>Naval Health Research Center, San Diego</td>
<td>1</td>
</tr>
<tr>
<td>Naval Safety Center, Norfolk</td>
<td>1</td>
</tr>
<tr>
<td>Naval Air Test Center, Patuxent River</td>
<td>1</td>
</tr>
<tr>
<td>ONR (Code 440), Arlington</td>
<td>1</td>
</tr>
<tr>
<td>FAA (AC-100) Oklahoma City</td>
<td>1</td>
</tr>
<tr>
<td>FAA (CAMI Library AAC-44D1)</td>
<td>1</td>
</tr>
<tr>
<td>6570 AMRL/DAL Library, Wright-Patterson AFB</td>
<td>2</td>
</tr>
<tr>
<td>USAFSAM/Aeromedical Library (TSK-4) Brooks AFB</td>
<td>1</td>
</tr>
<tr>
<td>USAFSAM/RZW/Dr. Farrer, Brooks AFB</td>
<td>1</td>
</tr>
<tr>
<td>Air University Library, Maxwell AFB</td>
<td>1</td>
</tr>
<tr>
<td>HQ TAC/SGPA, Langley AFB</td>
<td>1</td>
</tr>
<tr>
<td>Division of Aerospace Pathology, Washington</td>
<td>1</td>
</tr>
<tr>
<td>US Army Armament & Development Command</td>
<td>1</td>
</tr>
<tr>
<td>Director, ITPR Lab, US ARI, Arlington</td>
<td>1</td>
</tr>
<tr>
<td>NASA Lewis Research Center Library, Cleveland</td>
<td>1</td>
</tr>
<tr>
<td>NASA AMES Research Center, Moffett Field</td>
<td>1</td>
</tr>
<tr>
<td>Library of Congress</td>
<td>1</td>
</tr>
<tr>
<td>US Army Aeromedical Research Lab., Fort Rucker</td>
<td>2</td>
</tr>
<tr>
<td>NAMRL Detachment, New Orleans</td>
<td>4</td>
</tr>
<tr>
<td>HQ, USAF/SGPA, Washington</td>
<td>1</td>
</tr>
<tr>
<td>COMOPTEVFOR</td>
<td>1</td>
</tr>
<tr>
<td>HQ, Naval Material Command (034-D)</td>
<td>1</td>
</tr>
</tbody>
</table>

CONTINUED ON INSIDE OF COVER