THE PERFORMANCE OF CONVENTIONAL
AND ENERGY ABSORBING RESTRAINTS
IN SIMULATED CRASH TESTS

by

S. R. SARRAILHE and N. D. HEARN
THE PERFORMANCE OF CONVENTIONAL AND ENERGY ABSORBING RESTRAINTS IN SIMULATED CRASH TESTS,

by

S.R. SARRAILHE

N.D. HEARN

SUMMARY

Dynamic tests were done using conventional lap sash seat belt restraints, and assemblies incorporating energy absorbers in the sash strap. Three restraint geometries, rigid and cushioned seats and assemblies with the straps slack, tight and preloaded were tested.

The load in the sash strap with an energy absorber was half of that in the same strap of a conventional restraint in tests with the same peak acceleration of 280 m/s².

The results were also compared with those from previous tests where a shorter acceleration distance was used.
CONTENTS

1. INTRODUCTION 3

2. TEST EQUIPMENT 3
 2.1 Crash Simulator 3
 2.2 Test Dummy 3
 2.3 Test Frame and Seat 3
 2.4 Instrumentation 4

3. THE RESTRAINT SYSTEMS 4
 3.1 Four-point System 4
 3.2 Three-point System 4

4. THE ENERGY ABSORBERS 4

5. PROCEDURE 4

6. RESULTS AND DISCUSSION 5
 6.1 Comparison of Four-point and Three-point Systems 5
 6.2 Comparison of Tests with Cushioned and Rigid Seats 5
 6.3 The Effect of Tightening the Strap 5
 6.4 The Effect of Sled Peak Acceleration on the Strap and Seat Loads 5
 6.5 Dummy Displacement 6
 6.6 The Effect of Energy Absorbers in the Sash Strap 6
 6.7 Comparison with Previous Tests 6

7. CONCLUSIONS 7

8. ACKNOWLEDGEMENT 7

9. REFERENCES 8

TABLES

FIGURES

DISTRIBUTION

DOCUMENT CONTROL DATA
1. INTRODUCTION

Seat belts with upper torso restraint provide valuable protection for the occupants of an aircraft or motor vehicle in the event of a crash. The restraint forces in the conventional webbing system are clearly dependent on the vehicle deceleration, but the relationship is complex and may also depend on the velocity change, the restraint geometry, the initial slackness of the system and the stretching properties of the restraint. Incorporation of energy absorbers into the system can reduce restraint loads and alter the relationship between load and vehicle deceleration.

To investigate these factors, dynamic tests were done on a crash simulator to measure restraint loads and dummy movement with:

(a) Conventional all webbing restraints having separate anchorages for the lap and sash straps. (Four-point system).
(b) Conventional all webbing restraints with the sash strap joined to the lap strap. (Three-point system).
(c) Conventional four-point systems with rigid and cushioned seats.
(d) Conventional four-point systems fitted with initial slack, fitted tightly and fitted with the straps preloaded.
(e) Energy absorbing systems with two alternative types of energy absorber installed in the sash strap.

The test acceleration pulses ranged from a peak acceleration of 90 m s⁻² to a peak of 280 m s⁻², although not all configurations were tested over this whole range. The lowest acceleration was intended to produce loads comparable to the current design strength of aircraft restraint systems (which is based on a deceleration of 9 g on an occupant of mass 77 kg with a factor of safety of 1.33). The high accelerations were comparable with the design longitudinal pulse suggested in the Crash Survival Design Guide for the cockpit region of light aircraft. (This is a triangular pulse with an average acceleration of 15 g, peak 30 g and velocity change of 15 m s⁻¹.) The high acceleration pulse was also comparable to that used in automotive test conditions, and provided for testing an energy absorber designed for automotive use.

The crash simulator sled acceleration stroke was approximately one metre. This corresponds to a vehicle stopping distance of a little less than one metre and also to the stopping distance implied by the Crash Survival Design Guide pulse. The distance was greater than that commonly used in automotive restraint tests and in earlier A.R.L. tests. Comparison with these earlier tests, which used a similar peak acceleration range but lower velocity changes, allowed assessment of the relative importance of peak acceleration and velocity change.

The work was done as part of the Crash Safety Programme supported by the Department of Transport (Air Transport Group).

2. TEST EQUIPMENT

2.1 Crash Simulator

The tests were carried out on the General Motors Holden’s “Hyge” crash simulator. This machine reproduced the essential dynamics of a crash deceleration by accelerating a sled carrying the test seat and restrained dummy from rest to the required velocity. The acceleration pulse was approximately sinusoidal.

2.2 Test Dummy

An “Alderson” VIP50 anthropomorphic dummy (mass 77 kg) representing a 50th percentile male was used. It was clothed in cotton stockinette garments as shown on Fig. 1.

2.3 Test Frame and Seat

A test frame mounted on the sled provided anchorages for the seat and restraint as shown in Fig. 1. Most seat belt installations have the high mounting for the sash strap on the outer side of the seat relative to the cabin, therefore the side of the test assembly having the high sash anchorage is referred to as the “outer side”, and the side with the low mounting for the sash or the intersection of the sash and lap straps at the buckle, is referred to as the “inner side”.

The seat base had a strong frame and a seat pan formed by a lattice of seat belt webbing as
shown in Fig. 2. In most tests this was covered by a plastic foam cushion, but in four tests the cushion was replaced by a rigid wooden platform. Unless referred to as a rigid seat test, results apply to the cushioned seat.

2.4 Instrumentation
The loads in the straps adjacent to the anchorages, the horizontal load in the seat and the sled acceleration were measured and recorded on an oscillograph. Velocity was calculated by integrating the sled acceleration pulse. Movement of the dummy was recorded by two high speed cine cameras. One of these was mounted on the sled, the other was in a fixed position on the opposite side of the sled. Timing marks on the film and oscillograph trace allowed synchronization of the records.

3. THE RESTRAINT SYSTEMS

3.1 Four-point System
The inner side of the four-point system is shown on Fig. 1. The position of the outer lap strap anchorage corresponded to the position of the inner lap anchorage, but on the other side of the seat; the upper sash strap was connected to the frame by the link AB.

In addition to tests with conventional webbing straps, tests were carried out with energy absorbers in the sash strap. Two types of energy absorber were tested; these were designated type A and type B. Type A was fitted to the link AB at A, whilst type B replaced the link AB. The length of webbing between A and the lower sash anchorage was the same for all tests.

3.2 Three-point System
This was an automotive lap sash assembly. The upper sash and outer lap anchorage positions were the same as with the four-point system, but the straps from these anchorages were joined to a common inner lap strap at the buckle as shown on Figs. 3 and 4. The outer lap and sash straps were formed from a continuous length of webbing which could slide through the buckle tongue.

The assembly was tested with the common inner lap strap anchored at two alternative positions, shown on Figs. 3 and 4.

4. THE ENERGY ABSORBERS
The Type A energy absorber, shown on Fig. 5a was a commercial unit which dissipated energy by twisting a torsion bar. Extra webbing on the end of the sash strap was stored on a reel, the rotation of which was controlled by the torsion bar. When the torque from the tension in the strap exceeded the torsional strength of the bar the reel rotated and allowed the sash strap to extend. Tests with this type of load limiter have been described by Seffert et al.

The type B unit was developed at A.R.L. and dissipated energy by plastic bending of two mild steel strips. These were folded to U shape and fitted in a case. One end of each strip was welded to the case. Load was applied to the case and the other end of the strips. When the load overcame the bending strength of the strips the fold rolled along the case allowing the unit to extend. Construction is shown on Fig. 5b. Loose packing pieces stabilized the strips in the case. The unit has been described previously.

5. PROCEDURE
The nominal peak acceleration levels were 90,180,240 and 300 m/s². These values were not achieved exactly and actual peak values were 93,170,220 and 280 m/s².

Conventional four-point systems with a cushioned seat and 25 mm of slack were tested at all acceleration levels. Conventional four-point systems were tested at 170 m/s² peak acceleration with a rigid seat, tight and preloaded straps. Conventional three-point systems were also tested at peak accelerations of 170 m/s² with a cushioned seat and 25 mm slack.

Energy absorbing systems with a cushioned seat and 25 mm slack were tested with peak accelerations of 170 and 280 m/s². The test sequence is shown in Table I. The final test, without dummy or restraint was to determine the load produced by seat inertia.

In each test the dummy was positioned centrally in the seat and against the backrest. A new belt assembly was fitted and adjusted to the required position. Except for tests with tight or
preloaded straps the assembly was adjusted to allow 25 mm of forwards movement of the dummy. This is consistent with the amount of slack specified by the Australian Design Rules6, and Regulation for Testing Seat Belts proposed by the Economic Commission for Europe (E.C.E.). Details of the method used for setting the slack are given in a previous A.R.L. Report7.

In the test with tight straps the straps were tightened as much as possible by hand, using the normal adjusters.

In the test with the preloaded straps, the normal adjusters were used to obtain a 'snug' fit and tension was applied to the straps by moving the anchorages backwards by a mechanical loading device. The anchorages were secured with tension in the belt.

After adjusting the straps the webbing was marked where it passed through adjusters, and the test pulse was applied. After the test the webbing was checked for slip and energy absorber extensions were noted.

6. RESULTS AND DISCUSSION

6.1 Comparison of Four-point and Three-point Systems

Both configurations were tested with 25 mm slack and sled peak accelerations of 170 m s\(^{-2}\). Typical strap load traces are shown on Fig. 6. The maximum loads are summarised in Table II A, and it is seen that the total strap load was similar with either system. The upper sash load was slightly smaller and the outer lap load slightly greater with the four-point system. This was probably because the lower sash strap was higher on the dummy, as shown on Figs. 7 and 8. The load distribution on a body would appear to be better with the three-point system, but the four-point configuration would have been better if the lower sash anchorage had been lower or further forwards.

The three-point systems were tested with the inner lap strap attached at two alternative positions. These gave a noticeable difference in the slope of the lap strap in the unloaded condition, as shown on Figs. 3 and 4 but during the tests the loads developed in the straps, given in Table II A, and the slopes of the straps, as shown on Figs. 8 and 9 and in Table II B, were approximately the same with both anchorage positions.

As described in section 3.2 the strap forming the sash and outerlap strap could slide through the buckle tongue, but examination of the cine film showed that slip only occurred late in the acceleration pulse.

6.2 Comparison of Tests with Cushioned and Rigid Seats

Four-point assemblies were tested at 170 m s\(^{-2}\) peak acceleration with the flexible seat cushion and with the rigid seat. Typical load and acceleration traces are shown on Fig. 10, and results are summarised in Table III. When set up with 25 mm slack the strap loads with either rigid or cushioned seats were approximately the same. In all tests with the cushioned seat there was an abrupt increase in the seat load at about the time the dummy reached its furthest forward position ('Peak seat load' on Fig. 10). This was probably a direct loading between the dummy and the front member of the seat frame (through the compressed cushion), and was particularly severe in tests at higher accelerations. It is referred to later in section 6.4.

6.3 The Effect of Tightening the Straps

Tight or preloaded assemblies should produce an earlier build-up of load and the maximum values should be lower than an assembly fitted with initial slack. Tests to investigate these effects were carried out with the rigid seat at a sled peak acceleration of 170 m s\(^{-2}\).

The strap loads in the tight system were approximately 10% less than those with 25 mm of slack as shown in Table III. Preloading the straps produced a further reduction of 10% in the lap strap, but did not reduce the sash load. The preload applied was approximately 600N but this dropped to about 200N by the time the acceleration pulse was applied. The loads in the tight and preloaded systems were only developed slightly earlier than with the slack system as shown in Table III.

6.4 The Effect of Sled Peak Acceleration on the Strap and Seat Loads.

Strap and seat loads developed in a test on a conventional four-point system at a sled peak acceleration of 280 m s\(^{-2}\) are shown on Fig. 11. The sharp peak in the seat load referred to in section...
6.2 is evident. Vertical loading of the seat was not measured, but elongation of bolt holes in the front legs of the seat indicated that a load in excess of 18 kN had been developed. The magnitude of these seat loads would depend on the rigidity of the seat frame and dummy, or body, so the possibility of such loading should be considered in the design of the seat. There are two important reasons for such consideration, firstly such a shock loading to the spine or pelvis could be injurious, and secondly the seat and its attachments could be overloaded.

The peak loads in the sash strap are seen on Fig. 11 to have been reached later than those in the lap strap, and therefore the maximum value of the sum of the loads in the straps, (the total strap load) was less than the sum of the maximum loads in the individual straps. The maximum strap and seat loads, and the total strap loads are shown over the range of peak accelerations from 93 to 280 m/s² in Table IV. The total strap load is plotted against peak acceleration on Fig. 12, and this indicates that the typical aircraft design load of 9.1 kN (170 lb x 9g x 1.33 = 2060 lbf = 9.1 kN) would be reached with an aircraft deceleration peak of about 80 m/s² corresponding to 8g.

6.5 Dummy Displacement

The maximum forward displacement of the dummy torso in the test of the conventional four-point system at a peak acceleration of 280 m/s² is shown on Fig. 13. Shoulder displacement was 300 mm.

The maximum forward displacements of hip and shoulder datum points with the four-point system, over the range of peak accelerations from 93 to 280 m/s² are shown on Fig. 14, where the upper sash load is plotted against shoulder displacement, and the combined lap strap loads (inner plus outer lap) are plotted against hip displacement. The lines (AB and CD respectively) also correspond approximately to load deflection measurements made successively during a single test.

Tests with the three-point system and with the rigid seat both resulted in slightly less shoulder movement and slightly more movement at the hip. Tightening the straps produced less movement at both places.

6.6 The Effect of Energy Absorbers in the Sash Strap.

The development of the loads in the sash straps of the conventional and energy absorbing systems at a sled peak acceleration of 280 m/s² are shown on Fig. 15. The type B (A. R. I.) unit is seen to have limited the load to half the value developed in the conventional system, and to have maintained an almost uniform load. The load was less uniform with the type A (commercial) unit, but the peak load was still much less than with the conventional sash strap.

The reduction in load was achieved by permitting a greater extension of the restraint. Movement of the shoulder is shown on Fig. 15 and the extreme forward position of the dummy with the energy absorbing system is shown on Fig. 16 (cf. Fig. 13 for the conventional system).

The maximum upper sash strap loads, displacement of the shoulder and extension of the energy absorbers are summarized in Table V and plotted against peak acceleration on Figs 17 and 18. At the maximum peak acceleration of 280 m/s² it is seen that for the 50% reduction of load there was a 50% increase in shoulder movement. It can also be deduced from Fig 17 that the sash load in the energy absorbing (type B) system at a sled peak acceleration of 280 m/s² corresponded to the load to be expected in the conventional system at a sled peak acceleration of approximately 120 m/s². Sash strap loads are plotted against shoulder displacement on Fig. 19 to indicate the “trade off” of load against displacement.

The two types of energy absorbers displayed approximately similar effectiveness, with type B giving marginally greater reduction in load, probably because of its more uniform load extension characteristics.

The loads in the lap straps were up to 13% greater, when the energy absorbers were fitted in the sash straps. (see Table VI). This was probably because the increased torso movement transferred load to the pelvis, however the total strap load was lower with the energy absorbing system than with the conventional assembly. In a previous report it was shown that by using energy absorbers in both the sash and pelvic restraint, the loads in all the straps can be reduced.

6.7 Comparison with Previous Tests

The restraint loads depend on the peak acceleration and the velocity change. In this series of tests the acceleration distance was approximately constant and velocity change was a function of the acceleration. It is not possible to separate the relative importance of the two parameters from
these test results, but the relative importance may be inferred by comparison of the results with those of a previous test series which used a shorter acceleration distance. Three-point restraints similar to those referred to in section 3.2 were used but, as is shown in section 6.1, the total strap load with the three and four-point systems are similar and therefore results of the two series can be compared. The total strap loads for both series are shown on Fig. 20 and it is seen that similar peak accelerations produced similar loads. This is also shown in Table VII and it is seen that the relationship of load to peak acceleration was much closer than the relationship to velocity change.

7. CONCLUSIONS

1. Tests with a conventional seat belt indicated that the forces in the restraint could reach the typical design ultimate loads for light aircraft, at a cabin peak deceleration of only 80 m·s\(^{-2}\) corresponding to 8g.

2. Energy absorbers in the restraint would allow the system to withstand cabin decelerations of greater severity without an increase in the restraint forces.

3. Incorporation of an energy absorber into the sash strap of a restraint system reduced the load in that strap to half the value developed in the conventional configuration.

4. When tested with the same acceleration pulse, the total load developed in the straps of the three-point system or the four-point system with the cushioned or rigid seat were all approximately the same.

5. High loads were developed between the dummy and seat frame in the tests using a cushioned seat.

8. ACKNOWLEDGEMENT

The assistance of General Motors Holden’s by allowing use of their “Hyge” crash simulator is acknowledged.
REFERENCES

1. Crash Survival Design Guide
 US. Air Mobility Research and Development Laboratory, Fort Eustis, Virginia. Oct. 1971

2. Sarraile S.R.
 Dynamic tests of a Yielding Seat Belt System
 ARL Report SM 340 Aeronautical Research Laboratories
 Melbourne June 1972.

3. Sarraile S.R. and Hearn N.D.
 Aeronautical Research Laboratories, Melbourne

4. Seiffert U.W. Carbon E and Ristau H.
 Three point Energy Absorbing Seat Belt System
 Volkswagenwerk, AG
 SAE Paper 720434

5. Sarraile S.R.
 An Energy Absorber for Crash Protective Restraint Systems
 Note ARL SM 324.
 Aeronautical Research Laboratories Melbourne, April 1968.

 Department of Transport Australia, July 1973.

7. Uniform Provisions Concerning the Approval of Safety Belts for Adult Occupants of Power Driven Vehicles E.C.E.
 Regulation 16. United Nations

Postal Address:
Chief Superintendent,
Aeronautical Research Laboratories,
P.O. Box 4331,
MELBOURNE, Victoria 3001
TABLE 1

TEST SEQUENCE AND CONDITIONS

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Peak Accn m/s²</th>
<th>Vel. Change m/s</th>
<th>Seat</th>
<th>System</th>
<th>Strap Fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1336</td>
<td>93</td>
<td>10</td>
<td>cushion</td>
<td>conventional 4pt</td>
<td>slack²</td>
</tr>
<tr>
<td>1337</td>
<td>93</td>
<td>10</td>
<td>cushion</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1338</td>
<td>170</td>
<td>14</td>
<td>cushion</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1339</td>
<td>170</td>
<td>14</td>
<td>cushion</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1340</td>
<td>170</td>
<td>14</td>
<td>cushion</td>
<td>conventional 3pt¹</td>
<td>slack</td>
</tr>
<tr>
<td>1341</td>
<td>170</td>
<td>14</td>
<td>cushion</td>
<td>conventional 3pt¹</td>
<td>slack</td>
</tr>
<tr>
<td>1342</td>
<td>170</td>
<td>14</td>
<td>cushion</td>
<td>conventional 3pt¹</td>
<td>slack</td>
</tr>
<tr>
<td>1343</td>
<td>170</td>
<td>14</td>
<td>rigid</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1344</td>
<td>170</td>
<td>14</td>
<td>rigid</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1345</td>
<td>170</td>
<td>14</td>
<td>rigid</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1346</td>
<td>170</td>
<td>14</td>
<td>rigid</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1347</td>
<td>170</td>
<td>14</td>
<td>rigid</td>
<td>conventional 4pt</td>
<td>tight</td>
</tr>
<tr>
<td>1348</td>
<td>170</td>
<td>14</td>
<td>rigid</td>
<td>conventional 4pt</td>
<td>preloaded</td>
</tr>
<tr>
<td>1349</td>
<td>170</td>
<td>14</td>
<td>cushion</td>
<td>EA type A 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1350</td>
<td>170</td>
<td>14</td>
<td>cushion</td>
<td>EA type B 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1351</td>
<td>220</td>
<td>16.6</td>
<td>cushion</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1352</td>
<td>280</td>
<td>19</td>
<td>cushion</td>
<td>conventional 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1353</td>
<td>280</td>
<td>19</td>
<td>cushion</td>
<td>EA type A 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1354</td>
<td>280</td>
<td>19</td>
<td>cushion</td>
<td>EA type B 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1355</td>
<td>280</td>
<td>19</td>
<td>cushion</td>
<td>EA type A 4pt</td>
<td>slack</td>
</tr>
<tr>
<td>1356</td>
<td>280</td>
<td>19</td>
<td>cushion</td>
<td>none³</td>
<td>none</td>
</tr>
</tbody>
</table>

Notes:
1. Test numbers allocated by G.M.H.
2. Slack = 25 mm
3. Inner lap attached to forward anchorage
4. Inner lap attached to rear anchorage
5. No dummy. Test to determine seat inertia load.
TABLE II A
MAXIMUM STRAP LOADS WITH CONVENTIONAL FOUR-POINT AND THREE-POINT SYSTEMS
Sled peak acceleration 170 m\(s^2\) Slack 25 mm

<table>
<thead>
<tr>
<th>Test No.</th>
<th>System</th>
<th>Max. Strap load kN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Upper sash</td>
</tr>
<tr>
<td>1338</td>
<td>4 Point</td>
<td>5.7</td>
</tr>
<tr>
<td>1339</td>
<td>4 Point</td>
<td>6.0</td>
</tr>
<tr>
<td>1340</td>
<td>3 Point</td>
<td>6.2</td>
</tr>
<tr>
<td>1343</td>
<td>3 Point</td>
<td>6.7</td>
</tr>
<tr>
<td>1344</td>
<td>3 Point</td>
<td>6.7</td>
</tr>
</tbody>
</table>

TABLE II B
THREE-POINT SYSTEM INNER ANCHORAGE POSITIONS AND STRAP ANGLES

<table>
<thead>
<tr>
<th>Anchorage position</th>
<th>Rear</th>
<th>Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Installed</td>
<td>Loaded</td>
</tr>
<tr>
<td>Distance of anchorage below datum (^1)</td>
<td>mm</td>
<td>130</td>
</tr>
<tr>
<td>Distance of anchorage behind datum (^1)</td>
<td>mm</td>
<td>70</td>
</tr>
<tr>
<td>Angle of line from anchorage to location of lap belt on dummy</td>
<td>degrees (^2)</td>
<td>45</td>
</tr>
<tr>
<td>Angle of common strap</td>
<td>degrees (^2)</td>
<td>54</td>
</tr>
<tr>
<td>Angle of strap over lap</td>
<td>degrees (^2)</td>
<td></td>
</tr>
<tr>
<td>Angle of Sash at lap</td>
<td>degrees (^2)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Datum is the intersection of the seat and seat back.
2. Angles are projected angle to the horizontal.
3. Approximately the minimum angle in the test.
TABLE III
RESTRAINT LOADS WITH CUSHIONED AND RIGID SEATS AND WITH SLACK, TIGHT AND PRELOADED STRAPS

Conventional four-point systems. Sled peak acceleration 170 m/s²

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Seat</th>
<th>Strap fitting</th>
<th>Max. Strap Load kN</th>
<th>Max. 1 Seat Load kN</th>
<th>T₁ (ms)</th>
<th>T₂ (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper sash</td>
<td>Lower sash</td>
<td>Outer lap</td>
<td>Inner lap</td>
</tr>
<tr>
<td>1338</td>
<td>cushion</td>
<td>slack</td>
<td>5.7</td>
<td>3.5</td>
<td>5.6</td>
<td>5.3</td>
</tr>
<tr>
<td>1339</td>
<td>cushion</td>
<td>slack</td>
<td>6.0</td>
<td>4.5</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>1345</td>
<td>rigid</td>
<td>slack</td>
<td>6.1</td>
<td>4.7</td>
<td>5.8</td>
<td>5.1</td>
</tr>
<tr>
<td>1346</td>
<td>rigid</td>
<td>slack</td>
<td>5.7</td>
<td>4.5</td>
<td>5.8</td>
<td>5.1</td>
</tr>
<tr>
<td>1347</td>
<td>rigid</td>
<td>tight</td>
<td>5.3</td>
<td>4.0</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>1348</td>
<td>rigid</td>
<td>preload</td>
<td>5.6</td>
<td>4.0</td>
<td>4.5</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Notes:
1. Seat load includes seat inertia of approximately 1.5 kN
2. Time for sash load to reach 2kN
3. Time for outer lap strap load to reach 2kN
TABLE IV

RESTRAINT LOADS WITH SLED PEAK ACCELERATION 93 TO 280 m/s²

Conventional four-point systems, cushioned seat, 25 mm slack.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Peak Accn m/s²</th>
<th>Max. Strap loads kN</th>
<th>Max Seat load kN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Upper sash</td>
<td>Lower sash</td>
</tr>
<tr>
<td>1336</td>
<td>93</td>
<td>3,3</td>
<td>2,2</td>
</tr>
<tr>
<td>1337</td>
<td>93</td>
<td>3,1</td>
<td>2,2</td>
</tr>
<tr>
<td>1338</td>
<td>170</td>
<td>5,7</td>
<td>3,5</td>
</tr>
<tr>
<td>1339</td>
<td>170</td>
<td>6,0</td>
<td>4,5</td>
</tr>
<tr>
<td>1351</td>
<td>220</td>
<td>7,2</td>
<td>5,1</td>
</tr>
<tr>
<td>1352</td>
<td>280</td>
<td>8,9</td>
<td>6,0</td>
</tr>
</tbody>
</table>

Notes:
1. Max. value of sum of strap loads
2. Including seat inertia
3. Calculated seat inertia

TABLE V

EFFECT OF ENERGY ABSORBERS ON THE SASH LOAD AND SHOULDER MOVEMENT

Conventional and energy absorbing systems

<table>
<thead>
<tr>
<th>Test No.</th>
<th>System</th>
<th>Peak accn.</th>
<th>Max. upper sash strap load kN</th>
<th>shoulder displacement mm</th>
<th>EA extension mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1338</td>
<td>Conventional</td>
<td>170</td>
<td>5,7</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>1339</td>
<td>Conventional</td>
<td>170</td>
<td>6,1</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>1349</td>
<td>EA Type A</td>
<td>170</td>
<td>4,3</td>
<td>300</td>
<td>120</td>
</tr>
<tr>
<td>1350</td>
<td>EA Type B</td>
<td>170</td>
<td>4,1</td>
<td>250</td>
<td>107</td>
</tr>
<tr>
<td>1352</td>
<td>Conventional</td>
<td>280</td>
<td>8,9</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>1353</td>
<td>EA Type A</td>
<td>280</td>
<td>5,6</td>
<td>400</td>
<td>290</td>
</tr>
<tr>
<td>1355</td>
<td>EA Type A</td>
<td>280</td>
<td>5,6</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>1354</td>
<td>EA Type B</td>
<td>280</td>
<td>4,5</td>
<td>440</td>
<td>370</td>
</tr>
</tbody>
</table>

Note:
1. Strap cut by arm joint of dummy.
TABLE VI
MAXIMUM STRAP LOADS WITH CONVENTIONAL AND ENERGY ABSORBING FOUR-POINT SYSTEMS
Sled Peak acceleration 280 m/s^2

<table>
<thead>
<tr>
<th>Test No.</th>
<th>System</th>
<th>Max. Strap loads kN</th>
<th>Max. Total Load kN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Upper sash</td>
<td>Lower sash</td>
</tr>
<tr>
<td>1352</td>
<td>Conventional</td>
<td>8.9</td>
<td>6.0</td>
</tr>
<tr>
<td>1353</td>
<td>EA Type A</td>
<td>5.6</td>
<td>5.8</td>
</tr>
<tr>
<td>1355</td>
<td>EA Type A</td>
<td>5.6</td>
<td>5.3</td>
</tr>
<tr>
<td>1354</td>
<td>EA Type B</td>
<td>4.5</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Note: 1. Max value of sum of strap loads.

TABLE VII
COMPARISON WITH PREVIOUS TESTS, LONG AND SHORT ACCELERATION DISTANCES
Conventional Three-point systems

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Acceleration Distance</th>
<th>Peak accn</th>
<th>Velocity change</th>
<th>strap loads kN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>m/s^2</td>
<td>m/s</td>
<td>upper sash</td>
</tr>
<tr>
<td>1344</td>
<td>830</td>
<td>170</td>
<td>14</td>
<td>6.7</td>
</tr>
<tr>
<td>619^1</td>
<td>420</td>
<td>180</td>
<td>11</td>
<td>6.2</td>
</tr>
<tr>
<td>623^1</td>
<td>420</td>
<td>240</td>
<td>13</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Note: 1. Data from Ref. 3.
THE TEST FRAME, SEAT AND DUMMY WITH CONVENTIONAL FOUR-POINT RESTRAINT SYSTEM VIEWED FROM THE "INNER" SIDE. UPPER END OF SASH STRAP ANCHORED AT A.
TEST SEAT SHOWING SEAT PAN MADE FROM A LATTICE OF SEAT BELT WEBBING.
CONVENTIONAL THREE-POINT RESTRAINT SYSTEM WITH COMMON INNER LAP STRAP ATTACHED TO THE REAR ANCHORAGE POSITION.
CONVENTIONAL THREE-POINT RESTRAINT SYSTEM WITH COMMON INNER LAP STRAP ATTACHED TO THE FORWARD ANCHORAGE POSITION.
CONSTRUCTION OF TYPE 'A' ENERGY ABSORBER.
(Commercial unit)
CONSTRUCTION OF TYPE 'B' ENERGY ABSORBER.
A.R.I. unit.

Material: Mild steel 18 B.G.

- Weld
- Case
- Strips
- 12.7 mm dia. hole
- 28 mm
- 9.5 mm dia. hole
- 260 mm
- End fitting
- Webbing
- Packing pieces
- Link
- Fold
- Anchorage to test fixture
STRAP LOADS versus TIME.
Conventional three and four-point systems. Peak acc’n. 170 m/s².
EXTREME FORWARD POSITION OF DUMMY.
Conventional four-point system. Peak acc’n. 170 m/s².
FIG. 8 EXTREME FORWARD POSITION OF DUMMY.
Conventional three-point system. Lap strap on rear anchorage. Peak acc'n. 170 m/s2.

FIG. 9 EXTREME FORWARD POSITION OF DUMMY.
Conventional three-point system. Lap strap on forward anchorage. Peak acc'n. 170 m/s2.
SLED ACCELERATION, STRAP AND TOTAL SEAT LOADS versus TIME.
Conventional four-point system. Rigid and cushioned seats. Peak acc’n. 170 m/s².
SLED ACCELERATION, STRAP AND SEAT LOADS versus TIME.
Conventional four-point system. Peak acc.’n. 280 m/s².
(Seat load shown is from dummy only).
MAXIMUM TOTAL STRAP LOAD versus SLED PEAK ACCELERATION.
Conventional four-point system. * [9 g on 77 kg x 1.33]
EXTREME FORWARD POSITION OF DUMMY.
Conventional four-point system. Peak acc'n. 280 m/s².
MAXIMUM STRAP LOAD versus MAXIMUM DUMMY DISPLACEMENT
Conventional four-point system, cushion seat, 25 mm slack.
UPPER SASH STRAP LOAD AND SHOULDER DISPLACEMENT versus TIME.
Conventional and energy absorbing four-point systems. Peak acc'n. 280 m/s².
EXTREME FORWARD POSITION OF DUMMY WITH ENERGY ABSORBING SYSTEM.
Four-point system. Peak acc'n. 280 m/s².
MAXIMUM UPPER SASH STRAP LOAD versus SLED PEAK ACCELERATION

Conventional and energy absorbing four-point systems.

- Conventional
- EA Type A
- EA Type B
MAXIMUM SHOULDER DISPLACEMENT versus SLED PEAK ACCELERATION.
Conventional and energy absorbing four-point systems.
MAXIMUM UPPER SASH STRAP LOAD versus MAXIMUM SHOULDER DISPLACEMENT
Conventional and energy absorbing four-point systems.
MAXIMUM TOTAL STRAP LOAD versus SLED PEAK ACCELERATION FOR BOTH LONG AND SHORT ACCELERATION DISTANCES.
DISTRIBUTION

AUSTRALIA

DEPARTMENT OF DEFENCE

Central Office
- Chief Defence Scientist: 1
- Executive Controller, ADSS: 2
- Superintendent: Defence Science Administration: 3
- Superintendent: Assistant to Executive Controller ADSS: 4
- Controller: Service Laboratories and Trials Division: 5
- Controller: Military Studies and Operational Analysis Division: 6
- Controller: Programme Planning and Policy Division: 7
- Central Library: 8

Aeronautical Research Laboratories
- Chief Superintendent: 9
- Superintendent: Structures Division: 10
- Structures Divisional File: 11
- S.R. Sarraile: co-authors: 12-13
- N.D. Hearn: 14
- Library: 15

Central Studies Establishment
- Library: 16

Materials Research Laboratories
- Library (Victoria): 17

Air Office
- Air Force Scientific Adviser: 18
- Library, Engineering (AMTS) Canberra: 19-22
- S.T.S.O. Support Command, H.Q.: 24

Army Office
- Army Scientific Adviser: 25
- The Head, Engineering Development Establishment: 26
- Library, Engineering Development Establishment: 27
- U.S. Army Standardisation Group: 28

Navy Office
- Naval Scientific Adviser: 29
- Superintendent, R.A.N.R.L.: 30

DEPARTMENT OF INDUSTRY AND COMMERCE

Government Aircraft Factories
- Library: 31-32

DEPARTMENT OF TRANSPORT

Air Transport Group
- Director-General/ Library: 33
- Mr. P.S. Langford: 34
- Dr. J.C. Lane, Director of Aviation Medicine: 35-36

Surface Transport Group
- Assistant Secretary, Road Safety Research, Canberra: 37
- Chairman, A.C.S.V.D. Canberra: 38
- Chairman, A.C.S.V.D., Seat Belts Sub-Committee, Canberra: 39
DEPARTMENT OF NATIONAL RESOURCES

Secretary, Canberra

STATUTORY AUTHORITIES AND PRIVATE INDUSTRY

Director: Australian Road Research Board, Vermont, Vic.
Director: Standards Association of Australia, N.S.W.
Dr. M. Henderson, Traffic Accident Research Unit, N.S.W.
Mr. D.C. Herbert, Traffic Accident Research Unit, N.S.W.
Road Safety and Traffic Authority, Victoria
State Electricity Commission of Victoria, Library, H.O.
C.S.I.R.O. Library, Mechanical Engineering Dept. H.O.
B.P. Australia Ltd. (Mr. Gattengo) Vic.
Broken Hill Pty Ltd, Central Research Labs., N.S.W.
Broken Hill Pty Ltd, Melbourne Research Labs., Clayton.
Commonwealth Aircraft Corporation, (Manager)
Hawker de Havilland Pty Ltd, (Tech. Librarian) Bankstown
I.C.F.A.N.Z. Library
Library, Ansett Airlines of Australia
Library, Qantas
Library, Trans-Australia Airlines
Library of New South Wales, Acquisition Department
Chief Engineer: General Motors Holden’s, Port Melbourne
Chief Engineer: Ford Motor Company, Geelong
Chief Engineer: Cooldrive Consolidated Industries, Pty. Ltd. Broadmeadows
Chief Engineer: British Leyland Motor Corporation, N.S.W.
Chief Engineer: Britax Wibroc, N.S.W.
Chief Engineer: Rex Aviation, N.S.W.
Chief Engineer: Chrysler of Australia Pty Ltd, S.A.
Chief Engineer: Rainsford Metal Products Pty Ltd, S.A.
T.R.W. Marrickville N.S.W.

Universities

Adelaide Barr Smith Library
Australian National Library
Melbourne Library, Engineering School
Dr. E. Hoffman
Monash Professor R.W. Cumming
Newcastle Library
New England Library
New South Wales Library, Serials Department
Queensland Library
Sydney Professor D.W. George, Mech. Eng.
Tasmania Library

Royal Melbourne Institute of Technology

Library
Aero. Eng. Dept. (Mr. H. Millicer)
Head of Mech. Eng. Dept. (Mr. S. Sears)

CANADA

National Research Council of Canada
C.A.A.R.C. Co-ordinator Structures — Dr. G.R. Cowper
McGill University Library

FRANCE

A.G.A.R.D. Library
GERMANY
DFVLR, West Germany 87

INDIA
Department of Civil Aviation, (Director) 88
C.A.R.C. Co-ordinator Structures — Professor P.N. Murthy 89-93

ITALY
Fiat Co., Dr. Guisepe Gabrielli, Torino 94

NETHERLANDS
N.L.R. Amsterdam 95
Central Technical Institute, T.N.O, Apeldoorn 96

NEW ZEALAND
Air Department, R.N.Z.A.F., Aero. Documents Section 97
Department of Transport, Library 98
University of Canterbury, Library 99

SWEDEN
Aeronautical Research Institute 100
Chalmer's University of Technology, (Professor B. Aldman) 101
Library, S.A.A.B. Linkoping 102

UNITED KINGDOM
Department of Industry and Commerce, Senior Representative 103
Defence Research Information Centre 104-105
Mr. A.R.G. Brown, ADR, MAT(MEA) 106-107
Royal Aircraft Est., Library, Farnborough 108-109
Royal Aircraft Est., Mr. R.G. Thorne 110
Aircraft and Armament Experimental Est., 111
Military Engineering Experimental Est., 112
Military Vehicles and Experimental Est., 113
National Engineering Labs., (Superintendent) Scotland 114
The British Library, Science Reference Library, (High Holborn Divn.) 115
Aircraft Research Association, Library, Bedford 116
Fulmer Research Institute Ltd. (Research Director) 117
Motor Industries Research Association, (Director) 118
Science Museum Library 119
Road Research Laboratory, (Director) Crowthorn, Berks. 120
R.A.F. Institute of Aviation Medicine, Farnborough 121

Aircraft Companies
Hawker Siddeley Aviation Ltd, Brough 122
British Aircraft Corporation Ltd, Commercial A.C Divn. Filton 123
Westland Helicopters Ltd., Yeovil 124

Universities
Bristol Library Eng. Dept. 125
Cambridge Library Eng. Dept. 126
London Professor A.D. Young, Queen's College 127
Manchester Professor Applied Math 128
Nottingham Library 129
Southampton Library 130

Colleges & Institutes
Cranfield Inst. of Tech. Library 131
UNITED STATES OF AMERICA

Australian Defence Research & Development Attache
Civil Air Attache, Washington. D.C.
Aerospace Research Labs., Wright-Patterson A.F.B., Ohio
National Technical Information Service, Springfield
Library, National Bureau of Standards, Washington D.C.
F.A.A. Aeronautical Center, Flight Standards Technical Division Okla
F.A.A. National Aviation Experimental Centre, Atlantic City. N.J.
F.A.A. Civil Aeromedical Institute – Oklahoma
Dynamic Science Ultrasystems Inc., Phoenix, Arizona
Calspan Corporation, Buffalo. N.Y.
N.A.S.A. Langley Research Center, Hampton, Va.
National Transportation Safety Board, U.S. Dept. of Transportation
Chief Engineer – Piper Aircraft Corporation, Lock Haven, Penn.
Chief Engineer – Beech Aircraft Corporation, Wichita, Kansas
Chief Engineer – Cessna Aircraft Company, Wichita, Kansas
Cessna Aircraft Coy. (Mr. D.W. Mallonee, Executive Eng.)
U.S. Army Research & Development Labs., Fort. Belvoir

Universities
California (L.A.)
Cornell (Ithaca)
Massachusetts
Michigan
Oklahoma
Wayne State

Institutes of Technology
California

Spares

Institute of Transportation & Traffic Engineering
Library
Library
Dr. R.G. Snyder, Highway Safety Research Institute
Dr. Bergey
Professor L.M. Patrick
Library, Guggenheim Aero. Labs.

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156-167
DOCUMENT CONTROL DATA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Security Grading / Release Limitation</td>
<td>2. Document Type / Number</td>
</tr>
<tr>
<td>(a) Document Content</td>
<td>Structures Report 359</td>
</tr>
<tr>
<td>(b) This Page</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Document Date</td>
<td>September 1975</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Title and Sub-Title</td>
<td>THE PERFORMANCE OF CONVENTIONAL AND ENERGY ABSORBING RESTRAINTS IN SIMULATED CRASH TESTS</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Personal Author</td>
<td>S.R. Sarrailhe and N.D. Hearn</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Corporate Author(s)</td>
<td>Aeronautical Research Laboratories</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Abstract</td>
<td>Dynamic tests were conducted using conventional lap sash seat belt restraints, and assemblies incorporating energy absorbers in the sash strap. Three restraint geometries, rigid and cushioned seats, and assemblies with the straps slack, tight and preloaded were tested.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The load in the sash strap with an energy absorber was half of that in the same strap of a conventional restraint in tests with the same peak acceleration of 280 m/s².</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The results were also compared with results of previous tests where a shorter acceleration distance was used.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Computer Program(s) -- Title and Language</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Descriptors</td>
<td>Crash tests</td>
</tr>
<tr>
<td></td>
<td>Restraints</td>
</tr>
<tr>
<td></td>
<td>Motor vehicle accidents</td>
</tr>
<tr>
<td></td>
<td>Seat belts</td>
</tr>
<tr>
<td></td>
<td>Seats</td>
</tr>
<tr>
<td></td>
<td>Aviation safety</td>
</tr>
<tr>
<td></td>
<td>Safety engineering</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Library Distribution (Defence Group)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central Library (Canberra)</td>
</tr>
<tr>
<td></td>
<td>A.R.E., C.S.E., M.R.L.</td>
</tr>
<tr>
<td></td>
<td>Air Office: Engineering, A.R.D.U.</td>
</tr>
<tr>
<td></td>
<td>Army Office: E.D.E.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Cosati Classifications</td>
<td>0102, 1407, 1312</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Task Reference (RD P)</td>
<td>(RD P) RD 72</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Sponsoring Agency Reference</td>
<td>DCA 63/3</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Cost Code</td>
<td>26-1311</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Imprint</td>
<td>MELBOURNE -- AERONAUTICAL RESEARCH LABORATORIES 1976</td>
</tr>
</tbody>
</table>