KNOWLEDGE-BASED ADAPTIVE CURRICULUM SEQUENCING FOR CAI: APPLICA--ETC(U)

SEP 77 K T WESCOURT, M BEARD, L GOULD

N00014-76-C-0165

END

I - 78

DEC
KNOWLEDGE-BASED ADAPTIVE CURRICULUM SEQUENCING FOR CAI:
APPLICATION OF A NETWORK REPRESENTATION

by

Keith T. Wescourt, Marian Beard, and Laura Gould

TECHNICAL REPORT NO. 288
September 20, 1977

PSYCHOLOGY AND EDUCATION SERIES

To be published in the Proceedings of the National Association for Computing Machinery, 1977.

This research was supported by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research under Contract No. N00014-76-C-0165, Contract Authority Identification Number, NR No. 154-381 and by the Navy Personnel Research & Development Center under Contract N00123-75-C-1528.

Approved for public release; distribution unlimited.

Reproduction in whole or in part is permitted for any purpose of the U. S. Government.

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
One aspect of tutoring skill for technical subjects is individualized, adaptive sequencing of the problems given to students as learning exercises. A Curriculum Information Network (CIN) describes the relationships between the problems in a CAI curriculum and the concepts and skills that they are intended to teach. It is a basis for selecting problems for each student with respect to his evolving knowledge of those concepts and skills. This paper describes the application of a semantic network to represent the complex...
Interrelationships among the skills in a CIN for the BASIC Instructional Program, a CAI problem-solving laboratory for introductory programming in the BASIC language. The semantic network is used in drawing complex inferences about the student's state of knowledge and the problems that are appropriate to present to him. Such inferences enable more skillful problem sequencing by the CAI system.
One aspect of tutoring skill for technical subjects is individualized, adaptive sequencing of the problems given to students as learning exercises. A Curriculum Information Network (CIN) describes the relationships between the problems in a CAI curriculum and the concepts and skills that they are intended to teach. It is a basis for selecting problems for each student with respect to his evolving knowledge of those concepts and skills. This paper describes the application of a semantic network to represent the complex interrelationships among the skills in a CIN for the BASIC Instructional Program, a CAI problem-solving laboratory for introductory programming in the BASIC language. The semantic network is used in drawing complex inferences about the student's state of knowledge and the problems that are appropriate to present to him. Such inferences enable more skillful problem sequencing by the CAI system.

1. Introduction

Since its inception, a major goal of computer-assisted instruction (CAI) has been to individualize instruction by making the teaching system's behavior contingent on a student's responses during prior interactions with the system. Some early adaptive CAI systems applied features of mathematical learning and decision theories to sequencing drill-and-practice curricula in elementary mathematics (Suppes & Norington, 1972) and in initial reading (Givens & Atkinson, 1966). These systems generated problems of different types (e.g., addition problems with or without "carries") according to an estimate of the student's mastery of each type based on his prior history of correct and incorrect answers. As a result, more capable students could progress rapidly to harder problem types and remediation and review could be determined with respect to individual difficulties manifested with specific problem types.

More recently, features adapted from Artificial Intelligence (AI) systems have been applied to individualize CAI along other dimensions. Research on question answering and natural language has enabled systems such as SCHOLAR (Collins, Warnecke, & Passafiume, 1975) to conduct spontaneous instructional dialogues, giving students great freedom of expression and providing exposure to a topic according to the student's demonstrated familiarity with it. Other systems, for example, SOPHIE (Brown & Burton, 1975), have been designed to monitor student problem-solving attempts and react to errors or requests for help with concepts that reflect the context in which the student has been working. Significant progress has been made in AI-based CAI toward understanding the student's behavior with respect to representations of the knowledge he acquires and uses, and not merely in terms of his performance on particular questions and problems.

Our research over the past few years has attempted to apply some AI techniques to individualized curriculum sequencing for complex scientific and technical subjects. Traditionally, instruction in these types of subjects has depended heavily on students solving large numbers of problems. This method has proven to be effective for forcing the integration of concepts and problem-solving skills described in lectures and readings. Our concern has been to individualize the sequencing of a curriculum of complex problems in order to improve the acquisition and integration of the underlying concepts and skills of the subject. The result of our initial efforts was the concept of the Curriculum Information Network (CIN), a means of describing the relationships among the problems in a curriculum in terms of procedural skills involved in solving them, and for modeling student learning with respect to those same skills (Barr, Beard, & Atkinson, 1976). A CIN and a problem-selection procedure were implemented in the BASIC Instructional Program (BIP), a CAI system that teaches the BASIC programming language at an introductory level. The present paper describes our recent research, in which we developed a semantic network representation for structural and pedagogical knowledge about BASIC and some inference techniques for using this network to increase the sophistication of CIN-based problem selection in the BIP system.

2. Overview of the BIP System

2.1 Design

BIP is designed to teach elementary programming concepts and skills without lectures or a standard textbook. All of the resources available to students reside within the BIP system, illustrated in Figure 1, except for a manual written especially for the course. Furthermore, after a brief interactive introductory lesson, BIP presents no further text lessons on programming; instead, the student learns to program by solving programming problems using a BASIC interpreter built into the instructional system. For the purposes of our research, the value of BIP as a stand-alone CAI
resource is that the effects of problem sequencing on student performance are emphasized and can be evaluated more directly than they could in a multi-faceted system involving lectures, readings, and question-and-answer sessions in addition to a problem-solving laboratory.

![Diagram of RIP](image)

Figure 1. A schematic representation of the RIP CAI system.

2.2 Curriculum

The only parts of the RIP system that we need to consider in this paper are those involved in its curriculum-sequencing process. The curriculum consists of about 100 human-authored programming problems, which we refer to as tasks. While RIP's task-sequence procedures could work as well, or better, if tasks were generated dynamically, at present there is no way to generate complex tasks that are as realistic and motivating as those written by a person. Furthermore, in a real instructional situation, it is the usual case that a teacher starts with a set of tasks he feels appropriate and then considers a task-sequence strategy rather than vice-versa. The following is a typical problem from the RIP curriculum:

On the first day of Christmas, someone's true love sent him/her a partridge in a pear tree (one gift on the first day). On the second day, the true love sent two turtle doves in addition to another partridge (three gifts on the second day). This continued through the 12th day, when the true love sent 12 lords, 11 ladies, 10 drummers, ... all the way to yet another partridge.

Write a program that computes and prints the number of gifts sent on that twelfth day. (This is not the same as the total number of gifts sent throughout all 12 days--just the number sent on that single 12th day.)

2.3 The CIN: Relating tasks and skills

The primary knowledge base in RIP is a Curriculum Information Network. In the CIN of RIP-I, the version described by Barr, et al. (1976), each task in the curriculum is described in terms of a set of procedural skills necessary to complete it successfully (i.e., to write the PSIC program that is called for). About 90 skills are used to describe the entire RIP curriculum, with some tasks involving a few as one or two skills, and others as many as ten. Each student's progress through the course is matched with respect to his learning of the total set of skills. The skills defined in RIP-I in no way constitute a sufficient basis for representing the complete process by which a student understands a problem, determines a solution algorithm, and implements it as acceptable BASIC code. The skills relate only to the coding process, many corresponding to a single line of code. For example, if a problem solution includes the lines

```
... 70 INPUT T
80 PRINT R * T
...```

then its description in the CIN would include the skills, "assign numeric variable by -INPUT-" and "print numeric expression [operation on variables]."

Although the skills are, for the most part, defined in terms of syntactic constructs, RIP-I task selection does not reflect the student's knowledge of syntax, but instead depends on his knowledge of the semantics and pragmatics for using the skill appropriately. All purely syntactic errors are detected immediately by the RIP-I interpreter, which responds with explicit feedback describing the error and illustrating syntactically correct examples of the construct. These syntactic errors do not affect the model of the student maintained by RIP-I. This model is affected by logical errors which allow the student's program to run, but not to produce correct results. Many of these errors can be associated with semantically or pragmatically inappropriate use of the syntactic constructs described by RIP-I skills.

In RIP-I, the skills are grouped into about a dozen non-overlapping sets called techniques, such as simple printing, assignment, and conditional branching. The techniques themselves are linearly ordered according to judgments about the relative complexity of the skills they contain. The technique ordering is used in RIP-I as a constraint on the order in which major concepts are introduced and as a scale for determining whether problems available for remediation particular skills are appropriate to the student's overall progress.

2.4 Using a CIN for task selection

The general paradigm for applying a CIN to problem selection is:

1. From the model of the student's learning of all the skills, assemble sets of skills that correspond to relevant pedagogical considerations, such as "need further work," "ready to be learned," "already learned," etc.

2. Using these sets and other historical data (e.g., those tasks that this student has already completed), search the CIN for the task that uses a set of skills most congruent to a set that best satisfies overall pedagogical goals. For example, given the overall goal of reducing the total number of tasks students must complete to reach a level of competence, one might choose to search for a task with the most "need further work" and "ready to be learned" skills and the least "already learned" skills.
3. Present the task to the student and analyze his performance on it to update the model of his learning of the skills.

Three main theoretical entities bear on this task-selection paradigm. First, there is the representation of knowledge to be learned, which is the skills in the CIN. Second, there is a theory of learning, which maps performance on tasks onto changes in the student's knowledge of the skills. Finally, there is a theory of instruction, which for any state of knowledge determines the next task that is "best" for the student to work on.

3. Applying a network representation of knowledge to task selection

Our initial use of a CIN in BIP-I for selecting tasks has demonstrated the successful application of the CIN paradigm (Burr, et al., 1976). However, the representation of programming knowledge and the model of student learning used in BIP-I are very rudimentary. Most obviously, BIP-I's grouping of skills into techniques is an oversimplification of the actual interrelations between skills. The technique groups do not provide a sufficient basis for anticipating a student's performance in new contexts based on his performance in related contexts—an important aspect of a human tutor's skill in selecting tasks for his student. Likewise, the student model, consisting of counters for each skill, does not differentiate various levels of skill mastery indicated by the amount of difficulty a student encounters in completing tasks. We therefore undertook to design a new CIN-based task-selection procedure for a BIP-II system, incorporating both a more detailed representation for the knowledge underlying the curriculum and more complex assumptions for modeling student learning. The remainder of this paper will focus on the new representation we have developed and how it is used in the BIP-II system.

In considering alternative representations for the knowledge underlying a task, we recognized that the most powerful approach would be a procedural representation sufficient to synthesize task solutions (see, for example, Brown, Burton, Miller, deKleer, Purcell, Hausmann, & Bobrow, 1975, and Carr & Goldstein, 1977). However, the state-of-the-art in program synthesis and analysis techniques has not yet advanced to a point where a manageable system could be implemented for automatically solving programming problems like those in the BIP curriculum. Thus, we decided to extend the original concept of a set of skills by embedding the skills in a network representation describing the structural and pedagogically significant relations between them. The network relationships allow inferences that potentially add sophistication to both the process of task selection and of interpreting student performance to update the student model. For example, unlearned skills that are deemed to be analogous to other skills that are already known to be troublesome for that student.

3.1 The BASTINET

Rather than having the network of knowledge to be learned directly on the BIP curriculum, we built the skill relationships on a general representation for BASIC programs. From a general analysis of the BASIC language, guides to BASIC programming, and the skills and techniques of BIP-I, we developed a network representation for BASIC programming constructs (the BASTINET), a simplified portion of which is shown in Figure 2.

![Diagram of BASTINET](image)

Figure 2. A simplified portion of the BASTINET describing control structures of the BASIC language.

The node names are self-explanatory; the links (relationships) are Kind, Component, Hardness, and (mutual functional) Dependency. The section of the BASTINET shown specifies that there are two kinds of control structures, and expresses a judgment that the conditional kind is harder to learn than the unconditional. There are two kinds of conditional structures, and FOR-NEXT is harder than IF-THEN. The components of an IF-THEN statement are the words "IF" and "THEN" with the Boolean condition and the line number in the appropriate places. For the purposes of this illustration, the BOOLEAN consists of a numeric expression (NEXP), a relational operator (REL), and another NEXP; among the three kinds of NEXP's, numeric literals (NILIT) are easiest, and numeric variables (NVAR) and simple arithmetic expressions (SIMARITH) are increasingly hard.

Note that the downward links in the figure provide information like that found in a BIP notation for BASIC, while the horizontal links provide pedagogical information specifying relative difficulty, analogy, and dependency. The opinions expressed by the horizontal links are necessarily general and do not always hold for all students in all stages of learning. For example, an arithmetic expression is generally a harder construct than a numeric variable because it contains a variable itself, but observation indicates that...
using a statement such as PRINT 64k tends to be an easier task for a beginner than using PRINT II. This implies that, ultimately, the pedagogical relationships between concepts must sometimes be a function of the student’s state of learning at the time; the relationships are to be used. We have chosen not to trouble this refinement in the BASICNET underlying the MP-II system.

3.2 List notation for the BASICNET

A simplified version of the list notation we use to represent the portion of the BASICNET in Figure 2 is:

(Control:Structure K (Unconditional Conditional))
(Unconditional K (END GOTO STOP) H (Conditional))
(Conditional K (IF THEN FORM/BET))
(IF THEN C (IF Boolean THEN LITERAL) H
(FORM/NEXT))
(FOR/NEXT C (FOR NEXT))
(FOR D (NEXT))
(HOLE1N C (NEXPR REL NEXPR))
(NEXPR K (NVAR SIMARGH))
(NLIT H (NVAR A (SLIT)))
(NVAR H (SIMARGH) A (SVAR) S (SVAR))

The A links specify that numeric literals are analogous to string literals (SLIT), and that numeric variables are analogous to string variables (SVAR). The S link says that NVAR and SVAR are similarly difficult. (The information about SLIT and SVAR is found in another part of the BASICNET.) The notation here is simply that used to express property lists in LISP.

3.3 The BASICNET and MP skills

After the BASICNET was defined, each skill in MP’s CIN was represented in terms of a subnet. First, the structure of each skill was described, in list notation, like the following (where Skill 42 is ‘conditional branch, comparing a numeric literal with a numeric variable’):

(SK0042 (IF-THEN (BOOLEAN . (NEXPR . NLIT)) (NEXPR . NVAR)))

Skill 42 is represented as an instance of IF-THEN (see Figure 2), in which the BOOLEAN component is further specified as consisting of the relation between a numeric literal (the first NEXPR component of the NINCREMENT) and a numeric variable (the second NEXPR). The REL is left un instantiated, since Skill 42 does not specify the kind of comparison to be made between the two. Thus, any REL is appropriate.

Skill 43 is ‘conditional branch, comparing a simple numeric expression with a numeric variable.’ Its structure is:

(SK0043 (SK0042 (NEXPR . SIMARGH)))

The notation is real “Skill 43 is identical to Skill 42 except that the first instance of NEXPR should be SIMARGH,” which is exactly what the English description of the skill says. Skill 46 (“conditional branch, comparing two numeric variables”) is represented as:

(SK0046 (SK0042 (NEXPR . NVAR)))

again reflecting the minimal difference between the related skills.

3.4 Skill sets

Based on the notation for skill structures, skills were grouped together into ten major skill sets representing printing, numeric assignment, string assignment, IF-THEN, FOR-NEXT, etc. Each skill set was formed by starting with a head skill, not described in terms of any other skill—like Skill 42 above—and all other skills (43, 46, etc.) described in terms of it, or described in terms of other members of the set. As might be expected, there was a degree of congruence between the ten skill sets and the technique groupings of MP-I.

3.5 The SKILLSNET

Within each skill set, pairs of skills were examined to find their minimal difference. If the nodes by which they differ are linked in the BASICNET, that link was used to define a relation between the skills. If the nodes by which two skills differ do not have a direct link, relations were sought at increasingly higher levels of the BASICNET.

For instance, since the BASICNET shows NVAR to be harder than NLIT, and SIMARGH harder than NVAR, it follows that Skill 46 is harder than 42, and 43 is harder than 46. The relationships determined in this manner between all pairs of skills comprise the SKILLSNET, a knowledge representation that can be directly expressed in a CIN and used for task selection. The SKILLSNET, like the BASICNET, can be expressed in LISP property list notation. (The underlying in the following example emphasizes the relationships being discussed here.)

(SK0042 (SK0046 (SK0046 (SK0047) A (SK007) P (SK003 SK006 SK009)))
(SK0043 H (SK007 SK005 SK006))
(SK0046 H (SK003 SK006 SK005) A (SK008) P (SK003 SK006 SK009))

The P links shown here are Prerequisite links; like the Hardness links, these are a matter of pedagogical opinion. The P links, however, appear only in the SKILLSNET, not in the BASICNET, and express judgments that are more specific to the MP course than those expressed in the BASICNET. A few of the skills (e.g., those involving the use of built-in BASIC functions such as INT and EQV) did not fall into skill sets since they seemed not to be describable in terms of any other skill. These are related within the SKILLSNET only by means of P links.

3.6 MP-II task-selection procedure

The new task-selection procedure for the MP-II system, designed to use the relationships between skills expressed in the SKILLSNET, is identical to the technique-based method in its overall design: A set of skills appropriate to the student’s current level of understanding is generated, a set of tasks using some of those skills is
identified, the set of those tasks (by these criteria) is presented, and the student model is updated based on the student's performance and self-evaluation on the task. The major difference between the two methods is that by using an expanded set of relations between skills in the SKILLLIST, the new procedure can make more intelligent inferences both in updating the student model and in generating the set of skills to be involved in the student's next task.

The following is a simplified description of the process by which a task is selected at any point during instruction, given the student's state of knowledge of all the skills. The procedure integrates a number of a priori reasonable pedagogical heuristics about how to vary the relative difficulty of tasks to optimize learning performance and about how to teach a network of knowledge (e.g., breadth-first vs. depth-first exposure).

**STEP 1:** Create a set called NEED, consisting of skills that will be sought in the next task. Look for "trouble" skills first (those in tasks that the student quit), then for analogies to learned skills, then for inverse-prerequisites of learned skills. As soon as a group of such skills is found, stop looking.

**STEP 2:** Remove from the NEED set those skills that have unlearned prerequisites. Add those skills to the NOTREADY set (which may be used later).

**STEP 3:** Given a NEED set, find the most appropriate task that involves some of the NEEDed skills.

(a) Assemble GOODLIST, those tasks that have the desired number of NEEDed skills. (This number increases if the student is consistently successful, decreases if he has trouble.)

(b) If no GOODLIST can be created, make a new NEED set consisting of the prerequisites of the skills in NOTREADY. If no new NEED set can be created, then the curriculum has been exhausted; otherwise, GO TO 3a.

(c) Find the "best" task: if the student is doing well, find the task in GOODLIST that has the fewest learned skills; if he is progressing more slowly, find the task with the fewest unseen skills. Remove the selected task from GOODLIST.

**STEP 4:** See if the selected task is otherwise appropriate.

(a) If none of the skills in the selected task have unlearned prerequisites, stop looking and present the task. (END)

(b) If any skills have unsatisfied prerequisites, reject the task and add those skills to the NOTREADY set.

(c) If GOODLIST is exhausted, change (usually reduce) the criterial number of NEED skills, and GO TO 3a. Otherwise, using the rest of GOODLIST GO TO 3c.

As an example of the inferences made in the generation of the NEED set, let us assume that skills h2 and e1 ("Too Many Handshakes with Literal AS final value of Index") are under consideration. Skill e1 is represented as (FXX01 H (FXX02) P (FXX03)).

The Prerequisite relationship specified that h2 must be learned before a task involving e1 can be presented. The structure enforced by the P links relating pairs of skills gives the presentation of tasks some degree of order, and is designed to prevent too-quick progress or drastic jumps in difficulty. The Hardness links, in contrast, are used to facilitate progress for a student doing well, by allowing some skills to be considered "too easy" for inclusion in the NEED set. Such skills are not inferred to be learned; they are simply not sought actively by the selection algorithm.

As an example using the skills described here, suppose that a student has successfully completed a task using Skill h3, although he has not yet seen Skill h2. (The fact that h3 is harder than h2 does not force h2 to be presented first; only P links force such order.) When the task-selection procedure assembles the next set of NEED skills, it will "infer" that h2 is now too easy to become part of that set, since something harder than h2 has already been learned.

Furthermore, since h2 is now considered too easy to look for, Skill e1 can now be sought. If the student successfully completes a task involving e1, the student model will be updated to show that e1 has been learned, and by inference, that its unseen prerequisite h2 has also been learned. These kinds of inferences (by which any skills can reach too-easy or learned states without the student actually having seen them) can of course be contradicted by direct observation or by other inferences if the student has difficulty. For example, the unseen prerequisite of a given skill may change its state from "too easy" to "in trouble" if the student quits (gives up on) a task involving the given skill. The next task selection would attempt to find a task using that prerequisite skill in such a case.

### 3.7 BIP-II performance

The BIP-II task-selection procedure has been implemented with parameters (e.g., numbers of skills sought and thresholds determining when an unrepresented skill is "too-easy" to be included in the NEED set) that can be changed readily. The system can therefore be used to explore the effectiveness of somewhat different pedagogical heuristics for task sequencing. We used this capability in conjunction with a simulation system we developed to create a version of BIP-II that we expected would be effective for a range of student abilities. Recently, we collected data from a group of about 27 students who used this BIP-II system. At this time, the data have not been extensively analyzed, but we can provide a general summary and report our subjective observations.
The students were limited to fifteen hours of terminal time with BIP. They were presented with (but did not necessarily complete successfully) an average of 40 tasks, the minimum being 21 tasks and the maximum 63 tasks. Only one student dropped out of the course without completing fifteen hours or finishing the curriculum.

One overall measure of the success of semantic network CIN and related task-selection procedure is the relationship between number of skills learned (according to BIP) and scores on a paper-and-pencil posttest. The correlation between these measures was .86, and accounts for 74 percent of the variability in the posttest scores. The students also took a standardized test of programming aptitude prior to instruction. The posttest scores correlated significantly with both the number of skills learned \( r(23) = .65 \) and the posttest scores \( r = .59 \); however, in a multiple regression of the posttest scores on the number of skills learned and the posttest scores, only the number of skills learned contributed significantly to posttest performance. Number of tasks presented to students was independent of both test scores and number of skills learned. Thus, the student model maintained by the BIP-II system accurately reflects the acquisition of the programming knowledge required by the posttest, and predicts posttest performance independently of the aptitude measured by the pretest.

Our informal observations indicate that BIP-II task sequences are substantially different from those of BIP-I. Most noticeably, when a student does well initially, BIP-II selects complex tasks at a much earlier point than they were selected by BIP-I. Students' reactions were unfavorable, even when they spent considerable time on these difficult tasks and then gave up. Task selection following these failures seems responsive: BIP-II selected simpler tasks involving some "not-learned" skills that were involved in the task that the student had quit. In many cases, these "remedial" tasks appear to have been too simple, given the student's prior progress, but most often BIP-II was in fact looking for a more challenging task and could not find one in the curriculum.

Besides the sequencing "failures" due to the limits of the curriculum, a large number of inadequate task-selection decisions were caused by poor data from the system's solution checker. In these cases, the student had a substantially correct program that was rejected by the checker. BIP-II interprets the rejections as a sign that the student is having difficulty with some of the skills in the task and thereby introduced errors into the student model. Sometimes students in our study became so frustrated by the rejection of their programs that they quit the task, creating even more severe errors in the model.

Disregarding the difficulties caused by these weaknesses elsewhere in the instructional system, our initial evaluation of BIP-II's task selection capabilities is favorable. However, it is clear that evaluation of the effects of manipulating the parameters of the selection process will be impeded until the curriculum is expanded and the solution checker is improved.

4. Summary and conclusions

We have indicated how complex knowledge representations adapted from AI research can be used to describe a CAl problem curriculum and thereby enable relatively sophisticated individualized problem sequencing. In particular, a CIN based on a semantic-network representation provides a medium for drawing indirect inferences about what a student knows, what he is ready to learn, and what task in the curriculum will best help him learn it. A network representation then is useful not only for expressing unambiguous relationships (e.g., property-inheritance, component), its typical application in AI systems, but, in addition, is one way for systematically expressing opinions about the pedagogical relationships among the concepts and skills a CAl system is intended to teach.

We do not believe that the BIP-II system, based on a CIN incorporating a complex network of skill relationships, can match a human tutor's ability to select programming problems adaptively: The limitations imposed by the system's rudimentary program checker insure some extreme failures, but, beyond this, the SKILLSSET and the inferences that use it only approximate the flexibility of which a tutor is capable. Nonetheless, the more evolved CIN makes it possible for tutorial CAl in technical subjects to individualize student experience effectively across a range of student abilities and instructional goals.

Notes

This research was supported by the Office of Naval Research, Personnel & Training Research Programs, under contract number N00014-76-C-0165, and by the Naval Personnel Research & Development Center under Contract N00014-75-C-1526.

Laura Gould is now at Xerox Palo Alto Research Center.

References


Collins, A. M., Varcoe, E. H., & Pellegrino, J. J. 
Analysis and synthesis of tutorial dialogue. In 
G. H. Bower (Ed.), The psychology of learning and 
motivation (Vol. 9). New York: Academic Press, 
1979.

Green, G. J., & Atkinson, R. C. Models for optim-
izing the learning process. Psychological

Suppes, P., & Morningstar, M. Computer-assisted 
instruction at Stanford, 1966-69: Data, models, 
and evaluation of the arithmetic program. New 
DISTRIBUTION LIST

Navy

1 Dr. Marshall J. Farr, Director
Personnel & Training Research Programs
Office of Naval Research (Code 458)
Arlington, VA 22217

1 ONR Branch Office
Attn: Dr. James Lester
495 Summer Street
Boston, MA 02210

1 ONR Branch Office
Attn: Dr. Eugene Gloye
1030 East Green Street
Pasadena, CA 91101

1 ONR Branch Office
Attn: Dr. Charles E. Davis
536 S. Clark Street
Chicago, IL 60605

1 Dr. M. A. Bertin, Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy
APO San Francisco, CA 96503

1 Office of Naval Research
Code 200
Arlington, VA 22217

6 Commanding Officer
Naval Research Laboratory (Code 2627)
Washington, DC 20390

1 Director, Human Resource Management
Naval Amphibious School
Naval Amphibious Base, Little Creek
Norfolk, VA 23521

1 LCDR Charles J. Theisen, Jr., MSC,
USN 4024
Naval Air Development Center
Warminster, PA 18974

1 Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155

1 Commanding Officer
Attn: Library
Naval Health Research Center
San Diego, CA 92152

1 Chairman, Leadership & Law Dept.
Div. of Professional Development
U.S. Naval Academy
Annapolis, MD 21402

1 Scientific Advisor to the Chief
of Naval Personnel (Pers Or)
Naval Bureau of Personnel
Room 4140, Arlington Annex
Washington, DC 20370

1 Dr. Jack R. Borsting
Provost & Academic Dean
U.S. Naval Postgraduate School
Monterey, CA 93940

1 Mr. Maurice Callahan
NODAC (Code 2)
Dept. of the Navy
Eldg. 2, Washington Navy Yard
(Anacostia)
Washington, DC 20374

1 Office of Civilian Personnel
Code 263
Washington, DC 20390

1 Superintendent (Code 1424)
Naval Postgraduate School
Monterey, CA 93940

1 Mr. George N. Graine
Naval Sea Systems Command
SEA 047C12
Washington, DC 20362

1 Chief of Naval Technical Training
Attn: Dr. Norman J. Kerr
Naval Air Station Memphis (75)
Millington, TN 38053
1 Principal Civilian Advisor for Education and Training
Attn: Dr. William L. Maloy
Naval Training Command, Code OOA
Pensacola, FL 32508

1 Dr. Alfred F. Smoole, Director
Training Analysis & Evaluation Group
Department of the Navy
Orlando, FL 32813

1 Chief of Naval Education and Training Support (QIA)
Pensacola, FL 32509

1 Capt. H. J. Connery, USN
Navy Medical R&D Command
NIMC, Bethesda, MD 20014

1 Navy Personnel R&D Center
Code 01
San Diego, CA 92152

2 Navy Personnel R&D Center
Attn: Dr. James McGrath (Code 306)
San Diego, CA 92152

5 A. A. Sjoholm, Head, Technical Support
Navy Personnel R&D Center (Code 201)
San Diego, CA 92152

1 Navy Personnel R&D Center
Attn: Library
San Diego, CA 92152

1 Capt. D. M. Gragg, MC, USN
Head, Section on Medical Education
Uniformed Services, Univ. of the Health Sciences
6917 Arlington Road
Bethesda, MD 20014

1 LCDR J. W. Snyder, Jr.
P-1F Training Model Manager
VF-124
San Diego, CA 92035

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Worth Scanland
Chief of Naval Education & Training
NAS, Pensacola, FL 32508

1 Dr. Richard A. Pollak
Academic Computing Center
U.S. Naval Academy
Annapolis, MD 21402

Army
1 Technical Director
U.S. Army Research Institute for the Behavioral & Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Armed Forces Staff College
Attn: Library
Norfolk VA 23511

1 Commandant
U.S. Army Infantry School
Attn: ATSH-I-V-IT
Fort Benning, GA 31905

1 Commandant
Attn: EA
U.S. Army Institute of Administration
Fort Benjamin Harrison, IN 46216

1 Dr. Beatrice Farr
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Frank J. Harris
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Ralph Dusek
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Leon Nawrocki
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
Dr. Joseph Ward  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333

Dr. Milton S. Katz, Chief  
Individual Training & Performance  
Evaluation Technical Area  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333

Col. G. B. Howard  
U.S. Army  
Training Support Activity  
Fort Eustis, VA 23604

Col. Frank Hart, Director  
Training Management Institute  
U.S. Army, Bldg. 1725  
Fort Eustis, VA 23604

HQ USAEUEUR & 7th Army  
ODCSOPS  
USAEUEUR Director of GED  
APO New York 09403

Dr. James Baker  
U.S. Army Research Institute  
5001 Eisenhower Avenue  
Alexandria, VA 22333

Air Force

Research Branch  
AFMPC/DFMP  
Randolph AFB, TX 78148

AFHRL/AS (Dr. G. A. Eckstrand)  
Wright-Patterson AFB  
Ohio 45433

Dr. Ross L. Morgan (AFHRL/ASR)  
Wright-Patterson AFB  
Ohio 45433

Dr. Marty Rockway (AFHRL/TT)  
Lowry AFB  
Colorado 80230

Instructional Technology Branch  
AFHRL  
Lowry AFB, CO 80230

Dr. Alfred R. Fregly  
AFOSR/NL, Bldg. 410  
Bolling AFB, DC 20332

Dr. Sylvia R. Mayer (MCIT)  
HQ Electronic Systems Division  
Hanscom Field  
Bedford, MA 01730

Air University Library  
AUL/ISE 76-443  
Maxwell AFB, AL 36112

Marine Corps

Director, Office of Manpower Utilization  
HQ, Marine Corps (Code MPU)  
BCB, Bldg. 2009  
Quantico, VA 22134

Dr. A. L. Slafkosky  
Scientific Advisor (Code HD-1)  
HQ, U.S. Marine Corps  
Washington, DC 20380

AC/S, Education Programs  
Education Center, MCDEC  
Quantico, VA 22134

Coast Guard

Mr. Joseph J. Cowan, Chief  
Psychological Research Branch (G-P-1/62)  
U.S. Coast Guard Headquarters  
Washington, DC 20590

Other DoD

Dr. Harold F. O'Neil, Jr.  
Advanced Research Projects Agency  
Cybernetics Technology, Room 623  
1400 Wilson Blvd.  
Arlington, VA 22209
1 Dr. Robert Young
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

12 Defense Documentation Center
Attn: TC
Cameron Station, Bldg. 5
Alexandria, VA 22314

1 Military Assistant for Human Resources
Office of the Director of Defense
Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 Director, Management Information Systems Office
OSD, M&RA
Room 3B917, The Pentagon
Washington, DC 20301

Other Government
1 Dr. Vern Urry
Personnel R&D Center
U.S. Civil Service Commission
1900 E Street, NW
Washington, DC 20415

1 Dr. Andrew R. Molnar
Science Education Dev. & Res.
National Science Foundation
Washington, DC 20550

1 Dr. Marshall S. Smith
Associate Director
NIE/OPEPA
National Institute of Education
Washington, DC 20208

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Miscellaneous
1 Dr. John R. Anderson
Department of Psychology
Yale University
New Haven, CT 06520

1 Dr. Scarvia B. Anderson
Educational Testing Service
3445 Peachtree Road, NE - Suite 1040
Atlanta, GA 30326

1 Prof. Earl A. Alluisi
Department of Psychology (Code 287)
Old Dominion University
Norfolk, VA 23508

1 Dr. Gerald V. Barrett
Department of Psychology
University of Akron
Akron, OH 44325

1 Dr. John Seeley Brown
Bolt Beranek and Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Jacklyn Caselli
ERIC Clearinghouse on Information Resources
School of Education - SCHDT
Stanford University
Stanford, CA 94305

1 Century Research Corporation
1113 Lee Highway
Arlington, VA 22207

1 Dr. Kenneth E. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

1 Dr. Allan M. Collins
Bolt Beranek and Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. John J. Collins
Essex Corporation
201 N. Fairfax Street
Alexandria, VA 22314

1 Dr. Ruth Day
Center for Advanced Studies in the Behavioral Sciences
202 Junipero Serra Blvd.
Stanford, CA 94305
1 Dr. John D. Carroll
Psychometric Laboratory
Davie Hall, O13A
University of North Carolina
Chapel Hill, NC 27514

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

1 Major I. N. Evonic
Canadian Forces Personnel Applied
Research Unit
1107 Avenue Road
Toronto, Ontario, CANADA

1 Dr. Victor Fields
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Edwin A. Fleishman
Advanced Research Resources Organization
8555 Sixteenth Street
Silver Spring, MD 20910

1 Dr. John R. Frederiksen
Bolt Beranek and Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. Vernon S. Gerlach
College of Education
146 Payne Bldg. B
Arizona State University
Tempe, AZ 85281

1 Dr. Robert Glaser, Co-Director
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. M. D. Havron
Human Sciences Research, Inc.
7710 Old Spring House Road
West Gate Industrial Park
McLean, VA 22101

1 CDR Mercer
CNET Liaison Officer
AFHRL/Flying Training Division
Williams AFB, AZ 85224

1 Dr. M. D. Havron
Human Sciences Research, Inc.
7710 Old Spring House Road
West Gate Industrial Park
McLean, VA 22101

1 Dr. Lawton Johnson
Lawrence Johnson & Associates, Inc.
2001 S Street, NW - Suite 502
Washington, DC 20009

1 Dr. Arnold F. Kamarick
Honeywell, Inc.
2600 Ridgeway Pkwy.
Minneapolis, MN 55413

1 Dr. Roger A. Kaufman
203 Dodd Hall
Florida State University
Tallahassee, FL 32306

1 Dr. Steven W. Keele
Department of Psychology
University of Oregon
Eugene, OR 97403

1 Dr. David Klahr
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Corton Drive
Santa Barbara Research Park
Goleta, CA 93017

1 Dr. William C. Mann
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina Del Rey, CA 90291

1 Dr. Leo Munday
Houghton Mifflin Co.
P.O. Box 1970
Iowa City, IA 52240
1 Dr. Donald A. Norman
Department of Psychology C-009
University of California, San Diego
La Jolla, CA 92033

1 Mr. A. J. Pesch, President
Eclectech Associates, Inc.
P.O. Box 178
N. Stonington, CT 06359

1 Mr. Luigi Petruzzo
2431 N. Edgewood Street
Arlington, VA 22207

1 Dr. Steven M. Pine
N 660 Elliott Hall
University of Minnesota
75 East River Road
Minneapolis, MN 55455

1 R.Dir. M. Rauch
P II 4
Bundesministerium der Verteidigung
Postfach 161
53 Bonn, GERMANY

1 Dr. Joseph W. Rigney
Behavioral Technology Laboratories
University of Southern California
3717 South Grand
Los Angeles, CA 90007

1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St., NW
Washington, DC 20007

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Mark D. Reckase
Educational Psychology Department
University of Missouri-Columbia
12 Hill Hall
Columbia, MO 65201

1 Dr. Robert J. Seidel
Instructional Technology Group, HamRRO
300 N. Washington St.
Alexandria, VA 22314

1 Dr. Richard Snow
Stanford University
School of Education
Stanford, CA 94305

1 Dr. C. Harold Stone
1428 Virginia Avenue
Glendale, CA 91202

1 Mr. Dennis J. Sullivan
c/o Canyon Research Group, Inc.
32107 Lindero Canyon Road
Westlake Village, CA 91360

1 Dr. K. W. Uncapher
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina Del Rey, CA 90291

1 Dr. Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. Carl R. Vest
Battelle Memorial Institute
Washington Operations
2030 M. Street, NW
Washington, DC 20036

1 Dr. David J. Weiss
Department of Psychology
N660 Elliott Hall
University of Minnesota
Minneapolis, MN 55455

1 Dr. Anita West
Denver Research Institute
University of Denver
Denver, CO 80201

1 Dr. Earl Hunt
Department of Psychology
University of Washington
Seattle, WA 98105
Dr. Thomas G. Sticht  
Associate Director, Basic Skills  
National Institute of Education  
1200 19th Street, NW  
Washington, DC 20208

Prof. Fumiko Samejima  
Department of Psychology  
Austin Peay Hall 304C  
University of Tennessee  
Knoxville, TN 37916

Dr. Meredith Crawford  
5605 Montgomery Street  
Chevy Chase, MD 20015

Dr. Nicholas A. Bond  
Department of Psychology  
Sacramento State College  
6000 Jay Street  
Sacramento, CA 95819

Dr. James Greeno  
Learning R&D Center  
University of Pittsburgh  
3939 O'Hara Street  
Pittsburgh, PA 15213

Dr. Frederick Hayes-Roth  
The Rand Corporation  
1700 Main Street  
Santa Monica, CA 90406

Dr. Robert Sternberg  
Department of Psychology  
Yale University  
Box 11A, Yale Station  
New Haven, CT 06520

Dr. Walter Schneider  
Department of Psychology  
University of Illinois  
Champaign, IL 61820

Dr. Richard B. Millward  
Department of Psychology  
Hunter Laboratory  
Brown University  
Providence, RI 82912