Research and Development Technical Report
ECOM-77-2647-1

FLOATING DECK GRID MODULATOR

D. V. SAVAGE
HUGHES AIRCRAFT COMPANY
GROUND SYSTEM GROUP
FULLERTON, CA 92634

November 1977
First Interim Report for Period March 1977 to June 1977

DISTRIBUTION STATEMENT
APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

Prepared for
ECOM
US ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY 07703
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
A preliminary block diagram at the modulator has been developed. The preliminary study of the 50 kV isolation pulse transformer indicates that in order to meet stability requirements, it will be necessary to clip the oscillations on the secondary and regulate the pulse top level. Three primary drive configurations are being considered.
ABSTRACT

A preliminary block diagram at the modulator has been developed. The preliminary study of the 50 kV isolation pulse transformer indicates that in order to meet stability requirements, it will be necessary to clip the oscillations on the secondary and regulate the pulse top level. Three primary drive configurations are being considered.

SUMMARY

The development of a documented working model of the pulse transformer grid modulator is to be accomplished in four phases; the transformer design, the transformer driver design, the pulse top regulator design and the construction of the model. The basic configuration has been determined and the design requirements and performance characteristics defined.

PROGRAM OBJECTIVE

This program effort is intended to develop a documented working model of a pulse transformer type TWT grid modulator (See Figure 1). This particular configuration has been chosen in order to minimize the amount of circuitry at the TWT cathode potential, and thus enhances reliability and maintainability. The pulse transformer secondary will drive the TWT grid directly while referenced to the -50 kV TWT cathode potential. The primary of the transformer is to be driven by solid state circuitry operating at potentials ranging from 200 to 400 volts with respect to chassis ground. The secondary output is to be a 2 kV pulse to modulate the grid of a high powered TWT.

PROGRAM ORGANIZATION

The design portion of the program is to be accomplished in three separate phases corresponding to the three major design problems associated with a modulator of this type.

1. The transformer must be able to withstand a secondary to primary voltage stress of -50 kV and simultaneously exhibit a primary leakage inductance low enough to allow a secondary pulse rise time of 1 usec maximum.

2. The primary drive transistors must be designed to operate at very high peak power dissipations at high temperatures without failures due to secondary breakdown. The primary drive circuitry must operate with current rise and fall times <0.5 µsec to charge and discharge the circuit stray capacity.

3. Since the pulse transformer must be under damped to provide the short rise and fall times required, it will exhibit overshoot and ringing. The phase stability requirements of the TWT will therefore force regulation of the grid pulse top. Active circuitry must be designed to perform pulse top clipping and regulating functions and negative bias clamp functions.
Existing, proven circuit designs will be used where possible to minimize design
time. The PNP transformer drive circuitry, the pulse top clipper regulator, the
TWT bias fault circuitry and the TWT filament fault circuitry all as designed for
the AN/TPQ-36 system can be used with very minor modifications.

FLOATING DECK FUNCTIONS

Three different devices for primary drive circuits are under investigation; the
PNP transistor, the NPN transistor and the gate turn-off (GTO) SCR. Preliminary
circuit designs will be used to determine the optimum performance and most
economical configuration.

The pulse top clipper regulator will be in the form of a closed control loop that
both clips the oscillations on the modulator transformer secondary and controls the
level of the TWT grid pulse across the width of the pulse.

Since interpulse negative grid voltage must only maintain the TWT in the off
state and is not otherwise critical, the bias supply may be an unregulated
transformer-rectifier power supply.

The clamp supply clamps the negative overshoot from the modulator trans-
former to a level within the rating of the TWT.

One secondary of the power isolation transformer provides power for the TWT
heater regulator. The heater regulator then provides stable power at 8V and 10A
to the TWT filament. The voltage from the other secondary of the power isolation
transformer is rectified and filtered and used to supply regulated 30 Vdc to 80 kHz
inverters which in turn provide power to the various circuit components on the
floating deck.

The TWT filament fault circuit and the TWT grid bias fault circuit provide
optical signals through fiber optic couplers from the ~42 kV level to transmitter
control unit (TCU) interfaces at ground level. If the TWT filament voltage drifts
either high or low, the "heater OK" signal to the TCU is removed and system
operation is terminated. If the TWT grid bias voltage drifts above a preset value,
the "bias OK" signal to the TCU is removed and system operation is terminated.

PROGRAM EXPENDITURES

Through 31 May 1977
423 hours
$8800.00
DESIGN REQUIREMENT OUTLINE

I. DRIVERS
 a. NPN
 b. PNP
 c. GTO SCR

II. MODULATOR TRANSFORMER
 a. IN/OUT Volt Levels
 b. Driving PNT Impedance (rise time)
 c. Size, Weight

III. PULSE TOP CLIPPER
 a. Amplifier
 b. Control Element (Transistor)
 c. Voltage Shifters (Zeners)
 d. Input Circuits (Sensors)

IV. BIAS SUPPLY
 a. Bias for Mod Transformer
 b. Negative Clamp

V. INSTRUMENTATION
 a. Filament Fault
 b. Bias Fault

VI. POWER SUPPLIES
 a. TWT Heater
 b. 30 Vdc
 c. 80 kHz Inverters
MODULATOR PERFORMANCE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Design Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid pulse rise time</td>
<td>t_r</td>
<td>$< 1 \mu\text{sec}$</td>
</tr>
<tr>
<td>Grid pulse fall time</td>
<td>t_f</td>
<td>$< 1 \mu\text{sec}$</td>
</tr>
<tr>
<td>Minimum Pulse width</td>
<td>T_w</td>
<td>$1 \mu\text{sec}$</td>
</tr>
<tr>
<td>Maximum Pulse width</td>
<td>T_w</td>
<td>$10 \mu\text{sec}$</td>
</tr>
<tr>
<td>Maximum duty cycle</td>
<td>D_{max}</td>
<td>$5%$</td>
</tr>
<tr>
<td>Pulse top overshoot</td>
<td>V_{pk}</td>
<td>$10%$</td>
</tr>
<tr>
<td>Pulse top Stability</td>
<td>ΔE</td>
<td>$0.0058%$ RMS max</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

Copies

<table>
<thead>
<tr>
<th>Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| 12 | Defense Documentation Center
ATTN: DDC-TCA
Cameron Station (Bldg 5)
Alexandria, VA 22314 |
| 1 | Code R123, Tech Library
DCA Defense Comm Engrg Ctr
1860 Wiehle Ave.
Reston, VA 22090 |
| 1 | Defense Communications Agency
Technical Library Center
Code 205 (P. A. TOLOVI)
Washington, DC 20305 |
| 1 | Office of Naval Research
Code 427
Arlington, VA 22217 |
| 1 | Director
Naval Research Laboratory
ATTN: 2627
Washington, DC 20375 |
| 1 | Commander
Naval Electronics Laboratory Center
ATTN: Library
San Diego, CA 92152 |
| 1 | CDR, Naval Surface Weapons Center
White Oak Laboratory
ATTN: Library, Code WX-21
Silver Spring, MD 20910 |
| 1 | Rome Air Development Center
ATTN: Documents Library (TILD)
Griffiss AFB, NY 13441 |
| 1 | Mr. Charles Cason
USA Missile Command
AMSMI-RHS
Redstone Arsenal, AL 35809 |
| 1 | Cdr, US Army Missile Command
Redstone Scientific Info Center
ATTN: Chief, Document Section
Redstone Arsenal, AL 35809 |
1 Commander
US Army Missile Command
ATTN: DRSMI-RE (Mr. Pittman)
Redstone Arsenal, AL 35809

3 Commandant
US Army Aviation Center
ATTN: ATZQ-D-MA
Fort Rucker, AL 36362

1 Director, Ballistic Missile Defense
Advanced Technology Center
ATTN: ATC-R, PO Box 1500
Huntsville, AL 35807

1 Commander
US Army Intelligence Center and School
ATTN: ATSI-CD-MD
Fort Huachuca, AZ 85613

1 Commander
HQ Fort Huachuca
ATTN: Technical Reference Div
Fort Huachuca, AZ 85613

2 Commander
US Army Electronic Proving Ground
ATTN: STEEP-MT
Fort Huachuca, AZ 85613

1 Commander
USASA Test and Evaluation Center
ATTN: IAO-CDR-T
Fort Huachuca, AZ 85613

1 Deputy for Science and Technology Ofc
Assist Sec Army (R&D)
Washington, DC 20310

1 HQDA (DAMA-ARP/DR. F. D. Verderame)
Washington, DC 20310

1 Commandant
US Army Signal School
ATTN: ATSN-CTD-MS
Fort Gordon, GA 30905
Copies

1 Commandant
 US Army Ordnance School
 ATTN: ATSL-CD-OR
 Aberdeen Proving Ground, MD 21005

1 CDR, Harry Diamond Laboratories
 ATTN: Library
 2800 Powder Mill Road
 Adelphi, MD 20783

1 Director
 US Army Ballistic Research Labs
 ATTN: DRXBR-LB
 Aberdeen Proving Ground, MD 21005

1 Harry Diamond Laboratories, Dept of Army
 ATTN: DRXDO-RCB (DR. J. Nemarich)
 2800 Powder Mill Road
 Adelphi, MD 20783

1 Director
 US Army Materiel Systems Analysis Acty
 ATTN: DRXSY-T
 Aberdeen Proving Ground, MD 21005

1 CDR, US Army Aviation Systems Command
 ATTN: DRSAV-G
 PO Box 209
 St. Louis, MO 63166

1 CDR, US Army Research Office
 ATTN: DRXRO-IP
 PO Box 12211
 Research Triangle Park, NC 07709

1 Commandant
 US Army Inst for Military Assistance
 ATTN: ATSU-CTD-MO
 Fort Bragg, NC 28307

1 Commandant
 US Army Air Defense School
 ATTN: ATSA-CD-MC
 Fort Bliss, TX 79916

1 Commander
 US Army Nuclear Agency
 Fort Bliss, TX 79916
Copies

1 Commander, HQ MASSTER
 Technical Information Center
 ATTN: Mrs. Ruth Reynolds
 Fort Hood, TX 76544

1 Commander, DARCOM
 ATTN: DRCDE
 5001 Eisenhower Ave
 Alexandria, VA 22333

1 CDR, US Army Security Agency
 ATTN: IARDA-IT
 Arlington Hall Station
 Arlington, VA 22212

2 Commander
 US Army Logistics Center
 ATTN: ATCL-MC
 Fort Lee, VA 22801

1 Chief
 OFC of Missile Electronic Warfare
 Electronic Warfare Lab, ECOM
 White Sands Missile Range, NM 88002

1 Chief
 Intel Materiel Dev and Support Ofc
 Electronic Warfare Lab, ECOM
 Fort Meade, MD 20755

Commander
 US Army Electronics Command
 Fort Monmouth, NJ 07703

1 DRSEL-PL-ST
1 DRSEL-NL-D
1 DRSEL-WL-D
1 DRSEL-VL-D
3 DRSEL-CT-D
1 DRSEL-BL-D
1 DRSEL-TL-DT
3 DRSEL-TL-BG
1 DRSEL-TL-BG (Ofc of Record)
1 DRSEL-TE
1 DRSEL-MA-MP
2 DRSEL-MS-TI
1 DRSEL-GG-TD
1 DRSEL-PP-I-PI
1 DRSEL-GS-H
<table>
<thead>
<tr>
<th>Copies</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MIT - Lincoln Laboratory</td>
<td>ATTN: Library (RM A-082) PO Box 73 Lexington, MA 02173</td>
</tr>
<tr>
<td>1</td>
<td>NASA Scientific and Tech Info Facility Baltimore/Washington INTL Airport</td>
<td>PO Box 8757, MD 21240</td>
</tr>
<tr>
<td>1</td>
<td>National Bureau of Standards</td>
<td>Bldg 225, Rm A-331 ATTN: Mr. Leedy Washington, DC 20231</td>
</tr>
<tr>
<td>2</td>
<td>Advisory Group on Electron Devices</td>
<td>201 Varick Street, 9th Floor New York, NY 10014</td>
</tr>
<tr>
<td>1</td>
<td>TACTEC</td>
<td>Battelle Memorial Institute 505 King Avenue Columbus, OH 43201</td>
</tr>
<tr>
<td>1</td>
<td>General Electric Co., HMED</td>
<td>ATTN: Mr. C.J. Eichenauer, Jr. Court Street Syracuse, NY 13201</td>
</tr>
<tr>
<td>1</td>
<td>RCA - MSR Division</td>
<td>ATTN: Mr. Duard Pruitt Boston Landing Road Moorestown, NJ 08057</td>
</tr>
</tbody>
</table>