SPATIAL COHERENCE OF A SIGNAL REFLECTED FROM A TIME-VARYING RAN -- ETC(U)
FEB 71 B F CRON

UNCLASSIFIED
NUSC-TM-111-46-71

END
DATE FILMED
12-71

SEC
ABSTRACT

The coherence between two points of the received acoustic waveform after reflection from a time-varying random surface is evaluated for the far field case. A Neumann-Pierson spectrum and an isotropic sea is considered. For the low roughness case, the coherence is computed for wind speeds from 2 to 10 knots. For the specular and non-specular direction, the coherent region is on the order of the pattern resulting from the insonified surface area.
A very important problem in underwater sound detection is the computation of array gain. The earliest calculation of array gain assumed that the signal was perfectly coherent and that the noise between receivers was perfectly incoherent. Thus, the signal added as N^2 and the noise as N, where N is the number of elements in the array. The array gain is $10 \log N$ for this idealized situation. Later work assumed that the noise was isotropic, that is the same in all directions. For this case, the noise was incoherent at half wavelength spacing and almost incoherent when spacing between elements is greater than 2 wavelengths. This model was later extended to the case of directional noise which showed that the array gain was very dependent on steering direction.

In comparison with the noise models, relatively little work has been done on signal coherence. A notable exception to this is the excellent work by Parkins. In this memorandum a generalization and correction of the work by Parkins on small roughness is made. In addition, plots of coherence are provided. The purpose of this memorandum is to provide a model and computations for some typical cases, for the coherence of a signal reflected from the ocean surface.

REFLECTED PRESSURE

We will consider a single frequency waveform, $\exp(i2\pi ft)$ insomifying a finite area of ocean surface. The reflected pressure in the far field is

$$P_c(t) = -\frac{iB}{\lambda R_i} \exp\left[i(2\pi ft - k R_i)\right]$$

$$\int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dy_1 f(x_1, y_1) \exp\left[ik (a_i x_i + b_i y_i + c_i x_i y_i, t)\right]$$

An equation similar to equation #1 was utilized by Eckart. A discussion of equation #1 and the corresponding assumptions involved for the rough surface case are given by Nuttall and Cron. In equation #1, $P_i(t)$ is the reflected complex pressure at the ith point at time t. B is a geometric factor, λ is the acoustic wavelength, R_i is the distance from surface origin to the ith point, k is the wave number,
$P(x_i, y_i)$ is the insonified pressure on the surface at $x_i, y_i; a_i, b_i$ and c_i are the sum of the direction cosines of the incident and reflected pressures for the x, y and z directions, respectively.

$J(x_i, y_i, z)$ is the surface height at the point x_i, y_i at time t.

The incident mathematical signal, $\exp(i2\pi ft)$, has positive frequencies only. This signal is modulated by the time varying ocean surface. Since this time variation is slow in comparison to the variation of $\exp(i2\pi ft)$, then $P_i(t)$ is narrow band. This $P_i(t)$ contains only positive frequencies. $P_i(t)$ is an analytic signal. The real part of $P_i(t)$ is the actual pressure and the imaginary part of $P_i(t)$ is the Hilbert transform of the real part.

MUTUAL AND COMPLEX DEGREE OF COHERENCE

We now consider two points of the pressure field. (See Figure 1)

The mutual coherence function $\gamma_{12}(\tau)$, as defined by Born and Wolf is

$$\gamma_{12}(\tau) = \langle f_1(t) f_2^*(t-\tau) \rangle$$

Where $*$ is the complex conjugate operator

$\langle \rangle$ is the ensemble average

τ is the time delay between points 1 and 2

The complex degree of coherence is defined as

$$\gamma_{12}(\tau) = \frac{\gamma_{12}(\tau)}{\sqrt{\gamma_{11}(0) \gamma_{22}(0)}}$$
By the use of Schwartz's inequality, it can be shown that
\[0 \leq \left| \gamma_{12}(\tau) \right| \leq 1 \]

The upper limit corresponds to a perfect coherence of the pressures at points 1 and 2, whereas the lower limit signifies perfect incoherence between the points at 1 and 2. In signal processing terminology, \(\gamma_{12}(\tau) \) is called the complex correlation of \(\phi_1(t) \) and \(\phi_2(t) \). It can be shown that
\[\gamma_{12}(\tau) = 2 \left[R_\phi(\tau) + i R_\phi''(\tau) \right] \]

where
\[R_\phi(\tau) = \langle \text{Re} (\phi_1(t)) \text{Re} (\phi_2(t - \tau)) \rangle \]

and
\[R_\phi''(\tau) = \langle \text{Re} (\phi_1(t)) \text{Im} (\phi_2(t - \tau)) \rangle \]

Where Re and Im signify the real and imaginary parts, respectively. Thus, from equation 4, the correlation of two signals at points 1 and 2 may be obtained, since
\[R_\phi(\tau) = \frac{1}{2} \text{Re} (\gamma_{12}(\tau)) \]

MUTUAL COHERENCE FUNCTION FOR A TIME VARYING SURFACE

From equation 1 and referring to Fig. 1,
\[\phi_1(t) \phi^*_2(t - \tau) = \exp(i \pi \tau) \exp(-i \Phi (\rho, \Delta \rho)) \frac{\beta}{\lambda^2 \rho_1 \rho_2} \int_\infty^\infty dx_1 \int_\infty^\infty dy_1 \int_\infty^\infty dx_2 \int_\infty^\infty dy_2 \phi_1(x_1, y_1) \phi^*_2(x_2, y_2) \exp \left[-i \frac{1}{2} (a_x x_a + c_x c_2) \right] \]

In order to keep the symbols to a minimum, we will set \(\tau = 0 \), and
\[K = \exp \left[-i \Phi (\rho, \Delta \rho) \right] \frac{\beta}{\lambda^2 \rho_1 \rho_2} \]

We now take the ensemble average of \(\langle \phi_1(t) \phi^*_2(t) \rangle \) and we will drop the \(t \)'s. Then
We will assume that the surface height is Gaussian distributed. Kinsman cites experimental data showing that the surface height is very close to a Gaussian distribution.

\[\langle \exp[ik(a, x, -a, z + b, y, -b, z)] \langle \exp[ik(c, r - c, r)] \rangle \]

and for a joint Gaussian \(\phi(r, r_z) \) this becomes

\[\langle \exp[ik(c, r - c, r_z)] \rangle = \exp[-\frac{\xi^2}{2}(C_z + C_z^2 - 2C_z C_0)] \]

where

\(\rho = \phi(x - x_z, y - y_z, t - t_z) \)

substituting 7 into equation 6, we obtain

\[\langle \phi, \phi_z \rangle = k \iint dxdy, dx, dy \phi(x, y) \phi(x, y) \exp[-\frac{\xi^2}{2}(C_z + C_z^2 - 2C_z C_0)] \]

SMALL ROUGHNESS CASE

In this section, we consider the small acoustic roughness case. For this case we can expand the term \(\exp\left[\xi^2C_z C_0\right] \) in equation 8 as

\[\exp\left[\xi^2C_z C_0\right] \approx 1 + \xi^2C_z C_0 \]

Since \(\rho \leq 1 \), this expansion is sufficiently accurate if \(\xi^2C_z C_0 \ll 1 \). Substituting equation 9 into equation 8, the first term of equation 9 results in a coherent component and the second term results in an incoherent component.

The first term called the coherent component is
\[\langle f, f^*_0 \rangle = K \exp \left[-\frac{A^2 e^2}{2} (c_i^2 + c_z^2) \right] \]

\[\frac{1}{C} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx_1 \, dy_1 \, dx_z \, dy_z \, f^*(x_i, y_i) \, f(x_z, y_z) \exp \left[i \int (a x_i - a_z x_z + b, y_i - b_z y_z) \right] \]

The incoherent term is

\[\langle f, f^*_0 \rangle \]

\[\frac{1}{C} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx_1 \, dy_1 \, dx_z \, dy_z \, f^*(x_i, y_i) \, f(x_z, y_z) \exp \left[i \int (a x_i - a_z x_z + b, y_i - b_z y_z) \right] \]

The coherent component in equation #10 can be integrated for some values of \(\phi(x, y) \). In this study, it will be integrated for Gaussian insonification. The incoherent component is more difficult.

Let us now consider equation #11. We will assume that the properties of the surface depend only on the difference of the coordinates.

Let \(U = x_i - x_z \)
\[V = y_i - y_z \]

then

\[\langle f, f^*_0 \rangle \]

\[\frac{1}{C} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx_1 \, dy_1 \, dx_z \, dy_z \, f^*(x_i + U, y_i + V) \, f(x_z, y_z) \exp \left[i \int (a_1 (x_i + U) - a_z x_z + b_1 (y_i + V) - b_z y_z) \right] \]

Let \(U' = x_z + y_z \)
\[V' = y_z + y_z \]

then

\[\langle f, f^*_0 \rangle \]

\[\frac{1}{C} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx_1 \, dy_1 \, dx_z \, dy_z \, f^*(x_i + U', y_i + V') \, f(x_z, y_z) \exp \left[i \int (a_1 (x_i + U') - a_z x_z + b_1 (y_i + V') - b_z y_z) \right] \]
We now assume that the effective extents on the surface of the incident illumination are much larger than the distances at which the surface heights are statistically dependent on each other. That is, the correlation distance is much less than the insonification distance. Using this fact, we may approximate equation #12 by

\[
\langle \Phi, \Phi \rangle_{\alpha_1 \beta_1, \alpha_2 \beta_2} = k \exp \left[-\frac{b_1^2 - a_1^2}{2} \right] f^{*} \left(\omega + \frac{\theta}{2}, \beta + \frac{\varphi}{2} \right) e^{i \omega \xi} \exp \left[i \frac{1}{2} \left(\frac{a_1 - a_2}{b_1 + b_2} \right) \right] \]

Equation #13 is a generalization and correction of Parkin's work. Equation #13 is symmetric with respect to points 1 and 2, whereas Parkin's results are non-symmetric. For the case of Gaussian insonification, Parkin's equations result in incorrect coherence values.

Thus for the incoherent component, a four fold integral has been approximated by the product of two double integrals. Equations #10 and #13 are the general equations for the coherent and incoherent components.

GAUSSIAN INSONIFICATION AND NEUMANN-PIERSON SPECTRUM

We will now obtain the equations for the special cases of Gaussian surface insonification and a Neumann-Pierson height spectrum. Let the surface Gaussian insonification be

\[
\Phi \left(\xi, \eta \right) = \exp \left[-\frac{(\xi^2 + \eta^2)}{2L^2} \right]
\]

Thus the insonified pressure is \(\frac{1}{\sqrt{\pi \sigma}} \) at the origin and falls to a value of \(\frac{1}{\sqrt{2\pi \sigma}} \) at a distance of \(L \) units from the origin.
Let us consider the integral

\[I_1 = \int_{-\infty}^{\infty} dx \exp \left(\frac{-x^2}{2L^2} \right) \exp \left(i k \cdot a, x \right) \]

Completing squares or using the analogy of the characteristic function of a Gaussian distribution, we obtain

\[I_1 = \sqrt{2 \pi L^2} \exp \left(-\frac{k^2 a^2 L^2}{2} \right) \tag{#14} \]

Thus for equation #10, we have

\[\langle \beta, \beta_{0} \rangle_{\text{COH}} = k^2 (2 \pi L^2)^2 \exp \left[-\frac{k^2 L^2}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 \right) \right] \tag{#15} \]

Let us now consider the second double integral in equation #13. This integral is

\[I_2 = \int_{-\infty}^{\infty} d\alpha d\eta \hat{\beta}(\alpha, \eta) \exp \left\{ i k \left[\left(a_1 - a_2 \right) \alpha + \left(b_1 - b_2 \right) \eta \right] \right\} \]

Again

\[\hat{\beta}(\alpha, \eta) = \exp \left[-\frac{(\alpha^2 + \eta^2)}{2 L^2} \right] \]

Using the results as given in equation #14, we obtain

\[I_2 = \pi L^2 \exp \left[-\frac{k^2 (a_1 - a_2)^2 L^2}{2} \right] \exp \left[-\frac{k^2 (b_1 - b_2)^2 L^2}{2} \right] \tag{#16} \]

Let us now consider the first double integral of equation #13.

\[I_3 = \int_{-\infty}^{\infty} (u, v) \exp \left\{ i k \left[\frac{(a_1 + a_2) u}{2} + \frac{(b_1 + b_2) v}{2} \right] \right\} du dv \]

For brevity purposes, let

\[\tilde{a} = \frac{a_1 + a_2}{2}, \quad \tilde{b} = \frac{b_1 + b_2}{2} \]

We now express surface spatial correlation \(C(u, v, 0) \) in terms of the directional wave spectrum \(\tilde{A}^2 \left(k_x, k_y \right) \). \(k_x \) and \(k_y \) are the surface wave numbers in rectangular coordinates. From Kinsman\(^5\)
\[\sigma^2(c(u,v,0)) = \int_{-\infty}^{\infty} dk_x dk_y \hat{A}^2(k_x, k_y) \cos(k_x u + k_y v) \]

Thus

\[I_3 = \int_{-\infty}^{\infty} du dv \exp\left[i k (\bar{a} u + \bar{b} v)\right] \]

\[\cdot \int_{-\infty}^{\infty} dk_x dk_y \hat{A}^2(k_x, k_y) \cos(k_x u + k_y v) \]

Let

\[\cos(k_x u + k_y v) = \frac{\exp[i (k_x u + k_y v)] + \exp[-i (k_x u + k_y v)]}{2} \]

then

\[I_3 = \int_{-\infty}^{\infty} dk_x dk_y \hat{A}^2(k_x, k_y) \]

\[\cdot \int_{-\infty}^{\infty} du dv \left\{ \exp\left[i\left[-k\bar{a} - k_x\right] u + \left(k\bar{b} - k_y\right) v\right] \right\} \]

\[+ \exp\left[i\left[k\bar{a} - k_x\right] u + \left(k\bar{b} - k_y\right) v\right] \]

Integrating over \(u \) and \(v \) and using the relation

\[\int_{-\infty}^{\infty} \exp(i du) du = 2\pi \delta(u) \]

where \(\delta(u) \) is the Kronecker delta, we obtain

\[I_3 = \int_{-\infty}^{\infty} dk_x dk_y \hat{A}^2(k_x, k_y) (2\pi)^2 \left[\delta(\bar{a} k_x + \bar{k}_x) \delta(\bar{b} k_y + \bar{k}_y) \right. \]

\[+ \left. \delta(\bar{a} k_x - k_x) \delta(\bar{b} k_y - k_y) \right]\]

Integrating on \(k_x \) and \(k_y \), we obtain

\[I_3 = \frac{2\pi^2}{6} \left\{ \hat{A}^2(-\bar{a} \bar{k}_y - \bar{b} \bar{k}_x) + \hat{A}^2(\bar{a} \bar{k}_x, \bar{b} \bar{k}_y) \right\} \]

In order to obtain some numerical values of coherence, we will assume an isotropic sea, that is waves equally likely in all directions. To
obtain this, let us first state the relation between the directional wave spectrum in rectangular and polar coordinates.

Then, (See Kinsman).

$$A^2(\mathbf{k}_x, \mathbf{k}_y) = \frac{\sqrt{g}}{(k_x^2 + k_y^2)^{3/4}} A^2 \left(\sqrt{g} \left(\frac{k_x^2 + k_y^2}{k_x^2 + k_y^2} \right)^{1/4} \tan^{-1} \left(\frac{k_x}{k_y} \right) \right)$$

Then

$$I_3 = \frac{2 \pi^2 \sqrt{g}}{2} \frac{\sqrt{g}}{(a^2 + b^2)^{3/4}}$$

$$\left\{ A^2 \left[\sqrt{g} \left(\frac{a^2 + b^2}{a^2 + b^2} \right)^{1/4} \tan^{-1} \left(\frac{b}{a} \right) \right] + A^2 \left[\sqrt{g} \left(\frac{a^2 + b^2}{a^2 + b^2} \right)^{1/4} \tan^{-1} \left(\frac{b}{a} \right) \right] \right\}$$

For an isotropic surface $A^2(\omega, \theta) = \frac{A_1^2(\omega)}{2 \pi}$

and

$$I_3 = \frac{2 \pi^2 \sqrt{g}}{2 \pi \left(a^2 + b^2 \right)^{3/4}}$$

$$\left\{ \frac{A_1^2 \left[\sqrt{g} \left(\frac{a^2 + b^2}{a^2 + b^2} \right)^{1/4} \tan^{-1} \left(\frac{b}{a} \right) \right]}{(a^2 + b^2)^{3/4}} \right\}$$

Thus, we have evaluated I_3 for a general directional wave spectrum (equation #17) and for an isotropic sea (equation #18).

For the Neumann-Pierson spectrum

$$A_1^2(\omega) = \frac{\pi}{2} \frac{C}{\omega^6} \exp \left[- \frac{2g^2}{\omega^2 s^2} \right]$$

where g is the acceleration of gravity

s is the wind speed.
EQUATIONS FOR COMPUTATION

For the reader's convenience, let us now collect the equations needed for computation. As stated previously, for Gaussian insonification and an isotropic sea with a Neumann-Pierson spectrum at a point

$$\langle \hat{A} \cdot \hat{A}^* \rangle_{\text{COH}} = K_1 (2\pi L^2)^{-\frac{1}{2}} \exp \left[-\frac{L^2}{2} \left(a_1^2 + b_2^2 + a_2^2 + b_2^2 \right) \right] \tag{#20}$$

$$\langle \hat{A} \cdot \hat{A}^* \rangle_{\text{INC}} = K_1 \pi L^2 \exp \left[-\frac{L^2}{4} \left(a_1 - a_2 \right)^2 \right] \exp \left[-\frac{L^2}{4} \left(b_1 - b_2 \right)^2 \right]$$

$$\cdot \frac{2 \pi^2 \sqrt{g}}{2 \pi \rho^{3/2}} \left[\frac{A_1^2 \sqrt{g \Phi \left(\sigma^2 + \ell^2 \right)^{3/4}}}{\ell^2 \sigma^2 c_1 c_2} \right] \tag{#21}$$

where

$$K_1 = \frac{B^2}{\lambda^2 R_1 R_2} \exp \left(i2\pi \frac{\ell}{\lambda} \right) \exp \left[-\frac{L^2}{2} \left(c_1^2 + c_2^2 \right) \right] \tag{#22}$$

The other terms have been defined previously

$$A_1^2 (\omega) = \frac{\pi}{2} \frac{C}{\omega^2} \exp \left(-\frac{2g^2}{\omega^2 \sigma^2} \right)$$

Let \(\Omega \in \delta \) and consider points 1 and 2 to lie on a circle with the center at the origin, so that \(R_1 = R_2 \).

In the cgs system \(g = 980.665 \) cm. If \(s \) is expressed in knots, then to change to \(\text{cm/sec.} \), we must multiply by \(185,200/3600 \). In equation #22, \(c = 30,500 \). If the wind speed is specified, then the mean square height of the surface may be obtained. This is

$$\sigma^2 = C \frac{\pi}{2} \sqrt{\frac{\pi}{2}} 3 \left(\frac{5}{2g^2} \right)^5$$

Thus for the Neumann-Pierson spectrum, the mean square height is proportional to the 5th power of the wind speed. It should be noted that although we have separated the equation for \(\langle \hat{A} \cdot \hat{A}^* \rangle \) into coherent and incoherent components, the computer program will add the two factors together with the corresponding constants. To find the complex
degree of coherence, it is necessary to evaluate \(\langle \hat{\boldsymbol{f}}_1, \hat{\boldsymbol{f}}_r^* \rangle \) and \(\langle \hat{\boldsymbol{f}}_2, \hat{\boldsymbol{f}}_r^* \rangle \). \(\langle \hat{\boldsymbol{f}}_4, \hat{\boldsymbol{f}}_r^* \rangle \) is obtained by setting \(a_2=a_1, b_2=b_1 \) and \(c_2=c_1 \). For example from equation \#20, we obtain

\[
\langle \hat{\boldsymbol{f}}, \hat{\boldsymbol{f}}_r^* \rangle_{\text{cph}} = k \left(\frac{2\pi L^2}{2} \right) \exp \left[-\frac{k L^2}{2} \left(2a_1^2 + 2b_1^2 \right) \right]
\]

The computer program for the computation of the complex degree of coherence is given in Appendix A.

RESULTS

For our computations, we have chosen a frequency of 400 Hz and an angle of incidence of 45°. The incident and reflected ray are coplanar with the normal to the surface at the origin. One of the reflected directions was fixed at \(\theta=45^\circ \). (See Figure \#2).

![Fig. 2](image)

The other direction was varied in .1° increments from 41° to 49°. The wind speed was held fixed for each computer run. In Figure \#3, 3 computer runs are shown for wind speeds of 5, 7.5 and 10 knots. As stated previously, \(\theta \) represents the direction of the second reflected ray. Since the first ray is fixed at 45°, when the second ray is at 45°, a complex degree of coherence of 1 is obtained, by definition. All 3 curves are thus correct at \(\theta=45^\circ \). All 3 curves show perfect coherence for \(\theta \) close to 45° and all 3 curves are zero when \(\theta \) is \(\pm 2^\circ \) from 45°. Physically, the ray in the specular direction has a coherent component which is high at low wind speeds. The coherent component de-
increases as θ goes further away from the specular direction. The coherence between the two rays is due to the coherence between the two coherent components. However, the coherent component is almost 0 when the direction is outside of the beamwidth (BW) of the insonified region. (See Nuttall and Cron3, Equation 97) For an $L=32 \lambda$, such as chosen in these computations,

$$BW \approx \frac{\lambda}{L} \frac{180}{\pi} \text{ degrees} = \frac{\lambda}{32\lambda} \frac{180}{\pi} = 1.79^\circ$$

Thus the BW is on the order of 2°.

As L is increased, the coherent region decreases. It should be noted that in the farfield, a coherence on the order of a few degrees may represent a large linear region of coherence along an array. 5 knots represents a smoother surface than 7.5 or 10 knots and thus has a larger region of coherency.

Some of the parameters associated with the case shown in Fig. 3 are tabulated in Table I.

<table>
<thead>
<tr>
<th>Speed in Knots</th>
<th>σ in cms</th>
<th>$\beta = \frac{L}{\sigma}$</th>
<th>$\beta_{12} = \frac{L}{\sigma} \sigma_{\text{c}} \sigma_{\text{c}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.27</td>
<td>.0062</td>
<td>.000039</td>
</tr>
<tr>
<td>5</td>
<td>2.6</td>
<td>.0617</td>
<td>.0038</td>
</tr>
<tr>
<td>7.5</td>
<td>7.28</td>
<td>.1699</td>
<td>.0289</td>
</tr>
<tr>
<td>10</td>
<td>14.95</td>
<td>.3488</td>
<td>.1216</td>
</tr>
<tr>
<td>15</td>
<td>41.21</td>
<td>.9611</td>
<td>.9503</td>
</tr>
</tbody>
</table>

Note that the wind speed of 15 knots has a β_{12} that is close to 1 and therefore does not fall into the category of small roughness. For a wind speed of 2 knots, the surface is almost like a smooth mirror and computation shows a coherence of 1 from 41° to 49°. It is probably perfectly coherent in all regions.

Fig. 4 represents the case of one position fixed at the non-specular direction of 55°. For this case it was found that as the wind speed changed from 2 to 10 knots, the curves did not change much.
The coherency drops much faster for this case than for the specular direction. Fig. 5, represents the case of one position being held at 65°. The difference between the 2 knot case and the 10 knot case is hard to distinguish on the plot. An investigation of the parameters shows that both curves are dependent on the tails of the surface wave height spectrum. However, the tails of the wave height spectrum are very close to one another at high surface frequencies.

CONCLUSION

A model and equations have been obtained for the spatial coherence in the far-field for a signal reflected from a time varying random surface. Computations and plots of values for specific cases have been presented. Only the low roughness case has been presented.

Plans are being made to obtain the incoherent component of spatial coherence for arbitrary roughness. The Fresnel region case is also being considered. In addition to this, experimental data of elements of an array have been obtained and will be analyzed in the near future.

ACKNOWLEDGEMENT:

The writer thanks Dr. A. Nuttall for discussions on this study and to Dr. W. Marsh and Dr. A. Nuttall on discussions on the symmetry properties of the spatial coherence function.
REFERENCES

Neumann Pierson Spectrum
Wind Speed
2, 10 Knots
APPENDIX A

COMPUTER PROGRAM

1* PARAMETER NP=080,NP1=NP+1,NT=NP+1,N1=NP+2,N2=NP+3
2* REAL X1(N2),Y1(N2),BUFFER(10000)
3* IMPLICIT DOUBLE PRECISION(A-H,O-Z)
4* DIMENSION CO(NP1)
5* 31 FORMAT(5D6.1,W9.4,D5.0)
6* 33 FORMAT(1X,6D16.8/6D16.8)
7* DEFINE F4(X,Y)=SQR(X**2+Y**2)
8* SPMT=50.900
9* SP=51.00
10* CALL PLOTS(BUFFER,10000,0)
11* CALL PLOT(0,0,100)
12* CALL PLOT(0,0,3)
13* CCM=30.436D0
14* CFM=30500.00
15* G=960.66500
16* C=5000.00
17* C=C*CCM
18* F=400.00
19* PI=3.1415926535897932400
20* AMDA=C/F
21* WN=2.*PI/AMDA
22* WN2=WN*WN
23* CF=PI/180.00
24* 30 READ(3,31,ENO=32)TI,HI,Ts1,Hs1,Hs2,SK,PL
25* PL=PL*C/F
26* PL2=PL*PL
27* GNF=2.*PI*PL2
28* GNF=GNF*GNF
29* S=SK*185200.00/3600.00
30* S2=S*S
31* SC=S/(2.*G)
32* SC2=SC*SC
33* SC4=SC2*SC2
34* SC5=SC4*SC
35* PID2=PI/2.
36* \(\text{SPID2}=\sqrt{\text{PID2}} \)
37* \(\text{VAR}=\text{CFM} \times \text{PID2} \times \text{SPID2} \times 3.00 \times \text{SC5} \)
38* \(\text{SIG}=\sqrt{\text{VAR}} \)
39* \(\text{DO} \leq 26 \text{ NT} = 2 = 1 \times \text{NP1} \)
40* \(\text{TS2} = \text{NT} \times 2 \times \text{1D} \times \text{SPMT} \)
41* \(\text{TS2R} = \text{TS2} \times \text{CF} \)
42* \(\text{TIR} = \text{TI} \times \text{CF} \)
43* \(\text{HIR} = \text{HI} \times \text{CF} \)
44* \(\text{TS1R} = \text{TS1} \times \text{CF} \)
45* \(\text{HS1R} = \text{HS1} \times \text{CF} \)
46* \(\text{HS2R} = \text{HS2} \times \text{CF} \)
47* \(\text{A1} = \sin(\text{TIR}) \times \cos(\text{HIR}) \)
48* \(\text{B1} = \sin(\text{TIR}) \times \sin(\text{HIR}) \)
49* \(\text{C1} = \cos(\text{TIR}) \)
50* \(\text{AS1} = \sin(\text{TS1R}) \times \cos(\text{HS1R}) \)
51* \(\text{BS1} = \sin(\text{TS1R}) \times \sin(\text{HS1R}) \)
52* \(\text{CS1} = \cos(\text{TS1R}) \)
53* \(\text{AS2} = \sin(\text{TS2R}) \times \cos(\text{HS2R}) \)
54* \(\text{BS2} = \sin(\text{TS2R}) \times \sin(\text{HS2R}) \)
55* \(\text{CS2} = \cos(\text{TS2R}) \)
56* \(\text{A1} = \text{A1} + \text{AS1} \)
57* \(\text{B1} = \text{B1} + \text{BS1} \)
58* \(\text{C1} = \text{C1} + \text{CS1} \)
59* \(\text{A2} = \text{A1} + \text{AS2} \)
60* \(\text{B2} = \text{B1} + \text{BS2} \)
61* \(\text{C2} = \text{C1} + \text{CS2} \)
62* \(\text{AS} = (\text{A1} + \text{A2}) / 2 \)
63* \(\text{BS} = (\text{B1} + \text{B2}) / 2 \)
64* \(\text{ARGA1} = \text{WN} \times \text{A1} \times \text{PL} \)
65* \(\text{ARGA2} = \text{WN} \times \text{A2} \times \text{PL} \)
66* \(\text{ARGB1} = \text{WN} \times \text{B1} \times \text{PL} \)
67* \(\text{ARGB2} = \text{WN} \times \text{B2} \times \text{PL} \)
68* \(\text{ARDA} = \text{WN} \times \text{PL} \times (\text{A1} - \text{A2}) \)
69* \(\text{ARDB} = \text{WN} \times \text{PL} \times (\text{B1} - \text{B2}) \)
70* \(\text{ARDA2} = \text{ARDA} \times \text{AKGDA} \)
ARDB2 = ARGDB * ARGDB
SA1 = EXP(-ARGA1 * ARGA1 / 2.)
SB1 = EXP(-ARGB1 * ARGB1 / 2.)
SA2 = EXP(-ARGA2 * ARGA2 / 2.)
SB2 = EXP(-ARGB2 * ARGB2 / 2.)
CC = SA1 * SA2 * SB1 * SB2
CC = CC * GNF
18 OMEG = SQRT(G * W) * F4(A1, B1)
IF(OMEG) 19, 20, 19
19 A10M = CFM * EXP(-2 * G * G / (OMEG * OMEG * S2))
A10M = A10M / (OMEG ** 6)
CINF = SQRT(W * G) * (PI ** 3) * PL2 * 2.
CINF = CINF * C1 * C2 * EXP(-ARDA2 / 4.) * EXP(-ARDB2 / 4.)
OM12 = SQRT(G * W) * F4(A5, B5)
OM12 = OM12 ** 2
A12M = CFM * EXP(-2 * G * G / (OM12 ** S2))
A12M = A12M / (OM12 ** 6)
F12 = F4(A5, B5) ** 3
GO TO 21
CINF = 0.
SA12 = SA1 * SA1
SB12 = SB1 * SB1
SA22 = SA2 * SA2
SB22 = SB2 * SB2
C11 = SA12 * SB12
C11 = C11 * GNF
C22 = SA22 * SB22
C22 = C22 * GNF
F11 = (F4(A1, B1)) ** 3
IF(F4(A1, B1)) 51, 50, 51
C11 = CINF * C1 * C1 * A10M / F11
GO TO 52
C11 = 0.
OMEG2 = SQRT(W * G) * F4(A2, B2)
IF(OMEG2) 23, 24, 23
106* OMEG2*OMEG2*OMEG2
107* A20M=CFM*EXP(-2.*G*/(OMEG2**6))
108* A20M=A20M/(OMEG2**6)
109* F22=(F4(A2,B2))**3
110* CIN=CIN+A12M/F12
111* GXY=CC+CIN
112* CI22=CINF*C2*C2*A20M/F22
113* GO TO 25

114* 24 CI22=0.
115* 25 GXX=C11+C111
116* GYY=C22+C122
117* CDEN=SQRT(GXX)*SQRT(GYY)
118* COH=GXY/CDEN
119* CO(NTS2)=ABS(COH)
120* BET=WN*C1*SIG
121* BET12=WN2*C1*C2*VAR
122* WRITE(4,33)SK(SIG,BET,BET12,TS2,COH)
123* 26 CONTINUE
124* DO 40 NTS2=1,NTP1
125* XI(NTS2)=NTS2*.1D0+SPMT
126* Y1(NTS2)=COH(NTS2)
127* 40 CONTINUE
128* XI(N1)=SP
129* XI(N2)=2.
130* Y1(N1)=0.
131* Y1(N2)=.2
132* CALL LINE(X1,Y1,NT,1,0,0)
133* GO TO 30
134* 32 CALL AXIS(0.,0.,124HET*A IN DEG,-12,4.,0.,X1(N1),X1(N2),10.).
135* CALL AXIS(0.,0.,9HC0HERE,9,05.,90.,Y1(N1),Y1(N2),10.)
136* CALL PLOT(20.,0.,-3)
137* CALL PLOT(0.,0.,939)
138* STOP
139* END