DOPPLER EFFECT ON BACK-SCATTERED FAR-FIELD INTENSITY FOR COHERENT LIGHT ON A ROTATING CYLINDER.

J. Lynn Smith
Physical Sciences Directorate
Technology Laboratory

21 Apr 77

Approved for public release; distribution unlimited.
DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTUTUE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
UNCLASSIFIED

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
TR-77-6

4. TITLE (see subtitle) DOPPLER EFFECT ON BACK-SCATTERED FAR-FIELD INTENSITY FOR COHERENT LIGHT ON A ROTATING CYLINDER

5. TYPE OF REPORT & PERIOD COVERED Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) J. Lynn Smith

8. CONTRACT OR GRANT NUMBER(s) 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS (DA) 8X3633040215 AMCS Code 693000.2171422

9. PERFORMING ORGANIZATION NAME AND ADDRESS
US Army Missile Research and Development Command Attn: DRDME-TR Redstone Arsenal, Alabama 35809

11. CONTROLLING OFFICE NAME AND ADDRESS
US Army Missile Research and Development Command Attn: DRDME-TR Redstone Arsenal, Alabama 35809

12. REPORT DATE 21 April 1977

13. NUMBER OF PAGES 9

14. MONITORING AGENCY NAME & ADDRESS (If different from Controlling Office)

18. SECURITY CLASS. (of this report) Unclassified

16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SECURITY CLASS. (of this report) Unclassified

19. SECURITY CLASS. (of this report) Unclassified

16a. DECLASSIFICATION/DOWNGRADING SCHEDULE

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Doppler Surface roughness Backscatter Coherent light Laser radar Rotating targets

20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The average intensity and contrast of the back-scattered light from a distant, coherently illuminated, rotating cylinder is examined from a theoretical viewpoint. Although the inclusion of the Doppler effect drastically affects the speckle pattern, it does not significantly alter its statistics for realistic values of target size and angular velocity. Therefore, measurements of average intensity and contrast are practically unaffected.
CONTENTS

<table>
<thead>
<tr>
<th>I. INTRODUCTION</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. THEORETICAL FOUNDATION</td>
<td>3</td>
</tr>
<tr>
<td>III. CONCLUSION</td>
<td>6</td>
</tr>
<tr>
<td>Appendix. DEPENDENCE OF PHASE ϕ ON θ AND $\theta - \alpha$</td>
<td>7</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

When a distant cylindrical target is illuminated with coherent light, the back-scattered field is a complex speckle pattern which depends on the reflectivity and roughness of the target. The dependence of contrast on the roughness has been examined by Smith\(^1\). The characteristics of high spatial frequency speckle which sweeps across the detector as a rough cylinder rotates have been studied by George\(^2\). Such investigations have particular relevance to the laser radar applications.

Although the frequency spectrum and speckle configuration at any one instant are very much affected by the Doppler effect, the statistical averages of intensity and contrast are not significantly affected for realistic values of angular velocity (a few radians per second), size (1 m or so), and distance (a few hundred km). The Rayleigh-Sommerfeld diffraction formulation\(^3\) is employed in this work.

II. THEORETICAL FOUNDATION

The electric field at the surface of the cylinder is given by

\[
a_2(\ell, \theta, \theta' - \alpha) \approx a(\ell, \theta, \theta' - \alpha) \exp(j\phi(\theta, \theta' - \alpha, \ell)) \exp(jk\Delta r),
\]

where

\[
\Delta r = \rho - \rho \cos \theta,
\]

and

\[
a(\ell, \theta, \theta' - \alpha) = a_0 \bar{p}_r(\ell, \theta, \theta' - \alpha),
\]

in which a_\circ is a scalar representing the incident electric field amplitude and $p_r(\ell, \theta, \theta-\alpha)$ is the position-dependent surface reflectivity (see Figure 1). The symbol ϕ represents a phase change of light upon reflection due to roughness at length position ℓ and angular position θ for the surface orientation $\theta-\alpha$. The angle α is, of course, the reference angle with respect to $\theta = 0$ for the surface structure. For small values of θ, $\phi = -2kh$ where h is the deviation of the surface from strictly cylindrical. For larger values of θ, ϕ depends on θ somewhat (see Appendix). The reflectivity p_r is assumed to vary slowly compared to ϕ so that the two values are essentially independent.

\[dA(\ell, \theta-\alpha) = \frac{1}{j\lambda} a_2(\ell, \theta-\alpha) \frac{1}{r} \exp(2\pi r \cos\theta) \, ds \]

Figure 1. Geometry of illuminated cylinder.

The Rayleigh-Sommerfeld diffraction theory gives the far-field backscatter amplitude for a surface element ds as

\[dA = \frac{1}{j\lambda} a \exp(j\phi) \exp(2\pi r \cos\theta) \, ds \]

where

\[k' = k (1 - \nu_\ell/c) = (1 - \rho \omega \sin\theta/c) \]

is the Doppler-modified wave vector. The symbols ω and c represent the angular velocity and speed of light, respectively. Combining Equations (1) and (4) gives

\[dA = \frac{1}{j\lambda} a \exp(j\phi) \exp(2\pi r \cos\theta) \, ds \]
Since \(r = R + \Delta r \) (\(\Delta r \ll R \)) and, for reasonable values of \(\omega \), \(k' \Delta r \) may be replaced by \(k \Delta r \), then

\[
dA = \frac{1}{j\lambda R} \exp(j\phi) \exp(j2k\Delta r + k'R) \cos \theta \, ds , \tag{7}
\]

or

\[
dA = \frac{1}{j\lambda R} \exp(jkR) \exp(jk\left[2\rho(1-\cos \theta) + \left(\frac{k'}{k} - 1\right) R\right]) \cos \theta \, ds . \tag{8}
\]

Defining the shape factor

\[
F(\theta, \gamma) = \exp(jk[2\rho(1-\cos \theta) - \gamma] \cos \theta) , \tag{9}
\]

where

\[
\gamma = R(1 - k'/k) = \rho \omega R \sin \theta / c , \tag{10}
\]

the back-scattered field amplitude at the detector is

\[
A(\alpha) = \frac{\rho}{j\lambda R} \exp(jkR) \int_{0}^{\pi} a \exp(j\phi) F(\theta, \gamma) \, d\theta \, dl . \tag{11}
\]

The real part of the shape factor is symmetrical about zero for \(\gamma = 0 \) and is near unity for small \(\theta \), but as \(\theta \) increases, it oscillates with decreasing period. For \(\gamma = 0 \), the imaginary part is asymmetric and is zero at \(\theta = 0 \). As \(\theta \) increases, it also oscillates with decreasing period. To be rigorous, it should be mentioned that \(F \) does not contain all the effect of shape. The roughness-phase \(\phi \) also depends to some extent on shape (through \(\cos \theta \)) and not surface position \(\theta - \alpha \) alone. However, \(F(\theta, \gamma) \) is the factor that depends on the Doppler effect.

Let the condition that \(\gamma / \sin \theta \equiv \rho \omega R / c \ll \rho \) (or \(\omega R / c \ll 1 \)) be assumed. Therefore part of the exponent in Equation (9) may be written

\[
-2 \rho \cos \theta - \gamma = -2 \rho \left(\cos \theta + \gamma / (2\rho) \right) .
\]

Since \(\gamma / 2\rho = \omega R \sin \theta / (2c) \) [see Equation (10)], then

\[
-2 \rho \cos \theta - \gamma = -2 \rho \left[\cos \theta + \omega R \sin \theta / (2c) \right]
\]

or, since \(\omega R / (2c) \ll 1 \), and thus \(\cos[\omega R / (2c)] \approx 1 \) and \(\sin[\omega R / (2c)] = \omega R / (2c) \),
Use of trigonometric equations further allows one to write

\[- 2 \rho \cos \theta - \gamma \approx - 2 \rho \left[\cos \left(\frac{\omega R}{2c} \right) \cos \theta + \sin \left(\frac{\omega R}{2c} \right) \sin \theta \right].\]

Therefore Equation (9) becomes

\[F(\theta, \gamma) \approx \exp j2\rho \left[1 - \cos(\theta - \omega R/2c) \right] \cos \theta.\]

Since \(\omega R/2c \ll 1\), the \(\cos \theta\) factor at the end may be replaced by \(\cos(\theta - \omega R/2c)\) for values of \(\theta\) not near \(\pi/2\). Hence

\[F(\theta, \gamma) \approx F(\theta - \omega R/2c, 0).\]

Thus

\[A(\theta) \approx \frac{\rho}{j\lambda R} \exp jkR \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \exp j \Phi F(\theta - \omega R/2c, 0) \, d\theta \, dl.\]

III. CONCLUSION

The Doppler effect has merely shifted the center of \(F\) by a small amount for \(\omega R/2c \ll 1\). This will have a pronounced effect on any measurement of \(A(\theta)\), but not its statistics. This is because the shape factor has displaced only slightly with respect to the average value of \(\theta\) over the surface.

For an example, let \(\omega = 2\pi \text{ rad s}^{-1}\), \(R = 500 \text{ km}\), \(\rho = 1 \text{ m}\). Thus \(\omega R/2c \approx 5 \times 10^{-3} \text{ rad}\), which certainly satisfies the condition \(\omega R/c \ll 1\).

Since for \(\omega R/c \ll 1\), the statistics of the backscatter is not much changed, average intensity \(\langle I \rangle = \langle A^2 \rangle\) and contrast \(\langle I^2 \rangle^{1/2}/\langle I \rangle\) are practically unchanged. This does not mean, however, that the frequency spectrum spread of the backscatter is insignificant.
Appendix. DEPENDENCE OF PHASE ϕ ON θ AND $\theta - \alpha$

Assume the second derivative $(1/\rho^2) d^2h/d\theta^2$ is very small and the fractional change of h over the distance $\rho \Delta \theta$ is small. Also assume that the reflectivity $r_\rho(l, \theta - \alpha)$ varies slowly over distance $\rho \Delta \theta$, so that

$$a(l, \theta, \theta - \alpha) = a(l, \theta - \Delta \theta, \theta - \Delta \theta - \alpha).$$

Examination of Figure A-1 allows one to write

$$\frac{\phi}{k} \approx - [H \cos(2\theta - 2\Delta) + H], \quad \text{(A-1)}$$

where

$$H \approx \frac{h(l, \theta - \alpha)}{\cos(\theta - 2\Delta)}. \quad \text{(A-2)}$$

Since

$$\Delta(l, \theta - \alpha) \approx (1/\rho) \frac{dh}{d\theta} \equiv D(l, \theta - \alpha), \quad \text{(A-3)}$$

then

$$\frac{\phi}{k} \approx - h(l, \theta - \alpha) \frac{2 \cos^2(\theta - \Delta)}{\cos(\theta - 2\Delta)}. \quad \text{(A-4)}$$

For small Δ,

$$\frac{\phi}{k} \approx - 2 h(l, \theta - \alpha) \cos \theta. \quad \text{(A-5)}$$

Because ϕ depends not only on θ, but on h and D which, in turn, depend on $l, \theta - \alpha$, one can write

$$\phi \approx \phi(l, \theta, \theta - \alpha).$$
Figure A-1. Sketch of roughness detail.
The perforated line is the constructed surface from which the actual rough surface deviates.
<table>
<thead>
<tr>
<th>Military Command</th>
<th>No. of Copies</th>
<th>Location</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lincoln Laboratory</td>
<td>1</td>
<td>02173</td>
<td>Box 73, Lexington, Massachusetts</td>
</tr>
<tr>
<td>Optical Science Corporation</td>
<td>1</td>
<td>92686</td>
<td>P.O. Box 368, Yorba Linda, California</td>
</tr>
<tr>
<td>United Aircraft Research Laboratory</td>
<td>1</td>
<td>06108</td>
<td>400 Main Street, East Hartford, Connecticut</td>
</tr>
<tr>
<td>Bell Aerospace Company</td>
<td>1</td>
<td>01733</td>
<td>P.O. Box 3110, Fullerton, California</td>
</tr>
<tr>
<td>Hughes Aircraft Company</td>
<td>1</td>
<td>94305</td>
<td>P.O. Box 310, Palo Alto, California</td>
</tr>
<tr>
<td>Science Applications Incorporated</td>
<td>1</td>
<td>38152</td>
<td>80 West End Avenue, New York, New York</td>
</tr>
<tr>
<td>University of Alabama in Huntsville</td>
<td>1</td>
<td>35807</td>
<td>7653 Old Springhouse Road, Abingdon, Virginia</td>
</tr>
<tr>
<td>Department of Electrical Engineering</td>
<td>1</td>
<td>94305</td>
<td>2100 Clinton Building, Huntsville, Alabama</td>
</tr>
<tr>
<td>Electrical Engineering Department</td>
<td>1</td>
<td>38152</td>
<td>7653 Old Springhouse Road, Abingdon, Virginia</td>
</tr>
<tr>
<td>Environmental Research Institute of</td>
<td>1</td>
<td>38152</td>
<td>7653 Old Springhouse Road, Abingdon, Virginia</td>
</tr>
<tr>
<td>Optical Sciences Center</td>
<td>1</td>
<td>85721</td>
<td>2100 Clinton Building, Huntsville, Alabama</td>
</tr>
<tr>
<td>California Institute of Technology</td>
<td>1</td>
<td>91109</td>
<td>7653 Old Springhouse Road, Abingdon, Virginia</td>
</tr>
<tr>
<td>ORSPL-FA, Mr. Strickland</td>
<td>1</td>
<td>-L</td>
<td></td>
</tr>
<tr>
<td>ORSPL-F, Dr. McDaniel</td>
<td>1</td>
<td>-F, Dr. Kohler</td>
<td></td>
</tr>
<tr>
<td>ORSPL-E, Mr. Davis</td>
<td>3</td>
<td>-E, Dr. Gard</td>
<td></td>
</tr>
<tr>
<td>ORSPL, Dr. Smith</td>
<td>-T, Dr. Steffen</td>
<td>-T, Dr. Steffen</td>
<td></td>
</tr>
<tr>
<td>ORSPL, Dr. Ganim</td>
<td>1</td>
<td>-T, Dr. Ganim</td>
<td></td>
</tr>
<tr>
<td>ORSPL, Dr. Smith</td>
<td>10</td>
<td>-T, Dr. Steffen</td>
<td></td>
</tr>
<tr>
<td>ORSPL, Dr. Ganim</td>
<td>1</td>
<td>-T, Dr. Ganim</td>
<td></td>
</tr>
</tbody>
</table>

Table: Distribution List

- **Commander:**
 - US Army Ballistic Missile Defense System Command
 - Attn: RDSCC
 - P.O. Box 1500
 - Huntsville, Alabama 35807

- **Director:**
 - Ballistic Missile Defense Advanced Technology Center
 - Attn: ADC-2
 - ADC-2
 - P.O. Box 1500
 - Huntsville, Alabama 35807

- **Advanced Research Projects Agency:**
 - OSD/ATD, Dr. F. Clark
 - 1400 Wilson Boulevard
 - Arlington, Virginia 22209

- **Commander:**
 - US Army Ballistic Missile Defense System Command
 - Attn: RDSCC
 - P.O. Box 1500
 - Huntsville, Alabama 35807