FOREIGN TECHNOLOGY DIVISION

BRAKE-PLATES FOR AEROPLANES

by

Lee, Dong Sheng

Approved for public release; distribution unlimited.
EDITED TRANSLATION

FTD-ID(RS)T-0819-77 31 May 1977

MICROFICHE NR: FTD-77C-000648

CSL76086926

BRAKE-PLATES FOR AEROPLANES

By: Lee, Dong Sheng

English pages: 4

Source: Hang Kung Chih Shih, Peking, 1976, Number 4, pp. 8

Country of origin: China
Translated by: Linguistics
F33657-76-D-0389
Jerry K. Chung

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESSARILY REFLECT THE POSITION
OR OPINION OF THE FOREIGN TECHNOLOGY DI-
VISION.

PREPARED BY:
TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-AFB, OHIO.

FTD-ID(RS)T-0819-77 Date 31 May 1977
Brake-plates for Aeroplanes

Lee, Dong Sheng

As a result of the increase in both the weight and air speed of modern aeroplanes, increase in their speed and kinetic energy during landing inevitably ensues. At present, a jet airliner travelling at a speed of 250-350 kilometers per hour on landing will slide over a distance of more than 3500 meters before stopping if it has no braking facility, thereby necessitating an airport of very large size. The application of brakes will help bring it to rest in about 1000 meters, which means a significant reduction of 2/3-3/4 of the original length, thus allowing the use of an airport of smaller size. It also enables the aeroplane to make turns on the ground by means of the adjustment in braking moments of the left and right wheels, thus providing the aircraft with great mobility on the ground. It is evident then that the braking system of an aeroplane is very important. Aeroplane brakes are often found in one of the three forms: the so-called "bent-plates", "tubular", and "disc" types. Regardless of their forms, however, the most important factor that determines the efficiency of brakes is the quality of the brake-plates. For a modern jet airliner, its brake-plates are usually subject to a temperature of 450-500°C due to surface friction when brakes are applied during landing. It can even reach 1000°C upon excessive use of the brakes. When the kinetic energy of heat equivalent of 1300 Kcal. of a modern jet-propelled bomber is delivered onto its brakes, 350 calories of heat are given off per square centimeter area of the brake surfaces in 15-20 seconds, which is sufficient to melt a gram of iron. For aircrafts with larger tonnage and higher landing speed, the quantity of frictional
heat generated is even more enormous. The outer layers of
the brakes not only become softened, but will even melt. We
see then that the working conditions of an aeroplane
braking system are very exacting, and high-quality brake-
plates must be used. Brake-plates made from asbestos-
plastics material in the past do not meet the needs of the
modern high performance aeroplanes. They are replaced by
brake-plates made by means of powder metallurgy and other
methods that guarantee excellent heat-resistance, durability,
operational stability and reliability. Here we shall intro-
duce a type of brake-plates made by means of powder mettal-
lurgy.

According to the desired properties of brake-plates,
iron or copper are commonly used as the main constituent,
with lesser amounts of tin, lead, graphite, and carborundum.
These elements and compounds vary considerably in their
melting points and other physical and chemical properties.
For example, the melting point of tin is 232°C, whereas those
of graphite and carborundum are well above 2000°C. Conse-
quently, it is rather difficult to obtain material with the
desired properties by means of ordinary melting and casting
techniques. The introduction of powder metallurgy alleviates
these problems; it is simple to apply, and is economical in
the use of raw materials. The principal processing steps
include: mixing, compacting, and sintering. Different kinds
of prepared powders are first mixed in a mixing machine,
whereupon the mixture is placed in a die and pressed into
shape by the compacting machine. Since the die is designed
with the exact dimensions and shape of the brake-plate, the
compact will come out to have the dimensions and shape re-
quired. The compact is then sintered in a special sintering
furnace. The sintering temperature for brake-plates made of iron is generally in the range of 900-1000°C, whereas for the case of copper, it is about 750-850°C. The structure of the sintered product resembles that of mortar. The metal components, i.e., iron or copper, plays similar role as does cement in mortar: it glues firmly together the uniformly distributed non-metal components such as graphite and carborundum with its high cohesive strength, so that the resulting structure is extremely strong. After some simple working, the sintered brake-plates are either riveted onto the steel framework of the braking system, or sintered directly onto the latter. Figure 1 shows a brake-plate of the "disc" type braking system made by powder metallurgy for an aeroplane, whilst Figure 2 is a diagram of an assembled brake disc.

Recently, a few new kinds materials for brakes appear in the market. For example, there is a type of brake disc made of carbon-carburized compounds which has small specific gravity and excellent ability in heat absorption and resistance against abrasion. It has been developed into practical use already. In fact, the Concord aircrafts built by the joint efforts of Britain and France utilize this kind of material. There is another type of brake disc made of beryllium which has small specific gravity and large specific heat, and whose ability in heat absorption per unit weight is 4-5 times than that of copper. It is believed to be an ideal material for brakes, and is actually used for a certain kind of military transportation aircrafts. Each aircraft with 24 wheels weighs 726 kilograms less than that if copper is used. Another kind of material made of metal fibres and ceramic substances is also under investigation. Although the aforementioned materials exhibit many advantages, they
are not yet extensively used at present because of technical and economic reasons. However, judging from the current trend, we believe they have a very promising future.

Figure 1. Brake-plate Made by Powder Metallurgy

Figure 2. Brake Disc with Brake-plates Assembled on
UNCLASSIFIED

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
FTD-ID(RS)T-0819-77

4. TITLE (and Subtitle)
BRAKE-PLATES FOR AEROPLANES

7. AUTHOR(s)
Lee, Dong Sheng

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Foreign Technology Division
Air Force Systems Command
United States Air Force

12. REPORT DATE
1976

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
01; 13
<table>
<thead>
<tr>
<th>ORGANIZATION</th>
<th>MICROFICHE</th>
<th>ORGANIZATION</th>
<th>MICROFICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A205 DMATC</td>
<td>1</td>
<td>E053 AF/INAKA</td>
<td>1</td>
</tr>
<tr>
<td>A210 DMAAC</td>
<td>2</td>
<td>E017 AF/ RDXTR-W</td>
<td>1</td>
</tr>
<tr>
<td>B344 DIA/RDS-3C</td>
<td>8</td>
<td>E404 AEDC</td>
<td>1</td>
</tr>
<tr>
<td>C043 USAMIA</td>
<td>1</td>
<td>E408 AFWL</td>
<td>1</td>
</tr>
<tr>
<td>C509 BALLISTIC RES LABS</td>
<td>1</td>
<td>E410 ADTC</td>
<td>1</td>
</tr>
<tr>
<td>C510 AIR MOBILITY R&D LAB/FIO</td>
<td>1</td>
<td>E413 ESD</td>
<td>2</td>
</tr>
<tr>
<td>C513 PICATINNY ARSENAL</td>
<td>1</td>
<td>FTD</td>
<td></td>
</tr>
<tr>
<td>C535 AVIATION SYS COMD</td>
<td>1</td>
<td>CCN</td>
<td>1</td>
</tr>
<tr>
<td>C557 USAIIC</td>
<td>1</td>
<td>ETID</td>
<td>3</td>
</tr>
<tr>
<td>C591 FSTC</td>
<td>5</td>
<td>NIA/PHS</td>
<td>1</td>
</tr>
<tr>
<td>C619 MIA REDSTONE</td>
<td>1</td>
<td>NICD</td>
<td>5</td>
</tr>
<tr>
<td>D008 NISC</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H300 USAICE (USAREUR)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P005 ERDA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P055 CIA/CRS/ADD/SD</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVORDSTA (50L)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVWPNSCEN (Code 121)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA/KSI</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFIT/LD</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FTD-ID(RS)T-0819-77