RECENT RESULTS ON CLEAVAGE, BIFURCATION AND CASCADE MECHANISMS --ETC(U)
AUG 77 S L OSSAKOW, S T ZALESAK, N J ZABUSKY

UNCLASSIFIED

NRL-MR-3579

END DATE FILMED
11-77
Recent Results on Cleavage, Bifurcation, and Cascade Mechanisms in Ionospheric Plasma Clouds

S. L. OSSAKOW, S. T. ZALESAK and N. J. ZABUSKY

Plasma Dynamics Branch
Plasma Physics Division

August 1977

This research was supported by the Defense Nuclear Agency under Subtask Code S99QAXHCO41 "Physics of Magnetic Field Aligned Structure" Work Unit Code and Title 09, "Striation Research".

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
Cleavage, bifurcation, and cascade mechanisms are investigated in the evolution of striating ionospheric plasma clouds which are subject to the gradient drift instability. The numerical simulations are based on a one-level, two-dimensional model. An initially one dimensional Gaussian-like cloud with a smooth perturbation cleaves and spontaneously develops nonlinear bifurcations of the original perturbation thus forming secondary perturbations (striations). This represents a cascade from longer to shorter wavelength structures. An initially presteepened two dimensional cloud without initial perturbation cleaves and bifurcates to form a protuberance.
20. Abstracts (Continued)

in the cleavage trough. These results demonstrate that cleavage is an inherent process in the evolution of striated ionospheric plasma clouds and plays an important role in the characterization of the late-time nuclear striation power spectrum.
RECENT RESULTS ON CLEAVAGE, BIFURCATION AND CASCADE MECHANISMS IN IONOSPHERIC PLASMA CLOUDS

One of the most important problems in the late time striated nuclear environment is the characterization of the power spectrum and the decay of the structure. The ability to predict the late time striated environment is extremely important for satellite communication systems. Our understanding of the late-time striated environment has increased significantly, but there still remains some problems to be answered.

Previously we have reported (Scannapieco et al., 1976) on the late-time power spectra for striations resulting from following the nonlinear evolution of a plasma cloud coupled to the background ionosphere. There we had performed a two-level (one for the cloud, the other for the background ionosphere), two-dimensional numerical simulation of an initially one-dimensional cloud (Gaussian in one direction, uniform in the other) with random initial perturbations. The nonlinear phase of the plasma cloud development was characterized by pinching of original perturbations, production of secondary perturbations, a bubbling through of backside striations to the front side of the cloud, and appearance of image striations in the background ionosphere. Also, a power law power spectrum for the striation density fluctuations was obtained. Recently another two-level, two dimensional numerical simulation of an initially cylindrical Gaussian cloud with recombination chemistry included in the background ionosphere and an initial single long wavelength perturbation has been reported (Doles et al., 1976). In this simulation the power spectrum was not presented. However,

fact that secondary perturbations spontaneously grew out of the
initial perturbation and this process continued to occur during the
nonlinear evolution of the plasma cloud as it did in Scannapieco et
al. (1976).

Some of the basic objectives of our studies are to look at the
late-time power spectra at short wavelengths (in particular to account
for the power law power spectra at short wavelengths) and how striations
go away. Fundamental to this problem are the bifurcation, cleavage, and
cascade mechanisms that produce secondary striations from primary
striations (as noted in Scannapieco et al., 1976 and Doles et al., 1976).

This type of study is important because the time-scale for the produc-
tion of secondary striations can be much more rapid than the diffusion
time scales, especially for long wavelengths. Consequently, the late-
time decay of striations will be very much influenced by this process.
Indeed, a major contribution would be to obtain a model which describes
the time it takes for striations to bifurcate and form more striations.

Figure 1 depicts schematically what it is we are trying to follow
and understand. Essentially one has a steepened backside of the plasma
cloud (a) which then cleaves and bifurcates (b) and keeps doing so (c
and d) forming smaller and smaller wavelength structures. This in itself
represents a cascade from long wavelength structures to shorter wave-
length structures.

In order to better understand this phenomena we utilize a one
level (plasma cloud and background ionosphere at its level, where the
background ionospheric conductivity is taken to be time independent),
two dimensional (perpendicular to the ambient magnetic field) model, incorporating the simplest set of equations that describe the striation phenomena. These equations are (Zabusky et al., 1973)

\[
\frac{\partial \Sigma_p^b}{\partial t} - \nabla \cdot \left(\frac{c}{B_0} \nabla \times \vec{z} \right) = 0
\]

(1)

\[
\nabla \cdot (\Sigma_p^b \nabla) = \frac{E_0}{B_0} \cdot \nabla \Sigma_p^b
\]

(2)

where \(\Sigma_p^b \) is the magnetic field line integrated Pedersen conductivity at the cloud level, \(B_0 \) is the ambient magnetic field, \(\vec{z} = B_0 / |B_0| \), \(\nabla \cdot (\Sigma_p^b \nabla) = E_0 / B_0 \cdot \nabla \Sigma_p^b \), where \(E_0 \) is the ambient applied perpendicular electric field, and the subscript \(\perp \) means perpendicular to \(B_0 \). Equation (1) is written in the \(E_0 \times B_0 \) drift frame. Also equations (1) and (2) are representative of a one level, two dimensional F region model with \(\nu_b / \omega_{cb} \ll 1 \) (where \(\nu_b \) and \(\omega_{cb} \) are the barium ion-neutral collision frequency and barium ion gyrofrequency, respectively), i.e., no Hall currents and the plasma is essentially incompressible and can be obtained from the more general equations (see for example Scannapieco et al., 1976) taking this limit and neglecting other levels.

In what follows we will show results for different initial plasma cloud configurations. In our previous study (Scannapieco et al., 1976), random initial perturbations made it difficult to follow the cleavage and bifurcation processes in detail. Consequently, when necessary, we will use single wavelength type of perturbations.
Initial ID cloud with perturbation. The system of equations (1) and (2) was solved numerically on the Texas Instruments Advanced Scientific Computer. A two dimensional rectangular 40 x 100 grid with mesh Δx = Δy = 1/3 km (corresponding to approximately 13 km x 33 km in size) was chosen. In this particular simulation a Gaussian-like cloud in the y direction, uniform in x is used at t = 0 [similar to that found in Scannapieco et al., 1976 and the same as Zabusky et al., 1973] with a single localized perturbation of the order of two wavelengths superimposed. The Pedersen conductivity, at t = 0, was taken as

\[
\frac{\nabla^2 p}{\nabla^2 p^0} = 32.2 \left(1 - \frac{y^2}{L^2} \right)^4 \left[1 + \beta(x)e^{-\gamma} \right] + 2.6 \tag{3}
\]

with

\[
\beta(x) = \begin{cases}
\cos \frac{3\pi x}{8} & , & |x| < 8/3 \text{km} \\
0.5 \left[\cos \left(\frac{3\pi x}{8} \right) - 1.0 \right] & , & 8/3 < |x| < 16/3 \text{km} \\
0 & , & |x| > 16/3 \text{km}
\end{cases} \tag{4}
\]

In Eq. (3) L = 8 km and the quantity 2.6 represents the background ionosphere Pedersen conductivity so that the cloud to background ionosphere Pedersen conductivity ratio is 12.4. We take \(E_o = 2\) mV/m and in the positive x direction, \(B_o = 0.5\) gauss and in the positive z direction (out of the page of Fig. 2) so that the \(E_o \times B_o\) drift velocity is 40 m/sec and in the negative y direction. Consequently, the dynamical time scale \(t_d = \frac{L B_o}{c E_o} = 200\) sec. for this simulation.
Figure 2 depicts the iso-Pedersen conductivity contours at \(t = 200 \) sec after the plasma cloud has evolved according to Eqs. (1) and (2). Here we can see the type of perturbation that was put into the system at \(t = 0 \) (representing a primary striation or perturbation). We also note the backside growth of the perturbation. In this figure the conductivity contours are maximum at \(y = 0 \) and decrease as \(|y| \) increases. The Gaussian like initial cloud Pedersen conductivity is confined to \(|y| \leq 8 \text{km} \) and beyond this one has the uniform background ionosphere Pedersen conductivity. Figure 3 depicts the plasma cloud evolution at \(t = 300 \) sec. Clearly there is a main protuberance developing around \(x = 0 \) and the cleavage process has begun on either side of this. The trough and peak regions have flattened and become steep. In the cleavage region the radius of curvature tends to become infinite and in this region the divergence of the plasma flow is zero.

Figure 4 shows how the cloud has evolved at 400 sec. Clearly there is an upwelling within the trough regions which is beginning to produce secondary striations. Also perturbations are starting to form on the flanks \((4 < |x| < 6)\). What we are viewing are spontaneous bifurcations of smooth striations in an evolving plasma cloud. This is a nonlinear process and is what goes on after linear theory. Clearly this is also a cascade from longer wavelength structures into shorter wavelengths. Note that the island formation depicted in Figs. 3 and 4 is due to truncation, artificial diffusion and resolution as the contours should have developed long thin necks and not broken off. In order to carry the simulation further in time this will have to be corrected.
However, the basic cleavage, bifurcation and cascade processes have been well exhibited.

Initial 2D presteepened cloud without perturbations. Once again Eqs. (1) and (2) were solved on a two dimensional mesh. However, in this case, we have employed a stretched mesh where the central 62 x 62 mesh (depicted in Figs. 5-8) is uniform, with $\Delta x = \Delta y = \frac{3}{62}$ km (corresponding to 9km x 9km). Outside (not shown) an additional 11 points on each side cover an additional 7km on a side. Consequently, the total mesh is 84 x 84 covering 22km x 22km. The initial $t = 0$ plasma cloud is presteepened (hamburger shape; see Fig. 5) and no perturbations are added. The two dimensional presteepened cloud depicted in Fig. 5 is almost one dimensional in the x direction except for the roundedness for certain y values. Indeed, for most of the cloud except for $y > y_1, y < y_2$, $\frac{\Sigma_{b_1}^{b}}{\Sigma_{p}} = 1 + \frac{4}{2} \left[1 - \frac{(x-x_0)^2}{L_0^2} \right]^4$ where x_0 defines the x center of the cloud and $L = 2$km. Here the peak Pedersen conductivity is 5.0 and the background ionosphere is 1.0 (the iso-Pedersen conductivity contours depicted range from 2 to 4.5 in increments of 0.5). In this simulation $E_o = 5$ mV/m and is in the negative y direction, $B_o = .5$ gauss and is out of the page, so that the $E_o \times B_o$ drift velocity is in the negative x direction. With these parameters the dynamical time scale $\tau_D = \frac{L B_o}{c E_o} = 20$ sec.

The initial cloud depicted in Fig. 5 (with no initial perturbations imposed) evolves in accordance with Eqs. (1) and (2) and Fig. 6 shows its development at $t = 50$ sec. Here we begin to see the start of the cleavage process on the backside of the plasma cloud (cloud appears to have a lima beam shape). Figure 7 shows the evolution of the cloud at
The cleavage in the central region on the backside and the attendant bifurcation to form two fingers are now quite clear. These are the first numerical simulations of a plasma cloud spontaneously bifurcating without external perturbations imposed. We note the steepening of the contours in the two protuberances and in the cleavage trough. The trough area has become very flat such that the radius of curvature tends to become infinite. The bifurcation has to do with the initial one-dimensional nature and rounded edges of the plasma cloud which causes plasma flow around the cloud, since a purely one-dimensional cloud without perturbations is an equilibrium solution of the basic equations (1) and (2).

Figure 8 shows the cloud at $t = 120$ sec. The central trough region now begins to develop a protuberance (just what we now expect). The highest conductivity contour has fissioned due to truncation, artificial diffusion and resolution (this contour should have developed long thin necks). We have to refine the simulation so that we can go farther in time. However, the process presented here represents basic mechanisms which lead from long wavelengths to short wavelengths (cascade mechanism). Studies of these types are extremely important if we are going to be able to characterize the late time striated nuclear environment.

Summary. We have studied a one level, two dimensional plasma cloud (see Eqs. (1) and (2)) to investigate bifurcation, cleavage and cascade mechanisms which occur in the striated environment resulting from the gradient drift instability. These studies have been conducted using numerical simulations for different initial plasma cloud configurations.
In particular, one study was done with an initially one dimensional Gaussian like plasma cloud with initial perturbations (Fig. 2) which was then followed over the two dimensional mesh. Another study was performed with an initially presteepened two dimensional plasma with no initial perturbations (Fig. 5). The results from these numerical simulations and previous ones (Scannapieco et al., 1976; Doles et al., 1976) and our current understanding of cleavage, bifurcation, and cascade processes in plasma clouds can be summarized as follows:

1) our two level, initially one dimensional plasma cloud with random initial perturbations produced pinching of the original perturbations, production of secondary perturbations and a power law power spectrum for striations at late times (Scannapieco et al., 1976); (2) the Bell Labs (Doles et al., 1976) two level, two dimensional Gaussian-like cloud with an initial long wavelength perturbation and recombination chemistry of the second level produced cleavage and secondary perturbations (bifurcation), but the study did not delineate whether these processes were a result of the recombination chemistry, the second level, or the radius of curvature becoming large; (3) in the present study we have shown that a one level, initially one dimensional plasma cloud with an initial long wavelength perturbation spontaneously produces secondary perturbations within cleavage troughs and forms because the radius of curvature becomes infinite within those troughs; (4) our present study also shows that a one level, initially two dimensional presteepened plasma cloud (with the radius of curvature becoming infinite in one direction and having rounded edges in the other direction) without initial perturbations cleaves and
bifurcates and so the second level and recombination chemistry are not necessary; (5) cleavage is an inherent process of plasma cloud evolution; (6) this process has nothing to do with linear theory, it is what goes on after linear theory is applicable; and (7) linear theory and diffusion processes can give a misestimate of the decay of striations, especially since cleavage and bifurcation are much faster processes than diffusion for the longer (~ 1 km) striated structures. This paper should be viewed as a progress report in that we still need to investigate how much curvature is actually needed to produce cleavage and bifurcation and also we need to understand more fully the time scale for the bifurcation process.

Acknowledgment

This work was supported by the Defense Nuclear Agency. We also wish to thank A. J. Scannapieco for useful discussions at the inception of this work.
References

Fig. 1 — Schematic diagram depicting cleavage, bifurcation and cascade processes on the steepened backside of a plasma cloud
Fig. 2 — Iso-Pedersen conductivity contour plots at $t = 200$ sec. of an initially one dimensional Gaussian-like (in y) plasma cloud with an initial perturbation in x. The highest contour (maximum conductivity) is around $y = 0$ and the values decrease away from this line in both positive and negative directions. The mesh is 40×100 with $\Delta x = \Delta y = 1/3$ km which corresponds to approximately 13 km \times 33 km. There is an ambient electric field of 2 mV/m in the positive x direction and an ambient magnetic field of 0.5 gauss out of the page. The gradient scale length for the initial iso-Pedersen conductivity contours in the y direction is 8 km.
Fig. 3 — Iso-Pedersen conductivity contour plots at $t = 300$ sec. Note protuberance in center and cleavage troughs on each side.
Fig. 4 — Iso-Pedersen conductivity contour plots at $t = 400 \text{ sec}$. Note the production of secondary striations in the trough regions between the original striations and the dimpling of the original striations.
Fig. 5 — Iso-Pedersen conductivity contour plots of a plasma cloud at t = 0 (note time in upper right). These contours are ratios and represent the cloud value to that of the background ionosphere far away from the cloud. The innermost contour is 4.5 and the outermost is 2 (in increments of 0.5). The peak in the center of the cloud is 5 and the background unchanging ionosphere far away from the cloud is 1. The mesh portion shown is 8 km x 8 km (62 x 62 mesh points) with uniform spacing; however, outside there are 11 mesh (not shown) points on each side stretched covering an additional 7 km. Consequently, the total mesh is 22 km x 22 km (84 x 84 mesh points). There is an ambient electric field of 5 mV/m in the negative y direction (equivalent to an ambient neutral wind in the positive x direction); the magnetic field is 0.5 gauss and out of the paper; and the gradient scale length for the iso-Pedersen conductivity contours is 2 km in the x direction. The $E_x \times B$ velocity is in the negative x direction.
Fig. 6 — Iso-Pedersen conductivity contour plots at \(t = 50 \) sec. Note backside steepening and indentation.
Fig. 7 — Iso-Pedersen conductivity contour plots at $t = 100$ sec. Note cleavage and bifurcation.
Fig. 8 — Iso-Pedersen conductivity contour plots at $t = 120$ sec. Note formation of protuberance in central trough region.
DISTRIBUTION LIST

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-550 G. C. JONES
01CY ATTN C-550 W. HEIDIG
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RESCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R820 R. L. CRAWFORD
01CY ATTN CODE R410 JAMES W. MCLEAN

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, D.C. 20305
(ADR CNWD1: ATTN CODE 240 FOR)
01CY ATTN CODE 480
01CY ATTN CODE 810 R. W. ROSTRON
01CY ATTN CODE 1018 MAJ R. ROOD
01CY ATTN MAUREY RAFFENSPERGER

DEFENSE DOCUMENTATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
(12 COPIES IF OPEN PUBLICATION, OTHERWISE 2 COPIES)
12CY ATTN TC

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, D.C. 20301
01CY ATTN DT-19
01CY ATTN W. WITTIG DC-70
COMANDER
HARRY DIAMOND LABORATORIES
2800 POWDER MILL ROAD
ADELPHI, MD 20783
(CNWTD—INNER ENVELOPE: ATTN: DRXDO-RBH)
01CY ATTN MILIORED H. WEINER DRXDO-TI
01CY ATTN DRXDO-RB ROBERT WILLIAMS
01CY ATTN DRXDO-NP FRANCIS N. WIMENITZ
01CY ATTN DRXDO-NP CYRUS MOAZED

DIRECTOR
TRASANA
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN ATAA-SA
01CY ATTN TCC/F. PAYAN JR
01CY ATTN ATAA-TAC LTC JOHN HESSE

COMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. HUACHUCA, AZ 85613
01CY ATTN EED-PED GEORGE LANE

COMANDER
U.S. ARMY ELECTRONICS COMMAND
FORT MONMOUTH, NJ 07703
01CY ATTN DRSEL-NL-RD H. S. BENNET
01CY ATTN DRSEL-PL-ENV HANS A. BOMKE

COMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
01CY ATTN P. A. CROWLEY
01CY ATTN R. JONES

COMANDER
U.S. ARMY MATERIEL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DRCLDC J. A. BENDER
SAMSO/MN
NORTON AFB, CA 92419
(MINUTEMAN)
01CY ATTN MNNL LTC KENNEDY

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSCOM AFB, MA 01733
01CY ATTN ETEN A. LORENTZEN
OTHER GOVERNMENT

DEPARTMENT OF COMMERCE
OFFICE OF TELECOMMUNICATIONS
INSTITUTE FOR TELECOM SCIENCE
BOULDER, CO 80302
 01CY ATTN WILLIAM F. UTLAUT
 01CY ATTN G. REED

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
 01CY ATTN JOSEPH H. POPE
 01CY ATTN RICHARD GRUBB
 01CY ATTN C. L. RUFFNACH

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
 01CY ATTN AT&SC Office P. CORRIGAN
DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P. O. BOX 92957
LOS ANGELES, CA 90009
01CY ATTN IRVING M. GARFUNKEL
01CY ATTN T. M. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. P. BOWER
01CY ATTN N. D. STOCKWELL
01CY ATTN P. P. OLESEN 120 RM 2224E
01CY ATTN F. E. BOND RM 5003
01CY ATTN J. E. CARTER 120 RM 2209
01CY ATTN F. A. MORSE A6 RM 2407

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

BOEING COMPANY, THE
P. O. BOX 3707
SEATTLE, WA 98124
01CY ATTN GLEN KEISTER
01CY ATTN D. MURRAY

CALIFORNIA AT SAN DIEGO, UNIV OF
3175 MIRAMAR ROAD
LA JOLLA, CA 92037
01CY ATTN HENRY G. BOOKER

BROWN ENGINEERING COMPANY, INC.
CUMMINGS RESEARCH PARK
HUNTSVILLE, AL 35807
01CY ATTN ROMEO A. DELIBERIS

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN D. B. COX
01CY ATTN J. P. GILMORE MS 63
COMPUTER SCIENCES CORPORATION
P. O. BOX 530
6565 ARLINGTON BLVD
FALLS CHURCH, VA 22046
01CY ATTN H. BLANK
01CY ATTN JOHN SPOOR

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
01CY ATTN R. R. TAUR

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D. T. FARLEY JR

FSL INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
01CY ATTN R. K. STEVENS
01CY ATTN J. ROBERTS
01CY ATTN JAMES MARSHALL
01CY ATTN V. L. MOWER
01CY ATTN C. W. PRETTIE

FORD AEROSPACE & COMMUNICATIONS CORP
3939 FABIAN WAY
PALO ALTO, CA 94303
01CY ATTN J. T. MATTINGLEY MS X22

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P. O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M. H. BORTNER SPACE SCI LAB
HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
1401 CAMINO DEL MAR
DEL MAR, CA 92014
01CY ATTN S. R. GOLDMAN

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

LOCKHEED MISSILES & SPACE CO INC
P. O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60-12
01CY ATTN D. R. CHURCHILL

LOCKHEED MISSILES AND SPACE CO INC
3251 HANOVER STREET
PALO ALTO, CA 94304
01CY ATTN MARTIN WALT DEPT 52-10
01CY ATTN RICHARD G. JOHNSON DEPT 52-12
01CY ATTN BILLY M. MCCORMAC DEPT 52-54

KAMAN SCIENCES CORP
P. O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN B. J. BITTNER

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS