MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963
DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
WEAPONS RESEARCH ESTABLISHMENT
SALISBURY, SOUTH AUSTRALIA

TECHNICAL REPORT 1779 (W)

CALCULATION OF PRESSURE DISTRIBUTIONS ON TWO
AXISYMMETRIC BOATTAILED CONFIGURATIONS

M.K. HASELGROVE

Approved for public release.

FEBRUARY 1977
APPROVED
FOR PUBLIC RELEASE

THE UNITED STATES NATIONAL
TECHNICAL INFORMATION SERVICE
IS AUTHORISED TO
REPRODUCE AND SELL THIS REPORT
CALCULATION OF PRESSURE DISTRIBUTIONS ON TWO
AXISYMMETRIC BOATTAILED CONFIGURATIONS

M.K. Haselgrove

SUMMARY

Two published computer programs are used to calculate the pressure distributions on two axisymmetric boattailed configurations in inviscid, incompressible flow. Realistic results are obtained in the base region by extending the body surface to simulate the surface streamline separating from the base.

The results show that a favourable pressure gradient is created by replacing the rear portion of a boattail by a cylindrical section, and conversely an adverse gradient on a boattail is strengthened by the presence of a large sting on wind-tunnel models.

Approved for public release.

POSTAL ADDRESS: The Director, Weapons Research Establishment,
Box 2151, G.P.O., Adelaide, South Australia, 5001.
**Title:** CALCULATION OF PRESSURE DISTRIBUTIONS ON TWO AXISYMMETRIC BOATTAILED CONFIGURATIONS

**Personal Author(s):** M.K. Haselgrove

**Document Date:** February 1977

**Total Number of Pages:** 22

**Number of References:** 5

**Corporate Author(s):** Weapons Research Establishment

**Reference Numbers:**
- **Task:** DST 76/118

**Cost Code:** 542/AC/345

**Computer Program(s):**
- **Title(s) and language(s):**

**Release Limitations:** Approved for Public Release.
Two published computer programs are used to calculate the pressure distributions on two axisymmetric boattailed configurations in inviscid, incompressible flow. Realistic results are obtained in the base region by extending the body surface to simulate the surface streamline separating from the base.

The results show that a favourable pressure gradient is created by replacing the rear portion of a boattail by a cylindrical section, and conversely an adverse gradient on a boattail is strengthened by the presence of a large sting on wind-tunnel models.
TABLE OF CONTENTS

1. INTRODUCTION
2. DESCRIPTION AND USE OF THE PROGRAMS
   2.1 The integral equation
   2.2 Input and output
   2.3 Body geometry
3. RESULTS AND DISCUSSION
   3.1 Standard Body-A configuration
   3.2 Configuration A(i)
   3.3 Configuration A(ii)
   3.4 Body-A with variable afterbody slope
   3.5 Body-B results
4. CONCLUSIONS

REFERENCES

APPENDIX I. PROGRAM LISTINGS
   (a) Closed-body program
   (b) Infinite - afterbody program

LIST OF FIGURES

1. Coordinate system
2. Standard Body-A configuration with 3 base flows
3. Pressure distributions on A(i) afterbody
4. Pressure distribution on Body-A(ii)
5. Body-A with variable afterbody slope
6. Pressure distributions on Body-B
1. INTRODUCTION

This report describes the results of computer calculations to find the pressure distributions on two axisymmetric bomb shapes of current interest to Aerodynamic Research Group at W.R.E. The studies were initiated to augment wind-tunnel tests of the two bodies, and were particularly concerned with the effects of changes to the base geometry, including the influence of the sting on wind-tunnel models.

The calculations were limited to inviscid, axisymmetric flow solutions, and because the emphasis was on simplicity and ease of operation, the method chosen was that of Landweber (ref. 1) which has recently been programmed in Fortran by Albone (ref. 2). The theoretical formulation assumes incompressible flow and the results given here are for zero Mach number; however a Gothert-type correction has been included to enable approximate solutions for subsonic compressible flow to be obtained.

2. DESCRIPTION AND USE OF THE PROGRAMS

2.1 The integral equation

The method is equivalent to a representation of the body by a ring vortex distribution \( \Gamma(s) \) over its surface.

With the coordinate system shown in figure 1, the velocity induced at station \( t \) on the body axis by the vorticity on the surface element \( ds \) is (see, for example, reference 3):

\[
U(x,t) = \frac{y_o^2(x) \Gamma(s) ds}{2 \left[ y_o^2(x) + (x-t)^2 \right]^{3/2}}.
\]

(1)

A consequence of representing the body surface by a vortex sheet is to replace the body interior by fluid at rest. Thus the vortex distribution must induce an interior velocity \(-U_\infty\) to cancel the incident free stream. In particular, the velocity induced along the axis must be \(-U_\infty\).

It can be shown that the velocity jump across a vortex sheet is minus the local vortex intensity. The condition of zero total internal velocity then gives

\[
u(x) = -\Gamma(s),
\]

(2)

where \( u(x) \) is the longitudinal surface velocity at station \( x \). Substituting (2) into (1) and integrating along the body surface gives the total velocity on the body axis, and equating to \(-U_\infty\) gives the integral equation:

\[
\int_0^P \frac{u(x) y_o^2(x) ds}{2 \left[ y_o^2(x) + (x-t)^2 \right]^{3/2}} = U_\infty
\]

(3)

to be satisfied at all points \( t \) between 0 and \( P \). The solution of (3) gives the velocity distribution \( u(x) \), and hence the pressure distribution \( C_p(x) \).

A rigorous derivation of (3) and an iterative method of solution have been given in reference 1 and repeated in reference 2, which also describes Fortran programs to solve for both closed bodies and those with a parallel afterbody extending downstream to infinity. These programs need only minor alterations to be run on the W.R.E. computing system. For intending users without ready access to reference 2, listings are included in the Appendix.

The fact that the integral equation (3) for the surface velocity is satisfied on the body centreline, means that the method may not be as accurate as others which satisfy a boundary condition on the body surface, such as that of Hess and Smith (ref. 4). For body shapes not too dissimilar from an ellipsoid of revolution, the solution converges to any desired degree of accuracy, but for more complicated shapes the solution may converge to a best solution and then become divergent. In such cases this best solution is usually sufficiently accurate for most practical purposes. In any case, the programs are simple to use and require only minimal computing times.
compared with the more accurate methods, which determined their use in the present application. Another property of the method of solution is that corners or sudden changes of curvature in the body profile tend to be "smoothed", which is not a serious limitation since the boundary layer will have a similar effect in the real flow.

2.2 Input and output

Input to each program consists of a subroutine called BODY which can calculate the radius and surface slope of the body at any longitudinal station, and several parameters which are declared as data at the beginning of the program. For the closed-body program these are as follows:

- **NMAX** - the maximum number of iterations allowed (e.g., 200).
- **EPS** - a quantity which, when greater than the maximum difference between any two successive iterations, causes the iteration procedure to stop.
- **XXO** - abscissa of body nose.
- **XXI** - abscissa of body tail.
- **MACH** - Mach number, used with a Gothert-type correction to allow for compressibility effects.

For the infinite-afterbody program, the input parameters are as follows:

- **NMAX**, **EPS**, **MACH** - as for the closed-body program.
- **LENGTH** - length of forebody. Note that in this program, BODY assumes the forebody to be between \( x = 0 \) and \( x = \text{LENGTH} \), so that for complicated bodies the same basic subroutine can be used for each program.
- **YAFT** - radius of afterbody.

The program output consists of a listing of the Gaussian abscissae used in the numerical integration for each iteration (40 points along the body axis in the case of the closed-body program, and 30 points along the forebody axis for the infinite-afterbody program), together with the associated values of body radius and slope, non-dimensional surface velocity and pressure coefficient. The number of iterations, and maximum difference between the two final iterations, are also printed.

2.3 Body geometry

Two basic configurations of interest were studied, and designated Body-A and Body-B respectively. Two further variations of the Body-A tail geometry are referred to as A(i) and A(ii). The half-body profiles of the various configurations are given in figures 2 to 6, the \( x \)-values being in body calibres.

In those cases where the configuration has a blunt base, for example when modelling the free-flight situation, some extension of the model surface is necessary to simulate the surface streamline separating from the base. These extensions are shown on the figures as a broken line. Where a sting whose diameter is equal to the base diameter \( d_B \) is present this problem does not arise and the sting is assumed to extend downstream to infinity.

3. RESULTS AND DISCUSSION

3.1 Standard Body-A configuration

Figure 2 shows the variation of surface pressure coefficient on the standard Body-A geometry with base flow represented by (a) a strong flow expansion behind the base; (b) a large sting of diameter \( d_B \) or alternatively, a thick parallel wake; and (c) flow separation from the base and re-attachment to a thin sting of diameter \( d_B / 2 \).

These examples give a wide variation in base pressure, but the influence of the base flow extends only about one base diameter upstream from the base, giving confidence in the validity of the solution ahead of this region.

If condition (c) of figure 2 is a fair representation of the base flow with a thin sting present, then condition (b) implies that a large sting can cause a significant strengthening of the adverse pressure gradient near the model base and perhaps influence the measured fin characteristics. The uncertainty regarding the best choice of base flow geometry can be partly resolved from measured base-pressure data. Such data are available from reference 5 for a variant A(i) of the Body-A configuration, which is discussed in the following section.
3.2 Configuration A(i)

The A(i) variant has the rear portion of the standard boattail, where fins are normally located, replaced by a cylindrical section which gives a 45% increase in $d_B$ over the standard configuration, the slope of the tail cone section remaining the same at $7^\circ 40'$. The afterbody of this configuration and the calculated pressure distribution are shown in figure 3(a), with the flow assumed to separate from the base parallel to the cylindrical section. The computed values not shown for the forebody are identical with those given in figure 2 for the standard configuration. Figure 3(a) shows a strong, favourable pressure gradient along the tail cylinder, instead of the weak adverse gradient on the standard body (figure 2 condition (c)). This may result in improved fin lifting performance by reducing the tendency for flow separation in the lee-side fin root region.

Figure 3(b) shows the effect of removing the surface slope discontinuity on the A(i) afterbody by fitting a cubic polynomial to the conical and cylindrical sections between $x = 10$ and $x = 11$. Similar fairing will be effected by the boundary layer in the real flow, and wind-tunnel measurements (from reference 5) on the A(i) model, which are included on figure 3(b), compare favourably with the present results. A sting of diameter $d_B / 2$ was used for the measurements, and the data indicate some flow expansion behind the base. The calculated results can be made to agree more closely by including a small expansion in the base-flow model, as shown in figure 3(c).

3.3 Configuration A(ii)

The A(ii) configuration has a flared tail section instead of the cylindrical section of the A(i) variant. This is shown in figure 4 together with the strong, favourable pressure gradient resulting from this geometry. As mentioned above this is expected to be beneficial to fin performance, but to offset this there is a strong adverse gradient ahead of the flared section which is likely to cause some degree of flow separation, and higher drag resulting from the larger base area.

3.4 Body-A with variable afterbody slope

Pressure distributions were calculated on the Body-A forebody fitted with conical afterbodies of half angle $5^\circ$, $10^\circ$, $15^\circ$ and $20^\circ$ respectively. The results are displayed in figure 5. The adverse pressure gradient on the afterbody strengthens dramatically with increasing slope, but the afterbody slope has little effect on pressure coefficients ahead of about the mid-point of the central cylindrical section. If it were desired to find the maximum slope tolerated before separation became significant, a boundary-layer program could be used in conjunction with the present analysis.

3.5 Body-B results

The relatively small base of the Body-B configuration, shown in figure 6, would require the sting diameter for small wind-tunnel models to be as great or greater than $d_B$. Figure 6 compares the pressure distributions near the base when a sting of diameter $d_B$ is present and absent. Consistent with the earlier results, the sting magnifies the unfavourable pressure gradient over the tail section where fins would normally be located. This should be considered when interpreting measurements of fin properties.

4. CONCLUSIONS

Pressure distributions have been calculated on two bodies of revolution in incompressible, inviscid, axisymmetric flow. The programs of Albone(ref.2) give sufficiently accurate results with minimal user effort and computing time. Bodies with bluff bases such as boattails can be treated by assuming the body surface to be extended, thereby simulating the flow separation from the base. The choice of an appropriate base-flow model can be made more reliable if base-pressure measurements are available for comparison.

The results have shown that a favourable pressure gradient can be created by replacing the rear portion of a boattail with a cylindrical section, which may improve the effectiveness of fins mounted thereon. Conversely, fin lift measurements on wind-tunnel models may be adversely effected by the presence of a sting if its diameter is comparable to the model base diameter.
### REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lamb, H.</td>
<td>“Hydrodynamics” New York, Dover. 1945</td>
</tr>
<tr>
<td>4</td>
<td>Hess, J.L. and</td>
<td>“Calculation of Potential Flow About Arbitrary Bodies”.</td>
</tr>
<tr>
<td></td>
<td>Smith, A.M.O.</td>
<td>Prog. Aero. Sciences, Vol.8, 1967</td>
</tr>
</tbody>
</table>
APPENDIX I

PROGRAM LISTINGS

(a) Closed-body program

C PROGRAM FOR CLOSED AXISYMMETRIC BODY
DIMENSION A(40), X4(42), F(40), F(40), F(40), F(40), F(40), X(40, 40), U(42
1 .CP(42), XP(40, 40) + F(40)
C NMAX IS MAX NO OF ITERATIONS ALLOWED. EPS IS ABSOLUTE ERROR LIMIT
C BETWEEN ITERATIONS AT CONVERGENCE. XXO, XXI ARE FOR AND AFT
C ABSISSAE OF BODY. S/P BODY GENERATES ORDNATE FOR AND SLOPE FOR OF
C BODY AT EACH ABSISSAE XA.
REAL MACH
DATA NMAX, EPS/ 50.0, 0.0001/
DATA XXO, XXI/0.0, 0.0/
DATA MACH/0.0/
REAL XL(20) /0.045212771, 0.010498284, 0.0164210584, 0.022458492,
1 0.0279370070, 0.0334601953, 0.038792168, 0.043879082, 0.0486958076,
2 0.05322747, 0.0574397961, 0.0613062425, 0.064804035, 0.0679120458,
3 0.0706116474, 0.07282865824, 0.0747231691, 0.0761103619, 0.0770398182,
4 0.0775059640/
REAL XDUM(20) /0.9923771, 0.990726230, 0.977259955, 0.957916819,
1 0.932121246, 0.902689267, 0.865959503, 0.826412271, 0.778305651,
2 0.727310256, 0.679566465, 0.612533491, 0.549467125, 0.483075802,
3 0.413779204

F*TSO=1.0-MACH
F=F*TSO
X=LA*(XX+XXI)/2.
CALL BODY(XMID, YMID, F)
YMID=Y*IN=META
F1=FI*H*META
DO 2 K=1, 20
KK=A1-K
A(K) = ANUM(K)
A(KK) = A(K)
X(KK) = XDUM(K)
2 X(K) = X4UM(K)

DO 8 K=1, 40
X(K) = 0.5*(X(K)*(XX1-XX0)+XX1+XX0)
XM=XM(K)
CALL BODY(XR, FPR, F1R)
FL=F*PR*MET4
F1=F1*H*MET4
F(K)=F1
F2(K)=F1
X1(K) = (X(K)-XX0)*(XX1-X(K))
F1(K) = 1.0/SORT(1+1.0*1(K) 0 F1(K))
A(K) = F(K) 0 F(K)
X0 = X1((XX1-XX0)/(2*YMID))
DO 3 I=1, 40
F0FT=F(I)/XI(I)
XL=SORT(1.0/F0FT)
X2 = (1+XL0)/(1+XL1(XL))
SUM=0.

DO 4 J=1, 40
XDF=(X(J)-X(I))*X(J)-X(I)
XX1=1.0/0RT((XDF+F(J))**3)
GXT=F0FT*X1(J)

BEST AVAILABLE COPY
XKDA=""X/"SORT\((XDF+GXT)\)*3
4 SUM=SUM+A(J)*(XX(I,J)-XKDA)
E(I)=1-0.25*(1+XX0)*(XX1-XX0)*SUM-XK2
F1(I)=(E(I)+XX0)/(1+XX0)
3 U(I)=(1+XX0)*F1(I)
N=0
EMAX=100
5 N=N+1
FLAST=FLAST
DO 6 I=1,40
U(I)=U(I)+F1(I)*E(I)
SUM=0
6 DO 7 J=1,40
SUM=SUM+A(J)*XX(I,J)*(E(J)-E(I))
6 F2(I)=F1(I)*F(I)-25*SUM*(XX1-XX0)
DO 13 K=1,40
13 F(K)=F2(K)
EMAX=ABS(F(K))
DO 12 K=1,40
12 IF(ABS(F(K)) GT EMAX) EMAX=ABS(F(K))
12 CONTINUE
DO 14 IF(FLAST-EMAX) 18,17,17
17 IF(EMAX GT EPS*EPS) 5,14,17
14 WRITE(6,14)N,EMAX,MACH
15 FORMAT(20H NO. OF ITERATIONS =,I3,10X,13H MAX. ERROR =,F15.7)
10 10,9H MAX. NO. =,F5.3//
9 10 H MAX =,F5.3/
8 10 H MAX =,F5.3/
7 10 H MAX =,F5.3/
6 10 H MAX =,F5.3/
5 10 H MAX =,F5.3/
4 10 H MAX =,F5.3/
3 10 H MAX =,F5.3/
2 10 H MAX =,F5.3/
1 10 H MAX =,F5.3/
C 10 H MAX =,F5.3/
STOP
FUNCTION XK1(N)
IF(I-1.0001)3,3.1
IF(I-0.0009)2,4,4
4 XK1=0.5
RETURN
1 C=1.000
D=SORT(C-1.000)
E=ALOG((N+D)*D)
XK1=(F-D)/(C*D-E)
RETURN
2 C=1.000
D=SORT(1.0-C)
E=ALOG((1.+N)/N)*C
XK1=(N-F)/(2.*N*N*N-D+E)
RETURN
END
FUNCTION
B E S T  A V A I L A B L E  C O P Y
b) Infinite-afterbody program

C PROGRAM FOR BODY EXTENDING TO INFINITY
DIMENSION A(60),X(60),F1(60),F(60),E1(60),F2(60),U(60),F(60),CP(60)
C NMAX IS MAX NO OF ITERATIONS ALLOWED. CONVERGENCE WHEN MAX DIFFERENCE
C RETWFFN iTERATIONS IS L.F. FPS. XXO IS ABSCISSA OF NOSE,(N.B. JUNCTION
C OF BODY/AFTERBODY IS AT X=0). YAFT IS RADIUS OF PARALLEL AFTERBODY.
C S-R BODY GENERATES RADIUS FR AND SLOPE F1R AT EACH ABSCISSA XR
REAL LENGTH
REAL MACH
DATA NMAX,EPS/50,0.0001/
DATA LENGTH,YAFT/2.268,0.5/
DATA MACH/0.0/
REAL XNUM(15),/0.079691925,0.142661463,0.0287847079,0.0387991926,
1,0.044678728,0.0574931562,0.0659742299,0.0737559747,0.0807558952,
2,0.088007472,0.0921225222,0.0963687372,0.0995934206,0.101762390,
3,0.102852653/
REAL XRNUM(15),/0.99683434,0.93668123,0.960021865,0.92620047,
1,0.9565636,0.929563576,0.767777432,0.697850495,0.620526183,0.536624148,
2,0.44730377,0.352704726,0.254636626,0.153869914,0.0514718426/
REAL FTSO=1-MACH*MACH
BETA=SORT(FTSO)
YAFT=YAFT*SIZE/LENGTH
XXO=-1.
DO 2 K=1,15
KK=31-K
A(K)=XNUM(K)
A(KK)=A(K)
X(K)=XNUM(K)
X(KK)=X(K)
2 X(K)=-X(K)
DO 17 K=1,30
KK=30+K
A(KK)=A(K)
17 X(KK)=X(K)
DO 8 K=1,170/
X(K)=0.5*XX0*(1.-X(K))
XB=LENGTH*(X(K)+1.)
CALL BODY(XR,FR,F1R)
FR=FR/LENGTH
FB=FB+BETA
F1=F1+FBETA
F(K)=FR*FB
F1(K)=1./SORT(1.+F1*F1B)
F2(K)=F1
A(K)=0.25*XX0*A(K)
DO 14 K=1,60
X(K)=(1.+X(K))/(1.-X(K))
F(K)=YAFT*YAFT
F1(K)=1.
F2(K)=0.
14 A(K)=0.25*(1.+X(K))*(1.+X(K))*A(K)
DO 3 I=1,60
F0=FR*(1./(X(I)-XX0))
F(I)=0.
DO 4 J=1,60
XDIF=(X(J)-X(I))*X(J)-X(I)
XK(I,J)=F(J)/SORT((XDIF+F(J))*3)
CXT=FDXT*(X(J)-XX)
XKDASH=GXT/(XDIF+CXT)**1.5
4 F(1)=F(1)+A(J)*(XK(I,J)-XKDASH)
F(1)=F(1)
3 U(I)=F(1)
N=0
5 N=N+1
EMAX=0
DO 1 I=1,60
U(I)=U(I)+F(1)*F(I)
F2(I)=F(1)*F(I)
DO 7 J=1,60
7 F2(I)=F2(I)+A(J)*XK(I,J)*(E(J)-E(I))
CONTINUE
DO 12 I=1,60
F(1)=F2(I)
12 IF(ABS(F(1)),G,EMAX)EMAX=ABS(F(1))
IF(EMAX,GT,EPX,AND,NLT,NMAX)GO TO 5
WRITE(6,10)N,EMAX,MACH
10 FORMAT(10H NO. OF ITERATIONS =,13,10X,13H MAX. ERROR =,F15.7,1
10X,10H MACH NO. =,F4.2,/) 
14 DO 9 K=1,60
F(K)=SORT(F(K))
F(K)=LENGTH*F(K)/MACH
X(K)=LENGTH*(X(K)+1.0)
F2(K)=F2(K)/MACH
U(K)=U(K)-1)/MACH
IF(MACH-0.1)29,29,19
29 CINK=1-U(K)*U(K)
CINK=CINK*0.5*MACH*MACH*CINK*CINK
GO TO 9
10 CP(K)=((1.0+2.0*MACH*MACH+(U(K)-U(K)-1.0)**3.5-1.0)/0.7*MACH*MACH))
CONTINUE
WRITE(6,15)
15 FORMAT(6X,2H X,13X,2H Y,12X,6H DQ/DX,7X,9H VFLMCITY,3X,1
14H PRESS.,CPFT,))
WRITE(6,14)(X(K),F(K),F2(K),U(K),CP(K),K=1,40)
16 FORMAT(F10.5,6X,F10.5,6X,F10.5,6X,F10.5,6X,F10.5,6X,F10.5,6X,F10.5,6X,F10.5,6X)
STOP
END

BEST_AVAILABLE_COPY
Figure 1. Coordinate system
Figure 2. Standard Body A configuration with 3 base flows
Figure 3. Pressure distributions on A(i) afterbody

(a) Basic cone-cylinder

(b) With fairing

(c) Modified base flow

Figure 3. Pressure distributions on A(i) afterbody
Figure 4

Pressure distribution on Body-A(I)
Figure 6(a) & (b)

(a) Free separation at base

(b) Sting of diameter $d_B = 0.201$ cal

Figure 6. Pressure distributions on Body B
DISTRIBUTION

EXTERNAL

In United Kingdom

Defence Scientific and Technical Representative 1 - 2
R.A.E., Aero Department, Farnborough 3
(Attention: Mr. G. Brebner) 4
R.A.E., Aero Department, Bedford 5
R.A.E., Weapons Department 6
(Attention: E.C. Cane)
R.A.R.D.E.
(Attention: Dr. R. Fancett) 7
National Lending Library of Science and Technology 8
Aeronautical Research Council 13
National Physical Laboratory, Teddington, Middlesex 14
Royal Aeronautical Society, Library 15
C.A.A.R.C., Secretary 16
Cambridge University, Engineering Department
(Attention: Professor W. Mair) 17
Cranfield Institute of Technology
(Attention: Professor J. Stollery) 18
London University, Imperial College, Department of Aero. Engineering
(Attention: Mr. P. Bradshaw) 19
Oxford University, Department of Engineering Science
(Attention: Dr. D. Spence) 20
University of Bristol
(Attention: Professor L. Crabtree) 21
University of Southampton, Department of Aeronautics and Astronautics 22
Aircraft Research Association, Bedford 23
Society of British Aircraft Constructors 24

In Europe

A.G.A.R.D., Brussels 25
D.V.L., Germany 26
F.F.A., Sweden 27
N.L.L., Holland 28
O.N.E.R.A., France 29
Von Karman Institute for Fluid Dynamics, Belgium 30
In India

Aeronautical Development Establishment, Bangalore 31
Indian Institute of Science, Bangalore (Department of Aero. Engineering) 32
(Attention: Professor R. Narasimha)
National Aeronautical Lab., Bangalore 33

In Canada

D.R.E.V., Valcartier 34
(Attention: Mr. M. Laviolette)
N.A.E., Ottawa 35
(Attention: Mr. L. Ohman)
T.T.C.P., Canadian National Leader, Panel W-2 36 - 39

In United States

Counsellor, Defence Science, Washington 40 - 41
Defence Research and Development Attache, Washington 42
T.T.C.P., U.S. National Leader, Panel W-2 43 - 46
Air Force Armament Testing Laboratory 47
(Attention: Mr. C. Butler)
Arnold Engineering Development Center, Library 48
Ballistic Research Laboratory, Library 49
(Attention: Dr. C.A. Murphy)
Edgewood Arsenal, Library 50

N.A.S.A.

Ames Research Centre, Library 51
Langley Research Center, Library 52
Lewis Research Centre, Library 53
Marshall Space Flight Center, Library 54

Picatinny Arsenal 55
(Attention: Mr. A. Lock)

Redstone Arsenal 56
(Attention: Mr. R. Deep)

Naval Surface Weapons Center

White Oak 57
(Attention: Mr. S. Hastings)

Dahlgren, Library 58
Naval Ship Research and Development Center, Library 59
Naval Weapons Center 60
(Attention: Dr. A. Maddox)
In Australia

Department of Defence
Chief Defence Scientist
Defence Central Library
Air Force Scientific Adviser
Executive Controller, Australian Defence Scientific Service
Superintendent, Defence Science Administration
Assistant Secretary, Defence and Information Services (for microfilming)
Australian National Library

For overseas release
U.K. for Ministry of Defence, Defence Research Information Centre
U.S. for Department of Defence, Defence Documentation Centre
Canada for Ministry of Defence, Defence Science Information Service
New Zealand for Ministry of Defence
Superintendent, RAN Research Laboratory
Head, Engineering Development Establishment
Director, Joint Intelligence Organisation (DDSTI)
Defence Library, Campbell Park
Library, Aeronautical Research Laboratories
Library, Materials Research Laboratories
Head, Aircraft Research and Development Unit
Chief Superintendent, Aeronautical Research Laboratories
R.A.A.F. Academy
(Mr. W. Hardy)
Government Aircraft Factories
BDRSS, Canberra
C.A.C.
Monash University
(Attention: Professor W. Melbourne)
University of Adelaide
(Attention: Professor E. Tuck)