User's Manual for the Modular Analysis-Package Libraries ANAPAC and TRANL

September 1977

THIS WORK WAS SPONSORED BY THE DEPARTMENT OF THE ARMY UNDER PROJECT NO. 1W162118AH75CA, Multiple Systems Evaluation Program.

U.S. Army Materiel Development and Readiness Command
HARRY DIAMOND LABORATORIES
Adelphi, Maryland 20783

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturers' or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
User's Manual for the Modular Analysis-Package Libraries ANAPAC and TRANL (Supplement)

Thomas V. Noon
Egon Marx

HDL Project: X757E2
DRCMS Code: 612118AG7500
This work was sponsored by the Department of the Army under Project No. 1W162118AH75CA, Multiple Systems Evaluation Program.

Computer software
Computer software library
Digitized data
Plotting software

Fourier transforms
Interpolation software

This report is a supplement to the user's manual for the ANAPAC and TRANL libraries (HDL-TR-1782) and reflects the conversion of these libraries from a CDC computer to the HDL IBM 370/168 computer. Only presented are those modifications which affect the usage of previously presented software routines and new software routines added since the publication of the original user's manual. The usage of those software routines on the HDL IBM computer not discussed in this report is unaffected.
CONTENTS

1. **INTRODUCTION** ... 5

2. **DESCRIPTION OF MODIFIED PROGRAMS FROM THE ANAPAC LIBRARY** 5
 2.1 Subroutine DRAW1 .. 5
 2.2 Subroutine DRAW4 .. 7
 2.3 Subroutine DRAW2 .. 12
 2.4 Subroutine DRAW3 .. 12

3. **DESCRIPTION OF NEW PROGRAMS ADDED TO THE ANAPAC LIBRARY** 12
 3.1 Double-Precision Plotting Routines 12
 3.1.1 Subroutines DRAW1D and DRAW2D 12
 3.1.2 Double-Precision Subroutines for DRAW4 and DRAW3 ... 12
 3.2 Off-Line Plotting .. 13
 3.3 Double-Precision Fourier Transform Routines 14
 3.3.1 Subroutine FFTD 14
 3.3.2 Subroutine FLATD 15
 3.3.3 Subroutine FLITD 15
 3.4 Subroutines CLINTD and LINTD 16

4. **CATALOGUED PROCEDURE ANAFORT** 16

5. **ACCESSING PROGRAMS FORMERLY STORED IN THE TRANL USER'S LIBRARY** 17
 5.1 Catalogued Procedure GRAFC 17
 5.2 Catalogued Procedure TRANS 17
 5.3 Catalogued Procedure TEDD 18

DISTRIBUTION .. 19
1. INTRODUCTION

The ANAPAC and TRANL1 modular analysis-package libraries are a collection of independent computer software programs and subroutines, each written to do a specific task. This report is a supplement to the user's manual for the ANAPAC and TRANL libraries and reflects the conversion of these user libraries from the Mobility Equipment Research and Development Command (MERADCOM) CDC 6600 computer to the Harry Diamond Laboratories (HDL) IBM 370/168 computer. Some modifications to the existing subroutines and the addition of new subroutines were required to preserve the capabilities of the ANAPAC library during the conversion effort. A user's guide for those subroutines whose usage was affected by the modification and for the new subroutines added to the ANAPAC library are presented (sect. 2 and 3) along with a JCL (job control language) catalogued procedure named ANAFORT (sect. 4) for including the ANAPAC library in the execution of a FORTRAN program. The TRANL library could not be conveniently preserved as a user's library, but the programs stored in the library are accessed through catalogued procedures with the same names (sect. 5).

2. DESCRIPTION OF MODIFIED PROGRAMS FROM THE ANAPAC LIBRARY

The following software was modified to accommodate the difference in word length between the IBM computer and the CDC computer.

2.1 Subroutine DRAW1

The FORTRAN subprogram DRAW1 is called as follows:

\begin{verbatim}
CALL DRAW1(ITYPE,IXLAB,IYLAB,IPTLAB,ISBLAB,NPT,
 ZAX,ZAY,XLAB,YLAB,PTLAB,SUBLAB,X,Y)
\end{verbatim}

The first six formal parameters in the subroutine argument list are integer variables; the remaining eight are real variables. The definition and use of each is as follows.

\begin{itemize}
 \item **ITYPE**: Variable used to select the type of plot.
 \begin{itemize}
 \item If \texttt{ITYPE}=1 a linear-linear plot is selected.
 \item \texttt{ITYPE}=2 a log-log plot is selected.
 \end{itemize}
\end{itemize}

a linear-log plot (semilog with the linear axis for the dependent array) is selected.

a log-linear plot (semilog with the linear axis for the independent array) is selected.

IXLAB Number of words in the label for the independent axis, not to exceed 8. If IXLAB=0, axis label is omitted.

IYLAB Number of words in the label for the dependent axis, not to exceed 8. If IYLAB=0, axis label is omitted.

IPTLAB Number of words in the plot title, not to exceed 20. If IPTLAB=0, plot title is omitted.

ISBLAB Number of words in the plot subtitle, not to exceed 20. If ISBLAB=0, plot subtitle is omitted.

NPT Number of points to be plotted in both the independent and dependent data arrays. If the negative of the number of points is passed through NPT, the data arrays are not restored to the values they had before being passed.

ZAX Variable that determines where the independent axis is drawn.

If ZAX=0, axis is drawn in the standard location. This is also the default position when the next two conditions cannot be met.

=1. axis is drawn at the zero occurrence of the dependent axis.

=2. axis is drawn at a standard location with a zero reference line placed at the zero occurrence on the dependent axis.

ZAY Variable that determines where the dependent axis is drawn.

If ZAY=0, axis is drawn in standard location. This is also the default position when the next conditions cannot be met.

=1. axis is drawn at the zero occurrence of independent axis.
=2. axis is drawn at standard location with the addition of a zero reference line placed at the zero occurrence on the independent axis.

XLAB Array containing user-defined label for the independent axis, not to exceed 8 words (32 characters). If IXLAB=0, a dummy name can be used in the call.

YLAB Array containing user-defined label for the dependent axis, not to exceed 8 words (32 characters). If IYLAB=0, a dummy name can be used in the call.

PTLAB Array containing user-defined title for the plot, not to exceed 20 words (80 characters). If IPTLAB=0, a dummy name can be used in the call.

SUBLAB Array containing user-defined subtitle for the plot, not to exceed 20 words (80 characters). If ISBLAB=0, a dummy name can be used in the call.

X Array containing values of independent variables to be plotted.

Y Array containing values of dependent variables to be plotted.

2.2 Subroutine DRAW4

The FORTRAN subprogram DRAW4 is called as follows.

The first parameter, IP, is used to select the three sections of the DRAW4 subroutine.

For IP=1:

CALL DRAW4(IP,IFILE,IXLAB,IYLAB,PTLAB,IXLAB,YLAB)

where

IFILE A number from 1 to 4 or 8 to 13 identifying the scratch file associated with the graph. For each graph the value must be consistent for each value of IP.

IXLAB Number of words in the label for the independent axis, not to exceed a value of 8. If IXLAB=0, axis label is omitted.
IYLAB Number of words in the label for the dependent axis, not to exceed a value of 8. If IYLAB=0, axis label is omitted.

IPTLAB Number of words in the plot title, not to exceed a value of 20. If IPTLAB=0, plot title is omitted.

ISBLAB Number of words in the plot subtitle, not to exceed a value of 20. If ISBLAB=0, plot subtitle is omitted.

XLAB Array containing user-defined label for the independent axis, not to exceed 8 words (32 characters). If IXLAB=0, a dummy name can be used in the call.

YLAB Array containing user-defined label for the dependent axis, not to exceed 8 words (32 characters). If IYLAB=0, a dummy name can be used in the call.

PTLAB Array containing user-defined title for the plot, not to exceed 20 words (80 characters). If IPTLAB=0, a dummy name can be used in the call.

SUBLAB Array containing user-defined subtitle for the plot, not to exceed 20 words (80 characters). If ISBLAB=0, a dummy name can be used in the call.

For IP=2:

CALL DRAW4(IP,IFILE,ITYPE,NPTS,KODE,ISPACE,XVAL,
YVAL,YMIN,YMAX)

where

IFILE A number from 1 to 4 or 8 to 13 identifying the scratch file associated with the graph and a previous call to DRAW4 with IP=1.

ITYPE Code used to select the type of plot. Read only on the first call with IP=2 for each IFILE.

If ITYPE=1 a linear plot is selected.

=2 a log-log plot is selected.
=3 a linear-log plot (semilog with the linear axis for the dependent array) is selected.

=4 a log-linear plot (semilog with the linear axis for the independent array) is selected.

NPTS Number of points in both the independent and dependent data arrays to be plotted. For multiple plots, NPTS for each data set does not have to be the same.

KODE The character to be drawn at data points, connected by a line. If KODE is negative, only the symbol is drawn.

If KODE=0 no character

=1 a plus (+)

=2 an X

=3 a triangle (Δ)

=4 a square (□)

=5 an hour glass (X)

=6 an up arrow (↑)

=7 a star (*)

Other characters can be drawn by equating KODE to a character (e.g., 4H#A, where 'A' is the character to be drawn at data points).

ISPACE (a) ISPACE/10 is the rate of occurrence for the drawing of the symbol designated by the variable KODE. If ISPACE/10>0 and KODE=0, intermediate points are disregarded to give the user a simplified plot.

(b) The last digit of ISPACE determines the type of line to be drawn, provided KODE is not negative.

If the last digit of ISPACE is

0 a solid line is drawn

1 a dashed line is drawn -- --
2 a dotted line is drawn

3 a dash-dot line is drawn -•-•-

XVAL Array containing values of independent variables to be plotted.

YVAL Array containing values of dependent variables to be plotted.

YMIN Used in the first call with IP=2 to set the minimum value for the dependent axis. If YMIN is zero (0.) it is ignored. For a minimum value of zero, set YMIN equal to a very small number (e.g., 1.E-30). Any values in the arrays that are less than YMIN are set equal to YMIN, thus modifying the arrays.

YMAX Used in the first call with IP=2 to set the maximum value for the dependent axis. If YMAX is zero (0.) it is ignored. Any values in the arrays that are greater than YMAX are set equal to YMAX, thus modifying the arrays.

For IP=3:

CALL DRAW4(IP,IFILE,INCRX,INCRY,ICHOICE,N,X,Y,ZAX,ZAY)

where

IFILE A number from 1 to 4 or 8 to 13 identifying the scratch file associated with the graph and previous calls to DRAW4 with IP=1 and 2.

INCRX Variable used to specify scales for the independent axis other than those calculated by the subprogram. A single-integer number composed of two values (POWX and AX or MINX and MAXX) which are used for the normalizing factors and scale increments; ignored if equal to zero.

INCRY Variable used to specify scales for the dependent axis other than those calculated by the subprogram. A single-integer number composed of two values (POWY and ΔY or MINY and MAXY) which are used for the normalizing factors and scale increments; ignored if equal to zero.
ICHOICE Variable used to draw borders on graph.

If ICHOICE=0 no action is taken.

=2 plot is drawn with a border (upper and right sides), if possible.

N Number of points in scratch arrays; should be equal to or greater than largest data set being plotted. If N is negative the scratch arrays are not restored to their original values.

X Scratch array used for temporary storage of independent array(s) to be plotted.

Y Scratch array used for temporary storage of dependent array(s) to be plotted.

ZAX Variable that determines where the independent axis is drawn.

If ZAX=0. axis is drawn in the standard location. This is also the default position when the next two conditions cannot be met.

=1. axis is drawn at the zero occurrence of the dependent axis.

=2. axis is drawn at standard location with the addition of a zero reference line placed at the zero occurrence on the dependent axis.

ZAY Variable that determines where the dependent axis is drawn.

If ZAY=0. axis is drawn in standard location. This is also the default position when the next conditions cannot be met.

=1. axis is drawn at the zero occurrence of the independent axis.

=2. axis is drawn at standard location with the addition of a zero reference line placed at the zero occurrence on the independent axis.
2.3 Subroutine DRAW2

Subroutine DRAW2 is a printer-plot version of DRAW1. The printer-plot routine mimics DRAW1 and is useful for making test runs or plots for which lower resolution is acceptable. The calling parameters for the printer-plot routine are identical to those for DRAW1 and the routine is accessed by replacing the calls to DRAW1 with calls to DRAW2.

2.4 Subroutine DRAW3

Subroutine DRAW3 is a printer-plot version of DRAW4. The printer-plot routine mimics DRAW4 and is useful for making test runs or plots for which a lower resolution is acceptable. The calling parameters for the printer-plot routine are identical to those for DRAW4 and the routine is accessed by replacing the calls to DRAW4 with calls to DRAW3.

3. DESCRIPTION OF NEW PROGRAMS ADDED TO THE ANAPAC LIBRARY

3.1 Double-Precision Plotting Routines

3.1.1 Subroutines DRAW1D and DRAW2D

Subroutines DRAW1D and DRAW2D are double-precision versions of the plotting subroutines DRAW1 and DRAW2 (sect. 2.1 and 2.3), respectively. The calls to DRAW1D and DRAW2D are identical to calls to the single-precision counterpart except for the independent array, X (the 13th formal parameter), and the dependent array, Y (the 14th formal parameter), which are double precision (REAL*8).

3.1.2 Double-Precision Subroutines for DRAW4 and DRAW3

The first formal parameter (IP) used in subroutines DRAW4 and DRAW3 (sect. 2.2 and 2.4) to select the three sections of the subroutines has been eliminated in the double-precision versions. The other formal parameters are the same. Access to the three sections of these subroutines is accomplished through entry points. The entry points for the double-precision version of DRAW4 and DRAW3 are as follows.

2Egon Marx, Printer Version of Plots Made by an Incremental Plotter, Harry Diamond Laboratories TM-75-33 (December 1975).
SUBROUTINE DRAW4 DRAW3

Entry point No. 1 DRAW41 DRAW31
Entry point No. 2 DRAW42 DRAW32
Entry point No. 3 DRAW43 DRAW33

The calls to the double-precision DRAW4 are as follows (see sect. 2.2 for definitions of the formal parameters).

CALL DRAW41(IFILE,IXLAB,IYLAB,IPTLAB,ISBLAB,XLAB,YLAB,PTLAB,SUBLAB)

CALL DRAW42(IFILE,ITYPE,NPTS,KODE,ISPACE,XVAL,YVAL,YMIN,YMAX)

CALL DRAW43(IFILE,INCRX,INCRY,ICHOICE,N,X,Y,ZAX,ZAY).

The formal parameters for calls to the double-precision DRAW3 are the same as for the double-precision DRAW4 subroutine. The values to be plotted, XVAL, and YVAL (the 6th and 7th formal parameters), in calls to DRAW42 and DRAW32 are double precision (REAL*8). The scratch arrays, X and Y (the 6th and 7th formal parameters), in call to DRAW43 and DRAW33 are also double precision (REAL*8). All other formal parameters are the same as in the single-precision subroutines DRAW4 and DRAW3.

3.2 Off-Line Plotting

Subroutine PLOT,\(^3\) which controls the plotter and is stored in ANAPAC, was modified to use the punch file on the IBM system. By means of a simple patch to the IBM 360/20 emulator on the Mohawk 2400 system, the punch file is routed to the plotter.

The punch file can also be received on tape, but the special EBCDIC characters that the plotter expects are lost on a 7-track tape. A second version of the subroutine PLOT was designed to produce a punch file that could be received on 7-track tape without the loss of this information (see sect. 4). This version in addition produces records that identify the job name and the plot number within the job, and numbers each plot record modulo 1000. These new features allow searches of a particular plot and automatic removal of repeated records in case of an interruption of the transmission. This subroutine is stored in a separate library that can be accessed when using a JCL procedure such as ANAFORT.

\(^3\) Thomas V. Noon, Enhanced Plotting Software for Use with the Houston Instrument Complot Plotter, Harry Diamond Laboratories TM-75-32 (December 1975).
When off-line plotting is selected, an MDL (Mohawk data language) program is used on the Mohawk terminal to obtain the plots. The job name and plot number appear on the cathode-ray tube (CRT) as each plot on the tape is started, and the plotting stops either when a tape mark (produced by pushing the appropriate sense switch after receiving the plots) is found or when a gap of less than 500 records is found on the file. If sense switch A is set, the program operates in a search mode without plotting, and when the switch A is reset, the program HALTS after finding the beginning of the next plot. A RUN instruction will reinitiate the plotting. If sense switch B is set when the program is started or restarted, the CRT displays a request for the input of the job name (which can be omitted) and the plot number to be searched for on the tape; plotting begins after a match has been found.

3.3 Double-Precision Fourier Transform Routines

3.3.1 Subroutine FFTD

Subroutine FFTD is a double-precision version of FFT which performs a forward or an inverse Fourier transform of an equispaced array of N points, where \(N = 2^{**NPOW} \). Subroutine FFTD makes use of the Cooley-Tukey algorithm. The input and output for FFTD is passed by the same formal parameter, \(A \). For the inverse transform, the output is obtained by taking the REAL part of the output array. By convention, the sign of the exponent in the integral is negative for the forward transform and positive for the inverse transform.

Subroutine FFTD is called as follows.

CALL FFTD(A,NPOW,N,DX,ISIGN)

A Complex array containing input or output data (COMPLEX*16).

NPOW Power of 2.

N Number of points in data array.

DX Increment for independent array (REAL*8).

ISIGN Plus or minus 1; value of \(p \) desired in transform, \(\int g(t) e^{2\pi i ft} dt \).
3.3.2 Subroutine FLATD

Subroutine FLATD is a double-precision version\(^4\) of FLAT which performs a forward Fourier transform of an equispaced array by approximating the given function with a piecewise linear function and then using the Cooley-Tukey algorithm to obtain a sampling of the Fourier transform. The input and output for FLATD are passed by the same formal parameter, A.

Subroutine FLATD is called as follows.

\[
\text{CALL FLATD}(A,N,DX,ISIGN)
\]

A Complex array containing input and output data (COMPLEX*16)

N Number of points in data array; a power of 2.

DX Increment of independent array (REAL*8).

ISIGN Plus or minus 1; value of \(p\) desired in transform \[\int g(t)e^{p2\pi ift}dt. \]

3.3.3 Subroutine FLITD

Subroutine FLITD is a double-precision version\(^4\) of FLIT which performs an inverse Fourier transform of an equispaced array. The input and output for FLITD are passed by the same formal parameter, A. The input data are placed in the first \(N/2+1\) points. The output is obtained by taking the REAL part of the whole output array.

Subroutine FLITD is called as follows.

\[
\text{CALL FLITD}(A,N,DX,ISIGN)
\]

A Complex array containing data (COMPLEX*16).

N Number of points in data array; a power of 2.

DX Increment for independent array (REAL*8).

ISIGN Plus or minus 1; value of \(p\) desired in transform \[\int g(f)e^{p2\pi ift}dt. \]

3.4 Subroutines CLINTD and LINTD

Subroutines CLINTD and LINTD are double-precision versions of CLINT and LINT which perform a linear interpolation between the points in the given array. The outputs from CLINTD and LINTD are equispaced arrays. The output array for CLINTD is complex; that for LINTD is real. Any points which fall outside the range of the input variable are given a value of zero in the output array.

Subroutines CLINTD and LINTD are called as follows.

CALL CLINTD(X,Y,N,M,DX,YOUT)

or

CALL LINTD(X,Y,N,M,DX,YOUT)

X Independent array, time (REAL*8).
Y Dependent array, amplitude (REAL*8).
N Number of points in X and Y arrays.
M Number of points in YOUT array.
DX Increment for independent variable (REAL*8).
YOUT Dependent output array (REAL*8); complex for CLINTD (COMPLEX*16).

4. CATALOGUED PROCEDURE ANAPORT

The catalogued procedure ANAPORT can be used to compile, link-edit, and execute a FORTRAN program that uses subroutines found in the ANAPAC library. Two other libraries can be concatenated with FORTLIB--PAGLOAD and ANAPAC--through the symbolic parameters PRELIB and POSTLIB. Furthermore, substitution of the OFFPLOT parameter with the library where the version of PLOT that allows for off-line plotting is stored produces a punch file that can be received on 7-track tape (but cannot produce plots on line).

If DRAW3 or DRAW4 are used, disc files for FT01F001 through FT04F001 can be defined on VIO simply by nullifying the symbolic parameters F1 through F4. If disc files FT08F001 through FT13F001 are required, the corresponding DD statements have to be included in the deck. For example:
The outputs produced by the compiler and link-editor can be eliminated by setting the symbolic parameter OUT equal to X.

5. ACCESSING PROGRAMS FORMERLY STORED IN THE TRANL USER'S LIBRARY

5.1 Catalogued Procedure GRAFC

This procedure is used to execute the program GRAFC. Program GRAFC provides the means to convert the punched-card digitized data into the control commands and data points recorded by the Science Accessories Corporation (SAC) digitizer for the purpose of error correction and modification of the digitized data. The program is executed as follows.

```
// EXEC GRAFC
//SYSIN DD *
  digitized data
  (7/8/9 card)
//
```

5.2 Catalogued Procedure TRANS

The procedure is used to execute the program TRANS which translates the punched-card output from the SAC digitized system into the coordinates of the original data. If the data file written by the TRANS is to be catalogued for future use, the substitutable parameters NAME and DISP='(NEW,CATLG)' are required. Otherwise a temporary file name of TEMP and a DISP of (NEW,PASS) are used and the file is passed for subsequent use by other steps in the job.

For the IBM version of TRANS the digitized data set(s) must be preceded by a NAMELIST card titled OUTPUT. The namelist data consists of two logical variables, LIST and PLOT. LIST controls the printing of the data sets being processed and PLOT controls the plotting of the data sets. The default value is FALSE for both variables. A value of TRUE for either LIST or PLOT turns on either the printing or plotting of the data sets, respectively. The program is executed as follows.

```
// EXEC TRANS
//SYSIN DD *
&OUTPUT
  digitized data
  (7/8/9 card)
&END
//
```
5.3 Catalogued Procedure TEDD

This procedure is used to execute the program TEDD which provides the ability to plot selected time windows of a digitized data set or any other discrete data set in order to expand portions of a trace for clarity or to display the individual data points. The input file name is supplied to TEDD using the substitutable parameter NAME. The default file name is TEMP, the same as in TRANS, and the default DISP is (OLD,PASS). The program is executed as follows.

```
// EXEC TEDD,NAME='FILENAME'
//SYSIN DD *
   time window data
//
```

Program TEDD can process multiple data sets within a maximum of six time windows per data set (the time windows can overlap). The maximum and minimum for the dependent variable can also be specified to maintain the same perspective for the plots. The format for the maximum and minimum values and the time windows is "6X,2E10.3" with one time window per card. Each group of time windows must be separated by an EOI card (7/8/9 punch).

The input data for TEDD are as follows.

Card 1 AMIN Minimum value of scale for plotting of dependent array; ignored if equal to zero.

 AMAX Maximum value of scale for plotting of dependent array; ignored if equal to zero.

 Format (6X,2E10.3)

Card 2 T1 Lower limit of first time window to be expanded.

 T2 Upper limit of first time window to be expanded.

 Format (6X,2E10.3)

Card 3 T1&T2 Limits for second time window; same as card 2.

 .

 .

Card 7 T1&T2 Limits for sixth time window; same as card 2.

Program TEDD can also be applied to other types of data files compatible with RDTAPE from the ANAPAC library.
DISTRIBUTION

DEFENSE DOCUMENTATION CENTER
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314
ATTN DDC-TCA (12 COPIES)

COMMANDER
US ARMY RSCH & STD GP (EUR)
BOX 65
FPO NEW YORK 09510
ATTN LTC JAMES M. KENNEDY, JR
CHIEF, PHYSICS & MATH BRANCH

COMMANDER
US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
ATTN DRAM-TL, HQ TECH LIBRARY
ATTN DRCP, MG C. M. MCKEEN, JR.
ATTN DRCP-M/COL R. W. SPECKER
ATTN DRCPM-SOM-MF
ATTN DRCDE-D/COL J. F. BLEECKER
ATTN DRCDE, DIR FOR DEV & ENGR
ATTN DRCDE-DE/H. DARRACOTT
ATTN DRCPMS-I/DR. R. P. UHLIG
ATTN DRCPMS-I/MR. E. O'DONNEL

COMMANDER
US ARMY ARMAMENT MATERIEL
READINESS COMMAND
ROCK ISLAND ARSENAL
ROCK ISLAND, IL 61201
ATTN DRSAR-ASF, FUZE DIV
ATTN DRSAR-RDF, SYS DEV DIV - FUZES
ATTN DRSAR-PDM/J. A. BRINKMAN
ATTN DRSAR-VFF

COMMANDER
USA MISSILE & MUNITIONS CENTER
& SCHOOL
REDSTONE ARSENAL, AL 35809
ATTN ATSK-CTD-F

COMMANDING OFFICER
NAVAL TRAINING EQUIPMENT CENTER
ORLANDO, FL 32813
ATTN TECHNICAL LIBRARY

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
1400 WILSON BLVD
ARLINGTON, VA 22209
ATTN TECH INFORMATION OFFICE
ATTN DIR, STRATEGIC TECHNOLOGY
ATTN DIR, TACTICAL TECHNOLOGY

DIRECTOR
DEFENSE COMMUNICATION ENG CENTER
1860 WIEHLE AVENUE
RESTON, VA 22090
ATTN R104, M. J. RAFFENSPERGER
ATTN R800, R. E. LYONS
ATTN R320, A. IZZO

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20301
ATTN DI-2, WEAPONS & SYSTEMS DIV

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
ATTN PETER HAAS, DEP DIR,
SCIENTIFIC TECHNOLOGY
ATTN RAEV, MAJ S. O. KENNEDY, SR.
ATTN VLIS, LTC ADAMS

DEPARTMENT OF DEFENSE
DIRECTOR OF DEFENSE
RESEARCH & ENGINEERING
WASHINGTON, DC 20301
ATTN DEP DIR (TACTICAL WARFARE PROGRAMS)
ATTN DEP DIR (TEST & EVALUATION)
ATTN DEFENSE SCIENCE BOARD
ATTN ASST DIR SALT SUPPORT GP/ MR. J. BLAYLOCK

CHAIRMAN
JOINT CHIEFS OF STAFF
WASHINGTON, DC 20301
ATTN J-3, NUCLEAR WEAPONS BR
ATTN J-3, EXER PLANS & ANALYSIS DIV
ATTN J-5, NUCLEAR DIR NUCLEAR POLICY BR
ATTN J-5, REQUIREMENT & DEV BR
ATTN J-6, COMMUNICATIONS-ELECTRONICS

DEPARTMENT OF DEFENSE
JOINT CHIEFS OF STAFF
STUDIES ANALYSIS & GAMING AGENCY
WASHINGTON, DC 20301
ATTN STRATEGIC FORCES DIV
ATTN GEN PURPOSE FORCES DIV
ATTN SYS SUPPORT BR

ASSISTANT SECRETARY OF DEFENSE
PROGRAM ANALYSIS AND EVALUATION
WASHINGTON, DC 20301
ATTN DEP ASST SECY (GEN PURPOSE PROG)
ATTN DEP ASST SECY (REGIONAL PROGRAMS)
ATTN DEP ASST SECY (RESOURCE ANALYSIS)

DEPARTMENT OF THE ARMY
OFFICE, SECRETARY OF THE ARMY
WASHINGTON, DC 20301
ATTN ASST SECRETARY OF THE ARMY (I&L)
ATTN DEP FOR MATERIEL ACQUISITION
ATTN ASST SECRETARY OF THE ARMY (R&D)
DISTRIBUTION (Cont’d)

DEPARTMENT OF THE ARMY
ASSISTANT CHIEF OF STAFF FOR INTELLIGENCE
WASHINGTON, DC 20301
ATTN DAMI-OC/COL J. A. DODDS
ATTN DAMI-TA/COL F. M. GILBERT

US ARMY SECURITY AGENCY
ARLINGTON HALL STATION
4000 ARLINGTON BLVD
ARLINGTON, VA 22212
ATTN DEP CH OF STAFF RESEARCH & DEVELOPMENT

DEPARTMENT OF THE ARMY
US ARMY CONCEPTS ANALYSIS AGENCY
8120 WOODMONT AVENUE
BETHESDA, MD 20014
ATTN COMPUTER SUPPORT DIV
ATTN WAR GAMING DIRECTORATE
ATTN METHODOLOGY AND RESOURCES DIR
ATTN SYS INTEGRATION ANALYSIS DIR
ATTN JOINT AND STRATEGIC FORCES DIR
ATTN FORCE CONCEPTS AND DESIGN DIR
ATTN OPERATIONAL TEST AND EVALUATION AGENCY

DIRECTOR
NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE, MD 20755

COMMANDER-IN-CHIEF
EUROPEAN COMMAND
APO NEW YORK, NY 09128

HEADQUARTERS
US EUROPEAN COMMAND
APO NEW YORK, NY 09055

DIRECTOR
WEAPONS SYSTEMS EVALUATION GROUP
OFFICE, SECRETARY OF DEFENSE
400 ARMY-NAVY DRIVE
WASHINGTON, DC 20305
ATTN DIR, LT GEN GLENN A. KENT

DEPARTMENT OF THE ARMY
DEPUTY CHIEF OF STAFF FOR OPERATIONS & PLANS
WASHINGTON, DC 20301
ATTN DAMO-RQZ/LTC L. A. WEIZEL
ATTN DAMO-RQD/COL E. W. SHARP
ATTN DAMO-SSP/COL D. K. LYON
ATTN DAMO-SSH/LTC R. E. LEARD
ATTN DAMO-SSH/LTC B. C. ROBINSON
ATTN DAMO-RQZ/COL G. A. POLLIN, JR.
ATTN DAMO-TCZ/MG T. M. RENZI
ATTN DAMO-2D/A. GOLUB

DIRECTOR
WASHINGTON, DC 20301
ATTN DAMO-RAZ/A/R. J. TRAINOR
ATTN DAMO-CSM-N/LTC ODGEN
ATTN DAMO-WSA/COL W. E. CROUCH, JR.
ATTN DAMO-WSH/COL L. R. BAUMANN
ATTN DAMO-CSC/COL H. C. JELINEK
ATTN DAMO-CSM/COL H. R. BAILEY
ATTN DAMO-WSZ/A/MG D. R. KEITH
ATTN DAMO-WSH/COL J. B. OBLINGER, JR.
ATTN DAMO-PPR/COL D. E. KENNEY

COMMANDER
BALLISTIC MISSILE DEFENSE SYSTEMS
P.O. BOX 1500
HUNTSVILLE, AL 35807
ATTN BMDS-SEC/TEN/MR. JOHN VEFNMAN

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSES ACTIVITY
ABERDEEN PROVING GROUND, MD 21005
ATTN DRXSY-C/DON R. BARTHEL
ATTN DRXSY-T/P. REID

COMMANDE
US ARMY SATELLITE COMMUNICATIONS AGENCY
FT. MONMOUTH, NJ 07703
ATTN LTC HOSMER

DIRECTOR
BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MD 21005
ATTN DRXBR-XA/MR. J. MESZAROS

COMMANDER
US ARMY AVIATION SYSTEMS COMMAND
12TH AND SPRUCE STREETS
ST. LOUIS, MO 63160
ATTN DCPS-AH/ROBERT HUBBARD

DIRECTOR
EUROPEAN COMMAND
APO NEW YORK, NY 09128

ATTN SYSTEMS EVALUATION GROUP
OFFICE, SECRETARY OF DEFENSE
400 ARMY-NAVY DRIVE
WASHINGTON, DC 20305
ATTN DRXSY-C/DON R. BARTHEL
ATTN DRXSY-T/P. REID

COMMANDER
US ARMY AVIATION SYSTEMS COMMAND
12TH AND SPRUCE STREETS
ST. LOUIS, MO 63160
ATTN DCPS-AH/ROBERT HUBBARD

DIRECTOR
EUSTIS DIRECTORATE
US ARMY AIR MOBILITY R&D LABORATORY
FORT EUSTIS, VA 23604
ATTN SAVDL-EU-MOS/MS. S. POCILUYKO
ATTN SAVDL-EU-TAS/TETRACORE

COMMANDER
2D BDE, 101ST ABN DIV (AASLT)
FORT CAMPBELL, KY 42223
ATTN AFZB-KB-SO
ATTN DIV SIGNAL OFFICER, AFBE-SO/MAJ MASON

20
DISTRIBUTION (Cont'd)

COMMANDER
US ARMY ELECTRONICS COMMAND
FT. MONMOUTH, NJ 07703
ATTN PM, ATACSM/DRCPM-ATC/LTC DODBINS
ATTN DRCMP-ATC-TM
ATTN PM, ATFIDS/DRCPM-TDS/BN A. CRAWDRO
ATTN DRCMP-TDS-TF/COL D. EMERSON
ATTN DRCMP-TDS-TD
ATTN DRCMP-TDS-FB/LTC A. KIRKPATRICK
ATTN PM, MAJOR/DRCPM-MALR/COL W. HARRISON
ATTN PM, NAVCOM/DRCPM-NC/
COL C. MCDOWELL, JR.
ATTN DRCMP-SA/MR. R. FREIBERG
ATTN DRCMP-SA/NORMAN MILSTEIN
ATTN DRCMP-SA/C/J. REAVIS

COMMANDER
US ARMY MISSILE MATERIEL
READINESS COMMAND
REDSTONE ARSENAL, AL 35809
ATTN DRSMI-FRR/DR. F. GIPSON
ATTN DRCMP-HA/COL P. RODDY
ATTN DRCMP-LCCX/L. B. SEGGEL (LANCE)
ATTN DRCMP-MD/GENE ASHLEY (SAM-D)
ATTN DRCMP-MP
ATTN DRCMP-SHO
ATTN DRCMP-TO
ATTN DRSMI-R, RDE & MSL DIRECTORATE

COMMANDER
PICATINNY ARSENAL
DOVER NJ 07801
ATTN SARPA-ND-V/DANIEL WAXLER

COMMANDER
US ARMY TANK/AUTOMOTIVE COMMAND
WARREN, MI 48090
ATTN DRSI-RHT/MR. P. HASEK
ATTN DRCMP-(XM-L)/MR. L. WOOLCOT
ATTN DRCMP-GCM-SW/MR. R. SLAUGHTER

PRESIDENT
DA, HA, US ARMY ARMOR AND ENGINEER BOARD
FORT KNOX, KY 40121
ATTN STEBB-MO/MAJ SANZOTERRA

COMMANDER
WHITE SANDS MISSILE RANGE
WHITE SANDS MISSILE RANGE, NM 88002
ATTN STEWS-TE-NH/MARVIN SQUIRES

COMMANDER
TRASANA
SYSTEM ANALYSIS ACTIVITY
WHITE SANDS, NM 88002
ATTN ATAA-TDO/DR. D. COLLIER

COMMANDER
WHITE SANDS MISSILE RANGE
WASHINGTON D.C. 20505-0001
ATTN ATAC-SC/DR. J. RUMPF

COMMANDER
US ARMY ELECTRONICS COMMAND
FT. MONMOUTH, NJ 07703
ATTN COL WASIKA

COMMANDER
US ARMY C0MMUNICATIONS COMMAND
FORT HUACHUCA, AZ 85613
ATTN ACC-AD-C/H. LAMIT (EMP STUDY GP)

COMMANDER
USA COMBINED ARMS COMBAT DEVELOPMENTS
ACTIVITY
FT. LEAVENWORTH, KS 66027
ATTN ATACAC
ATTN ATACAC-SD/LTC L. PACHA
ATTN ATACAC/COC/COL HUBBER
ATTN ATACAC-CCM-F/LTC BECKER
ATTN ATACAC-CCM-3 NUCLEAR STUDY TEAM/
LT D. WILKINS

PROJECT MANAGER
MOBILE ELECTRIC POWER
7500 BACKLICK ROAD
SPRINGFIELD, VA 22150
ATTN DRCMP-MEP

DEPUTY COMMANDER
US ARMY NUCLEAR AGENCY
FT. BLISS, TX 79916
ATTN MONA-WC/COL A. DEVERILL

COMMANDER
US ARMY SIGNAL SCHOOL
FT. GORDON, GA 30905
ATTN ATSC-CTD-CS/CAPT G. ALEXANDER (INTACS)
ATTN ATSC-CTD-CS/MR. TAYLOR

DIRECTOR
JOINT TACTICAL COMMUNICATIONS OFFICE
FT. MONMOUTH, NJ 07703
ATTN TRI-TAC/NORM BECHTOLD

COMMANDER
US ARMY COMMAND AND GENERAL STAFF COLLEGE
FORT LEAVENWORTH, KS 66027

COMMANDER
US ARMY COMBAT DEVELOPMENTS EXPERIMENTATION
COMMAND
FORT ORD, CA 93941

COMMANDER
HQ MASTERS
FORT HOOD, TX 76544

COMMANDER
US ARMY AIR DEFENSE SCHOOL
FORT BLISS, TX 79916
ATTN ATMA-CD

21
DISTRIBUTION (Cont'd)

COMMANDER
US ARMY ARMOR SCHOOL
FORT KNOX, KY 40121
ATTN ATSB-CTD (2 COPIES)

COMMANDER
US ARMY AVIATION CENTER
FORT RUCKER, AL 36360
ATTN ATST-D-MS (2 COPIES)

COMMANDER
US ARMY ORDNANCE CENTER AND SCHOOL
ABERDEEN PROVING GROUND, MD 21005
ATTN USAOC&S
ATTN ATSL-CTD

COMMANDER
US ARMY SIGNAL SCHOOL
FORT GORDON, GA 30905
ATTN ATSS-CTD

COMMANDER
US ARMY ENGINEER SCHOOL
FORT BELVOIR, VA 22060
ATTN ATSE-CTD

COMMANDER
US ARMY INFANTRY SCHOOL
FORT BENNING, GA 31905
ATTN ATSH-CTD

COMMANDER
US ARMY INTELLIGENCE CENTER AND SCHOOL
FORT HUACHUCA, AZ 85613

COMMANDER
US ARMY FIELD ARTILLERY SCHOOL
FORT SILL, OK 73503
ATTN ATSF-CTD (2 COPIES)

CHIEF OF NAVAL OPERATIONS
NAVY DEPARTMENT
WASHINGTON, DC 20350
ATTN NOP-932, SYS EFFECTIVENESS DIV
CAPT E. V. LANEY
ATTN NOP-9860, COMMUNICATIONS BR
COR L. LAYMAN
ATTN NOP-351, SURFACE WEAPONS BR
CAPT G. A. MITCHELL
ATTN NOP-622C, ASST FOR NUCLEAR
VULNERABILITY, R. PIACESI

COMMANDER
NAVAL ELECTRONICS SYSTEMS COMMAND, HQ
2511 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 20360
ATTN PME-117-21, SANGUINE DIV

HEADQUARTERS, NAVAL MATERIEL COMMAND
STRATEGIC SYSTEMS PROJECTS OFFICE
1931 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 20390
ATTN NSP2201, LAUNCHING & HANDLING
BRANCH, BR ENGINEER, P. R. FAUROT
ATTN NSP-230, FIRE CONTROL & GUIDANCE
BRANCH, BR ENGINEER, D. GOLD
ATTN NSP-2701, MISSILE BRANCH,
BR ENGINEER, J. W. FITZENBERGER

COMMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, MD 20910
ATTN CODE 222, ELECTRONICS & ELECTROMAGNETICS DIV
ATTN CODE 431, ADVANCED ENGR DIV

US AIR FORCE, HEADQUARTERS
DCS, RESEARCH & DEVELOPMENT
WASHINGTON, DC 20330
ATTN DIR OF OPERATIONAL REQUIREMENTS
AND DEVELOPMENT PLANS, S/V &
LTC P. T. DUESBERRY

COMMANDER
AF WEAPONS LABORATORY, AFSC
KIRTLAND AFB, NM 87117
ATTN ES, ELECTRONICS DIVISION
ATTN EL, J. DARAH
ATTN TECHNICAL LIBRARY
ATTN D. I. LAWRY

COMMANDER
AERONAUTICAL SYSTEMS DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
ATTN ASD/YH, DEPUTY FOR B-1

COMMANDER
HQ SPACE AND MISSILE SYSTEMS ORGANIZATION
P.O. 96960 WORLDWAYS POSTAL CENTER
LOS ANGELES, CA 90009
ATTN S7H, DEFENSE SYSTEMS APL SPO
ATTN XRT, STRATEGIC SYSTEMS DIV
ATTN SYS, SURVIVABILITY OFC

SPACE AND MISSILE SYSTEMS ORGANIZATION
NORTON AFB, CA 92409
ATTN MMH, HARD ROCK SILO DEVELOPMENT

COMMANDER
AF SPECIAL WEAPONS CENTER, AFSC
KIRTLAND AFB, NM 87117
DISTRIBUTION (Cont'd)

HARRY DIAMOND LABORATORIES
ATTN DANIEL, CHARLES D., JR., MG,
COMMANDING GENERAL (ERADCOM)
ATTN RAMSDEN, JOHN J., LTC, COMMANDER/
FLYER, I.N./LANDIS, F.E./
SOMMER, H./OSWALD, R. B.
ATTN CARTER, W.W., DR., TECHNICAL
DIRECTOR/MARCUS, S.M.
ATTN KIMMEL, S., PAO
ATTN CHIEF, 0021
ATTN CHIEF, 0022
ATTN CHIEF, LAB 100
ATTN CHIEF, LAB 200
ATTN CHIEF, LAB 300
ATTN CHIEF, LAB 400
ATTN CHIEF, LAB 500
ATTN CHIEF, LAB 600
ATTN CHIEF, DIV 700
ATTN CHIEF, DIV 800
ATTN CHIEF, LAB 900
ATTN CHIEF, LAB 1000
ATTN RECORD COPY, BR 041
ATTN HDL LIBRARY (5 COPIES)
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 047
ATTN TECH REPORTS, 013
ATTN PATENT LAW BRANCH, 071
ATTN GIDEF OFFICE, 741
ATTN LANHAM, C., 0021
ATTN CHIEF, 0024
ATTN CHIEF, 1010
ATTN CHIEF, 1020 (20 COPIES)
ATTN CHIEF, 1030
ATTN CHIEF, 1040
ATTN CHIEF, 1050