ZENITH ANGLE VARIATION OF SATELLITE THERMAL SOUNDER MEASUREMENTS

By Louis D. Duncan

Atmospheric Sciences Laboratory
US Army Electronics Command
White Sands Missile Range, New Mexico 88002

August 1977

Approved for public release; distribution unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
A simple procedure is presented for normalizing satellite spectral radiance measurements taken at zenith angle to corresponding values which would have been observed at zero zenith angle. From simulated data for the DMSP SSH sounder, it is shown that the variation of observed radiance with zenith angle is approximately linear when taken as a function of the square root of the secant of the angle. This relationship is employed to develop the correction formula.
PREFACE

The author thanks Dr. Richard B. Gomez of the Atmospheric Sciences Laboratory and Dr. Lewis Kaplan of the University of Chicago for helpful discussions and suggestions during this study. Thanks are also extended to the Air Force Global Weather Center for supplying the transmittances used for the calculations.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>4</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>4</td>
</tr>
<tr>
<td>CONCLUDING REMARKS</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
</tbody>
</table>
INTRODUCTION

The remote sounding of atmospheric temperature profiles from satellite measurements of spectral radiance data has become a technique of considerable practical importance. During the past decade a large number of papers have appeared in the meteorological literature addressing various facets of the problem of deriving temperature profiles from the radiance measurements. A recent paper by Rogers [1] reviews and analyzes many of the algorithms which have been developed for temperature retrieval.

For a given wavenumber \(\nu \) the outgoing radiance, \(I(\nu) \) is given by the radiative transfer equation

\[
I(\nu) = B[\nu, T(P_0)] \tau(\nu, x) - \int_{P_0}^{P} B[\nu, T(P)] \frac{3\tau(\nu, x)}{3x} dx
\]

(1)

where \(B \) is Planck's function, \(T(P) \) is the temperature at pressure \(P \), and \(\tau(\nu, x) \) is the transmission from height \(x \) to space. Height is often measured by the variable \(x = \ln P \).

For monochromatic radiation passing through a gas of mixing ratio \(q(x) \), the transmittance from height \(x \) to space at a zenith angle \(\theta \) is given by

\[
\tau(\nu, T, \theta, x) = \exp\left(- \frac{\sec \theta}{g} \int_{0}^{x} k(\nu, T, x') q(x') dx' \right)
\]

(2)

where \(k(\nu, T, x) \) is the absorption coefficient and \(g \) is the gravitational acceleration. (Actual instruments have a finite spectral response, and one must consider the average transmittance over the interval appropriately weighted by the instrument response functions.) Eq. (2) appears deceptively simple; however, lengthy calculations [2] are required for its evaluation for a given set of conditions. This is primarily due to the number of factors which must be considered in determining the absorption coefficient.

Because of the impracticability of calculating transmittances for the myriad of atmospheric and parametric conditions which one can reasonably expect to encounter, various methods of approximations have been developed. Some of the more widely used are the polynomial model of Smith [3] and the temperature correction model of McMillian and Fleming [4].
The variation of transmittance with viewing angle can produce significant changes in the outgoing radiance. An example of this is shown in Figure 1 which presents calculated values for the DMSP SSH sensor using the 1962 US Standard Atmosphere. To account for this variation in the retrieval process, one can either use transmittances which have been corrected for zenith angle [5] or normalize the observations to those which would have been obtained at zero zenith angle [6]. This report presents a simple technique for performing the latter operation.

DISCUSSION

The results shown in Figure 1 indicate a smooth change in radiance as a function of zenith angle. These results suggest that, perhaps, this change with angle can be expressed as a relatively simple function of \(\theta \). After some trial and error it was discovered that good results were given by the function

\[
\Delta I(v, \theta) = \sec^2 \theta f(v)
\]

The data presented in Figure 1 is replotted in Figure 2 with the abscissa changed to \(\sec^2 \theta \). The excellence of the linear fit is somewhat surprising. Deviations from a straight line fit to the data are shown in Table 1. Calculations were performed for zenith angles 0, 10, 20, 30, 35, and 40 degrees for three atmospheric conditions, the US 62 Standard and the 15 N annual and 60 N annual atmospheres. A straight line was fit through 0 and the results for 35 degrees zenith. The mean absolute deviation and the maximum deviation for each channel are shown. These values are quite small and well within the measurement accuracy of the instrument.

APPLICATION

The results shown in Figure 2 and Table 1 lead to the development of a simple procedure for normalizing observations at zenith angle \(\theta \) to equivalent observations at zero zenith provided transmittance functions for two different zenith angles, say \(\theta_1 \) and \(\theta_2 \), are available. (It can be assumed with no loss of generality that \(\theta_2 = 0 \).) From Eq. (3) it is easy to see that

\[
\Delta I(v, \theta) = \Delta I(v, \theta_1) \sec^2 \theta / \sec^2 \theta_1.
\]

Eq. (4) provides the required normalization.
Figure 1. Change in computed radiance with zenith angle.
Numbers in parentheses refer to SSH sounder channels.

Figure 2. Same as Figure 1 except for change in abscissa.
TABLE 1

DEVIATION OF $I(v, \theta)$ FROM LINEAR FIT AS FUNCTION OF $\sec^{2} \theta$

<table>
<thead>
<tr>
<th>Channel</th>
<th>62 Standard</th>
<th>15 N Annual</th>
<th>60 N Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max</td>
<td>Mean</td>
</tr>
<tr>
<td>1</td>
<td>0.008</td>
<td>0.029</td>
<td>0.012</td>
</tr>
<tr>
<td>2</td>
<td>0.002</td>
<td>0.005</td>
<td>0.009</td>
</tr>
<tr>
<td>3</td>
<td>0.022</td>
<td>0.053</td>
<td>0.036</td>
</tr>
<tr>
<td>4</td>
<td>0.047</td>
<td>0.129</td>
<td>0.057</td>
</tr>
<tr>
<td>5</td>
<td>0.023</td>
<td>0.075</td>
<td>0.029</td>
</tr>
<tr>
<td>6</td>
<td>0.010</td>
<td>0.036</td>
<td>0.012</td>
</tr>
</tbody>
</table>

CONCLUDING REMARKS

A simple yet accurate method has been uncovered which allows for the normalization of satellite measurements of spectral radiance observed at zenith angle θ to equivalent observations at zero zenith. The errors introduced by this procedure are considerably less than the accepted values for instrumental errors.
REFERENCES

DISTRIBUTION LIST

Director
US Army Ballistic Research Laboratory
ATTN: DRDAR-BLB, Dr. G. E. Keller
Aberdeen Proving Ground, MD 21005

Air Force Weapons Laboratory
ATTN: Technical Library (SUL)
Kirtland AFB, NM 87117

Commander
Headquarters, Fort Huachuca
ATTN: Tech Ref Div
Fort Huachuca, AZ 85613

Commandant
US Army Field Artillery School
ATTN: Morris Swett Tech Library
Fort Sill, OK 73503

Commandant
USAFAS
ATTN: ATSF-CD-MT (Mr. Farmer)
Fort Sill, OK 73503

Director
US Army Engr Waterways Exper Sta
ATTN: Library Branch
Vicksburg, MS 39180

Commander
US Army Electronics Command
ATTN: DRSEL-CT-S (Dr. Swingle)
Fort Monmouth, NJ 07703

CPT Hugh Albers, Exec Sec
Interd Commitee on Atmos Sci
Fed Council for Sci & Tech
National Sci Foundation
Washington, DC 20550

Inge Dirmhirn, Professor
Utah State University, UMC 48
Logan, UT 84322

HQDA (DAEN-RDM/Dr. De Percin)
Forrestal Bldg
Washington, DC 20314

Commander
US Army Aviation Center
ATTN: ATZQ-D-MA
Fort Rucker, AL 36362

CO, USA Foreign Sci & Tech Center
ATTN: DRXST-ISI
220 7th Street, NE
Charlottesville, VA 22901

Director
USAE Waterways Experiment Station
ATTN: Library
PO Box 631
Vicksburg, MS 38180

US Army Research Office
ATTN: DRXRO-IP
PO Box 12211
Research Triangle Park, NC 27709

Mr. William A. Main
USDA Forest Service
1407 S. Harrison Road
East Lansing, MI 48823

Inge Dirmhirn, Professor
Utah State University, UMC 48
Logan, UT 84322

HQDA (DAEN-RDM/Dr. De Percin)
Forrestal Bldg
Washington, DC 20314

Commander
US Army Dugway Proving Ground
ATTN: MT-S
Dugway, UT 84022

HQ, ESD/DRI/S-22
Hanscom AFB
MA 01731

Head, Atmospheric Rsch Section
National Science Foundation
1800 G. Street, NW
Washington, DC 20550

Office, Asst Sec Army (RAD)
ATTN: Dep for Science & Tech
HQ, Department of the Army
Washington, DC 20310
Commander
US Army Satellite Comm Agc
ATTN: DRCPM-SC-3
Fort Monmouth, NJ 07703

Sylvania Elec Sys Western Div
ATTN: Technical Reports Library
PO Box 205
Mountain View, CA 94040

William Peterson
Research Association
Utah State University, UNC 48
Logan, UT 84322

Defense Communications Agency
Technical Library Center
Code 205
Washington, DC 20305

Dr. A. D. Belmont
Research Division
PO Box 1249
Control Data Corp
Minneapolis, MN 55440

Commander
US Army Electronics Command
ATTN: DRSEL-WL-D1
Fort Monmouth, NJ 07703

Commander
ATTN: DRSEL-VL-D
Fort Monmouth, NJ 07703

Meteorologist in Charge
Kwajalein Missile Range
PO Box 67
APO
San Francisco, CA 96555

The Library of Congress
ATTN: Exchange & Gift Div
Washington, DC 20540

US Army Liaison Office
MIT-Lincoln Lab, Library A-082
PO Box 73
Lexington, MA 02173

Dir National Security Agency
ATTN: TDL (C513)
Fort George G. Meade, MD 20755

Director, Systems R&D Service
Federal Aviation Administration
ATTN: ARD-54
2100 Second Street, SW
Washington, DC 20590

Commander
US Army Missile Command
ATTN: DRSMI-RLA, Bldg 7770
Redstone Arsenal, AL 35809

Dir of Dev & Engr
Defense Systems Div
ATTN: SAREA-DE-DDR
H. Tannenbaum
Edgewood Arsenal, APG, MD 21010

Naval Surface Weapons Center
Technical Library & Information
Services Division
White Oak, Silver Spring, MD 20910

Dr. Frank D. Eaton
PO Box 3038
University Station
Laramie, Wyoming 82071

Rome Air Development Center
ATTN: Documents Library
TILD (Bette Smith)
Griffiss Air Force Base, NY 13441

National Weather Service
National Meteorological Center
World Weather Bldg - 5200 Auth Rd
ATTN: Mr. Quiroz
Washington, DC 20233

USAFETAC/CB (Stop 825)
Scott AFB
IL 62225

Director
Defense Nuclear Agency
ATTN: Tech Library
Washington, DC 20305
Commander
US Army Tropic Test Center
ATTN: STETC-MO (Tech Library)
APO New York 09827

Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20375

Defense Documentation Center
ATTN: DDC-TCA
Cameron Station (Bldg 5)
Alexandria, Virginia 22314

Commander
US Army Test and Evaluation Command
ATTN: Technical Library
White Sands Missile Range, NM 88002

US Army Nuclear Agency
ATTN: MONA-WE
Fort Belvoir, VA 22060

Commander
US Army Proving Ground
ATTN: Technical Library
Bldg 2100
Yuma, AZ 85364

Office, Asst Sec Army (R&D)
ATTN: Dep for Science & Tech
HQ, Department of the Army
Washington, DC 20310
42. Gillespie, James B., and James D. Lindberg, "A Method to Obtain Diffuse Reflectance Measurements from 1.0 to 3.0 μm Using a Cary 171 Spectrophotometer," ECOM-5806, November 1976.

53. Rubio, Roberto, and Mike Izquierdo, “Measurements of Net Atmospheric Irradiance in the 0.7- to 2.8-Micrometer Infrared Region,” ECOM-5817, May 1977.

