SEM and Microprobe Analysis of Bone Response to
Zinc-Amalgam Implants.

William R. Liggett, John M. Brady, Peter J. Tsaknis,
and Carlos E. Del Rio

PERFORMING ORGANIZATION NAME AND ADDRESS
U.S. Army Institute of Dental Research
Walter Reed Army Medical Center
Washington, DC 20012

AUTHORITY

CONTROLLING OFFICE NAME AND ADDRESS
U.S. Army Medical Research and Development Command
ATTN: (SGRD-RP)
Washington, DC 20314

This document has been approved for public release and sale; its distribution is unlimited.
contrasted with the specific components of the alloy. Copper, tin, and sulfur were observed in the amalgam surface at all intervals. Bone adjacent to the amalgam...
SEM AND MICROPROBE ANALYSIS OF BONE RESPONSE
TO ZINC-AMALGAM IMPLANTS

William R. Liggett, D.D.S., M.S.
John M. Brady, D.D.S., M.S.P.H.
Peter J. Tsaknis, D.D.S., M.S., M.Ed.
Carlos E. Del Rio, D.D.S., B.S.

Department of Biophysics
Division of Oral Biology
U S Army Institute of Dental Research
Walter Reed Army Medical Center
Washington, DC 20012
ABSTRACT

Freshly mixed, unset zinc-free and zinc-containing amalgam was implanted in the right tibia of thirty-two rats. Half of the specimens were examined by the light microscope and the other half by the scanning electron microscope and x-ray microprobe analysis. It was found that amalgam is well tolerated by the rat osseous tissue, and that there was no histological reaction differences between zinc and zinc free amalgam.

The surfaces of the implants were covered by an organic film at three weeks, and with bone at later intervals. Very little corrosion products containing sulfur were observed on the amalgam surface at all intervals. Bone adjacent to the amalgam contained tin and sulfur irrespective of the presence of zinc in the alloy, indicating outward migration of specific components of the alloy.
The use of amalgam as a restorative material in operative dentistry is a well established and accepted technique. The same techniques of amalgamation, asepsis, and retentive cavity form are employed when the material is used in periapical surgery to insure an adequate apical seal of the root canal. Since amalgam is widely used, numerous studies have evaluated its chemical and physical properties and to a much lesser extent the tissue tolerance to this material.

The studies concerning biological compatibility of amalgam have been largely confined to soft tissue reactions in various experimental animals, principally rabbits, rats, or cell culture reactions. These have shown amalgam to be biologically well tolerated. The material employed was mixed and allowed to set prior to implantation. Results varied from chronic inflammation at the end of an average implant time of 23 weeks, to the material being walled off with a fibrous capsule at the end of 32 days.

When freshly mixed amalgam is implanted, a severe inflammatory reaction is found, which, over the period of two days to four weeks, changes to a mild response.

Silver amalgam may be less irritating and better tolerated than gutta percha. Healed bone was observed to be in direct contact with implanted amalgam in more cases than with gutta percha. However, these investigators used preset and sterilized amalgam.

Copper amalgam was the accepted material for use in apical root
root resection until it was suggested that the caustic quality of the material may outweigh any benefit derived from its antiseptic properties. As a consequence, the use of silver amalgam routinely employed in operative dentistry came to be the material of choice for apical amalgams. Since 1959 there has been a virtual ban on the use of zinc-containing alloy for apical fillings. This ban is based on the report of one case of surgical failure in which a zinc carbonate precipitate was noted and attributed to the zinc contained in the amalgam or "from the root canal post." Supposedly, by eliminating the zinc, the phenomenon of electrolytic inflammation caused by the zinc ion can be avoided. However, the critical level of concentration of zinc ions to produce clinically apparent changes is unknown.

In endodontics it is of paramount importance to minimize irritation, so as not to impede healing and to yield increased assurance of successful resolution of the bony lesion. This study was undertaken to compare the inflammatory reactions in rat osseous tissue of freshly mixed zinc-containing amalgam to zinc-free amalgam. The inflammatory response was evaluated and the surface changes were examined by light microscopy by the scanning electron microscope and the x-ray microprobe analyzer.

METHODS AND MATERIALS

Freshly mixed, unset amalgam was implanted in the right tibia of thirty-two, 200-250 grams, Walter Reed Strain rats. In half of the
animals, zinc-containing amalgam* was used; zinc-free amalgam** was used in the other half. The amalgam implants were prepared in a 5/64 inch K-G retro-filling amalgam carrier.** The left tibia was used as the control, being surgically prepared, as was the right tibia, but no implant was imbedded. Eight rats, four with implants of zinc-containing amalgam and four with zinc-free amalgam, were sacrificed at intervals of 3, 6, 9, and 12 weeks.

Half of the specimens were prepared for light microscopy and the other half for scanning electron microscopy. The light microscopic specimens were fixed in 10% buffered formalin solution, decalcified, double embedded in paraffin, sectioned at 6μm and stained with hemotoxylin and eosin. The specimens for scanning electron microscopy and x-ray microanalysis were fixed in 2.5% gluteraldehyde in cacodylate buffer at pH.7.4, dehydrated and coated with carbon.*** Specimens were examined in the SEM**** fractured through the amalgam-bone interface, recoated with carbon, and re-examined. X-ray analysis of the implant surface was performed with an EDAX analyzer equipped with the EDIT II computer software.*****

*L. D. Caulk Co., Milford, Delaware
**Union Broach Co., Long Island City, New York
***Hummer II Sputterer Coating Apparatus Techniques Inc., Alexandria, Virginia
****Model 1000 Scanning Electron Microscope, Advance Metals Research Corp., Burlington, Massachusetts
*****Energy Dispersive X-Ray Analyzer, Model 707-A, EDAX Int. Prairie View, Illinois
RESULTS

Light Microscopy

Three Weeks

Microscopic findings at the three weeks interval demonstrated vigorous osteoid formation near the amalgam implant, coupled with evidence of callous-like formation over the surgical site for both the zinc-free and the zinc-containing experimental groups. Polarized light revealed fibrous, feathery-fringed trabeculae of calcifying bone matrix, chronic inflammatory cells, predominantly lymphocytes, with fewer histiocytes and plasma cells present in both groups.

Areas of sequestrated or devitalized bone from the effects of the surgical procedure were not apparent.

The control side surgical sites exhibited normal healing with a callous formation featuring a classic filling pattern. (Figures 1 & 2)

Six Weeks

The six week group presented a similar picture with the exception that histiocytes were no longer observed. Lymphocytes were present in relatively fewer numbers than in the three week specimens. Osteoid continued to be laid down and the chronic inflammatory response appeared slightly more severe in zinc-free as compared with zinc-containing group. In the control side healing was almost complete.

Nine Weeks

The nine week specimens of both groups were considered to be com-
pletely healed even though some slight inflammation persisted. In some areas a fibrous capsule ranging from four to eight cells in thickness and walling off the implant material was seen. In adjacent areas the stimulation of bone formation around the amalgam implant was noted as evidenced by the presence of large plump osteoblasts rimming immature osseous trabeculae. The callous formation was complete and appeared to be mature bone. Polarized light demonstrated normal lamellations within the newly formed bone. There was minimal difference in healing or inflammation between the two groups. Healing was complete in the control specimens.

Twelve Weeks

At twelve weeks, healing was complete in both groups and the implants were walled off by a fibrous connective tissue capsule within the bone. Some bone was noted in direct contact with the amalgam (Figures 3 & 4), with no evidence of incompatibility at the interface.

Scanning Electron Microscopy

Examination of the control surfaces in the SEM revealed the irregular surfaces of both zinc-containing and zinc-free amalgams (Figures 5 & 6). Electron microprobe analysis in the SEM revealed characteristic x-ray spectra of mercury, silver, tin, copper, and zinc (Figure 7). [Note: Figure legends will explain the different x-ray lines.] The zinc-containing alloy had higher concentration of tin as seen in the comparison of the tin L series of spectra in the figure. Copper was present in the zinc alloy, but undetectable in the zinc-free alloy.
At various intervals after implantation of the alloys, the implantation sites were removed, fractured through the bone-implant interface, and the surfaces of the alloy and bone studied with SEM and x-ray analysis.

After twelve weeks, the surfaces were covered by a proteinaceous covering obscuring the surface features. (Figure 8) In the latter intervals of healing, bone was observed in direct apposition to the amalgam surface. (Figure 9) Very little corrosion products (sulfur and chlorine) were detected upon the alloy surfaces at any of the time intervals studied. All implant surfaces exhibited firm attachment of bone, demonstrative of the universal presence of calcium and phosphorus x-ray spectra, and the close adaptation of new bone to the alloy surface as seen in the SEM. Sulfur was present and chlorine absent in all (13/13) of the implant bone sites. Tin was present in eleven of the thirteen (85%) bone sites, and silver, mercury, or copper were detected in none. Zinc was present in only one of the bone sites (at twelve weeks) and the site did not contain either copper or mercury. In relating sulfur to tin concentration on the bone surface, some degree of relationship was indicated, since eleven of the bone sites (85%) had equal or higher peak intensities of sulfur over tin, whereas in only two cases was the tin higher than the sulfur intensity.

An interrelation of sulfur with the presence of zinc was more difficult to demonstrate, slightly greater sulfur intensities were present in zinc-containing alloys than in the zinc-free alloys.
DISCUSSION

The histological results confirmed what has been previously assumed and reported. Amalgam is a biologically well tolerated material. Even though at three and six weeks there appeared to be a slightly more chronic inflammatory response in the zinc-free specimens; this difference was not considered significant. Osteoid formation followed by new osseous maturation adjacent to the amalgam was indicative of the high degree of tolerance of the implant by the rat osseous tissues. Phosphorus and calcium were present, indicating the close proximity of bone formation to the implant surface. One implant displayed only calcium and phosphorus peaks, the result of bone being so closely in contact with the amalgam, that a mechanical lock was formed. When this specimen was split, the bone separated from the underlying tissue rather than at the bone-amalgam interface.

It is of interest to note that a similar corrosive process was found in both amalgams. The microprobe studies of the interface between the alloy and the bone indicate that not much difference in elemental migration occurs when the zinc and zinc-free alloys are compared. Very little sulfur and no chlorine was detected on either alloy, whereas at the bone surface, tin and sulfur were almost universally present, regardless of the presence of zinc. The presence of both zinc and tin in the amalgam alloy may be related to a higher concentration of sulfur in the adjoining bone, indicating a more corrosive process in the zinc alloy.
However, quantitation measurements were not possible because of the uncertain geometry of the x-ray detection conditions. Results suggest a relationship between tin and sulfur in the bone, possibly one of chemical combination. However, in two instances sulfur was present in the absence of tin. Chlorine and zinc, except in one specimen, were not detected in the bone, discounting the importance of these elements in the corrosion process. Corrosion may well be of greater importance to the ultimate success or failure of an endodontic case requiring the placement of an apical amalgam rather than the presence of absence of zinc. The failure of many endodontically treated teeth whose canals were obturated with silver points, has been suggested to be due in part to the corrosion of that point when tissue fluids contact it.11,12,13 The corrosion process may not be similar when amalgam alloys and silver points are compared since, contrary to x-ray studies of silver points, no silver was detected at the bone surface in amalgam; this element seemingly affixed in the alloy to the mercury, which also was not found in the adjacent bone. It is possible that some apical amalgam failures might be attributed to the amalgam placed at the apical end of the root coming into direct contact with body tissue fluids and corroding. However, further studies of long term implantation of amalgam should be undertaken in order to clarify success or failure in relation to corrosibility of amalgam, since in this study inflammation was absent in the presence of corrosion.
From the results of this investigation, and from other studies, reaction to apically implanted amalgam in humans is a multifaceted problem. The initial inflammatory response should be considered as a separate entity from response to the later corrosion. Corrosion of the amalgam, seen in nine and twelve week samples in this study, occurred in the presence of a successfully healed implant site, and did not appear to initiate an inflammatory response. Finally, long term response of tissue to the metallic and corrosion products of amalgam has yet to be studied. Certainly, elements such as mercury, zinc, tin, copper, and silver in such large concentrations at a periapical site are bound to eventually interact with the surrounding bone cells and connective tissue capsule. Effects may be measured not in months but in years, and is part of a major concern in dentistry, namely a re-examination of all dental materials for the cytotoxic and mutagenic effects over the lifetime of the dental patient, the recipient of such implants.

CONCLUSIONS

1. Amalgam with or without zinc is biologically well tolerated by rat osseous tissue.

2. There were no discernable histological differences between zinc-containing or zinc-free amalgam implanted in the tibia of the rat.

3. Specific components of the amalgam alloy, tin, and in one case, zinc, appear to migrate into the tissue surrounding and are accompanied by sulfur, a corrosion product.

4. Long term corrosion of amalgam should be considered as a possible cause of failures involving apical amalgams, but has yet to be studied.
REQUESTS FOR REPRINTS TO:

COL John M. Brady, DC
Chief, Department of Biophysics
Division of Oral Biology
U S Army Institute of Dental Research
Walter Reed Army Medical Center
Washington, DC 20012
REFERENCES

FIGURE LEGENDS

1. Photomicrograph of three week zinc-free amalgam implant (arrows). Unimpeded osteoid proliferation is evident. Original magnification X40.

2. Photomicrograph of three week zinc-containing amalgam implant. Amalgam occupied space [*]; with surface of bone contact (arrows). Original magnification X40.

5. SEM of zinc-amalgam surface of unimplanted specimen. Original magnification X5000.

6. SEM of zinc-free amalgam surface of unimplanted specimen. Original magnification X5000.

7. X-ray spectra of unimplanted amalgams, with principal emission lines for mercury (a), silver (b), tin (c), sulfur (d), and chlorine (e). Note difference in intensity of tin L series x-rays between zinc-containing (higher concentration of tin) and zinc-free amalgams (spectrum c).

8. SEM of zinc amalgam after twelve weeks implantation. Original magnification X5000.
9. SEM of whole tibia containing zinc-free amalgam at twelve weeks. Note bone partially covering implant socket. Original magnification X100.

10. X-ray spectra of zinc-amalgam at twelve weeks. (Implant spectra, a & b; bone site facing implant, c & d.)
ZINC-CONTAINING AMALGAM IMPLANT - 12 WEEKS
Mercury M (2230 ev)
Silver L Series (2900 ev)
Tin L Series (3440 ev)
Sulfur K (2310 ev)
Chlorine K (2620 ev)
Implant - 12 Weeks

Bone - 12 Weeks

Implant - 12 Weeks

Bone - 12 Weeks