VERTICAL DISTRIBUTION OF BIOGENIC ELEMENTS
IN POR E WATERS OF THE BERING SEA

by

E. D. Zaitseva

TECHNICAL REPORT
(Translation)
by
Leo A. Barnard

Reference 77-1-T
March 1977

Texas A & M Research Foundation
Office of Naval Research Contract # N00014-75-C-0537

Approved for public release; distribution unlimited.
Piston core samples of Bering Sea sediments were squeezed to obtain the interstitial fluids. Horizons sampled and reported are for 0, 2, 4, 8 and 16 m. These fluids were subsequently analyzed for alkalinity, ammonia, phosphate and silicate. Alkalinity and ammonia concentrations in the pore fluids increased uniformly with respect to depth. The ranges of concentration reported are 2.5 - 73.7 mg-equivalents/l for alkalinity and 0.2 -
159 mg/L for ammonia-nitrogen. Nitrogen was also determined in the surface horizon and found to vary between 0.04 and 0.29%. In some cases, phosphate also showed an increase in concentration with respect to depth but the range was only 0.2 - 7.5 PO₄ mg/L. Silicate values varied widely and no definable trends were noted. The range of values observed was 11.0 - 30.9 mg-SiO₂/L. Concentrations of these biogenic elements in the pore fluids are attributed to the regeneration of biogenic material deposited in the sediments. Regeneration occurs in the uppermost layers for the most part and in some cases continues in deeper layers.
TECHNICAL REPORT

Translation of

VERTICAL DISTRIBUTION OF BIOGENIC ELEMENTS
IN PORE WATERS OF THE BERING SEA

by

E. D. Zaitseva

USSR Academy of Science Reports
DAN SSSR (1954) Volume 99, Number 2

(Presented to Academician N. M. Strakhov,
13 September 1954)

Translated by

Leo A. Barnard

Texas A&M University
Department of Oceanography
College Station, Texas 77843

Supported by
Office of Naval Research
Contract N00014-75-C-0537

77-1-T

March 1977
Abstract

VERTICAL DISTRIBUTION OF BIOGENIC ELEMENTS
IN PORE WATERS OF THE BERING SEA

Piston core samples of Bering Sea sediments were squeezed to obtain the interstitial fluids. Horizons sampled and reported are for 0, 2, 4, 8 and 16 m. These fluids were subsequently analyzed for alkalinity, ammonia, phosphate and silicate. Alkalinity and ammonia concentrations in the pore fluids increased uniformly with respect to depth. The ranges of concentration reported are 2.5 - 73.7 mg-equivalents/L for alkalinity and 0.2 - 159 mg/L for ammonia-nitrogen. Nitrogen was also determined in the surface horizon and found to vary between 0.04 and 0.29%. In some cases, phosphate also showed an increase in concentration with respect to depth but the range was only 0.2 - 7.5 PO₄ mg/L. Silicate values varied widely and no definable trends were noted. The range of values observed was 11.0 - 30.9 mg-SiO₂/L. Concentrations of these biogenic elements in the pore fluids are attributed to the regeneration of biogenic material deposited in the sediments. Regeneration occurs in the uppermost layers for the most part and in some cases continues in deeper layers.

Translator
L. A. B.
The distributions of biogenic elements (P, Si, N and others) in the (?) pore fluids (?) of marine sediment cores have come to the attention of geologists and geochemists in connection with investigations of diagenetic processes. There is very little material about this question in the literature.

S. V. Bruevich, R. M. Pevznyak and others (2) have studied the question of the vertical distribution of biogenic elements in the (?) pore waters (?) in the freshwaters of lake Bicera. Some data concerning this question have been obtained for lake Baikal by K. K. Votintsev (5). S. V. Bruevich and E. G. Vinogradov (3) determined the vertical distribution of biogenic elements in the northern, central and southern Caspian (Sea) (4).

The first foreign work to present quantitative data on the distribution of silica in marine pore solutions (in sediments of the near-California region of the Pacific Ocean) and quantitative data on the distribution of ammonia nitrogen, is that of Emery and Rittenberg (7).

Sediment samples in our work were taken with a special geochemical (?) corer (?) during an expedition for the Institute of Oceanology AN SSSR and then were taken to the marine laboratory located at the institute. Sediment cores were taken up to 16 meters long. Pore fluids were acquired by squeezing them out in a cast-steel hand-screw press by the method of P. A. Kriukov (6).
The microchemical analytical methods were according to S. V. Bruevich (1).

For convenient comparison of the various changes in the concentrations of biogenic elements in different parts of the sea, all determinations were done for standardized comparison horizons: 1, 2, 4, 8 and 16 meters (See Table 1).

Results

1. Alkalinity (apparently indicating mineralized carbon from organic matter) and ammoniacal nitrogen in pore solutions showed uniform increases with respect to depth within the sediments, although gradients accumulate differently for different layers of the core. Both of these indicators increase exactly together.

2. The concentration of phosphate-phosphorus in the overwhelming majority of cases in pore fluids of the Bering Sea is shown to systematically increase downward, although substantially less than that shown for ammonical nitrogen.

3. The concentration of silicon vertically did not show any systematic increase downward but varied over a comparatively small range for each station.
4. The increase in alkalinity and biogenic elements at different stations is quantitatively and definitely different—at one station and in some sections of the core, the accumulation (in the pore fluids) was slow and in others, very fast.

5. Comparison of data for stations where the sediments are composed primarily of organic carbon (sta. 553) with stations where there was no organic carbon content in the sediments (most of the stations), clearly shows that most increases in the organic content of the solid phase of the sediments is matched by a like increase in the biogenic elements in the pore fluids.

6. Pore solutions of sediments from shallow stations of average depth (1000 - 4000 meters) characteristically showed significantly large increases in alkalinity and biogenic elements (nitrogen, phosphorus) vertically and large absolute increases in deeper sediments in comparison with upper horizons.

7. Looking at the variations in alkalinity and biogenic elements in the pore fluids of Bering Sea sediments several major things can be noted: the decomposition process for organic matter is not complete in the upper sediment layers, but continues to take place at a decreasing rate for some time in deeper sediments.
Our material illustrates, definitely, that this process is not complete in the upper 16 meters of marine sediments (See Figure 1). Therefore, the decay of organic matter and other related diagenetic processes are continuing in marine sediments hundreds of thousands of years after burial.

The author thanks Prof. S. V. Bruevich for guidance and continuing interest in this work.


Bibliography

1. S. V. Bruevich, Methods for chemical investigation of marine rocks and pore fluids. Moscow, 1944.


3. S. V. Bruevich, E. G. Vinogradov, DAN, 27, #6 (1940).


Figure 1. Vertical distribution of alkalinity and biogenic elements in pore fluids of cores from the Bering Sea. A - Sta. 540, B - Sta. 619. All concentrations are reported in milligrams/liter except for alkalinity which is in units of milligram-equivalents/liter.
Table 1. Measurements of the composition of pore fluids with depth in the sediments of the Bering Sea in 1950. (Sediment horizons are in meters from top to bottom.)

<table>
<thead>
<tr>
<th>Sta. #</th>
<th>Nitrogen content of the upper horizon (m%)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>568</td>
<td>0.038</td>
<td>2.75</td>
<td>12.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3.6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>0.037</td>
<td>10.9</td>
<td>26.9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>11.4</td>
<td>25.4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>557</td>
<td>0.14</td>
<td>2.5</td>
<td>8.6</td>
<td>17.5</td>
<td>--</td>
<td>--</td>
<td>1.2</td>
<td>7.6</td>
<td>17.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>553</td>
<td>0.29</td>
<td>41.7</td>
<td>66.2</td>
<td>72.7</td>
<td>(73.7)</td>
<td>--</td>
<td>45.0</td>
<td>111.0</td>
<td>159.0</td>
<td>(145.0)</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>0.17</td>
<td>2.9</td>
<td>3.0</td>
<td>6.3</td>
<td>(21.9)</td>
<td>--</td>
<td>--</td>
<td>0.92</td>
<td>1.3</td>
<td>7.5</td>
<td>(23.4)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>617</td>
<td>--</td>
<td>(2.6)</td>
<td>4.2</td>
<td>6.0</td>
<td>8.6</td>
<td>--</td>
<td>(1.6)</td>
<td>2.5</td>
<td>4.8</td>
<td>7.1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>--</td>
<td>3.0</td>
<td>5.2</td>
<td>6.5</td>
<td>(11.0)</td>
<td>--</td>
<td>--</td>
<td>0.68</td>
<td>2.9</td>
<td>3.8</td>
<td>(11.6)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>540</td>
<td>0.092</td>
<td>(3.5)</td>
<td>3.8</td>
<td>5.7</td>
<td>13.5</td>
<td>29.2</td>
<td>38.5</td>
<td>1.7</td>
<td>1.8</td>
<td>3.6</td>
<td>10.5</td>
<td>21.5</td>
<td>31.8</td>
</tr>
<tr>
<td>619</td>
<td>0.084</td>
<td>(3.8)</td>
<td>3.8</td>
<td>5.9</td>
<td>16.8</td>
<td>24.4</td>
<td>(32.0)</td>
<td>(2.8)</td>
<td>3.2</td>
<td>5.9</td>
<td>12.4</td>
<td>16.5</td>
<td>(18.6)</td>
</tr>
<tr>
<td>615</td>
<td>--</td>
<td>(6.6)</td>
<td>7.5</td>
<td>8.8</td>
<td>9.4</td>
<td>12.2</td>
<td>--</td>
<td>(4.3)</td>
<td>4.5</td>
<td>4.9</td>
<td>5.4</td>
<td>(6.4)</td>
<td>--</td>
</tr>
<tr>
<td>537</td>
<td>0.086</td>
<td>2.6</td>
<td>5.6</td>
<td>8.2</td>
<td>(15.9)</td>
<td>--</td>
<td>--</td>
<td>0.24</td>
<td>5.3</td>
<td>6.0</td>
<td>(15.0)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>618</td>
<td>0.088</td>
<td>2.6</td>
<td>3.3</td>
<td>4.3</td>
<td>6.5</td>
<td>--</td>
<td>--</td>
<td>0.61</td>
<td>1.9</td>
<td>3.0</td>
<td>5.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>533</td>
<td>--</td>
<td>(1.73)</td>
<td>10.52</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>(1.6)</td>
<td>4.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

(water) depth 0 - 150 m

(water) depth 1000 m

(water) depth 2000 m

(water) depth 3000 m
Table 1 (cont.)

<table>
<thead>
<tr>
<th>Sta. #</th>
<th>Nitrogen content of the upper horizon (mg%)</th>
<th>Horizon (water) depth</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>phosphate-phosphorus, mg/ℓ</td>
<td>silica, mg/ℓ</td>
<td></td>
</tr>
<tr>
<td>568</td>
<td>0,038</td>
<td>1,6</td>
<td>4,0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>14,5</td>
<td>12,2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>0,037</td>
<td>6,3</td>
<td>3,2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>11,0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>557</td>
<td>0,14</td>
<td>0,35</td>
<td>1,8</td>
<td>1,7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>13,7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>553</td>
<td>0,29</td>
<td>2,5</td>
<td>4,5</td>
<td>4,7</td>
<td>(7,5)</td>
<td>--</td>
<td>--</td>
<td>26,8</td>
<td>14,0</td>
<td>16,0</td>
<td>23,2</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>0,17</td>
<td>0,25</td>
<td>0,26</td>
<td>0,67</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>12,7</td>
<td>16,2</td>
<td>17,2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>--</td>
<td>0,20</td>
<td>(0,21)</td>
<td>0,40</td>
<td>0,77</td>
<td>--</td>
<td>--</td>
<td>(17,7)</td>
<td>16,5</td>
<td>12,6</td>
<td>13,0</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>--</td>
<td>0,25</td>
<td>0,38</td>
<td>0,43</td>
<td>(1,2)</td>
<td>--</td>
<td>--</td>
<td>15,5</td>
<td>17,0</td>
<td>16,2</td>
<td>(15,2)</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>0,092</td>
<td>(0,17)</td>
<td>0,17</td>
<td>0,25</td>
<td>0,70</td>
<td>1,9</td>
<td>3,0</td>
<td>--</td>
<td>14,7</td>
<td>14,7</td>
<td>17,5</td>
<td>20,7</td>
<td>17,5</td>
<td></td>
</tr>
<tr>
<td>619</td>
<td>0,084</td>
<td>(0,43)</td>
<td>0,39</td>
<td>0,46</td>
<td>4,4</td>
<td>4,4</td>
<td>5,4</td>
<td>(17,7)</td>
<td>17,7</td>
<td>17,7</td>
<td>13,8</td>
<td>14,4</td>
<td>15,7</td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>--</td>
<td>(0,27)</td>
<td>0,50</td>
<td>0,79</td>
<td>0,69</td>
<td>0,35</td>
<td>--</td>
<td>(14,0)</td>
<td>14,0</td>
<td>14,1</td>
<td>14,6</td>
<td>16,8</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>0,086</td>
<td>0,17</td>
<td>0,57</td>
<td>0,68</td>
<td>(1,6)</td>
<td>--</td>
<td>--</td>
<td>15,5</td>
<td>26,8</td>
<td>30,9</td>
<td>29,8</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>0,088</td>
<td>0,22</td>
<td>0,26</td>
<td>0,31</td>
<td>0,95</td>
<td>--</td>
<td>--</td>
<td>13,5</td>
<td>18,0</td>
<td>12,4</td>
<td>12,7</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>--</td>
<td>(0,65)</td>
<td>1,3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>(19,0)</td>
<td>14,2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. Numbers in parenthesis denote samples taken not exactly at the standard horizon. The sample at Station 553 is from below an area of high biological productivity. 2. Phosphate-phosphorus and silica were analyzed by A. V. Fotiev.
Translators Notes:

1. The phrase "gruntovi rastvor" has been translated throughout as "pore fluids" and is equivalent to the more modern phrase "ilovaya voda." It is also of interest that these two phrases are commonly mistranslated as "wet sediments", "silty-water","dirty-water", "silt" or "sediments". The distinction is quite important.

2. The word "trubka" is translated as "corer" based on context and other authors' use.

3. The words "monalit" and "kolonka" are translated as "core" based on context.

L. A. B.

Acknowledgements:

This work was supported by the Office of Naval Research

Contract N00014-75-C-0537.
MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, & FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS
OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION
OF THE OFFICE OF NAVAL RESEARCH

(REVISED JAN. 1975)

1 Director of Defense Research and Engineering
Office of the Secretary of Defense
Washington, D.C. 20301
ATTN: Office, Assistant Director (Research)

Office of Naval Research
Bay St. Louis, Miss. 39520
3 ATTN: (Code 481)
1 ATTN: (Code 460)
1 ATTN: (Code 102-OS)
6 ATTN: (Code 102-IP)

1 Mr. Frank Lucas
Office of Naval Research
Resident Representative
Federal Building, Rm. 582
300 East 8th Street
Austin, Texas 78701

Director
Naval Research Laboratory
Washington, D.C. 20375
6 ATTN: Library, Code 2620

12 Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Commander
Naval Oceanographic Office
Washington, D.C. 20390
1 ATTN: Code 1640
1 ATTN: Code 70

1 NODC/NOAA
Department of Commerce
Rockville, Md. 20882