END USE SPACE CONDITIONING EQUIPMENT COST DATA
FOR USE IN TOTAL ENERGY SYSTEM ANALYSIS

Steven B. Goldman
Frederick R. Best
Michael W. Golay
Department of Nuclear Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

30 May 1977

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for:
US ARMY FACILITIES ENGINEERING SUPPORT AGENCY
Research and Technology Division
Fort Belvoir, VA 22060
End Use Space Conditioning Equipment Cost Data for Use in Total Energy System Analysis.

Approved for Public Release; Distribution Unlimited.

Topical Report.
This report summarizes the capital cost data for end-use space conditioning equipment used in possible Total Energy Systems. The capital costs are extracted from literature and vendor surveys, and an average 'cost per unit of capacity' is derived. The end use equipment under study includes compressive air conditioners, electric baseboard resistance heaters, heat pumps, and electric hot water heaters. The unit costs derived herein are applied to the economic model of Total Energy System studies.
TABLE OF CONTENTS

1 INTRODUCTION
2 COMPRESSIVE AIR CONDITIONERS
3 ELECTRIC RESISTANCE HEATERS
4 HEAT PUMPS
5 ELECTRIC HOT WATER HEATERS
6 SUMMARY
7 REFERENCES

LIST OF TABLES

1 COMPRESSIVE AIR CONDITIONER COST DATA
2 ELECTRIC BASEBOARD RESISTANCE HEATER COST DATA
3 ELECTRIC HOT WATER HEATER COST DATA
4 SUMMARY OF RESULTS
1. INTRODUCTION

The purpose of this report is to derive the capital costs of the end-use equipment which would be used in possible future Total Energy Systems [1]. End-use equipment is defined herein to be electrically operated space-conditioning or water heating components generally found in household use. Included in this study are compressive air conditioners, heat pumps, electric resistance baseboard heaters, and electric hot water heaters.

The method of determining the costs of end-use equipment is based upon a literature and vendor survey. Data is compiled for various models of equipment, where feasible, and an average capacity and associated price are determined. Thus the cost model used is a "typical" value based on equipment that is currently available commercially. The cost is then divided by the capacity to obtain a cost-per-unit-capacity ratio. This value, when multiplied by the appropriate energy requirement of a building, yields the effective cost of equipment needed to satisfy that building's energy demand. Although monetary savings in equipment cost can be realized by economies of scale for large energy users, this effect is not considered to be significant for the purpose of this study since approximately 90% of the buildings which would be served by a community Total Energy System are small residential units.

A discussion of the derivation of the costs of the end-
use equipment components is presented. All prices quoted are in 1977 dollars.

2. **COMPRESSIVE AIR CONDITIONERS**

The compressive air conditioners analyzed are window-mounted units with rated cooling capacities between 7500 and 8500 Btu per hour. Table 1 lists the data accumulated. Installation costs are considered to be negligible. It is seen that the unit energy costs vary among retailers; this is due to effects of a combination of manufacturer's list price and dealer markup. The average cost per thousand Btu per hour of cooling capacity is $37.25.

A nominal 8000 Btu per hour unit would then cost approximately $300. However, local (Boston area) dealer spot checks show that 8000 Btu units can be obtained for $270. As such, a cost of $250 for an 8000 Btu unit is not unreasonable when discounts for bulk buying are considered. Therefore a unit cost of $31.25 per 1000 Btu capacity is recommended for Total Energy System analysis purposes.

3. **ELECTRIC RESISTANCE HEATERS**

Electric baseboard resistance heaters offer low capital costs and high operating expenses for a heating system since the Coefficient of Performance (COP) of such devices is unity. Table 2 shows costs for units of various
capacities (note that these costs are dealer's costs). The unit price recommended for purposes of analysis is $25.00 per Kilowatt of heating capacity. In addition, a thermostat ($20.00) and additional wiring and parts ($20.00) are required for each building. Furthermore, a Boston Edison Company representative said that an additional $300.00 per house would be required for installation labor. He noted that each building varies in labor requirements, depending on its condition, but $300.00 is thought to be a good estimate. Therefore the unit cost of electrical resistance heating is recommended as

4. HEAT PUMPS

Heat pumps offer a more efficient method of space conditioning because of their relatively high coefficients of performance (COP) and their dual nature. A heat pump unit can be used for both heating and cooling, thus eliminating the need for an air conditioner. A product analysis similar to the preceding was undertaken, but using two different sources of information (the Boston Edison Company and the Trane Company). Both indicated that a basic rule of thumb for estimating smaller heat pump costs is a value of $1000 per ton of cooling capacity* installed (one ton

*The maximum capacity of heating or cooling
of cooling capacity is equal to 12,000 Btu per hour. This correlates with literature values. Therefore, for Total Energy System study purposes, the unit capacity cost for heat pumps is recommended as $84.00 per 10^3 Btu per hour.

5. ELECTRIC HOT WATER HEATERS

Table 3 shows the cost data for electric hot water heaters. If the three highest unit price models are not included, the average resulting unit cost is $3.22 per 10^3 Btu per hour, based on a hot water set temperature of 140°F. This cost would correspond to $120 for a standard 52 gallon model. In order to discount dealer markup and bulk quantity benefits, a value of $100 for a 52 gallon heater is recommended, with a unit cost of $2.60 per 10^3 Btu per hour. Installation and wiring costs are approximately $65.00 based on interviews with local contractors. This does not include new plumbing, however; the price is based upon installing a water heater into an existing home system. The unit cost for electric hot water heaters then is $65 + $2.60/10^3$ Btu

6. SUMMARY

Table 4 summarizes the recommended cost data of this report. All prices are in 1977 dollars, and reflect wholesale costs.
Table 1

Compressive Air Conditioner Costs

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Rated Capacity (Btu/hr)</th>
<th>EER*</th>
<th>COP**</th>
<th>Average Retail Cost ($/10^3 Btu/hr, 1977)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Electric</td>
<td>8500</td>
<td>9.9</td>
<td>2.9</td>
<td>$3211</td>
</tr>
<tr>
<td>Admiral</td>
<td>7500</td>
<td>9.1</td>
<td>2.7</td>
<td>$2841</td>
</tr>
<tr>
<td>Friedrich</td>
<td>8000</td>
<td>9.3</td>
<td>2.7</td>
<td>350</td>
</tr>
<tr>
<td>Amana</td>
<td>8500</td>
<td>9.9</td>
<td>2.9</td>
<td>336</td>
</tr>
<tr>
<td>Frigidaire</td>
<td>7500</td>
<td>8.7</td>
<td>2.5</td>
<td>294</td>
</tr>
<tr>
<td>Hotpoint</td>
<td>7500</td>
<td>8.7</td>
<td>2.5</td>
<td>244</td>
</tr>
<tr>
<td>Edison</td>
<td>8200</td>
<td>9.0</td>
<td>2.6</td>
<td>251</td>
</tr>
<tr>
<td>Airtemp</td>
<td>7500</td>
<td>9.1</td>
<td>2.7</td>
<td>309</td>
</tr>
<tr>
<td>Fedders</td>
<td>8000</td>
<td>9.3</td>
<td>2.7</td>
<td>286</td>
</tr>
<tr>
<td>Sears</td>
<td>7800</td>
<td>9.2</td>
<td>2.7</td>
<td>274</td>
</tr>
<tr>
<td>Whirlpool</td>
<td>8000</td>
<td>9.3</td>
<td>2.7</td>
<td>302</td>
</tr>
<tr>
<td>York</td>
<td>7500</td>
<td>8.7</td>
<td>2.5</td>
<td>274</td>
</tr>
</tbody>
</table>

*EER = Energy Efficiency Ratio

\[EER = \frac{\text{Cooling Capacity (Btu/hr)}}{\text{Input Power (Watts)}} = 3.412 \cdot \text{COP} \]

**COP = Coefficient of Performance

\[\text{COP} = \frac{\text{Cooling Capacity (Btu/hr)}}{\text{Input Power (Btu/hr)}} \]
TABLE 2

ELECTRIC BASEBOARD RESISTANCE HEATER COST DATA

<table>
<thead>
<tr>
<th>FPECo Model</th>
<th>Rating (watts)</th>
<th>Length (ft)</th>
<th>Price[3]</th>
<th>Unit Price ($/KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ 295 12X</td>
<td>500</td>
<td>2</td>
<td>$18.30</td>
<td>$36.60</td>
</tr>
<tr>
<td>BQ 307 12X</td>
<td>750</td>
<td>3</td>
<td>$23.90</td>
<td>$31.87</td>
</tr>
<tr>
<td>BQ 410 12X</td>
<td>1000</td>
<td>4</td>
<td>$28.20</td>
<td>$28.20</td>
</tr>
<tr>
<td>BQ 512 12X</td>
<td>1250</td>
<td>5</td>
<td>$32.25</td>
<td>$25.80</td>
</tr>
<tr>
<td>BQ 615 12X</td>
<td>1500</td>
<td>6</td>
<td>$35.25</td>
<td>$23.57</td>
</tr>
<tr>
<td>BQ 820 12X</td>
<td>2000</td>
<td>8</td>
<td>$44.00</td>
<td>$22.00</td>
</tr>
</tbody>
</table>

ADDITIONAL COSTS PER BUILDING:

Thermostat: $20.00

Additional parts & wiring: $20.00

Installation labor: $300.00 [4]
TABLE 3

ELECTRIC HOT WATER HEATER COST DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>Capacity (gal)</th>
<th>Capacity (Units of 10^3 Btu/hr)</th>
<th>Retail Price[2] (1977 $)</th>
<th>Unit Cost ($/1000 Btu/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wards 35170</td>
<td>52</td>
<td>38.41</td>
<td>120</td>
<td>3.12</td>
</tr>
<tr>
<td>A.O. Smith KEN52D</td>
<td>52</td>
<td>38.41</td>
<td>169</td>
<td>4.40</td>
</tr>
<tr>
<td>Rheem 10-666J</td>
<td>52</td>
<td>38.41</td>
<td>189</td>
<td>4.92</td>
</tr>
<tr>
<td>Jackson Executive</td>
<td>52</td>
<td>38.41</td>
<td>117</td>
<td>3.05</td>
</tr>
<tr>
<td>Rudd Holiday RH522</td>
<td>52</td>
<td>38.41</td>
<td>189</td>
<td>4.92</td>
</tr>
<tr>
<td>Sears 32461</td>
<td>52</td>
<td>38.41</td>
<td>138[5]</td>
<td>3.59</td>
</tr>
<tr>
<td>Sears 32481</td>
<td>82</td>
<td>60.57</td>
<td>180[5]</td>
<td>2.97</td>
</tr>
</tbody>
</table>

Installation and wiring costs
(excluding new plumbing): $65.00 [5]
<table>
<thead>
<tr>
<th>Component</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Air Conditioner</td>
<td>$31.25 per 1000 Btu per hour</td>
</tr>
<tr>
<td>Electric Resistance Heater</td>
<td>$340.00 + $25.00 per Kilowatt</td>
</tr>
<tr>
<td>Heat Pump</td>
<td>$84.00 per 1000 Btu per hour</td>
</tr>
<tr>
<td>Electric Hot Water Heater</td>
<td>$65.00 + $2.60 per 1000 Btu per hour</td>
</tr>
</tbody>
</table>
7. REFERENCES

FESA DISTRIBUTION

US Military Academy
ATTN: Dept of Mechanics
West Point, NY 10996
ATTN: Library

Chief of Engineers
ATTN: DAEN-ASI-L (2)
ATTN: DAEN-FEB
ATTN: DAEN-FEP
ATTN: DAEN-FEU
ATTN: DAEN-FEZ-A
ATTN: DAEN-MCZ-S
ATTN: DAEN-MCE-U
ATTN: DAEN-MCZ-E
ATTN: DAEN-RDL

Dept of the Army
NASH, DC 20314

Director, USA-WES
ATTN: Library
P.O. Box 631
Vicksburg, MS 39181

Commander, TRADOC
Office of the Engineer
ATTN: ATEN
ATTN: ATEN-FE-U
Ft. Monroe, VA 23651

US Army Engr Dist, New York
ATTN: NANEN-E
26 Federal Plaza
New York, NY 10007

USA Engr Dist, Baltimore
ATTN: Chief, Engr Div
P.O. Box 1715
Baltimore, MD 21203

USA Engr Dist, Charleston
ATTN: Chief, Engr Div
P.O. Box 919
Charleston, SC 29402

USA Engr Dist, Savannah
ATTN: Chief, SASAS-L
P.O. Box 889
Savannah, GA 31402

USA Engr Dist Detroit
P.O. Box 1027
Detroit, MI 48231

USA Engr Dist Kansas City
ATTN: Chief, Engr Div
700 Federal Office Bldg
601 E. 12th St
Kansas City, MO 64106

USA Engr Dist, Omaha
ATTN: Chief, Engr Div
7410 USOP and Courthouse
215 N. 17th St
Omaha, NE 68102

USA Engr Dist, Fort Worth
ATTN: Chief, SWFED-D
ATTN: Chief, SWFED-MA/MR
P.O. Box 17300
Fort Worth, TX 76102

USA Engr Dist, Sacramento
ATTN: Chief, SPKED-D
650 Capitol Mall
Sacramento, CA 95814

USA Engr Dist, Far East
ATTN: Chief, Engr Div
APO San Francisco, CA 96301

USA Engr Dist, Japan
APO San Francisco, CA 96343

USA Engr Div, Europe
European Div, Corps of Engineers
APO New York, NY 09757

USA Engr Div, North Atlantic
ATTN: Chief, NADEN-T
90 Church St
New York, NY 10007

USA Engr Div, South Atlantic
ATTN: Chief, SAEN-TE
510 Title Bldg
30 Pryor St, SW
Atlanta, GA 30303
USA Engr Dist, Mobile
ATTN: Chief, SAMEN-C
P.O. Box 2288
Mobile, AL 36601

USA Engr Dist, Louisville
ATTN: Chief, Engr Div
P.O. Box 59
Louisville, KY 40201

USA Engr Dist, Norfolk
ATTN: Chief, NAOEN-D
803 Front Street
Norfolk, VA 23510

USA Engr Div, Missouri River
ATTN: Chief, Engr Div
P.O. Box 103 Downtown Station
Omaha, NE 68101

USA Engr Div, South Pacific
ATTN: Chief, SPDED-TG
630 Sansome St., Rm 1216
San Francisco, CA 94111

AF Civil Engr Center/XRL
Tyndall AFB, FL 32401

Naval Facilities Engr Command
ATTN: Code 04
200 Stovall St.
Alexandria, VA 22332

Defense Documentation Center
ATTN: TCA (12)
Cameron Station
Alexandria, VA 22314

Commander and Director
USA Cold Regions Research Engineering Laboratory
Hanover, NH 03755

USA Engr Div, Huntsville
ATTN: Chief, HNDED-ME
P.O. Box 1600 West Station
Huntsville, AL 35807

USA Engr Div, Ohio River
ATTN: Chief, Engr Div
P.O. Box 1159
Cincinnati, OH 45201

USA Engr Div, North Central
ATTN: Chief, Engr Div
536 S. Clark St
Chicago, IL 60605

USA Engr Div, Southwestern
ATTN: Chief, SWDED-TM
Main Tower Bldg., 1200 Main St
Dallas, TX 75202

USA Engr Div, Pacific Ocean
ATTN: Chief, Engr Div
APO San Francisco, CA 96558

FORSCOM
ATTN: AFEN
ATTN: AFEN-FE
Ft. McPherson, GA 30330

Office in Charge
Civil Engineering Laboratory
Naval Construction Battalion Center
ATTN: Library (Code LO8A)
Port Hueneme, CA 93043

Commander and Director
USA Construction Engineering Research Laboratory
P.O. Box 4005
Champaign, IL 61820