STUDENTS FACULTY STUDY RESEARCH DEVELOPMENT FUTURE CAREER CREATIVITY COMMUNITY LEADERSHIP TECHNOLOGY FRONTIERS DESIGN ENGINEERING APPLICATIONS GEORGE WASHINGTON UNIVERSITY

INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING SCHOOL OF ENGINEERING AND APPLIED SCIENCE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED
DETECTING THE SHIFT IN THE PROBABILITY OF SUCCESS IN A SERIES OF BERNOUlli TRIALS

by

S. Zacks
Z. Barzily

Serial T-356
23 June 1977

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.
The determination of a stopping rule for the detection of the time of an increase in the success probability of a sequence of independent Bernoulli trials is discussed. Both success probabilities are assumed unknown. A Bayesian approach is applied; the distribution of the location of the shift in the success probability is assumed geometric and the success probabilities are assumed to have a known joint prior distribution. The costs involved are penalties for late or early stoppings. The nature...
20. Abstract (Cont'd)

...of the optimal dynamic programming solution is discussed and a procedure
for obtaining a suboptimal stopping rule is determined. The results
indicate that the detection procedure is quite effective.
THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering
Program in Logistics

Abstract
of
Serial T-356
23 June 1977

DETECTING THE SHIFT IN THE PROBABILITY OF SUCCESS IN A SERIES OF BERNOULLI TRIALS

by

S. Zacks
Z. Barzily

The determination of a stopping rule for the detection of the time of an increase in the success probability of a sequence of independent Bernoulli trials is discussed. Both success probabilities are assumed unknown. A Bayesian approach is applied; the distribution of the location of the shift in the success probability is assumed geometric and the success probabilities are assumed to have a known joint prior distribution. The costs involved are penalties for late or early stoppings. The nature of the optimal dynamic programming solution is discussed and a procedure for obtaining a suboptimal stopping rule is determined. The results indicate that the detection procedure is quite effective.

Research Sponsored by
Office of Naval Research
1. Introduction and Summary

This paper studies the problem of controlling the success probability of a sequence of independent Bernoulli trials. More specifically, a sequence of independent Bernoulli trials starts with a success probability \(\theta \), \(0 < \theta < 1 \), and at an unknown epoch the success probability shifts to \(\phi \) greater than \(\theta \). The present study is devoted to the development of a stopping rule when both \(\theta \) and \(\phi \) are unknown. We study the problem in a Bayesian framework and show the nature of the optimal dynamic programming solution when one is penalized for early or late stopping. The nature of the Bayesian optimal stopping rule when \(\theta \) and \(\phi \) are known was established previously by Sirjaev [2].

When the success probabilities are unknown the optimal solution is considerably more complicated. This paper shows how approximate solutions can be obtained and applied effectively. A series of numerical illustrations shows the effectiveness of the proposed procedure in some simulated cases.

The problem studied here was motivated by a problem of determining the epoch of change in the readiness of systems. The results of this study can be applied to a variety of other problems of applied interest.
The paper is comprised of six sections. The formulation of the Bayesian framework and the likelihood functions is carried out in Section 2. Section 3 provides the dynamic programming formulation of the optimal stopping rule. The case of known success probabilities is discussed in Section 4. Section 5 discusses the convergence of the algorithm when the success probabilities are unknown, and the results of some simulations are given in Section 6. These simulations strongly indicate that the proposed detection procedure is quite effective. It is generally very difficult to detect shifts on the basis of small sequences of 0–1 Bernoulli trials.

2. Likelihood Functions, Prior and Posterior Distributions

Let \(x_1, x_2, \ldots \) be a sequence of independent Bernoulli random variables, i.e., each \(X_i \) can assume the values 0 or 1, and

\[
P[X_i = 1] = \theta_i, \quad i = 1, 2, \ldots
\]

where \(\theta_i \) is the probability of "success." This paper considers the problem of one shift in the values of \(\theta_i \).

More specifically, let \(\tau = 0, 1, 2, \ldots \) and

\[
\theta_i = \begin{cases}
\theta, & \text{if } i \leq \tau \\
\phi, & \text{if } i > \tau
\end{cases}
\]

where \(0 < \theta < \phi < 1 \). Thus \(\tau \) is the epoch of shift from \(\theta \) to \(\phi \). This epoch of shift is unknown.

The approach here is Bayesian, and accordingly, the parameter values \((\tau, \theta, \phi) \) are considered as random variables. Moreover, it is assumed that \(\tau \) is priory independent of \((\theta, \phi) \), having a prior p.d.f. \(\psi(\tau) \) concentrated on the nonnegative integers. The parameters \((\theta, \phi) \) have a prior distribution over the simplex \(0 < \theta < \phi < 1 \), with a prior p.d.f. \(h(\theta, \phi) \). In the present paper we focus our attention on a geometric prior distribution for \(\tau \) of the form
\[
\psi(\tau) = \begin{cases}
\pi_0, & \text{if } \tau = 0 \\
(1-\pi_0)p(1-p)^{\tau-1}, & \text{if } \tau \geq 1
\end{cases}
\] \quad (2.2)

where \(0 < \pi, p < 1\). This prior distribution was introduced by Sirjaev in [2]. The likelihood function of \((\tau, \theta, \phi)\), given observations on \(X_n = (x_1, \ldots, x_n)\), is

\[
L(\tau, \theta, \phi; X_n) = \sum_{j=0}^{n-1} \left[I(\tau = j) \theta^j (1-\theta)^{\tau-j} \phi^{n-j} (1-\phi)^{n-\tau-j} + I(\tau \geq n) \theta^n (1-\theta)^{n-\tau} \right]
\] \quad (2.3)

where \(T_j = \sum_{i=1}^j x_i\), \(j=1, \ldots, n\), \(T_n = T_n - T_j\) and \(T_0 = 0\). This likelihood function provides the information in the sample on the parameters \((\tau, \theta, \phi)\). If \(\theta\) and \(\phi\) are known we consider the likelihood as a function of \(\tau\). The posterior p.d.f. of \((\tau, \theta, \phi)\), given \(X_n\), can be obtained from the likelihood function (2.3) and Bayes' formula. This posterior p.d.f. is

\[
h(\tau, \theta, \phi; X_n) = \psi(\tau) h(\theta, \phi) L(\tau, \theta, \phi; X_n) / D_n (x_n),
\] \quad (2.4)

where

\[
D_n (x_n) = \sum_{j=0}^{\infty} \psi(j) \int_0^1 \int_0^1 L(j, \theta, \phi; X_n) h(\theta, \phi) d\phi d\theta.
\] \quad (2.5)

Other functions of interest are the posterior probability of \(\{\tau < n\}\) given \(X_n\), and the posterior probability of future success given \(X_n\), i.e.,

\[
P\{x_{n+j} = 1 | x_n\}, j=1, 2, \ldots.
\]

The posterior probability of \(\{\tau < n\}\) given \(X_n\) is used to decide whether to stop the process. We denote it by \(\pi_n (x_n)\) and compute it according to the formula

\[
\pi_n (x_n) = 1 - \frac{\psi^*}{D_n (x_n)} \int_0^1 \int_0^1 L(n, \theta, \phi; X_n) h(\theta, \phi) d\phi d\theta,
\] \quad (2.6)

where \(\psi^* = \sum_{j=0}^{\infty} \psi(j)\).
We will show later that under general conditions on \(h(\theta, \phi) \) the posterior probability \(\pi_n(x_n) \) converges to 1 a.s., as \(n \to \infty \). Given \(x_n \), the future probability of success is, for all \(j=1,2,... \)

\[
P\left[x_{n+j} = 1 \mid x_n \right] = E\{ \theta I[\tau \geq n+j] \mid x_n \} + E\{ \phi I[\tau \leq n+j-1] \mid x_n \}. \tag{2.7}
\]

This probability can be expressed in terms similar to those of (2.6). Explicit expressions will be considered later.

3. Optimal Stopping Times

The problem of detecting the shift point \(\tau \) can be approached from a decision theoretic point of view in the following terms. After each observation we have the option to stop sampling and declare that the shift has already occurred. The process is then inspected, and if the shift has not yet occurred a penalty of \($C_2 \) is imposed for undue stopping.

On the other hand, if we do not stop and the shift has already occurred, we are penalized \($C_1 \) for each additional observation. We develop here a characterization of the optimal stopping rule, using the methods of dynamic programming. We start with a truncated version and impose the restriction that stopping must occur after a finite number of observations.

Let \(R_n^{(j)}(x_n) \) denote the minimal posterior risk after \(n \) observations, given \(x_n \), when at most \(j \) more observations are allowed. For \(j=0 \) we have

\[
R_n^{(0)}(x_n) = C_2 \left(1 - \pi_n(x_n) \right). \tag{3.1}
\]

If one more observation is allowed, i.e., \(j=1 \), the posterior risk associated with observing \(x_{n+1} \) is

\[
R_n^{(1)}(x_n) = C_1 \pi_n(x_n) + C_2 \left(1 - E\{ \pi_n(x_{n+1}) \mid x_n \} \right). \tag{3.2}
\]
Moreover, since \(\pi_{n+1}(x_{n+1}) = E\{I_{\tau \leq n} \mid x_{n+1} \} \) we obtain from the law of iterated expectation that
\[
E\{\pi_{n+1}(x_{n+1}) \mid x_n\} = E\{I_{\tau \leq n} \mid x_n\} = \pi_n(x_n) + (1 - \pi_n(x_n))p . \tag{3.3}
\]
Using (3.2) and (3.3) we obtain
\[
R_n^{(1)}(x_n) = \min\left\{ R_n^{(0)}(x_n), R_n^{(1)}(x_n) \right\}
= C_2(1 - \pi_n(x_n)) + \min\left\{ 0, C_1 \pi_n(x_n) - C_2 p(1 - \pi_n(x_n)) \right\} . \tag{3.4}
\]
Obviously, \(R_n^{(1)}(x_n) \leq R_n^{(0)}(x_n) \) for all \(x_n \). It is optimal to stop after \(n \) observations, when \(j=1 \), if and only if
\[
\pi_n(x_n) > \frac{C_2 p}{C_1 + C_2 p} . \tag{3.5}
\]
If \(j=2 \), then according to the optimality principle of dynamic programming it is optimal to stop after \(n \) observations if and only if
\[
R_n^{(0)}(x_n) \leq C_1 \pi_n(x_n) + E\{R_n^{(1)}(x_{n+1}) \mid x_n\} . \tag{3.6}
\]
Moreover,
\[
E\{R_n^{(1)}(x_{n+1}) \mid x_n\} = C_2 E\{1 - \pi_{n+1}(x_{n+1}) \mid x_n\}
+ E\left\{ \min\left\{ 0, C_1 \pi_{n+1}(x_{n+1}) - pC_2(1 - \pi_{n+1}(x_{n+1})) \right\} \mid x_n\right\}
= C_2(1 - \pi_n(x_n))(1-p) + M_n^{(1)}(x_n) , \tag{3.7}
\]
where
\[
M_n^{(1)}(x_n) = E\left\{ \min\left\{ 0, C_1 \pi_{n+1}(x_{n+1}) - pC_2(1 - \pi_{n+1}(x_{n+1})) \right\} \mid x_n\right\} . \tag{3.8}
\]
The minimal posterior risk is then
\[
R_n^{(2)}(x_n) = \min\left\{ R_n^{(0)}(x_n), C_1 \pi_n(x_n) + E\{R_n^{(1)}(x_{n+1}) \mid x_n\} \right\} \tag{3.9}
\]
or
\[
R_n^{(2)}(x_n) = C_2(1 - \pi_n(x_n))
+ \min\left\{ 0, C_1 \pi_n(x_n) - C_2 p(1 - \pi_n(x_n)) + M_n^{(1)}(x_n) \right\} . \tag{3.10}
\]
- 5 -
Notice that $M_n^{(1)}(x_n) \leq 0$ for all x_n and therefore $R_n^{(2)}(x_n) \leq R_n^{(1)}(x_n)$. Furthermore, for $j=2$ it is optimal to stop after n observations if

$$
\pi_n(x_n) > \frac{C_2 p - M_n^{(1)}(x_n)}{C_1 + C_2 p}.
$$

(3.10)

The stopping boundary for $j=2$ [the RHS of (3.10)] is not smaller than that for $j=1$ [the RHS of (3.5)]. Thus, if $\pi_n(x_n) < C_2 p/(C_1 + C_2 p)$ it is optimal to continue and take at least one more observation.

In a similar fashion we obtain by backward induction that, for all $j \geq 2$,

$$
R_n^{(j)}(x_n) = C_2 (1 - \pi_n(x_n))
\begin{align*}
&+ \min\left(0, C_1 \pi_n(x_n) - C_2 p (1 - \pi_n(x_n)) + M_n^{(j-1)}(x_n)\right),
\end{align*}
$$

(3.11)

where, for each $i \geq 2$,

$$
M_n^{(i)}(x_n) = E\left\{\min\left(0, C_1 \pi_{n+1}(x_{n+1}) - C_2 p (1 - \pi_{n+1}(x_{n+1})) + M_n^{(i-1)}(x_{n+1})\right) \mid x_n\right\}.
$$

(3.12)

Lemma 1:

$$
M_n^{(1)}(x_n) < M_n^{(i-1)}(x_n)
$$

(3.13)

with probability one for all $i=1,2,...$ and all $n=1,2,...$, where $M_n^{(0)}(x_n) = 0$.

Proof: The proof is by induction on i. Since $M_n^{(1)}(x_n) \leq 0$ for all x_n and all n, we obtain that

$$
\min\left(0, C_1 \pi_{n+1}(x_{n+1}) - C_2 p (1 - \pi_{n+1}(x_{n+1})) + M_n^{(1)}(x_{n+1})\right) \\
\leq \min\left(0, C_1 \pi_{n+1}(x_{n+1}) - C_2 p (1 - \pi_{n+1}(x_{n+1}))\right),
$$

(3.14)
for all x_{n+1}. Hence, the conditional expectations of the two sides of (3.14), given x_n, preserve the inequality. That is, $M_n^{(2)}(x_n) \leq M_n^{(1)}(x_n)$, for all $n=1,2,\ldots$ and all x_n. If we assume that $M_n^{(k)}(x_n) \leq M_n^{(k-1)}(x_n)$ for all $k=1,\ldots,i$, all $n=1,2,\ldots$, and all x_n, we obtain that

$$\min\left(0, C_1\pi_n+1(x_{n+1})_n - C_2p(1 - \pi_n+1(x_{n+1})_n) + M_n^{(i)}(x_{n+1})_n\right)$$

$$\leq \min\left(0, C_1\pi_n+1(x_{n+1})_n - C_2p(1 - \pi_n+1(x_{n+1})_n) + M_n^{(i-1)}(x_{n+1})_n\right).$$

(3.15)

The conditional expectation of the LHS of (3.15), given x_n, is $M_n^{(i+1)}(x_n)_n$ and that of the RHS is $M_n^{(i)}(x_n)_n$. Thus we have established that $M_n^{(i+1)}(x_n)_n \leq M_n^{(i)}(x_n)_n$ for all $i=1,2,\ldots$, all $n=1,2,\ldots$, and all x_n. Q.E.D.

Define the boundary values

$$b_n^{(j)}(x_n) = \min\left\{\frac{C_2p - M_n^{(j-1)}(x_n)_n}{C_1 + C_2p}, 1\right\}, \quad j=1,2,\ldots.$$

(3.16)

When there are only j optional observations it is optimal to stop sampling if $\pi_n(x_n) > b_n^{(j)}(x_n)$. Notice that the inequality $M_n^{(j)}(x_n)_n \leq M_n^{(j-1)}(x_n)_n$ implies that $b_n^{(j)}(x_n)_n \geq b_n^{(j-1)}(x_n)_n$ for all $j=1,2,\ldots$ with probability one. Since the sequences $b_n^{(j)}(x_n)_n$ are bounded from above by 1, $\lim_{j \to \infty} b_n^{(j)}(x_n)_n$ exists for each n and each x_n. Denote these limits by $b_n(x_n)_n$. The stopping rule which calls for stopping if $\pi_n(x_n) > b_n(x_n)_n$ is an optimal solution of the untruncated problem. This is due to the fact that the risk is bounded below by zero (see [1]). We notice in (3.16) that for all n and all x_n, $b_n(x_n)_n \geq C_2p/(C_1 + C_2p)$.

- 7 -
Hence, if \(\pi_n(x_n) < C_2p/(C_1 + C_2p) \) it is optimal to continue. The question is how to determine \(b_n(x_n) \) when \(x_n \) is such that \(\pi_n(x_n) \geq C_2p/(C_1 + C_2p) \).

4. The Case of Known Success Probabilities

Consider the case of known success probabilities \(\theta \) and \(\phi \). This is a special case of the general Bayesian model, in which the prior distribution of \((\theta, \phi) \) is concentrated on a specific point \((\theta_0, \phi_0) \).

This special case can be applied to practical control problems in which a rectification of a process is needed whenever \(\phi \geq \phi_0 \) and the interval \((\theta_0, \phi_0) \) is a "region of indifference." Given \(x_n \), the posterior probability of \(\{ \tau < n \} \) for this special model is:

\[
\pi_n(x_n) = 1 - \frac{(1-n_0)(1-p)^{n-1}}{\pi_0(\rho_1)^n \omega^n + (1-n_0) p \sum_{j=1}^{n-1} (1-p)^{j-1} (\rho_1)^{n-j-1} \omega^{n-j} + (1-n_0)(1-p)^{n-1}}
\]

(4.1)

where \(\rho_1 = \phi_0/(1-\phi_0) \), \(\rho_0 = \theta_0/(1-\theta_0) \), and \(\omega = (1-\phi_0)/(1-\theta_0) \).

Let \(\bar{\pi}_n(x_n) = 1 - \pi_n(x_n) \). We can easily establish the recursive relationship:

\[
\bar{\pi}_{n+1}(x_{n+1}) = \frac{\pi_n(x_n)(1-p)}{(1-n_0)(1-\pi_n(x_n)) p(\rho_1)^{\bar{\pi}_{n+1}}} \omega + \bar{\pi}_n(x_n)(1-p)
\]

(4.2)

This recursive relationship shows that when \(\theta \) and \(\phi \) are known, the \(\{ \pi_n(x_n); n \geq 1 \} \) process is Markovian. In order to determine the value of \(\pi_{n+1}(x_{n+1}) \) it is sufficient to know the value of \(\pi_n(x_n) \) and the
value of x_{n+1}. Let $\pi_n(x) = \pi$ and $X_{n+1} = Y$, and let

$$\psi(\pi,Y) = \frac{Z^n \omega(\pi + (1-\pi)p)}{Z^n \omega(\pi + (1-\pi)p) + (1-\pi)(1-p)}, \quad (4.3)$$

where $Z = \rho_1/\rho_0$ and $\psi(\pi,Y)$ is $\pi_{n+1}(x,Y)$ as a function of π and Y.

Thus, the sequence $\{\pi_n(x); n \geq 1\}$ is a stationary Markov sequence in the sense that, given $\pi_n(x) = \pi$ the distribution $\pi_{n+k}(x,Y)$ for all $k \geq 1$ is independent of n. Furthermore, one can readily prove that $\{\pi_n(x); n \geq 1\}$ is a submartingale with respect to the Bayes predictive distributions of x_n for all $n \geq 1$ [see the denominator on the RHS of (4.1)].

Thus, with respect to these Bayes predictive distributions, $\pi_n(x) \rightarrow 1$ a.s. (see Sirjaev [2, p. 153]). We provide in the following lemma a proof for our specific problems which establishes the convergence of $\pi_n(x)$ to one whenever a shift occurs at a fixed finite time point $\tau = k$. The convergence established in Lemma 2 is with respect to a sequence of distributions with fixed parameters, while Sirjaev's result is the convergence a.s. with respect to the prior mixtures of such distributions.

Lemma 2: When θ_0 and ϕ_0 are known, and if $\tau = k$ for some $k < \infty$, then $\pi_n(x) \rightarrow 1$ a.s. as $n \rightarrow \infty$.

Proof: Let

$$S_n = \frac{\pi_n(x)}{1 - \pi_n(x)}.$$

It is sufficient to show that $S_n \rightarrow \infty$ a.s. $[\phi_0]$. According to (4.1),

$$S_n = \frac{\pi_0}{1 - \pi_0} \left(\frac{\omega}{1-p} \right)^n Z^n + p \sum_{j=1}^{n-1} \left(\frac{\omega}{1-p} \right)^n Z^{n-j} T^{(n)}. \quad (4.4)$$

Obviously,

$$S_{n+1} = (S_n + p)Z \frac{X}{1-p} \geq S_nZ \frac{X}{1-p};$$

- 9 -
hence
\[S_{n+k} \geq S_k \left(\frac{\omega}{1-p} \right)^n \]
\[= S_k \phi_0 \left(1 - \phi_0 \right)^n \]
\[= \frac{\phi_0}{(1-p)^n} \left(1 - \phi_0 \right)^n \]
\[\theta_0 \]
\[\left(1 - \theta_0 \right)^n \]

The function \(\omega^n (1-\omega)^n \) is maximized by \(\hat{\omega} = \frac{T_n}{n} \). Hence
\[\frac{T(n+k)}{n} \left(1 - \frac{T(n+k)}{n} \right) \geq 1, \] (4.6)
for all \(\theta \in (0,1) \). Finally, since \(\frac{T(n+k)}{n} / \phi_0 \) a.s., one obtains
\[\lim_{n \to \infty} S_{n+k} \geq \lim_{n \to \infty} \frac{S_k}{(1-p)^n} \left(\frac{T(n+k)}{n} \right)^n \]
\[\left(\frac{T(n+k)}{n} \right)^n \left(1 - \frac{T(n+k)}{n} \right) \]
\[\theta_0 \]
\[\left(1 - \theta_0 \right)^n \]
\[= \infty, \ a.s. \ [\phi_0] \].

Q.E.D.

The boundary function for the optimal stopping rule depends on the value of \(\pi \) and does not depend on \(n \). Let \(B(\pi), 0 \leq \pi \leq 1 \), denote the boundary function. The stopping rule requires that sampling be terminated as soon as \(\pi_n (x_n) \geq B(\pi_n (x_n)) \). As proven earlier, \(B(\pi) \geq \pi^* \),
where \(\pi^* = C_2p/c_1 + C_2p \). Let \(M^{(1)}(\pi) \) denote the function \(M^{(1)}(x) \), \(i=1,2,... \) and let \(M(\pi) \) denote the function \(M(x) \) when \(x = \pi \). These functions do not depend on \(n \). The boundary \(B(\pi) \) is defined as

\[
B(\pi) = \min\left(1, \frac{C_2p - M(\pi)}{C_1 + C_2p}\right), \quad 0 \leq \pi \leq 1 .
\] (4.8)

Similarly, for each \(i=1,2,... \) define

\[
B^{(1)}(\pi) = \min\left(1, \frac{C_2p - M^{(1)}(\pi)}{C_2p + C_1}\right).
\] (4.9)

The sequence \(\{B^{(1)}(\pi); i=1,2,...\} \) converges monotonically to \(B(\pi) \) for each \(\pi \). Consider the functions \(M^{(1)}(\pi) \) and \(B^{(1)}(\pi) \).

According to (3.7),

\[
M^{(1)}(\pi) = E\{\min(0, C_1\psi(\pi,x) - C_2p(1 - \psi(\pi,x)))\},
\] (4.10)

where the distribution of \(X \) has the probability function

\[
p(x; \pi) = [\pi + (1-\pi)p]\phi_0^x (1-\phi_0)^{1-x} + (1-\pi)(1-p)_0^x (1-\pi)_0^{1-x}.
\] (4.11)

We can easily verify that for each value of \(X \), \(\psi(\pi,x) \) is a strictly increasing function of \(\pi \) and that \(\psi(\pi,1) > \pi \) for every \(\pi \) in (0,1). Thus, if \(\pi > \pi^* \), then \(\psi(\pi,1) > \pi^* \), and therefore \(C_1\psi(\pi,1) - C_2p(1 - \psi(\pi,1)) \geq 0 \). Hence, for \(\pi > \pi^* \),

\[
M^{(1)}(\pi) = \frac{p_{\pi}(X=0)}{\pi}\left(C_1\psi(\pi,0) - C_2p(1 - \psi(\pi,0))\right),
\] (4.12)

where \(a^- = \min(0, a) \); and \(p_{\pi}(X=0) = \pi(1-\phi_0) + (1-\pi)(1-\phi_0) \). Substituting the formula for \(\psi(\pi,0) \) into (4.6) yields

\[
M^{(1)}(\pi) = \frac{\left[C_1\omega(\pi+p(1-\pi)) - C_2p(1-\pi)(1-p)\right]}{\omega(\pi+p(1-\pi)) + (1-\pi)(1-p)].
\] (4.13)
Notice that \(M^{(1)}(\pi) \) is a continuous function of \(\pi \) and that \(M^{(1)}(\pi) \to 0 \) as \(\pi \to 1 \). Correspondingly, \(B^{(1)}(\pi) \) is a continuous function of \(\pi \) and \(B^{(1)}(\pi) \to \pi^* \) as \(\pi \to 1 \).

According to the recursive equation (3.12),

\[
M^{(2)}(\pi) = \mathbb{E}_\pi \left\{ \left(C_1 \psi(\pi, X) - C_2 \psi(1-\psi(\pi, X)) + M^{(1)}(\psi(\pi, X)) \right)^+ \right\}. \tag{4.14}
\]

Thus, \(M^{(2)}(\pi) \) is a continuous function of \(\pi \). In a close neighborhood of 1, \(M^{(1)}(\psi(\pi, X)) = 0 \) for \(x=0,1 \) and therefore \(M^{(2)}(\pi) = M^{(1)}(\pi) \).

By induction of \(i \) we show that \(M^{(1)}(\pi) \) is a continuous function of \(\pi \) for all \(i=1,2,\ldots \) and that \(M^{(1)}(\pi) \to 0 \) as \(\pi \to 1 \). Correspondingly, all the boundary functions \(B^{(1)}(\pi) \) are continuous and converge to \(\pi^* \) as \(\pi \to 1 \). Thus we can show that \(B(\pi) \) is continuous and converges to \(\pi^* \) as \(\pi \to 1 \). Therefore, there exists a value \(\pi_1 \) such that \(\pi_1 = B(\pi_1) \) and for the first \(n \) at which \(\pi_n(x) \geq \pi_1 \) it is optimal to stop. Sirjaev [2, pp. 149–155] proved this result in a more general context; however, he has not determined the value of \(\pi_1 \). We have shown that in our framework, \(\pi_1 \geq \pi^* \).

5. **Unknown Success Probabilities with Uniform Prior**

In this section we investigate the nature of the decision process when the prior distribution of the unknown \((\theta, \phi) \) is uniform over the simplex \(0 < \theta < \phi < 1 \), i.e., the prior p.d.f. is

\[
h(\theta, \phi) = 2I\{0 < \theta \leq \phi < 1\}. \tag{5.1}
\]

The posterior p.d.f. of \((\theta, \phi)\) is

\[
g(\theta, \phi \mid x_n) = \frac{\sum_{j=0}^{\infty} \psi(j)L(j, \theta, \phi; x_n)}{\mathbb{D}_n(x_n)} \mathbb{I}\{0 < \theta \leq \phi < 1\}. \tag{5.2}
\]
Here

\[
\sum_{j=0}^{\infty} \psi(j) L(j, \theta, \phi; x_n) = \pi \phi^n (1-\phi)^{n-T_n}
\]

\[
+ (1-\pi) \sum_{j=1}^{n-1} (1-p)^{j-1} \theta^j (1-\theta)^{n-j} \phi^{n-j} (1-\phi)^{n-T(n)}
\]

\[
+ (1-\pi)(1-p)^{n-1} \theta^n (1-\theta)^{n-T_n},
\]

and the function \(D_n(x_n)\) is obtained by integrating (5.3) over the range \(0 \leq \theta \leq \phi \leq 1\). Accordingly, we obtain after some algebraic manipulations

\[
D_n(x_n) = \pi B(T_n + 2, n-T_n + 1)
\]

\[
+ (1-\pi) \sum_{j=1}^{n-1} (1-p)^{j-1} B(T^{(n)}_{n-1} + 1, n-j-T^{(n)}_{n-j} + 1) \frac{T^{(n)}_{n-j}}{n-j+2}
\]

\[
+ (1-\pi)(1-p)^{n-1} B(T^+1, n-T^+2),
\]

where \(B(v_1, v_2) = \Gamma(v_1)\Gamma(v_2)/\Gamma(v_1 + v_2)\) is the beta function. The posterior probability \(\pi_n(x_n)\) can be determined by the formula

\[
\pi_n(x_n) = 1 - (1-\pi)(1-p)^{n-1} B(T_n^+ + 1, n-T_n^+ + 2)/D_n(x_n).
\]

If we denote by \(Y\) the result of the \((n+1)\)st trial, and if \(\bar{\pi}_n(x_n) = 1 - \pi_n(x_n)\), then we obtain from (5.5) the expression

\[
\bar{\pi}_{n+1}(x_n, Y) = \frac{(1-p) \bar{\pi}_n(x_n) D_n(x_n) B(T_n + Y, n+3-T_n-Y)}{D_n(x_n, Y) B(T_{n+1}^+, n-T_{n+2})}.
\]

More specifically,

\[
\bar{\pi}_{n+1}(x_n, 1) = (1-p) \bar{\pi}_n(x_n) \frac{T_{n+1}}{n+3} \cdot \frac{D_n(x_n)}{D_{n+1}(x_n, 1)}
\]

and
\[
\bar{\pi}_{n+1}(x_n,0) = (1-p)\bar{\pi}_n(x_n) \frac{n+2-T}{n+3} \cdot \frac{D_n(x_n)}{D_{n+1}(x_n,0)}.
\] (5.8)

From the basic definitions we can establish that
\[
P[x_{n+1} = 1 | x_n] = \frac{D_{n+1}(x_n,1)}{D_n(x_n)}.
\] (5.9)

According to (3.3), the process \(\{\pi_n(x_n); n \geq 1\} \) constitutes a submartingale with respect to the Bayes predictive distributions of \(x_n \).

Thus, \(\lim_{n \to \infty} \pi_n(x_n) \) exists with probability one, and as in Sirjaev [2, p. 155] we can show that \(\lim_{n \to \infty} \pi_n(x_n) = 1 \) a.s., with respect to the Bayes predictive distributions. In the following lemma we prove this convergence for cases of fixed \((\theta_0, \phi_0) \) and \(T = k \) (finite).

Lemma 3: If \(T = k \) for some \(k < \infty \) then \(\pi_n(x_n) \to 1 \) a.s. as \(n \to \infty \).

Proof: We write
\[
\pi_n(x_n) = \int \int P[\tau \leq n-1 | x_n, \theta, \phi] g(\theta, \phi | x_n) d\phi d\theta.
\] (5.10)

We see in (4.7) that as \(n \to \infty \) then \(P[\tau \leq n-1 | x_n, \theta, \phi] \to 1 \) a.s., uniformly in \((\theta, \phi) \). Accordingly, there exists \(N(\delta) \) such that for all \(n \geq N(\delta) \), \(P[\tau \leq n-1 | x_n, \theta, \phi] > 1-\delta \). Thus, from (5.10),
\[
\pi_n(x_n) \geq (1-\delta) \int \int g(\theta, \phi | x_n) d\phi d\theta = 1 - \delta.
\] (5.11)

Q.E.D.

Note that the above proof does not depend on the assumption of the uniform prior distribution of \((\theta, \phi) \).
6. Some Numerical Examples

In this section we provide several numerical illustrations of the stopping rule:

\[N = \text{least } n \geq 1 \text{ such that } \frac{n}{\pi_n} \geq b_1^{(n)}(x_n), \quad (6.1) \]

for the case where \(\theta \) and \(\phi \) have a uniform prior on the simplex \(0 \leq \theta \leq \phi \leq 1 \), and the shift parameter \(\tau \) has a geometric prior distribution. Each illustration is based on an independent simulation of \(X_n \) values, in which \(X_n \) is a Bernoulli random variable with a specified parameter \(\theta \) if \(n \leq \tau \) and with parameter \(\phi \) otherwise. The simulation in a given run is continued until the decision rule calls for stopping. One hundred independent replicas were run in each case, and the empirical frequency distribution of the stopping locations was recorded. In Table 1 we present these frequency distributions for cases in which \(\tau = 10, \pi = 0.01, p = 0.01, \theta = 0.3, \) and \(\lambda = C_1/C_2 = 0.06 \). We varied the parameters \(\phi \) over the range \(0.5 \) to \(1 \) in order to illustrate the effect of \(\phi \) on the speed of detection. The above parameters \(\pi \) and \(p \) were chosen small in order to lessen their effect on the stopping times. The value of \(\lambda \) was chosen sufficiently small to reduce early stopping.

As indicated in Table 1, the distribution of stopping locations after the shift has occurred tends to concentrate near the point of shift as \(\phi \) increases. This is expected, since large values of \(\phi \) frequently yield the value \(x = 1 \). On the whole, it seems that the stopping rule (6.1) is sensitive and its performance can be controlled by varying the parameters \(\pi, p, \) and \(\lambda \). The number of replicas on which Table 1 is based is too small for definitive comparisons of the stopping time distributions. To establish these distributions more accurately, either extensive simulations or a different numerical approach is needed.
TABLE 1

EMPIRICAL FREQUENCY DISTRIBUTIONS
OF STOPPING RULE (6.1)

<table>
<thead>
<tr>
<th>n</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>13</td>
<td>12</td>
<td>7</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>8</td>
<td>15</td>
<td>23</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[a\] In one case here the decision rule did not call for stopping even after 30 observations.
REFERENCES

THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research
Library
Vice President H. F. Bright
Dean Harold Liebowitz
Mr. J. Frank Doubleday

ONR
Chief of Naval Research
(Codes 200, 430D, 1021P)
Resident Representative

OPNAV
OP-40
DCNO, Logistics
Navy Dept Library
OP-911
OP-964

Naval Aviation Integrated Log Support

NAVCOSSACT

Naval Cmd Sys Sup Activity Tech Library

Naval Electronics Lab Library

Naval Facilities Eng Cmd Tech Library

Naval Ordnance Station
Louisville, Ky.
Indian Head, Md.

Naval Ordnance Sys Cmd Library

Naval Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco

Naval Research Lab
Tech Info Div
Library, Code 2029 (ONRL)

Naval Ship Engng Center
Hyattsville, Md.

Naval Ship Res & Dev Center

Naval Sea Systems Command
Tech Library
Code 073

Naval Supply Systems Command
Library
Capt W. T. Nash

Naval War College Library
Newport

BUPERS Tech Library

FMSO

Integrated Sea Lift Study

USN Ammco Depot Earle

USN Postgrad School Monterey
Library
Dr. Jack R. Borsting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D

Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer

Armed Forces Industrial College

Armed Forces Staff College

Army War College Library
Carlisle Barracks

Army Cmd & Gen Staff College

US Army HQ
LTC George L. Slyman
Army Trans Mat Command

Army Logistics Mgmt Center
Fort Lee

Commanding Officer, USALDSRA
New Cumberland Army Depot

US Army Inventory Res Ofc
Philadelphia

HQ, US Air Force
AFADS-3

Griffiss Air Force Base
Reliability Analysis Center

Maxwell Air Force Base
Library

Wright Patterson Air Force Base
HQ, AF Log Command
Research Sch Log

Defense Documentation Center

National Academy of Science
Maritime Transportation Res Board Library

National Bureau of Standards
Dr. W. C. Cannon
Dr Joan Rosenblatt

National Science Foundation

National Security Agency

WSEG

British Navy Staff

Logistics, OR Analysis Establishment
National Defense Hqtrs, Ottawa

American Power Jet Co
George Chernowitz

ARCON Corp

General Dynamics, Pomona

General Research Corp
Dr Hugh Cole
Library

Planning Research Corp
Los Angeles

Rand Corporation
Library

Carnegie-Mellon University
Dean H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof John R. Isbell
Prof M. Mesyrovic
Prof S. Zacks

Cornell University
Prof R. E. Bechhofer
Prof R. W. Conway
Prof J. Kiefer
Prof Andrew Schultz, Jr.

Cowles Foundation for Research
Library
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof R. A. Bradley

Harvard University
Prof K. J. Arrow
Prof W. G. Cochran
Prof Arthur Schleifer, Jr.

New York University
Prof O. Morgenstern

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson
<table>
<thead>
<tr>
<th>University</th>
<th>Faculty/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdue University</td>
<td>Prof S. S. Gupta</td>
</tr>
<tr>
<td></td>
<td>Prof H. Rubin</td>
</tr>
<tr>
<td></td>
<td>Prof Andrew Whinston</td>
</tr>
<tr>
<td>Stanford</td>
<td>Prof T. W. Anderson</td>
</tr>
<tr>
<td></td>
<td>Prof G. B. Dantzig</td>
</tr>
<tr>
<td></td>
<td>Prof F. E. Hillier</td>
</tr>
<tr>
<td></td>
<td>Prof D. L. Eglehart</td>
</tr>
<tr>
<td></td>
<td>Prof Samuel Karlin</td>
</tr>
<tr>
<td></td>
<td>Prof G. J. Lieberman</td>
</tr>
<tr>
<td></td>
<td>Prof Herbert Solomon</td>
</tr>
<tr>
<td></td>
<td>Prof A. F. Veniott, Jr.</td>
</tr>
<tr>
<td>University of California, Berkeley</td>
<td>Prof R. E. Barlow</td>
</tr>
<tr>
<td></td>
<td>Prof D. Gale</td>
</tr>
<tr>
<td></td>
<td>Prof Rosendith Sitgreaves</td>
</tr>
<tr>
<td></td>
<td>Prof L. M. Tichvinsky</td>
</tr>
<tr>
<td>University of California, Los Angeles</td>
<td>Prof J. R. Jackson</td>
</tr>
<tr>
<td></td>
<td>Prof Jacob Marschak</td>
</tr>
<tr>
<td></td>
<td>Prof R. R. O'Neill</td>
</tr>
<tr>
<td></td>
<td>Numerical Analysis Res Librarian</td>
</tr>
<tr>
<td>University of North Carolina</td>
<td>Prof W. L. Smith</td>
</tr>
<tr>
<td></td>
<td>Prof M. R. Leadbetter</td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td>Prof Russell Ackoff</td>
</tr>
<tr>
<td></td>
<td>Prof Thomas L. Satty</td>
</tr>
<tr>
<td>University of Texas</td>
<td>Prof A. Charnes</td>
</tr>
<tr>
<td>Yale University</td>
<td>Prof F. J. Anscombe</td>
</tr>
<tr>
<td></td>
<td>Prof I. R. Savage</td>
</tr>
<tr>
<td></td>
<td>Prof M. J. Sobel</td>
</tr>
<tr>
<td></td>
<td>Dept of Admin Sciences</td>
</tr>
<tr>
<td>Prof Z. W. Birnbaum</td>
<td>University of Washington</td>
</tr>
<tr>
<td>Prof B. H. Bissinger</td>
<td>The Pennsylvania State University</td>
</tr>
<tr>
<td>Prof Seth Boder</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>Prof G. E. P. Boe</td>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>Dr. Jerome Bracken</td>
<td>Institute for Defense Analyses</td>
</tr>
<tr>
<td>Prof H. Chernoff</td>
<td>MIT</td>
</tr>
<tr>
<td>Prof Arthur Cohen</td>
<td>Rutgers - The State University</td>
</tr>
<tr>
<td>Mr Wallace M. Cohen</td>
<td>US General Accounting Office</td>
</tr>
<tr>
<td>Prof C. Derman</td>
<td>Columbia University</td>
</tr>
<tr>
<td>Prof Paul S. Dwyer</td>
<td>Mackinaw City, Michigan</td>
</tr>
<tr>
<td>Prof Saul J. Easter</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Dr Donald P. Gaver</td>
<td>Carmel, California</td>
</tr>
<tr>
<td>Dr Murray A. Geisler</td>
<td>Logistics Mgmt Institute</td>
</tr>
<tr>
<td>Prof J. F. Hannan</td>
<td>Michigan State University</td>
</tr>
<tr>
<td>Prof H. O. Hartley</td>
<td>Texas A & M Foundation</td>
</tr>
<tr>
<td>Mr Gerald F. Heim</td>
<td>NASA, Lewis Research Center</td>
</tr>
<tr>
<td>Prof W. M. Hirsch</td>
<td>Courant Institute</td>
</tr>
<tr>
<td>Dr Alan J. Hoffman</td>
<td>IBM, Yorktown Heights</td>
</tr>
<tr>
<td>Dr Rudolf Husner</td>
<td>University of Bern, Switzerland</td>
</tr>
<tr>
<td>Prof J. H. K. Kao</td>
<td>Polytech Institute of New York</td>
</tr>
<tr>
<td>Prof W. Krukal</td>
<td>University of Chicago</td>
</tr>
<tr>
<td>Prof C. E. Lemke</td>
<td>Rensselaer Polytech Institute</td>
</tr>
<tr>
<td>Prof Loynes</td>
<td>University of Sheffield, England</td>
</tr>
<tr>
<td>Prof Steven, Nahmas</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Prof D. B. Owen</td>
<td>Southern Methodist University</td>
</tr>
<tr>
<td>Prof E. Parzen</td>
<td>State University New York, Buffalo</td>
</tr>
<tr>
<td>Prof H. O. Posten</td>
<td>University of Connecticut</td>
</tr>
<tr>
<td>Prof R. Remage, Jr.</td>
<td>University of Delaware</td>
</tr>
<tr>
<td>Dr Fred Rigby</td>
<td>Texas Tech College</td>
</tr>
<tr>
<td>Mr David Rosenblatt</td>
<td>Washington, D. C.</td>
</tr>
<tr>
<td>Prof M. Rosenblatt</td>
<td>University of California, San Diego</td>
</tr>
<tr>
<td>Prof Alan J. Rowe</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>Prof A. H. Rubenstein</td>
<td>Northwestern University</td>
</tr>
<tr>
<td>Dr M. E. Selvex</td>
<td>West Los Angeles</td>
</tr>
<tr>
<td>Prof Edward A. Silver</td>
<td>University of Waterloo, Canada</td>
</tr>
<tr>
<td>Prof R. M. Thrall</td>
<td>Rice University</td>
</tr>
<tr>
<td>Dr S. Vajda</td>
<td>University of Sussex, England</td>
</tr>
<tr>
<td>Prof T. M. Whitin</td>
<td>Wesleyan University</td>
</tr>
<tr>
<td>Prof Jacob Wolfowitz</td>
<td>University of Illinois</td>
</tr>
<tr>
<td>Mr Marshall K. Wood</td>
<td>National Planning Association</td>
</tr>
<tr>
<td>Prof Max A. Woodbury</td>
<td>Duke University</td>
</tr>
</tbody>
</table>

May 1976