STUDENTS FACULTY STUDY RESEARCH DEVELOPMENT FUTURE CAREER CREATIVITY COMMUNITY LEADERSHIP TECHNOLOGY FRONTIER DESIGN ENGINEERING APPLIED SCIENCE GEORGE WASHINGTON UNIVERSITY
A REEXAMINATION OF THE ADAPTIVE EXPECTATIONS HYPOTHESIS WHEN APPLIED TO A COBWEB MODEL

by

Barry D. Nussbaum
Nozer D. Singpurwalla

Serial T-355
31 May 1977

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.
A REEXAMINATION OF THE ADAPTIVE EXPECTATIONS HYPOTHESIS WHEN APPLIED TO A COBWEB MODEL,

BARRY D. NUSSBAUM

NOZR D. SINGPURWALLA

THE GEORGE WASHINGTON UNIVERSITY

PROGRAM IN LOGISTICS

WASHINGTON, D.C. 20037

OFFICE OF NAVAL RESEARCH

CODE 430D

ARLINGTON, VIRGINIA 22217

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

<table>
<thead>
<tr>
<th>COBWEB MODEL</th>
<th>TIME SERIES PROCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAPTIVE EXPECTATION HYPOTHESIS</td>
<td>EXPONENTIALLY WEIGHTED MOVING</td>
</tr>
<tr>
<td>FORECAST FUNCTION</td>
<td>AVERAGE PROCESS</td>
</tr>
<tr>
<td>DYNAMIC SIMULTANEOUS EQUATION MODEL</td>
<td>RATIONAL EXPECTATION HYPOTHESIS</td>
</tr>
</tbody>
</table>

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

In this note we point out a certain type of inconsistency which appears when the familiar adaptive expectations hypothesis is applied to the supply equation of a basic cobweb model with a simple error structure. We show that there is a difference between the minimum mean square error forecast function of the price (when the price is viewed as a stationary time series process) and the implicit assumption of the adaptive expectations hypothesis. We show that the inconsistency disappears when a certain...

(Continued)
condition is satisfied by the model parameters. Thus, for a cobweb model with an error structure, the parameter space in which the adaptive expectations hypothesis is meaningful is diminished.
A REEXAMINATION OF THE ADAPTIVE EXPECTATIONS HYPOTHESIS WHEN APPLIED TO A COBWEB MODEL

by

Barry D. Nussbaum*
Nozer D. Singpurwalla

In this note we point out a certain type of inconsistency which appears when the familiar adaptive expectations hypothesis is applied to the supply equation of a basic cobweb model with a simple error structure. We show that there is a difference between the minimum mean square error forecast function of the price (when the price is viewed as a stationary time series process) and the implicit assumption of the adaptive expectations hypothesis. We show that the inconsistency disappears when a certain condition is satisfied by the model parameters. Thus, for a cobweb model with an error structure, the parameter space in which the adaptive expectations hypothesis is meaningful is diminished.

*U.S. Environmental Protection Agency

Research Sponsored by
Office of Naval Research
1. **Introduction**

The compatibility between dynamic simultaneous equation econometric models and autoprojective methods was pointed out in an earlier paper [Nussbaum and Singpurwalla (1977)]. In that paper we show that two versions of the familiar cobweb model are compatible with an autoregressive process of the first order. We also point out other advantages of viewing these models in terms of their associated time series (stochastic) process.

In this note we discuss Nerlove's (1958) modification to the cobweb model, and demonstrate, by looking at the modified model as a time series process, that a certain inconsistency arises. This strengthens our thesis that further insight into the structure of economic models can be obtained by looking at the associated time series processes.

2. **The Cobweb Model**

We discussed the cobweb model in our earlier paper. Here we shall reproduce the more important aspects so that we may facilitate an analysis of Nerlove's modification.
Briefly, the cobweb model is used as our introductory model to explain supply-demand dynamics. It portrays the agricultural sector of a competitive economy. It states that farmers generate the quantity of a perishable product to be supplied next period as a function of this period's price. Thus,

\[Q^S_t = \alpha + \beta P_{t-1} , \]

where

\[Q^S_t = \text{quantity supplied in period } t \]
\[P_t = \text{market price in period } t. \]

The demanders of the commodity, on the other hand, determine the quantity desired at time \(t \) as a function of the current (time \(t \)) price as follows:

\[Q^D_t = \gamma + \delta P_t , \]

when

\[Q^D_t = \text{quantity demanded in period } t. \]

By economic considerations, the signs of \(\alpha, \beta, \) and \(\gamma \) are assumed positive. The sign of \(\delta \) is assumed negative. To the above behavioral relationships, a clearing equation identity is added as follows:

\[Q^S_t = Q^D_t. \]

A minor variant of the basic cobweb model was also considered in the earlier paper. This variant suggested that quantity decisions be regarded as a function of the change in price between successive periods. This resulted in a modified supply equation as follows:

\[Q^S_t = \alpha + \beta (P_{t-1} - P_{t-2}) , \]

and a modified demand equation

\[Q^D_t = \gamma + \delta (P_t - P_{t-1}) . \]

The clearing equation (2.3) is still presumed to hold.
We showed that the only difference between the original cobweb model and this variant is that all results for the cobweb model held with the replacement of $P_t - P_{t-1}$ for P_t.

To incorporate a probabilistic structure to the model, random disturbances u_t and v_t were then imposed on Equations (2.1) and (2.2), respectively. Under certain assumptions on u_t and v_t, we were able to demonstrate that the price series was an autoregressive process of order 1. Specifically, the assumptions on u_t and v_t were:

1. u_t and v_t are both normally distributed with mean zero and variances σ_u^2 and σ_v^2, respectively;
2. $E[u_t u_{t-j}] = E[v_t v_{t-j}] = 0$ for all t and $j > 0$, thus the individual disturbances are independent;
3. $E[u_t v_{t-j}] = 0$ for all t and j, thus the u_t and the v_t are mutually independent.

The form of the resultant autoregressive process (for large t) was:

$$
\Delta p_t = \frac{\alpha - \gamma}{\delta} + \frac{\beta}{\delta} p_{t-1} + \frac{u_t - v_t}{\delta}.
$$

If the minor variant is considered, then the form of the process becomes

$$
\Delta p_t = \frac{\alpha - \gamma}{\delta} + \frac{\beta}{\delta} \Delta p_{t-1} + \frac{u_t - v_t}{\delta}.
$$

where $\Delta p_t = p_t - p_{t-1}$.

An important property of the autoregressive process of order 1 is its forecast function. The price series p_t has a minimum mean square error forecast [cf. Box and Jenkins (1970)] of

$$
\hat{p}_{t+k} = p^* + (p_t - p^*)(\frac{\beta}{\delta})^k,
$$

- 3 -
where \hat{p}_{t+k} is the forecast at time t for time $t+k$, and p^* is the equilibrium value of price. For the cobweb model, the value of p^* is

$$p^* = \frac{\alpha - \gamma}{\delta - \beta}.$$

In particular, we will find it important to know the one-step-ahead forecast. Thus, if we are at time $t-1$ and wish to forecast the price at time t, our best forecast would be

$$\hat{p}_t = p^* + (p_{t-1} - p^*) \frac{\beta}{\delta} = p^*(1 - \frac{\beta}{\delta}) + \frac{\beta}{\delta} p_{t-1} = \frac{\alpha - \gamma}{\alpha - \beta} \frac{\delta - \beta}{\delta} p_{t-1} + \frac{\beta}{\delta} p_{t-1};$$

thus,

$$\hat{p}_t = \frac{\alpha - \gamma}{\delta} + \frac{\beta}{\delta} p_{t-1}.$$

3. **The Adaptive Expectation Modification**

Nerlove (1958) proposed a modification to the cobweb model in an attempt to enlarge the scope of the model. He suggested that the supply equation (2.1) should not be a function of last period's price, but rather a function of this period's expected (forecasted) price. This expected price is a subjective forecast which is a function of the previous period's price and the error made in forecasting the last period's price.

This scheme is known as the "adaptive expectations hypothesis," since price estimates are adapted in proportion to previous forecasting errors. The forecasted price in this period, \hat{p}_t, is the forecasted price in the previous period, \hat{p}_{t-1}, adjusted by a proportion of the error made in predicting last period's price, $p_{t-1} - \hat{p}_{t-1}$.

Thus, according to Nerlove

$$\hat{p}_t = \hat{p}_{t-1} + (1 - \lambda)(p_{t-1} - \hat{p}_{t-1}),$$

where λ is a constant such that $0 < \lambda < 1$. Equivalently,
\[\hat{p}_t = \lambda \hat{p}_{t-1} + (1-\lambda)p_{t-1}. \]

(3.1)

An important outcome of Nerlove's modification is that the parameter space for which the price is stationary is enlarged. Note [Nussbaum and Singpurwalla (1977)] that in the original cobweb model the price series is stationary only when \(|\frac{\beta}{\delta}| < 1 \). For Nerlove's modification, it can be shown [Nerlove (1958), Wallis (1972)] that when \(\beta > 0 \), \(\delta < 0 \), and when

\[0 < -\frac{\delta + \beta}{\delta - \beta} < \lambda < 1, \]

the resultant price series is stationary even if \(|\frac{\beta}{\delta}| > 1 \). In this note, we shall argue that even though the price series is stationary for the enlarged parameter space, a certain kind of inconsistency creeps up, suggesting a reconsideration of the enlarged space.

It is easy to show [cf. Nerlove (1958)] that the adaptive expectation hypothesis leads us to the following equation for the price series:

\[p_t = \frac{(1-\lambda)(\alpha - \gamma)}{\delta} + \left[\frac{\beta}{\delta} (1-\lambda) + \lambda \right] p_{t-1} + \frac{\eta_t}{\delta}, \]

(3.2)

where \(\eta_t = (u_t - v_t) - \lambda(u_{t-1} - v_{t-1}) \).

Since \(\eta_t \) involves the terms \(u_t, u_{t-1}, v_t, \) and \(v_{t-1}, \) it is easy to verify that \(E(\eta_t \eta_{t-1}) \neq 0 \), but that \(E(\eta_t \eta_{t-k}) = 0 \), for \(k \geq 2 \). Furthermore, if we let \(w_t = (u_t - v_t)/\delta \), then Equation (3.2) can be written as

\[p_t - \left[\frac{\beta}{\delta} (1-\lambda) + \lambda \right] p_{t-1} = \frac{(1-\lambda)(\alpha - \gamma)}{\delta} + w_t - \lambda w_{t-1}, \]

where the \(w_t \)'s are independent and identically distributed. If we identify \(\frac{\beta}{\delta} (1-\lambda) + \lambda \) with \(\phi_1 \), \(\lambda \) with \(\theta_1 \), and \(\frac{(1-\lambda)(\alpha - \gamma)}{\delta} \) with a constant \(\mu \), then the above equation for \(p_t \) is of the form

\[(1 - \phi_1 B)p_t = \mu + (1 - \theta_1 B)w_t, \]
where B is the backward shift operator.

Clearly then, Equation (3.2) represents, in the terminology of Box and Jenkins, an ARIMA ($1,0,1$) process. This process is stationary if

$$|\frac{\beta}{\delta} (1-\lambda) + \lambda| < 1,$$

and thus for certain values of λ we can have

$$|\frac{\beta}{\delta}| > 1.$$ Note that when $\beta = \delta$, the P_t process is not stationary for any value of λ; however, the differenced process $\Delta P_t = P_t - P_{t-1}$ is stationary.

4. The Inconsistency of the Adaptive Expectations Hypothesis

Following the well-known results on the minimum mean square error forecasts for the ARIMA ($1,0,1$) process, a forecast of the price at time t made from origin $(t-1)$ is

$$\hat{p}_t = \left[\frac{\beta}{\delta} (1-\lambda) + \lambda\right] p_{t-1} - \lambda w_{t-1}.$$ The residuals w_t are the one-step-ahead forecast errors; that is,

$$w_{t-1} = p_{t-1} - \hat{p}_{t-1}.$$ Substituting the above in the expression for P_t, we obtain

$$\hat{p}_t = \left[\frac{\beta}{\delta} (1-\lambda)\right] p_{t-1} + \lambda \hat{p}_{t-1}$$

as the minimum mean square error forecast for the price series.

A comparison of Equations (3.1) and (3.3) demonstrates the point of this note. Equation (3.1) represents a forecast for the price as suggested by Nerlove under the adaptive expectations hypothesis. When the adaptive expectations hypothesis is incorporated into the cobweb model, and the resultant price series process is considered, then the minimum mean square error forecast is given by Equation (3.3). Since for $\beta \neq \delta$ the expressions given by Equations (3.1) and (3.3) are different, we claim that a certain type of inconsistency exists in the system. Furthermore,
if in an effort to correct the situation the expression given by Equation (3.3) were incorporated into the model instead of the adaptive expectations hypothesis, the minimum mean square error forecast would be

$$\hat{P}_t = \left[(\frac{\delta}{\beta})^2 (1-\lambda) \right] P_{t-1} + \lambda \hat{P}_{t-1};$$

for $\beta \neq \delta$, the inconsistency therefore persists. Moreover, it is easy to verify that any adaptive expectations hypothesis of the form

$$\hat{P}_t = A\hat{P}_{t-1} + BP_{t-1},$$

where A and B are constants, would lead us to a minimum mean square error forecast of the type

$$\hat{P}_t = A\hat{P}_{t-1} + \frac{\beta}{\delta} BP_{t-1}.$$

Therefore, for this general form the inconsistency remains.

For $\beta = \delta$, Equations (3.1) and (3.3) are identical, and the inconsistency disappears. However, under this condition, the price series P_t becomes non-stationary. Fortunately, the differenced series $VP_t = P_t - P_{t-1}$ is a stationary moving average process for which the minimum mean square error forecast is precisely that given by Equation (3.1).

In summary, we claim that a modification to the cobweb model based on the adaptive expectations hypothesis (or variants of it) leads us to an inconsistency with respect to the minimum mean square error forecast when $\beta = \delta$. Thus, when an error structure is imposed on the cobweb model, the adaptive expectations hypothesis is consistent with the minimum mean square error forecast only when $\beta = \delta$. This reflects a considerable reduction of the original parameter space.

5. Some Concluding Remarks

We note that Equation (3.1) also represents the one-step-ahead forecast function for an ARIMA (0,1,1) process. Such a process is commonly called an "exponentially weighted moving average process," and can be written as
\[p_\tau - p_{\tau-1} = a_\tau - \lambda a_{\tau-1}, \]

where \(a_\tau \) is a random shock, i.e., a normally distributed random variable with zero mean and constant variance. For this process, exponential smoothing is an optimum method for generating minimum mean square error forecasts.

It is quite possible that in empirical work the differences between the forecasts from an exponentially weighted moving average process and a mixed autoregressive moving average process are not that significant. In fact, Box and Jenkins (1970) discuss the fact that an autoregressive process of order 1 with parameter \(\beta \) close to one would behave very much like an exponentially weighted moving process with parameter \(\lambda \) close to zero. Also, Anderson (1975) discusses difficulties in the identification between an ARIMA (1,0,0) process and an ARIMA (0,1,1) process. Thus, for purposes of forecasting the price, the particular model selected becomes less and less important.

While it may not be crucial in empirical work, it is the purpose of this paper to point out that when \(\beta \neq \delta \), a logical inconsistency arises if the adaptive expectations hypothesis is applied to the cobweb model, and if the minimum mean square error forecast criteria is considered.

We should also point out that the adaptive expectations hypothesis is not the only modification ever suggested to improve the cobweb model. Muth (1961) has suggested the principle of rational expectations. Muth suggests that information is a scarce commodity, and all information is considered before forecasts are made. The adaptive expectations hypothesis therefore becomes a subset of the rational expectations hypothesis. The ramifications of this principle are not examined in this note. However, the results of this note motivate us to look for hypotheses of the type considered by Nerlove which would lead us to enlarged parameter spaces, and which do not violate any requirements of consistency.
REFERENCES

THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research
Library
Vice President H. F. Bright
Dean Harold Liebowitz
Mr. J. Frank Doubleday

ONR
Chief of Naval Research
(Codes 200, 430D, 1021P)
Resident Representative

OPNAV
OP-40
DCNO, Logistics
Navy Dept Library
OP-911
OP-964

Naval Aviation Integrated Log Support

NAVCOSSACT

Naval Cmd Sys Sup Activity Tech Library

Naval Electronics Lab Library

Naval Facilities Eng Cmd Tech Library

Naval Ordnance Station
Louisville, Ky.
Indian Head, Md.

Naval Ordnance Sys Cmmd Library

Naval Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco

Naval Research Lab
Tech Info Div
Library, Code 2029 (ONRL)

Naval Ship Engng Center
Hyattsville, Md.

Naval Ship Res & Dev Center

Naval Sea Systems Command
Tech Library
Code 073

Naval Supply Systems Command
Library
Capt W. T. Nash

Naval War College Library
Newport

BUPERS Tech Library

FMSO

Integrated Sea Lift Study

USN Ammo Depot Earle

USN Postgrad School Monterey
Library
Dr. Jack R. Borsting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D

Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer

Armed Forces Industrial College

Armed Forces Staff College

Army War College Library
Carlisle Barracks

Army Cmmd & Gen Staff College

US Army HQ

LTC George L. Slyman
Army Trans Mat Command

Army Logistics Mgmt Center
Fort Lee
Commanding Officer, USAIDSRA
New Cumberland Army Depot
US Army Inventory Res Ofc
Philadelphia

HQ, US Air Force
AFADS-3

Griffiss Air Force Base
Reliability Analysis Center

Maxwell Air Force Base Library

Wright Patterson Air Force Base
HQ, AF Log Command
Research Sch Log

Defense Documentation Center

National Academy of Science
Maritime Transportation Res Board Library

National Bureau of Standards
Dr E. W. Cannon
Dr Joan Rosenblatt

National Science Foundation

National Security Agency

WSEG

British Navy Staff

Logistics, OR Analysis Establishment
National Defense Hqtrs, Ottawa

American Power Jet Co
George Chernowitz

ARCON Corp

General Dynamics, Pomona

General Research Corp
Dr Hugh Cole

Planning Research Corp
Los Angeles

Rand Corporation

Library

Carnegie-Mellon University
Dean H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof John R. Isbell
Prof M. Mesarovic
Prof S. Zacks

Cornell University
Prof R. E. Bechhofer
Prof R. W. Conway
Prof J. Kiefer
Prof Andrew Schultz, Jr.

Cowles Foundation for Research

Library
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof R. A. Bradley

Harvard University
Prof K. J. Arrow
Prof W. G. Cochran
Prof Arthur Schlesifer, Jr.

New York University
Prof O. Morgenstern

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson
Purdue University
Prof S. S. Gupta
Prof H. Rubin
Prof Andrew Whinston

Stanford
Prof T. W. Anderson
Prof G. B. Dantzig
Prof F. S. Hillier
Prof D. L. Iglehart
Prof Samuel Karlin
Prof G. J. Lieberman
Prof Herbert Solomon
Prof A. F. Veinott, Jr.

University of California, Berkeley
Prof R. E. Barlow
Prof D. Gale
Prof Rosedith Sitgreaves
Prof L. M. Tichvinsky

University of California, Los Angeles
Prof J. R. Jackson
Prof Jacob Marschak
Prof R. R. O'Neill
Numerical Analysis Res Librarian

University of North Carolina
Prof W. L. Smith
Prof M. R. Leadbetter

University of Pennsylvania
Prof Russell Ackoff
Prof Thomas L. Saaty

University of Texas
Prof A. Charnes

Yale University
Prof F. J. Anscombe
Prof J. R. Savage
Prof M. J. Sobel
Dept of Admin Sciences

Prof Z. W. Birnbaum
University of Washington

Prof B. H. Bissinger
The Pennsylvania State University

Prof Seth Bonder
University of Michigan

Prof G. E. P. Box
University of Wisconsin

Dr. Jerome Bracken
Institute for Defense Analyses

Prof H. Chernoff
MIT

Prof Arthur Cohen
Rutgers – The State University

Mr Wallace M. Cohen
US General Accounting Office

Prof C. Derman
Columbia University

Prof Paul S. Dwyer
Mackinaw City, Michigan

Prof Saul I. Gass
University of Maryland

Dr Donald P. Gaver
Carmel, California

Dr Murray A. Geisler
Logistics Mgmt Institute

Prof J. F. Hannan
Michigan State University

Prof H. O. Hartley
Texas A & M Foundation

Mr Gerald F. Hein
NASA, Lewis Research Center

Prof W. M. Hirsch
Courant Institute

Dr Alan J. Hoffman
IBM, Yorktown Heights

Dr Rudolf Husser
University of Bern, Switzerland

Prof J. H. K. Kao
Polytech Institute of New York

Prof W. Kruskal
University of Chicago

Prof C. E. Lemke
Rensselaer Polytech Institute

Prof Loynes
University of Sheffield, England

Prof Steven, Nahmias
University of Pittsburgh

Prof D. B. Owen
Southern Methodist University

Prof E. Parzen
State University New York, Buffalo

Prof H. O. Posten
University of Connecticut

Prof R. Remage, Jr.
University of Delaware

Dr Fred Rigby
Texas Tech College

Mr David Rosenblatt
Washington, D. C.

Prof M. Rosenblatt
University of California, San Diego

Prof Alan J. Rowe
University of Southern California

Prof A. H. Rubenstein
Northwestern University

Dr M. E. Salveson
West Los Angeles

Prof Edward A. Silver
University of Waterloo, Canada

Prof R. M. Thrall
Rice University

Dr S. Vajda
University of Sussex, England

Prof T. M. Whitin
Wesleyan University

Prof Jacob Wolfowitz
University of Illinois

Mr Marshall K. Wood
National Planning Association

Prof Max A. Woodbury
Duke University

May 1976