UNCLASSIFIED

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

WEAPONS RESEARCH ESTABLISHMENT

TECHNICAL MEMORANDUM 1788(W)

UPPER ATMOSPHERE RESEARCH BIBLIOGRAPHY OF CONTAMINANT RELEASE EXPERIMENTS PART 3

C.H. Low and K.H. Lloyd

SUMMARY

This is the last in an occasional series listing the publications involving the experimental technique of releasing vapour clouds into the upper atmosphere. All aspects of the technique are included, as are all applications to the determination of neutral atmosphere and ionospheric parameters.

March 1977

Approved for Public Release

Technical Memoranda are of a tentative nature, representing the views of the author(s), and do not necessarily carry the authority of this Establishment.

POSTAL ADDRESS: The Director, Weapons Research Establishment, Box 2151, G.P.O., Adelaide, South Australia, 5001.

UNCLASSIFIED
DOCUMENT CONTROL DATA SHEET

Security classification of this page: UNCLASSIFIED

<table>
<thead>
<tr>
<th>DOCUMENT NUMBERS</th>
<th>SECURITY CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR Number: AR-000-524</td>
<td>Complete Document: UNCLASSIFIED</td>
</tr>
<tr>
<td>Report Number:</td>
<td>Title in Isolation: UNCLASSIFIED</td>
</tr>
<tr>
<td>Other Numbers: WRE-TM-1788(W)</td>
<td>Summary in Isolation: UNCLASSIFIED</td>
</tr>
</tbody>
</table>

TITLE: UPPER ATMOSPHERE RESEARCH BIBLIOGRAPHY OF CONTAMINANT RELEASE EXPERIMENTS - PART 3

PERSONAL AUTHOR(S):
- C.H. Low
- K.H. Lloyd

DOCUMENT DATE: March 1977

TOTAL NUMBER OF PAGES: 12

CORPORATE AUTHOR(S):
- Weapons Research Establishment

DOCUMENT (WING) SERIES AND NUMBER: Australian Project

IMPRINT (Publishing establishment): Weapons Research Establishment

RELEASE LIMITATIONS (of the document): Approved for Public Release

OVERSEAS NO. P.R. 1 A B C D E

COST CODE:

REFERENCE NUMBERS
- Task: 61/3
- Sponsoring Agency: RD73

COMPUTER PROGRAM(S)
- (Title(s) and language(s))

RELEASE LIMITATIONS (of the document):

Security classification of this page: UNCLASSIFIED
This is the last in an occasional series listing the publications involving the experimental technique of releasing vapour clouds into the upper atmosphere. All aspects of the technique are included, as are all applications to the determination of neutral atmosphere and ionospheric parameters.
TABLE OF CONTENTS

1. INTRODUCTION .. 1

3. UPPER ATMOSPHERE MEASUREMENTS (OPEN LITERATURE) 1 - 21
 3.1 Atmospheric structure .. 1 - 9
 3.1.1 Diffusion, density .. 1 - 2
 3.1.2 Temperature ... 2 - 3
 3.1.3 Turbulence, waves 3 - 4
 3.1.4 Wind .. 4 - 9
 3.2 Chemistry .. 9 - 10
 3.3 Electron and ion releases 10 - 18
 3.4 Explosions .. 18
 3.5 Miscellaneous ... 18 - 21

5. DIATOMIC A1O MOLECULE ... 21

6. W.R.E. PUBLICATIONS ON CONTAMINANT RELEASE EXPERIMENTS 21 - 22
 6.1 Experimental Results ... 21 - 22
 6.2 Instrumentation ... 22
 6.3 Miscellaneous ... 22
 6.4 Payloads ... 22
1. INTRODUCTION

This is the third part of an occasional series which collects together references to the published literature on vapour releases from sounding rockets into the upper atmosphere.

The references are divided into sections based on the experimental techniques, and the data obtained from them. This Memorandum covers the published literature mainly over the period 1971 to 1976. It will be the last in the series, as the W.R.E. Upper Atmosphere project has been terminated.

For convenience, the section numbering sequence of the previously published parts 1 and 2 are again followed in this document.

3. UPPER ATMOSPHERE MEASUREMENTS (OPEN LITERATURE)

3.1 Atmospheric structure

3.1.1 Diffusion, density

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.L. Falin</td>
<td></td>
</tr>
<tr>
<td>C. Jaech</td>
<td></td>
</tr>
<tr>
<td>A.C. Faire</td>
<td></td>
</tr>
<tr>
<td>K.S.W. Champion</td>
<td></td>
</tr>
<tr>
<td>E.A. Murphy</td>
<td></td>
</tr>
<tr>
<td>S.P. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>C.A. Trowbridge</td>
<td></td>
</tr>
</tbody>
</table>

3.1.2 Temperature

M. Rehmatullah

V.F. Chepura

L.A. Katasyev

A.C. Faire

E.A. Murphy

R.O. Olsen

3.1.3 Turbulence, waves

C.G. Justus

S.P. Zimmerman

R.S. Narcisi

M. Shaft Ahmad

M. Hanif

S.P. Zimmerman

C.A. Trowbridge

T.L. Kofsky

C.O. Hines

I.L. Kofsky

C.O. Hines

N.W. Rosenberg

S.P. Zimmerman

K.H. Lloyd

C.H. Low

R.A. Vincent
N.W. Rosenberg
D. Golomb
S. Zimmerman
W. Vickery
J. Theon

S.P. Zimmerman
G. Pereira
E. Murphy
J. Theon

S.P. Zimmerman
C.A. Trowbridge

D. Layzer
J.F. Bedinger

K.H. Lloyd
C.H. Low
R.A. Vincent

A.H. Manson
J.B. Gregory
D.G. Stephenson

S.P. Zimmerman
N.W. Rosenberg
A.C. Faire
D. Golomb
G.V. Groves

3.1.4 Wind
D.D. Woodbridge

M. Huruhata
J. Nakamura
K. Akita
K. Saito

The Aladdin Experiment - Part I Dynamics.
Space Research XIII, Akademie-Verlag,
Berlin, Ed. M. Rycroft and S. Runcorn,

Internal Gravity Waves and Turbulence in
Simultaneous Upper Atmosphere Temperature
and Wind Measurements.
Space Research XIII, Akademie-Verlag,
Berlin, Ed. M. Rycroft and S. Runcorn,

The Measurement of Turbulent Spectra and
Diffusion Coefficients in the Altitude
Region 95 to 110 km.
Space Research XIII, Akademie-Verlag,
Berlin, Ed. M. Rycroft and S. Runcorn,

Comments on the Paper Entitled:
Turbulence, Billows and Gravity Waves
in a High Shear Region of the Upper
Atmosphere by K.H. Lloyd, C.H. Low
and R.A. Vincent.

Reply to Comments by D. Layzer and
J.F. Bedinger on Turbulence, Billows and
Gravity Waves in a High Shear Region of
the Upper Atmosphere.

The Effect of Atmospheric Gravity Waves
Upon Wind Determinations in the Lower
Thermosphere (80 - 100 km).

The Aladdin II Experiment: Part I Dynamics
Space Research XIV, Akademie-Verlag,
81, 1974.

Diurnal and Semidiurnal Oscillations of
the Upper Atmosphere Derived from Grenade
Experiments at Natal, Brazil.

Ionospheric Winds.

Wind Measurement by Sodium Cloud Method.
Proc. VI International Symposium on
H. Huruhata
J. Nakamura
K. Akita
K. Saito

R. Jaeschke

Measurement of Upper Atmospheric Wind by Sodium Cloud Drifts.

Upper Atmospheric Winds Deduced from Vapour Trail Drifts.

C.H. Murphy
G.V. Bull
H.D. Edwards

Ionospheric Winds Measured by Gun Launched Projectiles.

General Properties of Ionospheric Winds.

C.H. Murphy
G.V. Bull

Low-latitude Easterly Winds at 95 km Altitude Revealed by Sounding Rockets and Gun-probes.

C.H. Murphy

Seasonal Variation of Ionospheric Winds Over Barbados, West Indies.

V.P. Nesterov
I.K. Chasovitin

Wind Shear Theory and the Formation of the Sporadic E Layer at Mid-Latitudes.

M. Ackerman
E. Van Hemelnick

Measurement of Upper Atmospheric Winds at 160 and 275 km.

S.H. Hall
D.G. McDonald
G.J. McGratten
E.C. MacKenzie

Rocket Observations of Middle Latitude Sporadic E, Magnetic Fields, Winds and Ionization.

D.G. King-Hele

Decrease in Upper Atmosphere Rotation Rate at Heights Above 350 km.

D. Rees

Ionospheric Winds in the Auroral Zone.

M. Rishbeth

Rotation of the Variation of Upper Atmosphere.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
</table>
J.F. Bedinger
Thermospheric motions measured by chemical releases.

S.P. Zimmerman
Wind energy deposition in the upper atmosphere.

L.B. Smith
Rotation of Wind Direction with Altitude as Obtained from Vapour Trail Observations.

L.A. Andreeva et al.
Results of Simultaneous Wind Measurements in the Stratosphere, Mesosphere and Low Thermosphere.

J.D. Burge
The Effects of Thermospheric Winds on the Ionosphere at Low and Middle Latitudes During Magnetic Disturbances.

J.B. Gregory
High Altitude Winds at Saskatoon, Canada.

D.G. Stephenson

J.W. Meriwether
Neutral Winds Above 200 km at High Latitudes.

D. Rees
Neutral Wind Structure in the Thermosphere During Quiet and Disturbed Geomagnetic Periods.

D. Rees
Diurnal and Seasonal Variations of Neutral Winds and Electric Fields Above 90 km in the Vicinity of the Auroral Electrojet.

T. Aggson
K. Burrows
G. Haerendel
J.W.G. Wilson

H. Teitelbaum
La Polarisation Des Marees Et Des Ondes De Gravite.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Shaft Ahmad</td>
<td>Measurement of Neutral Winds at 360 km from a Chemical Release Experiment, Conducted at Sonmiani.</td>
</tr>
<tr>
<td>M. Hanif</td>
<td></td>
</tr>
<tr>
<td>P.J. Siddiqui</td>
<td></td>
</tr>
<tr>
<td>L.A. Andreyeva</td>
<td>Wind Profiles Over Heiss Island.</td>
</tr>
<tr>
<td>L.M. Uvarova</td>
<td></td>
</tr>
<tr>
<td>A. Farmer</td>
<td>Aladdin on the Launch Pad.</td>
</tr>
<tr>
<td>G.V. Groves</td>
<td>An Analysis of Grenade Experiment Winds and Temperature at Natal (6°S).</td>
</tr>
<tr>
<td>A.D. Hind</td>
<td>A Determination of the Daytime Thermospheric Wind Profile by Observing a Lithium Trail with a Field-of-view Scanner.</td>
</tr>
<tr>
<td>K.H. Lloyd</td>
<td></td>
</tr>
<tr>
<td>E. Rieger</td>
<td>Neutral Air Motions Deduced from Barium Releases Experiments - I Vertical Winds.</td>
</tr>
<tr>
<td>P. Rothwell</td>
<td></td>
</tr>
<tr>
<td>R. Mountford</td>
<td></td>
</tr>
<tr>
<td>G. Martelli</td>
<td></td>
</tr>
<tr>
<td>S. Tsutsumi</td>
<td>Radio Radar and Optical Observations of Cesium Releases in the Upper Atmosphere.</td>
</tr>
<tr>
<td>Y. Suzuki</td>
<td></td>
</tr>
<tr>
<td>Y. Takeyia</td>
<td></td>
</tr>
<tr>
<td>J. Nakamura</td>
<td></td>
</tr>
<tr>
<td>P. Bhavsar</td>
<td>Winds in the Lower Thermosphere as Measured by Vapour Cloud Releases.</td>
</tr>
<tr>
<td>M. Narayanan</td>
<td></td>
</tr>
<tr>
<td>J. Desai</td>
<td></td>
</tr>
</tbody>
</table>
M.A. McLeod
T. Keneshea
R. Narcisi
C.G. Justus
A. Mikhail
M.C. Kelley
T.S. Jorgensen
I.S. Mikkelsen
D. Rees
E. Dorling
K. Lloyd
C. Low
D. Rees
H. Muller
S. Kingsley

3.2 Chemistry
W. Stoffregen
A. Pederson
H. Derblom
B. Oberg
G. Maseide
S. Lamnevik
O. Hellmouth
G.T. Best
C.A. Forsberg
D. Golomb
N.W. Rosenberg
W.K. Vickery
R. Good
D. Golomb
C. Philbrick
R. Narcisi
R. Good
H. Hoffman
T. Keneshea
M. MacLeod
S. Zimmerman
B. Reinisch
V.N. Balabanova
K.D. Bychkova
V.P. Martyneryo

Numerical Modelling of a Metallic Ion Sporadic E Layer.
Height Variation and Wind Speed and Wind Distribution Statistics.
Thermospheric Wind Measurements in the Polar Region.
The Role of Neutral Winds and Ionospheric Electric Field in Forming Stable Sporadic E Layers.
Comparative Wind Measurements in the Lower Thermosphere Using Rocket Trail and Meteor Radar Techniques.
Rocket Experiments for Studies of D-region Ion Concentration, and Emission from Chemicals Released in Twilight and Aurora.
The Release of Iron Carbonyl into the Upper Atmosphere.
Atomic Oxygen Profiles in the Lower Thermosphere.
The Aladdin Experiment - Part II, Composition.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.J. Armstrong</td>
<td>A. Nitric Oxide Release in the High Latitude Ionosphere.</td>
</tr>
<tr>
<td>J. Troim</td>
<td></td>
</tr>
<tr>
<td>S. Tsutsumi</td>
<td>The Ionisation Rate of a Chemical Cloud in the Upper Atmosphere.</td>
</tr>
<tr>
<td>D. Frimont</td>
<td>Measure de la concentration d’oxygène atomique dans le thermosphere au moyen de lâchers de gaz.</td>
</tr>
<tr>
<td>P. Simon</td>
<td></td>
</tr>
<tr>
<td>E. Van Hemelrijck</td>
<td></td>
</tr>
<tr>
<td>E. Van Ransbeek</td>
<td></td>
</tr>
<tr>
<td>A. Rehri</td>
<td></td>
</tr>
<tr>
<td>3.3 Electron and ion releases</td>
<td></td>
</tr>
<tr>
<td>I. Bierman</td>
<td>Zur Untersuchung de interplanetaren Mediums mit Hilfe kunstliche eingebrachter Ionenwolken.</td>
</tr>
<tr>
<td>Rh. Lust</td>
<td></td>
</tr>
<tr>
<td>H. Schmidt</td>
<td></td>
</tr>
<tr>
<td>C.H. Murphy</td>
<td>Motions of an Electron Cloud Released from a Gun Launched Projectile.</td>
</tr>
<tr>
<td>J.W. Wright</td>
<td></td>
</tr>
<tr>
<td>V.N. Balabanova</td>
<td>Use of Carbon Tetrachloride to Create an Artificial Cloud in the Upper Atmosphere.</td>
</tr>
<tr>
<td>V.P. Nesterov</td>
<td>Wind Shear Theory and the Formation of the Sporadic E Layer at Mid Latitudes.</td>
</tr>
<tr>
<td>W.M. Pickering</td>
<td>The Diffusion of Meteor Trains.</td>
</tr>
<tr>
<td>H. Volk</td>
<td>Magnetospheric Electric Fields.</td>
</tr>
</tbody>
</table>
R.E. Willis
Large Artificial Plasma Clouds in Space.

H.T. Barker Jr.
Barium Releases at Altitudes Between 200 and 1000 km.

K.D. Cole
Atmospheric Excitation and Ionisation by Ions in Strong Auroral and Man-made Electric Fields.

A.D. Danilov V.K. Semenov
Investigation of Elementary Processes in the Ionosphere by means of (Gas) Releases.

J.R. Davis
Decameter and Meter Wavelength Radar Studies of Artificial Plasma Clouds in the Lower Ionosphere.
II: Unstable Evolution on the Lower E Layer and Same Implications Regarding Sporadic E.

Fu et al
Photographic Data Reduction Report on Birdseed I Barium Releases.

M.J. Giles

G. Haerendel
Plasma Drifts in the Auroral Ionosphere Derived from Barium Releases.

S.H. Hall D.G. McDonald G.J. McGratten E.C. MacKenzie
Rocket Observations of Middle Latitude Sporadic E, Magnetic Fields, Winds and Ionisation.

L.A. Katasev V.F. Chepura
Investigation of the Motion of Artificially Ionised Clouds in the Upper Atmosphere.

S. Kato H. Sakurai
Motion of Ion Cloud in the Ionosphere, Field Aligned Cloud with Gaussian Distribution of Ionization Density.
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
</table>
F.W. Perkins
M.J. Zabusky
J.H. Doles

Deformation and Striation of Barium Clouds in the Ionosphere.

W.M. Pickering

The Diffusive Motion of an Initially Spherical Symmetric Cloud of Ionisation in the Earth's Upper Atmosphere.

A. Simon
A.M. Sleeper

Barium Cloud Growth in a Highly Conducting Medium.

L.B. Smith
J.W. Wright

Sporadic E and Wind Profiles Interrelation over Hawaii.

W. Stoffregen

Electron Density Increase in the E Layer Below an Artificial Barium Cloud.

E. Van Hemelrijck
H. Debohogne

E. Wescott
H. Peak
H. Stenbaek-Nielsden
W. Murcray

Two Successful Field Line Tracing Experiments.

A.D. Graver
J.W.L. Prak
A.W. Jenkins Jr.

A Cylindrical Shell Model of the NASA-MPE Barium Ion Cloud Experiment.

K.H. Lloyd
G. Haerendel

Numerical Modeling of the Drift and Deformation of Ionospheric Plasma Clouds and of their Interaction with Other Layers of the Ionosphere.

D. Rees
T.L. Aggson
K. Burrows
K.H. Lloyd
J.W.G. Wilson
E.B. Dorling
G.L. Wren
E. Rieger
G. Haerendel

Investigation of Mid Latitude Ionospheric Currents by Combined Rocket Techniques.

D. Rees
G. Haerendel
D. Felgate
K.H. Lloyd
C.H. Low

Thermospheric Observations Combining Chemical Seeding and Ground Based Techniques. Part II Ionospheric Drifts and the Sq Current System.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.A. Andreeva</td>
<td>R. Gendrin</td>
</tr>
<tr>
<td>Yu. D. Ilyichev</td>
<td>S.R. Goldman</td>
</tr>
<tr>
<td></td>
<td>S.L. Ossakow</td>
</tr>
<tr>
<td></td>
<td>D.L. Book</td>
</tr>
<tr>
<td></td>
<td>R.J. Hoch</td>
</tr>
<tr>
<td></td>
<td>L.L. Smith</td>
</tr>
<tr>
<td></td>
<td>H.B. Liemohn</td>
</tr>
<tr>
<td></td>
<td>J. Murray</td>
</tr>
</tbody>
</table>
F.W. Perkins
S.H. Francis
Artificial Production of Travelling Ionospheric Disturbances and Large Scale Atmospheric Motion.

W. Pfister
Drift Measurement with Spectral Analysis During Periods of Chemical Releases into the Ionosphere.

W.M. Pickering
D.W. Windle
A Non Linear Study of the Possible Effects of Electron Ion Collisions on the Diffusion of a Cylindrical Column of Ionisation in the Earth's Ionosphere.

E. Rieger
Neutral Air Motions Deduced from Barium Releases Experiments I Vertical Winds.

P. Rothwell
R. Mountford
G. Martelli
Neutral Wind Modifications Above 150 km Altitude Associated with the Polar Substorm.

J. Nakamura
S. Kato
Electric Field Measurements by Artificial Barium Cloud.

A.J. Scannapieco
S.L. Ossakow
D.L. Book
B.E. McDonald
S.R. Goldman
Conductivity Ratio Effects on the Drift and Deformation of F Region Barium Clouds Coupled to the E Region Ionosphere.

S. Tsutsumi
Ionised Cloud Produced by Cesium Release Experiment.
Report Ionosphere Space Research, Japan 28, 163, 1974.

S. Tsutsumi
Y. Suzuki
Y. Takeya
J. Nakamura

E. Wescott
E. Rieger
H. Stenbaek-Nielsen
T. Davis
The L = 1.24 Conjugate Magnetic Field Line Tracing Experiments with Barium Shaped Charges.

J.W. Wright
Kinesonde Studies of Cesium Ion Clouds in the E Region.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Baxter</td>
<td>Lower F Region Barium Release Experiments at a Sub Auroral Location.</td>
</tr>
<tr>
<td>D. L. Book</td>
<td>Altitude Dependant Neutral Wind Effects on the Non Linear Motion of a Small Barium Cloud.</td>
</tr>
<tr>
<td>S. Goldman</td>
<td>Photoionisation of Barium Clouds Via the 3D Metastable Levels.</td>
</tr>
<tr>
<td>S. H. Francis</td>
<td>Comment on "Barium Cloud Growth in a Highly Conducting Media" by Simon and Sleeper.</td>
</tr>
<tr>
<td>S. H. Francis</td>
<td>Determination of Striation Scale Sizes for Plasma Clouds in the Ionosphere.</td>
</tr>
<tr>
<td>M. Giles</td>
<td>A Simple Ion Source for Ionospheric Experiments.</td>
</tr>
<tr>
<td>R. A. Jeffries</td>
<td>Two Barium Plasma Injections into the Northern Magnetospheric Cleft.</td>
</tr>
<tr>
<td>E. W. Hones</td>
<td>Electric Field Measurements in a Major Magnetospheric Substorm.</td>
</tr>
<tr>
<td>M. C. Kelly</td>
<td>Velocity Shear and the EXB Instability.</td>
</tr>
<tr>
<td>H. Kappler</td>
<td>The L = 6.7 Quiet Time Barium Shaped Charge Injection Experiment "Chachalaca".</td>
</tr>
<tr>
<td>U. Fahleson</td>
<td>The L = 6.6 OOSIK Barium Plasma Injection Experiment and Magnetic Storm of March 7.</td>
</tr>
<tr>
<td>J. H. Doles</td>
<td>The Effect of Artificially Close Boundaries on Numerical Simulations of the Instability</td>
</tr>
<tr>
<td>E. Wescott</td>
<td>and Evolution of Barium Clouds.</td>
</tr>
<tr>
<td>T. Davis</td>
<td></td>
</tr>
<tr>
<td>N. J. Zabusky</td>
<td></td>
</tr>
<tr>
<td>J. Doles</td>
<td></td>
</tr>
</tbody>
</table>
S.L. Ossakow
A.J. Scannapieco
S.R. Goldman
D.L. Book
B.E. McDonald

R.A. Hendrikson
R.W. McEntire
J.R. Winckler

Echo I: An experimental analysis of local effects and conjugate return echoes from an electron beam injected into the magnetosphere by a sounding rocket. Planet. Space Sci. 23, 1431, 1975.

J.R. Winckler
R.L. Arnoldy
R.A. Hendrickson

Echo II: A study of electron beams injected into the high-latitude ionosphere from a large sounding rocket. J. Geophys. Res. 80, 2083, 1975.

M.C. Kelly
G. Haerendel
H. Kappler
A. Valenzuela

R.A. Hendrickson
J.R. Winckler
R.L. Arnoldy

E.M. Wescott
H.C. Stenbaek-Nielsen
T.N. Davis
H.M. Peek

E.M. Wescott
H.C. Stenbaek-Nielsen
T.J. Hallinan
T.N. Davis
H.M. Peek

S.R. Goldman
L. Baker
S.L. Ossakow
A.J. Scannapieco

A.J. Scannapieco
S.L. Ossakow
S.R. Goldman
J.M. Pierre

S.R. Goldman
A.J. Scannapieco
S.L. Ossakow

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>B.P. Sandford</td>
<td></td>
</tr>
<tr>
<td>F. Gleizes</td>
<td></td>
</tr>
<tr>
<td>P. Simon</td>
<td></td>
</tr>
<tr>
<td>S.N. Rodrigues</td>
<td></td>
</tr>
<tr>
<td>J.S. Kim</td>
<td></td>
</tr>
<tr>
<td>T. Ichikawa</td>
<td></td>
</tr>
<tr>
<td>D.G. McDonald</td>
<td></td>
</tr>
<tr>
<td>G.J. McGratten</td>
<td></td>
</tr>
<tr>
<td>E.C. MacKenzie</td>
<td></td>
</tr>
<tr>
<td>E. Van Hemlrijck</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>D.M. Kerr</td>
<td></td>
</tr>
<tr>
<td>M.S. Tierney</td>
<td></td>
</tr>
<tr>
<td>T. Matsuoka</td>
<td></td>
</tr>
<tr>
<td>H. Kimura</td>
<td></td>
</tr>
<tr>
<td>B. Belcher</td>
<td></td>
</tr>
<tr>
<td>P. Flynn</td>
<td></td>
</tr>
<tr>
<td>A. Skinner</td>
<td></td>
</tr>
<tr>
<td>C.A. Forsberg</td>
<td></td>
</tr>
<tr>
<td>H.S. Hoffman</td>
<td></td>
</tr>
<tr>
<td>E.C. McKenzie</td>
<td></td>
</tr>
</tbody>
</table>
A. Farmer

C.R. Philbrick
D. Golomb
S.P. Zimmerman
T. Keneshea

J.S. Draper
F. Bien
R.E. Hunting
D.E. Paulson

A. Farmer

D. Golomb
H. Hoffman
G. Best

M. Mendillo
G.S. Hawkins
J.A. Klobuchar

T.M. Fang
W.H. Smyth
M.B. McElroy

R.H. Moore
L. Woolliscroft

H. Debegheogne
C. Lippens
E. Van Hemelrijck
E. Van Ransbeek

5. DIATOMIC A10 MOLECULE

S.E. Johnson
G. Capelle
H.P. Broida

H.H. Michels

6. W.R.E. PUBLICATIONS ON CONTAMINANT RELEASE EXPERIMENTS

Internal papers also published externally are excluded.

6.1 Experimental results

K.H. Lloyd

6.2 Instrumentation

A.D. Hind
K.H. Lloyd

A Field-of-view Scanning Photometer to Detect Weak Emissions against a Bright Sky Foreground.

6.3 Miscellaneous

C.H. Low
K.H. Lloyd

6.4 Payloads

G.M. Hensel
I.R. Johnston

Evaluation of a Pyrotechnic Composition Based on Boron and Tungstic Oxide.

G.M. Hensel

Lithium Vapouriser for Cockatoo.

G.M. Hensel
I.R. Johnston

Lithium Vaporiser for Cockatoo Mk II and Skylark.

R.H. Weldon
G.M. Hensel
I.R. Johnston

An Improved High Altitude Grenade.

R.H. Weldon
G.M. Hensel
I.R. Johnston

A Long Burning Time Pyrotechnic Delay System.
DISTRIBUTION

EXTERNAL

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
<th>Attention:</th>
<th>Copy No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Observatorio Astronomico, Marquezado, San Juan</td>
<td>Dr. A. Zaragota</td>
<td>1</td>
</tr>
<tr>
<td>Belgium</td>
<td>Belgian Institute for Space Aeronomy, Brussel, B-1180</td>
<td>Dr. M. Ackerman</td>
<td>2</td>
</tr>
<tr>
<td>Canada</td>
<td>University of Toronto</td>
<td>Prof. C.O. Hines</td>
<td>3</td>
</tr>
<tr>
<td>Germany</td>
<td>Max-Planck Institute for Extraterrestrial Physics, Garching, Munich, 8046.</td>
<td>Dr. G. Haerendel</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. E. Rieger</td>
<td>5</td>
</tr>
<tr>
<td>France</td>
<td>Centre National de la Recherche Scientifique Service d'Aeronomie</td>
<td>Mlle. M.L. Chanin</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. J. Barat</td>
<td>7</td>
</tr>
<tr>
<td>ELDOS/ESRO</td>
<td>Group de Recherches Ionosphériques, C.N.E.T., Station Pierre Le jay, Garchy (Nievre)</td>
<td>M.A. Haubert</td>
<td>8</td>
</tr>
<tr>
<td>India</td>
<td>Physical Research Laboratories, Ahmedabad 9,</td>
<td>Prof. P.R. Pisharoty</td>
<td>9</td>
</tr>
<tr>
<td>Italy</td>
<td>Instituto di Fisica Atmosfera, Bologna, 40126</td>
<td>Prof. F. Verniana</td>
<td>10</td>
</tr>
<tr>
<td>Japan</td>
<td>Institute of Physics, University of Tokyo</td>
<td>J. Nakamura</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Ionospheric Research Laboratory, Kyoto University</td>
<td>S. Kato</td>
<td>12</td>
</tr>
<tr>
<td>New Zealand</td>
<td>D.S.I.R. Wellington</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>University of Canterbury</td>
<td>Prof. L.F. Phillips</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr G.J. Fraser</td>
<td>15</td>
</tr>
<tr>
<td>Location</td>
<td>Address</td>
<td>(Attention: Mr. D.A. Price)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>University of Auckland/Radio Research Centre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Norway</td>
<td>The Auroral Observatory, Tromso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Pakistan</td>
<td>Director, Pakistan Space and Upper Atmosphere Research Committee, Karachi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Sweden</td>
<td>Uppsala Ionospheric Observatory, Research Institute of National Defence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In United States of America</td>
<td>Counsellor, Defence Science, Washington D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.A.S.A.</td>
<td>Headquarters, Washington D.C., 20546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Norway</td>
<td>Lewis Research Centre, Cleveland, Ohio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Sweden</td>
<td>Langley Research Centre, Hampton, VA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In United States of America</td>
<td>Goddard Space Flight Centre, Greenbelt, Maryland, 20771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library of Congress, U.S.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Norway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Sweden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In United States of America</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Norway</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
University of Illinois, Urbana, Illinois, 61801
(Attention: Prof. S.A. Bowhill, Department of Electrical Engineering)

University of Notre Dame, Notre Dame, Indiana, 46556
(Attention: Dr. V. Nee)

University of Minnesota, Minneapolis
School of Physics and Astronomy
(Attention: Dr. J.R. Winckler)

Naval Research Laboratory, Washington D.C.
(Attention: Dr. S.L. Ossakow)

Hunter College, New York
(Attention: Dr. S. R. Goldman)

Geophysical Institute of Alaska, Fairbanks
(Attention: Dr. T.N. Davis)

Science Applications Inc., McLean, Virginia
(Attention: Dr. A.J. Scannapieco)

University of Rochester, New York
(Attention: Prof. A. Simon)

Bell Laboratories, Whippany, New York
(Attention: Dr. S.F. Francis)

In United Kingdom

AMRE, Aldermaston, Reading, England
(Attention: Dr. A.J. Baxter)

Defence Science and Technology Representative,
Department of Defence, Australia House, London

Ministry of Defence, London
AD/TGW2
TGW25, Weapons Research Establishment Representative

The Chairman, Rockets Working Group
Design Experiments Sub-Committee of the British
National Committee for Space Research

Royal Aircraft Establishment
(Attention: Head of Space Department)
(Attention: Library)

Admiralty Centre for Scientific Information and Liaison,
London

National Lending Library of Science and Technology

University of Belfast, Department of Physics
(Attention: Dr. A. Dalgarno)

University of Lancaster, Department of Environmental Sciences
(Attention: Professor A.M. Hunter)

Sheffield University, Yorkshire
(Attention: Prof. T.R. Kaiser)

University College, London
(Attention: Dr. G.V. Groves)
(Attention: Dr. D. Rees)
University of Southampton, Department of Physics
(Attention: Dr. Pamela Rothwell) 58

University of Sussex, Department of Physics
(Attention: Dr. G. Martelli) 59

Appleton Laboratory, Ditton Park, Slough, Bucks 60

In Australia
Department of Defence 61
Chief Defence Scientist 62
Controller, Policy and Programme Planning Division 63
Army Scientific Adviser 64
Air Force Scientific Adviser 65
Naval Scientific Adviser 66
Executive Controller, Australian Defence Scientific Service 67
Assistant Secretary, (Defence and Information Services) (for microfilming) 68
Superintendent, Defence Science Administration Division 69
Superintendent, Central Studies Establishment, Canberra 70
Defence Library, Campbell Park 71
Library, Aeronautical Research Laboratories 72
Library, Materials Research Laboratories 73
Director, Joint Intelligence Organisation 74
Department of Science 75
Director, Antarctic Division, Melbourne 76
Head of BDRSS, Salisbury 77
N.A.S.A. Senior Scientific Representative, Canberra 78
National Library, Canberra 79
C.S.I.R.O. Division of Physics, Narrabri, New South Wales, 2390
(Attention: Dr. E.B. Armstrong) 80
Flinders University, Bedford Park, South Australia, 5042
(Attention: Head of School of Physical Sciences) 81
(Attention: Head of Department of Meteorology) 82
La Trobe University, Bundoora, Victoria, 3083
(Attention: Head of Department of Physics) 83
Mount Stromlo Observatory, Canberra, A.C.T., 2600
(Attention: Director) 84
University of Adelaide, South Australia, 5000
(Attention: Head of Department of Physics) 85
(Attention: Dr. B. Briggs) 86
(Attention: Dr. R.A. Vincent) 87
University of Melbourne, Parkville, Victoria, 3052
(Attention: Head of Department of Physics) 88

University of Queensland, St. Lucia, Queensland, 4067
(Attention: Prof. D. Whitehead) 89

INTERNAL

Director 90

Chief Superintendent, Weapons Research and Development Wing 91
Chief Superintendent, Applied Physics Wing 92
Superintendent, Aerospace Division 93
Superintendent, Propulsion and Marine Physics Division 94
Superintendent, Systems Assessment Division 95

Principal Officer, Combustion and Explosives Group 96
Principal Officer, Field Experiments Group 97
Principal Officer, Flight Research Group 98
Principal Officer, Ionospheric Studies Group 99
Principal Officer, Tropospheric Studies Group 100
Principal Officer, Underwater Detection Group 101
Principal Officer, Marine Physics Group 102

Authors 103 - 104

A.D. Library 105

W.R.E. Library 106 - 107

Spares 108 - 109

Distribution through STIB

UK Defence Research Information Centre 110
US Defence Documentation Center 111 - 122
Canada, Defence Science Information Service 123
NZ Ministry of Defence 124