ON THE SOLUTION OF A THREE-STAGE GAME
REPRESENTING AN AGGREGATED AIR
AND GROUND WAR

By: L. C. GOHEEN

Prepared for:
NAVAL ANALYSIS PROGRAMS (CODE 431)
OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

Contract N00014-76-C-0167

Task Number NR 274-246/5-25-76

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.
In order to develop a capability in BALFRAM to optimally allocate tactical air resources over N stages, three air-and-ground war models and the N-stage games given by them were studied. This report presents the results of that study.
ON THE SOLUTION OF A THREE-STAGE GAME
REPRESENTING AN AGGREGATED AIR
AND GROUND WAR

By: L. C. GOHEEN

Prepared for:
NAVAL ANALYSIS PROGRAMS (CODE 431)
OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

Contract N00014-76-C-0167

Task Number NR 274-246/5-25-76

SRI Project 4513

Reproduction in whole or in part is permitted for any purpose of the United States Government.
CONTENTS

LIST OF ILLUSTRATIONS .. iii

I INTRODUCTION ... 1
 A. Background ... 1
 B. Summary .. 4

II MODEL I ... 6
 A. Differential Equations ... 8
 B. The Formulated Game ... 13
 C. The Solution of the Differential Equations 14
 D. Comments .. 21

III MODEL II ... 22
 A. Differential Equations ... 24
 B. The Formulated Game ... 28
 C. The Solution of the Differential Equations 29
 D. Comments .. 34

IV MODEL II (THE SURROGATE MODEL) 43
 A. The Air and Ground War ... 43
 B. The Formulated Game ... 45
 C. The Solution of the Game (A Beginning) 45

REFERENCES .. 60
ILLUSTRATIONS

1 Graphic Representation of Model I 7
2 The Division of the Battlefield Into T_B, T_R, and T_{BR} 23
3 Graphic Representation of Aggregation Into the 3 Regions T_B, T_R, T_{BR}, α, β, δ, γ Must be Determined in the Suballocation 25
I INTRODUCTION

A. Background

During 1974, the Naval Warfare Research Center (NWRC) of Stanford Research Institute implemented the most advanced version of the Balanced Force Requirements Analysis Model (BALFRAN) at the Headquarters of the Commander in Chief Pacific. This advanced version incorporated several new capabilities, including an N-stage game for optimizing the allocation of tactical air resources and a capability for representing the effect on the military campaign of interdiction of logistic pipelines.

The N-stage game in BALFRAM was a state-of-the-art technique. Based on SABRE GRAND (ALPHA) [19], an algorithm developed by the Air Force to maximize the amount of ordnance delivered to the forward edge of the battle area, the N-stage game in BALFRAM was designed to provide significantly greater capability than the SABRE GRAND (ALPHA) algorithm by combining the algorithm with the BALFRAM simulation methodology to measure the effect of various allocations on the final outcome of the integrated land-air-sea campaign.

Basing BALFRAM's N-stage game on SABRE GRAND turned out to be an unfortunate choice. Operational use of the BALFRAM N-stage game at the Headquarters of the Commander in Chief Pacific revealed that its algorithm produced results that were, in some cases, demonstrably illogical, and the theoretical work of James Falk, Jerome Bracken, and others [1, 4, 5, 8, 11], revealed that the SABRE GRAND algorithm did not necessarily yield optimal solutions.

A proposal was therefore submitted to ONR on 24 June 1974 to review the structure of the N-stage game as it was then implemented in the BALFRAM computer program [15]. The proposal was accepted, and the first step of
the research approach was subsequently completed [9]. That step entailed review of the current structure of the N-stage game as it was implemented in the BALFRAM computer program, analysis of the underlying theoretical foundation of the N-stage game portion of the model, and comparisons of the intended structure of the model with actual computer program coding.

The conclusions deriving from the first step of the research were that the existing N-stage game formulation was incorrect, but that additional research could result in an effective formulation. Such additional research was to have constituted the second step of the research, and further effort was to lead to the integration of the corrected N-stage game into BALFRAM. However, because of the great complexity of the game's formulation and the paucity of documentation by the former subcontractor, only the first step of the research was completed.

Consequently, on 25 January 1975 a research task was proposed to ONR to continue research into the BALFRAM N-stage game in order to develop a valid and effective formulation that permits explicit measurement of the effects of interdiction of logistic pipelines on the integrated land-air-sea military campaign [14]. This proposal was also accepted and work was to begin on reformulating the N-stage game.

Consultant Dr. Melvin Dresher assisted in this research. Dr. Dresher had major criticisms of the theoretical foundation of the existing N-stage game algorithm, which, in his opinion, completely invalidated it. Research was therefore reoriented, as discussed in an SRI/NWRC letter to ONR [18].

Research was directed to existing methods for solving N-stage air war games so that one might be incorporated in BALFRAM to provide BALFRAM with the capability of optimizing the allocation of air resources over N stages [10].
In all, six methods were studied: two iterative methods, Lagrange dynamic programming [17], and the method of Ostermann and Boudreau [16]; one method based on linear programming, OPTSA I [6]; and three methods based on dynamic programming, OPTSA II [6], DYAM [12], and that of Berkovitz and Dresher [2,3]. Our findings showed that two-sided Lagrange dynamic programming and the method of Ostermann and Boudreau could yield incorrect solutions to N-stage games. Also, incorporating OPTSA I or OPTSA II in BALFRAN was computationally infeasible, and there was no guarantee that the strategies produced by DYAM were optimal or even nearly optimal. These conclusions are discussed in detail in Reference [10]. See also Reference [7].

In contrast, the method used by Berkovitz and Dresher appeared the most apt to solve the N-stage game in BALFRAN, and we have proceeded with that method. In brief, this method could be called two-sided dynamic programming over a continuous strategy space. It can be applied to N-stage games possessing a continuous and additive \((1 \leq n \leq N) \) payoff function, continuous transition functions, and a continuum of strategies. Berkovitz and Dresher were able to show that such N-stage games could be solved by the solution of a sequence of N one move games, although the solution of these one move games could be quite complicated. See Reference [3]. It is important to realize that the method used by Berkovitz and Dresher requires the closed form solution of each of the N one move games. In the opinion of Dr. Dresher, the method was not amenable to numerical (i.e., computer) procedure. The reasoning was as follows: the game being solved had a continuum of strategies, i.e., was a continuous game. We sought optimal strategies for the N-stage game so that they might be implemented in BALFRAN. Numerical solution would necessitate considering only a finite number of strategies, i.e., solving a finite game. Thus the numerical procedure could solve the game only if the pure strategies entering into the optimal mixed
strategies of the continuous game were included among the strategies considered by the numerical procedure. See Reference [7] for a discussion of this point and an example.

B. Summary

It is clear that a formulation of an N-stage game incorporating the full detail of the BALFRAN simulation is computationally intractable. Thus a computationally tractable (and hence more aggregated) air-and-ground-war model must be developed to represent the much more complex BALFRAN system, air allocations in the more aggregated model must be optimized via an N-stage game, finally a method must be developed by which the strategies thus determined can be transformed into strategies implementable in BALFRAN. Finally, it is necessary to verify that the aggregated model accurately represents the BALFRAM system; or, alternatively, the strategies thus implemented must be tested for optimality in BALFRAM.

Therefore, the first task was the development of a computationally tractable air-and-ground-war model that would include explicit representation of ground combat; logistic pipelines; and the air missions of close air support, airfield neutralization, interdiction, air superiority, and air defense. This task did not result in the development of only one air-and-ground-war model but rather of a sequence of such models.

The first air-and-ground-war model (Model I) satisfied all our conditions save one, computational tractability, since the optimization of air allocations in this model required optimization over 14 variables, 7 for B and 7 for R. Since the solution method required that the game be solved in closed form, solving the N-stage game given by Model I was too formidable a task.
Consequently, Model II was formulated, which differed from Model I in that the battlefield was aggregated into three regions: T_B^R, the region defended by B and attacked by R; T_R^B, the region defended by R and attacked by B; and T_{BR}, the region that may be both defended and attacked by B and R. Under this aggregation scheme, B and R allocate airplanes to the three regions at N decision points. Airplanes allocated by B(R) to region T_B^R are suballocated between B(R)'s air-defense-versus-airfield-neutralization and air-defense-versus-interdiction missions. Airplanes allocated by B(R) to region T_R^B are suballocated between B(R)'s airfield-neutralization-and-interdiction missions. Airplanes allocated by B(R) to region T_{BR} are suballocated between B(R)'s air-strike, close-air-support, and air-defense-versus-close-air-support missions. The suballocations are computed independently in each of the regions T_B^R, T_R^B, T_{BR}, and at each decision point.

Model II and Model I both explicitly represent ground combat and logistic pipelines. As the solution of the N-stage game given by Model II progressed, it became apparent that this explicit representation greatly complicated the payoff function and calculations. In fact, the complete solution of the game appeared impracticable.

To simplify the situation, Model III (the surrogate model) was developed, in which the explicit representation of the ground war was replaced by surrogate factors representing the impact of the air support missions on the ground war. The remainder of the research effort was then spent on the solution of the N-stage game given by Model III, which has yet to be completed. Needless to say, important features of the earlier models have been sacrificed. Once Model III is solved, we must transform the optimal strategies thus derived into strategies implementable in BALFRAM. The method of accomplishing this has yet to be completely specified.
II MODEL I

Model I represents an aggregated air and ground war of fixed duration T, see Figure 1. Stage n, $1 \leq n \leq N$ begins at a fixed time t_{n-1} and ends at a fixed time t_n. Attrition processes are modeled by the Lanchester square law. (The square law was chosen to model air-to-air attrition, despite a possible lack of realism, because it seemed more computationally tractable than the linear law.) The air missions considered are those of airfield neutralization (AN), close air support (CAS), interdiction (I), air superiority (AS), air defense against airfield neutralization (AD vs AN), air defense against close air support (AD vs CAS), and air defense against interdiction (AD vs I). At each time t_n^+, $0 \leq n < N$, the air-to-ground fire of B(R)'s AN mission is assumed to be uniformly allocated among R(B)'s seven missions.

An air allocation for B(R) in stage n is a vector $U(V) \in \mathbb{R}^7$, where $U_n = (U_{n1}, V_n = (V_{n1}, U_{n1}, V_{n1} \geq 0$ and $\sum_{i} U_{ni} = \sum_{i} V_{ni} = 1$. U_{n1}, U_{n2}, U_{n3}, and $U_{n7}(V_{n1}, V_{n2}, V_{n3}$ and $V_{n7})$ are the fractions of available airplanes at time t_{n-1} assigned by B(R) to the missions of AN, CAS, I and AS, respectively. U_{n4}, U_{n5}, and $U_{n6}(V_{n4}, V_{n5}$, and $V_{n6})$ are the fractions of available airplanes at time t_{n-1} assigned by B(R) to the missions of AD vs AN, AD vs CAS, and AD vs I, respectively. Attack airplanes (i.e., airplanes assigned to the AN, CAS, and I missions) are assumed to perform their missions with equal effectiveness whether or not under attack by AD airplanes. Interdiction of B(R)'s logistic pipeline in stage n degrades the effectiveness of B(R) ground forces in stage $n+1$. The effect of the CAS missions on the ground war is modeled by exogenous firepower in the differential equations modeling the ground war.
We let $X_1(t), X_2(t), X_3(t), (Y_1(t), Y_2(t), Y_3(t))$ be the order of battle of $B(R)$'s ground force, air force, and pipeline, respectively, at time t. Let $x^i(t) (y^i(t)), 1 \leq i \leq 3$, be the order of battle of $B(R)$'s AN, CAS, and I mission, respectively, at time t; let $x^i(t) (y^i(t)), 4 \leq i \leq 6$ be the order of battle of $B(R)$'s AD vs AN, AD vs CAS, and AD vs I mission, respectively, at time t; let $x^7(t) (y^7(t))$ be the order of battle of $B(R)$'s AS mission at time t. Let φ_n be the regeneration rate for $B(R)$'s pipeline during stage n.

The FEBA movement rate, φ, at time $t \in [t^{n-1}, t^n]$ is assumed to be an integrable function of $X_i(t)$ and $Y_i(t), 1 \leq i \leq 3, U_n$ and V_n. The distance of advance in stage n is then

$$\varphi_n = \int_{t^{n-1}}^{t^n} \varphi(t) \, dt$$

A. Differential Equations

The following system of differential equations, representing Model I, then arises for stage $n, 1 \leq n \leq N$. Throughout $t \in [t^{n-1}, t^n]$

Ground War

$$\varphi_n = \int_{t^{n-1}}^{t^n} \varphi(t) \, dt$$

$$\begin{bmatrix} \dot{X}_1(t) \\ \dot{Y}_1(t) \end{bmatrix} = \begin{bmatrix} 0 & -A_1(n, U_{n-1}, V_{n-1}) \\ -B_1(n, U_{n-1}, V_{n-1}) & 0 \end{bmatrix} \begin{bmatrix} X_1(t) \\ Y_1(t) \end{bmatrix} - \begin{bmatrix} a_1(n, V_n) \\ b_1(n, U_n) \end{bmatrix}$$

$X_1(t), Y_1(t) \geq 0, X_1(0) = X_1, Y_1(0) = Y_1$
Logistic Pipelines

\[
\begin{align*}
\dot{x}_3(t) &= \xi_n^B - A^R y_3(t), \\
\dot{y}_3(t) &= \xi_n^R - B^R x_3(t), \\
X_3(t), Y_3(t) &\geq 0, X_3(0) = X_3, Y_3(0) = Y_3.
\end{align*}
\]

Air War

Airfield Neutralization

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_4(t) \\
\dot{y}_1(t) \\
\dot{y}_4(t)
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & -A^R/7 & -A^R/7 \\
0 & 0 & -(A^1 + A^R/7) & 0 \\
-B^R/7 & -B^R/7 & 0 & 0 \\
-(B^1 + B^R/7) & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_4(t) \\
y_1(t) \\
y_4(t)
\end{bmatrix},
\]

\[
x_1(t^{n-1}) = u_{n1} x_2(t^{n-1}), x_4(t^{n-1}) = u_{n4} x_2(t^{n-1}),
\]

\[
y_1(t^{n-1}) = v_{n1} y_2(t^{n-1}), y_4(t^{n-1}) = v_{n4} y_2(t^{n-1}),
\]

\[
x_1(t), x_4(t), y_1(t), y_4(t) \geq 0.
\]
Close Air Support

\[
\begin{pmatrix}
 x^2(t) \\
 y^5(t)
\end{pmatrix} = \begin{pmatrix}
 0 & -A^5 \\
 -B^2 & 0
\end{pmatrix} \begin{pmatrix}
 x^2(t) \\
 y^5(t)
\end{pmatrix} - \frac{1}{7} \begin{pmatrix}
 A^* y^1(t) \\
 B^* x^1(t)
\end{pmatrix},
\]

\[x^2(t^{n-1}) = u_{n2} x^2(t^{n-1}), \quad y^5(t^{n-1}) = v_{n5} y^2(t^{n-1}),\]

\[x^2(t), \quad y^5(t) \geq 0.
\]

\[
\begin{pmatrix}
 y^2(t) \\
 x^5(t)
\end{pmatrix} = \begin{pmatrix}
 0 & -B^5 \\
 -A^2 & 0
\end{pmatrix} \begin{pmatrix}
 y^2(t) \\
 x^5(t)
\end{pmatrix} - \frac{1}{7} \begin{pmatrix}
 B^* x^1(t) \\
 A^* y^1(t)
\end{pmatrix},
\]

\[y^2(t^{n-1}) = v_{n2} y^2(t^{n-1}), \quad x^5(t^{n-1}) = u_{n2} x^2(t^{n-1}),\]

\[y^2(t), \quad x^5(t) \geq 0.
\]

Interdiction

\[
\begin{pmatrix}
 x^3(t) \\
 y^6(t)
\end{pmatrix} = \begin{pmatrix}
 0 & -A^6 \\
 -B^3 & 0
\end{pmatrix} \begin{pmatrix}
 x^3(t) \\
 y^6(t)
\end{pmatrix} - \frac{1}{7} \begin{pmatrix}
 A^* y^1(t) \\
 B^* x^1(t)
\end{pmatrix},
\]

\[x^3(t^{n-1}) = u_{n3} x^2(t^{n-1}), \quad y^6(t^{n-1}) = v_{n3} y^2(t^{n-1}),\]

\[x^3(t), \quad y^6(t) \geq 0.
\]

\[
\begin{pmatrix}
 y^3(t) \\
 x^6(t)
\end{pmatrix} = \begin{pmatrix}
 0 & -B^6 \\
 -A^3 & 0
\end{pmatrix} \begin{pmatrix}
 y^3(t) \\
 x^6(t)
\end{pmatrix} - \frac{1}{7} \begin{pmatrix}
 B^* x^1(t) \\
 A^* y^1(t)
\end{pmatrix},
\]

\[y^3(t^{n-1}) = v_{n3} y^2(t^{n-1}), \quad x^6(t^{n-1}) = u_{n6} x^2(t^{n-1}),\]

\[y^3(t), \quad x^6(t) \geq 0.
\]
Air Superiority

\[
\begin{bmatrix}
x^7(t) \\
y^7(t)
\end{bmatrix} =
\begin{bmatrix}
0 & -A^7 \\
-B^7 & 0
\end{bmatrix}
\begin{bmatrix}
x^7(t) \\
y^7(t)
\end{bmatrix} - \frac{1}{7}
\begin{bmatrix}
A^7 y^1(t) \\
B^7 x^1(t)
\end{bmatrix},
\]

\[
x^7(t^{n-1}) = u_n x_2(t^{n-1}), \quad y^7(t^{n-1}) = v_n y_2(t^{n-1}),
\]

\[
x^7(t), \quad y^7(t) \geq 0.
\]

\[
X_2(0) \equiv X_2, \quad Y_2(0) \equiv Y.
\]

Modeling $A_1(n,U_{n-1},V_{n-1})$ and $B_1(n,U_{n-1},V_{n-1})$

We assume

\[
A_1(n,U_{n-1},V_{n-1}) = f^R_n(U_{n-1},V_{n-1},\rho_R(t^{n-1}))A_1'(n)
\]

and

\[
B_1(n,U_{n-1},V_{n-1}) = f^B_n(U_{n-1},V_{n-1},\rho_B(t^{n-1}))B_1'(n),
\]

where

\[
A_1'(n)(B_1'(n)) = \text{the (index of combat effectiveness$^+$)}
\]

\[
\times \text{ (base attrition factor$^+$) for B(R)'s ground force in stage n }
\]

\[
\rho_B(t^{n-1})(\rho_R(t^{n-1})) = \text{ the resupply factor for B(R)'s ground force at time } t^{n-1}
\]

and

\[f_n^B(U_{n-1}, V_{n-1}, \rho_B(t^{n-1})) \left(f_n^R(U_{n-1}, V_{n-1}, \rho_R(t^{n-1})) \right) = \text{a non-negative}\]

constant modeling the effect of interdiction

on B(R)'s ground force in stage n .

It remains to specify \(f_n^B \) and \(f_n^R \).

Let \(x(y) \) be the throughput capacity of each component of B(R)'s

pipeline unit. Thus \(x X_3(t) \left(y Y_3(t) \right) \) is the pipeline capacity for B(R) at

time \(t \). We take

\[f_n^B(U_{n-1}, V_{n-1}, \rho_B(t^{n-1})) = \frac{\rho_B(t^{n-1}) \wedge x X_3(t^{n-1})}{\rho_B(t^{n-1})} \]

and

\[f_n^R(U_{n-1}, V_{n-1}, \rho_R(t^{n-1})) = \frac{\rho_R(t^{n-1}) \wedge y Y_3(t^{n-1})}{\rho_R(t^{n-1})} . \]

Note:

\[a \wedge b = \min (a, b) , \quad a \vee b = \max (a, b) ; \]

\[a \wedge bc = a \wedge (bc) , \quad a \vee bc = a \vee (bc) ; \]

\[a \wedge b/c = a \wedge (b/c) , \quad a \vee b/c = a \vee (b/c) ; \]

\[a \wedge b \pm c = (a \wedge b) \pm c , \quad a \vee b \pm c = (a \vee b) \pm c . \]

Modeling \(a_1(n, V_n) \) and \(b_1(n, U_n) \)

One possibility is

\[a_1(n, V_n) = a'_1(n) V_{n2} X_2(t^{n-1}) \]

\[b_1(n, U_n) = b'_1(n) U_{n2} X_2(t^{n-1}) . \]
B. The Formulated Game

\(B(R) \) picks \(U = (U_n) \) \(V = (V_n) \) to \(\max(\min) \) the payoff function

\[
\begin{bmatrix}
X_1(T) - Y_1(T)
\end{bmatrix}
\]

so that for \(1 \leq n \leq N, t^{n-1} \leq t \leq t^n \):

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{y}_1(t)
\end{bmatrix} =
\begin{bmatrix}
0 & -R(t^{n-1}) \land y_3(t^{n-1}) \\
\frac{R(t^{n-1})}{B(t^{n-1})} & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\rho_R(t^{n-1})}{\rho_R(t^{n-1})} A'(n) \\
0
\end{bmatrix}
\begin{bmatrix}
X_1(t) \\
Y_1(t)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{x}_3(t) \\
\dot{y}_3(t)
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & -A^*7 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x^1(t) \\
x^4(t)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{x}_4(t) \\
\dot{y}_1(t) \\
\dot{y}_4(t)
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & -A^*7 \\
-B^*7 & -B^4 & 0 \\
-(B^1 + B^*7) & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x^1(t) \\
x^4(t) \\
y^1(t) \\
y^4(t)
\end{bmatrix}
\]
\[
\begin{bmatrix}
 \dot{x}^2(t) \\
 \dot{y}^2(t)
\end{bmatrix} = \begin{bmatrix}
 0 & -A^5 \\
 -B^5 & 0
\end{bmatrix}
\begin{bmatrix}
 x^2(t) \\
 y^2(t)
\end{bmatrix} - \frac{1}{7}
\begin{bmatrix}
 A^x y^1(t) \\
 B^x x^1(t)
\end{bmatrix};
\]

\[
\begin{bmatrix}
 \dot{x}^3(t) \\
 \dot{y}^3(t)
\end{bmatrix} = \begin{bmatrix}
 0 & -A^6 \\
 -B^6 & 0
\end{bmatrix}
\begin{bmatrix}
 x^3(t) \\
 y^3(t)
\end{bmatrix} - \frac{1}{7}
\begin{bmatrix}
 A^x y^1(t) \\
 B^x x^1(t)
\end{bmatrix};
\]

\[
\begin{bmatrix}
 \dot{x}^4(t) \\
 \dot{y}^4(t)
\end{bmatrix} = \begin{bmatrix}
 0 & -A^7 \\
 -B^7 & 0
\end{bmatrix}
\begin{bmatrix}
 x^4(t) \\
 y^4(t)
\end{bmatrix} - \frac{1}{7}
\begin{bmatrix}
 A^x y^1(t) \\
 B^x x^1(t)
\end{bmatrix};
\]

\[
X_1(t), Y_1(t), X_3(t), Y_3(t), x^i(t), y^i(t) \geq 0;
\]

\[
x^i(t^{n-1}) = U_{ni} x_2(t^{n-1}), y^i(t^{n-1}) = V_{ni} y_2(t^{n-1}); \text{ and}
\]

\[
x^i(0) \equiv X_i, Y_i(0) \equiv Y_i.
\]

C. The Solution of the Differential Equations

Throughout \(t \geq t^{n-1} \). It is well known that systems of differential equations of the form

\[
\begin{bmatrix}
 \dot{x}(t) \\
 \dot{y}(t)
\end{bmatrix} = \begin{bmatrix}
 0 & -a \\
 -b & 0
\end{bmatrix}
\begin{bmatrix}
 x(t) \\
 y(t)
\end{bmatrix} + \begin{bmatrix}
 a_1(t) \\
 b_1(t)
\end{bmatrix},
\]

\(x(t^{n-1}), y(t^{n-1}) \) given.
have the solution

\[
\begin{bmatrix}
x(t)
y(t)
\end{bmatrix} = \begin{bmatrix}
\cosh (\sqrt{ab} (t-t^{n-1})) & -\sqrt{a/b} \sinh (\sqrt{ab} (t-t^{n-1}))
\sqrt{a/b} \sinh (\sqrt{ab} (t-t^{n-1})) & \cosh (\sqrt{ab} (t-t^{n-1}))
\end{bmatrix} \begin{bmatrix}
x(t^{n-1})
y(t^{n-1})
\end{bmatrix}
\]

\[+
\int_{t^{n-1}}^{t} \begin{bmatrix}
\cosh (\sqrt{ab} (t-\sigma)) & -\sqrt{a/b} \sinh (\sqrt{ab} (t-\sigma))
\sqrt{a/b} \sinh (\sqrt{ab} (t-\sigma)) & \cosh (\sqrt{ab} (t-\sigma))
\end{bmatrix} \begin{bmatrix}
a_1(\sigma)
b_1(\sigma)
\end{bmatrix} d\sigma .
\]

Specifically,

\[
\begin{bmatrix}
\dot{x}_1(t)
\dot{y}_1(t)
\end{bmatrix} = \begin{bmatrix}
0 & -\frac{(p_R(t^{n-1}) \wedge y_3(t^{n-1})) A'(n)}{p_R(t^{n-1})}
\frac{(p_B(t^{n-1}) \wedge x_3(t^{n-1})) B'(n)}{p_B(t^{n-1})}
\end{bmatrix} \begin{bmatrix}
x_1(t)
y_1(t)
\end{bmatrix}
\]

has the solution

\[
x_1(t) = \left(x_1(t^{n-1}) + \frac{b_1'(n) U_{n2} y_2(t^{n-1})}{\frac{p_B(t^{n-1}) \wedge x_3(t^{n-1})}{(p_B(t^{n-1}) \wedge x_3(t^{n-1})) B'(n)}} \right) x(t) \times \cosh \left(\frac{(p_R(t^{n-1}) \wedge y_3(t^{n-1})) A'(n) (p_B(t^{n-1}) \wedge x_3(t^{n-1})) B'(n)}{p_R(t^{n-1}) p_B(t^{n-1})} (t-t^{n-1}) \right)
\]

15
\[
\left(\frac{R_n(t^{n-1}) \wedge y_3(t^{n-1})}{R_n(t^{n-1}) R_n(t^{n-1})} \right)_{n=1}^{\frac{1}{2}}
\]

\[
\frac{a_1'(x) v_{n-1} y_3(t^{n-1})}{(R_n(t^{n-1}) \wedge y_3(t^{n-1})) A'(n)}
\]

The differential equation
\[
\dot{y}_3(t) = \frac{R_{n-1} - A(x) y_3(t)}{x_3(t^{n-1})}
\]
has the solution
\[
x_3(t) = x_3(t^{n-1}) + \frac{R_{n-1}}{n} (t-t^{n-1}) - A(x) \int_{t^{n-1}}^{t} y_3(s) ds
\]
while
\[
Y_3(t) = \frac{R_{n-1} - B(x) x_3(t)}{x_3(t^{n-1})}
\]
has the solution
\[
Y_3(t) = Y_3(t^{n-1}) + \frac{R_{n-1}}{n} (t-t^{n-1}) - B(x) \int_{t^{n-1}}^{t} x_3(s) ds
\]
The system of differential equations
\[
\begin{bmatrix}
x'(t) \\
y'(t) \\
x_{n1}'(t) \\
y_{n1}'(t)
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & -A^x/7 & A^x \\
0 & 0 & -(A^y + A^y/7) & 0 \\
A & 0 & 0 & 0 \\
A & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x'(t) \\
y'(t) \\
x_{n1}'(t) \\
y_{n1}'(t)
\end{bmatrix}
\]

\[
x_{n1}'(t^{n-1}) = v_{n1} x_2(t^{n-1})
\]

\[
y_{n1}'(t^{n-1}) = v_{n1} y_2(t^{n-1})
\]

\[
x_{n4}'(t^{n-1}) = v_{n4} x_2(t^{n-1})
\]

\[
y_{n4}'(t^{n-1}) = v_{n4} y_2(t^{n-1})
\]
can be shown to have the solution

\[
\begin{bmatrix}
 x'(t) \\
 \dot{x}(t) \\
 \dot{y}(t) \\
 \dot{y}(t)
\end{bmatrix}
= B \exp \left(\hat{A}(t-t^n-1) \right) B^{-1}
\begin{bmatrix}
 \frac{x_1(t)}{n} \\
 \frac{x_2(t)}{n} \\
 \frac{x_3(t)}{n} \\
 \frac{x_4(t)}{n}
\end{bmatrix}
\]

where

\[
\hat{A} = \begin{bmatrix}
 \lambda_1 & 0 & 0 \\
 0 & \lambda_2 & 0 \\
 0 & 0 & -\lambda_1 \\
 0 & 0 & -\lambda_2
\end{bmatrix}
\]

\[
\lambda_1 = \left\{ -b + \left[b^2 - 4c \right]^{\frac{1}{2}} \right\}^{\frac{1}{2}} \\
\lambda_2 = \left\{ -b - \left[b^2 - 4c \right]^{\frac{1}{2}} \right\}^{\frac{1}{2}}
\]

\[
b = -\frac{A^* B^*}{49} + A^* \left(\frac{1}{7} + B^* \right) + B \left(\frac{1}{7} + A^* \right)
\]

\[
c = A^* B^* \left(\frac{1}{7} + B^* \right) \left(\frac{1}{7} + A^* \right)
\]
\[B = \begin{bmatrix}
\frac{4(A^1 + A^*/7)}{B(A^1 + A^*/7) - \lambda_1^2} & \frac{4(A^1 + A^*/7)}{B(A^1 + A^*/7) - \lambda_2^2} & \frac{4(A^1 + A^*/7)}{B(A^1 + A^*/7) - \lambda_1^2} & \frac{4(A^1 + A^*/7)}{B(A^1 + A^*/7) - \lambda_2^2} \\
\frac{\lambda_1 B^*/7}{A(A^1 + A^*/7) - \lambda_1} & \frac{\lambda_2 B^*/7}{A(A^1 + A^*/7) - \lambda_2} & \frac{\lambda_1 B^*/7}{A(A^1 + A^*/7) - \lambda_1} & \frac{\lambda_2 B^*/7}{A(A^1 + A^*/7) - \lambda_2} \\
\frac{(A^1 + A^*/7)}{\lambda_1} & \frac{(A^1 + A^*/7)}{\lambda_2} & \frac{(A^1 + A^*/7)}{\lambda_1} & \frac{(A^1 + A^*/7)}{\lambda_2} \\
1 & 1 & 1 & 1 \\
\frac{A^*(B^1 + B^*/7)/7}{A^*(B^1 + B^*/7) - \lambda_1^2} & \frac{A^*(B^1 + B^*/7)/7}{A^*(B^1 + B^*/7) - \lambda_2^2} & \frac{A^*(B^1 + B^*/7)/7}{A^*(B^1 + B^*/7) - \lambda_1^2} & \frac{A^*(B^1 + B^*/7)/7}{A^*(B^1 + B^*/7) - \lambda_2^2}
\end{bmatrix} \]
\[
\begin{align*}
\lambda_2^2 + \frac{1}{2}(\lambda_1 + \lambda_2)\lambda_1^2 + \lambda_2^2 + (\lambda_1 + \lambda_2)(\lambda_1^2 + \lambda_2^2) - \frac{\lambda_1^2}{2} + \frac{\lambda_2^2}{2} & = 0, \\
\frac{\lambda_1^2}{2} + \frac{\lambda_2^2}{2} & = \frac{(\lambda_1 + \lambda_2)(\lambda_1^2 + \lambda_2^2) - \lambda_1^2}{2} - \frac{\lambda_1^2}{2} + \frac{\lambda_2^2}{2}, \\
\frac{(\lambda_1 + \lambda_2)(\lambda_1^2 + \lambda_2^2) - \lambda_1^2}{2} & = -\frac{\lambda_1^2}{2} + \frac{\lambda_2^2}{2}, \\
\frac{(\lambda_1 + \lambda_2)(\lambda_1^2 + \lambda_2^2) - \lambda_1^2}{2} & = \frac{(\lambda_1 + \lambda_2)(\lambda_1^2 + \lambda_2^2) - \lambda_2^2}{2}.
\end{align*}
\]
D. Comments

Model I was developed without regard for whether it was computationally feasible to solve. The driving consideration in its development was to construct the most aggregate model that still represented the air/ground war in reasonable detail. Its purpose was to provide a benchmark by which subsequent (more computationally tractable) models could be compared.

The difficulty of solving the N-stage game determined by Model I arises from two sources. First, we must optimize over the 14 variables (7 for B and 7 for R) corresponding to the air missions of B and R. While this requirement may not seem difficult at first, the problem confronting us is that there exists no algorithm to solve an infinite game in closed form over N stages. Each such game requires the development and use of techniques taking advantage of the special characteristics of the game. The development of these techniques is hard even when there are as few as four variables, and it becomes progressively harder as the variables increase in number.

The second source of difficulty arises from the form of the payoff and attrition functions. As the solution of the game progresses, we find almost immediately that the value of the game (since it is a function of the payoff and attrition functions) is a complicated function of the strategies of the previous stage. This point will be discussed further in the next chapter, since Model II suffers from this difficulty also.

As a result of the first difficulty, the number of variables, Model II was formulated. In Model II the air missions are aggregated into three primary missions for each side. Once assignment has been made to the primary missions, airplanes assigned to any primary mission are suballocated among the subtasks of that mission.
III MODEL II

In the following, all assumptions of Model I apply unless we indicate otherwise. Where applicable the same notation is used.

Recall from Figure 1 the original seven-air-mission aggregated air- and-ground-war model. In Figure 2 the battlefield of the seven-mission model has been divided into three regions: \(T_B \), the region defended by B and attacked by R; \(T_R \), the region defended by R and attacked by B; and \(T_{BR} \), the region that may be both defended and attacked by B and R. Thus \(T_B \) contains the B logistic pipeline and B air base, \(T_R \) contains the R logistic pipeline and R air base, and \(T_{BR} \) contains the B ground force, the R ground force and the air space above the ground forces.

Under this aggregation scheme B and R allocate airplanes to the three regions at times \(t^{n-1} \), \(1 \leq n \leq N \). An airplane allocated by B(R) to region \(T_B \) will ultimately be suballocated to B(R)'s AD vs AN or AD vs I mission; an airplane allocated by B(R) to region \(T_R \) will ultimately be suballocated to B(R)'s AN or I mission; an airplane allocated by B(R) to region \(T_{BR} \) will ultimately be suballocated to B(R)'s AS or CAS or AD vs CAS mission. Let \(\alpha(T_B) \) be the fraction of B(R) airplanes allocated to \(T_B \) at time \(t^{n-1} \) that is ultimately allocated to AN. Let \(\delta(T_{BR}) \) be the fraction of B(R) airplanes allocated to \(T_{BR} \) at time \(t^{n-1} \) that is ultimately allocated to CAS.

We assume now that B(R)'s air allocation to \(T_q \) is exposed to attrition from R(B)'s air allocation to \(T_q \) as a unit, and thus independent of the ultimate assignment of airplanes to air missions which results from the suballocation within region \(T_q \). Furthermore, at each time \(t^{n-1} \), \(1 \leq n \leq N \), the air to ground fire of those B(R) airplanes
FIGURE 2. THE DIVISION OF THE BATTLEFIELD INTO T_B, T_R, AND T_{BR}.
ultimately assigned to AN is assumed to be uniformly allocated among R(B)'s missions to T_B, T_R, T_BR.

An air allocation for B(R) in stage n is a vector \(\xi_n, \eta_n \in \mathbb{R}^3 \) where
\[
\xi_n = (\xi_{n_1}, \xi_{n_2}, \xi_{n_3}), \eta_n = (\eta_{n_1}, \eta_{n_2}, \eta_{n_3}) \geq 0, \text{ and } \sum_i \xi_{ni} = \sum_i \eta_{ni} = 1. \]
and \(\xi_{n_1}, \xi_{n_2}, \xi_{n_3}, \eta_{n_1}, \eta_{n_2}, \eta_{n_3} \) are the fractions of available airplanes at time \(t_{n-1} \) assigned by B(R) to T_B, T_R, and T_BR, respectively.

\[X_1(t), X_2(t), X_3(t), Y_1(t), Y_2(t), \text{ and } Y_3(t) \] are as previously defined. \(x_B(t), y_B(t) \) is the order of battle of B(R)'s T_B mission (= all airplanes allocated to T_B) at time t. \(x_R(t), y_R(t) \) is the order of battle of B(R)'s T_R mission. \(x_{BR}(t), y_{BR}(t) \) is the order of battle of B(R)'s T_BR mission.

Figure 3 gives a graphic representation of the aggregation into the regions T_B, T_R, and T_BR and the subsequent suballocation within each of these regions.

A. Differential Equations

The following system of differential equations arises for stage \(n, 1 \leq n \leq N \). Throughout \(t \in [t_{n-1}, t_n] \).

1. Ground War

\[
\varphi_n = \int_{t_{n-1}}^{t_n} \varphi(t) dt
\]

\[
\begin{align*}
[\dot{X}_1(t)] &= \begin{bmatrix} 0 & -A_1(n, \xi_{n-2}, \eta_{n-2}) \\ -B_1(n, \xi_{n-1}, \eta_{n-1}) & 0 \end{bmatrix} [X_1(t)] - \begin{bmatrix} a_1(n, \eta_{n_3}) \\ b_1(n, \xi_{n_3}) \end{bmatrix} \\
[\dot{Y}_1(t)] &= \begin{bmatrix} 0 & -a_1(n, \eta_{n_3}) \\ b_1(n, \xi_{n_3}) & 0 \end{bmatrix} [Y_1(t)] - \begin{bmatrix} a_1(n, \eta_{n_3}) \\ b_1(n, \xi_{n_3}) \end{bmatrix}
\end{align*}
\]

\[X_1(t), Y_1(t) \geq 0, X_1(0) \equiv X_1, Y_1(0) \equiv Y_1. \]

2. Logistic Pipelines

\[
\begin{align*}
\dot{X}_3(t) &= \xi_B^n - (1 - \xi_B^n) A_B^R y_B(t) \\
\dot{Y}_3(t) &= \xi_R^n - (1 - \xi_R^n) B_R^B y_R(t)
\end{align*}
\]

\[X_3(t), Y_3(t) \geq 0. \]

24
Figure 3. Graphic representation of aggregation into the 3 regions T_B, T_R, T_BR.

\(\alpha, \beta, \delta, \gamma \) must be determined in the suballocation.
3. Air War

\[T_B \text{ and } T_R \]

\[
\begin{bmatrix}
\dot{x}_R(t) \\
\dot{x}_B(t) \\
\dot{y}_B(t) \\
\dot{y}_R(t)
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & -A^\alpha B_n/3 & -A_R \\
0 & 0 & -(A_B + A^\alpha B_n/3) & 0 \\
-B^\alpha n/3 & -B_B & 0 & 0 \\
-(B_R + B^\alpha n/3) & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_R(t) \\
x_B(t) \\
y_B(t) \\
y_R(t)
\end{bmatrix}
\]

\[
x_R(t^{n-1}) = \zeta_n x_2(t^{n-1}),
x_B(t^{n-1}) = \zeta_n x_2(t^{n-1}),
\]

\[
y_B(t^{n-1}) = \gamma_n y_2(t^{n-1}),
y_R(t^{n-1}) = \gamma_n y_2(t^{n-1}),
\]

\[x_R(t), x_B(t), y_B(t), y_R(t) \geq 0 \]

\[T_{BR} \]

\[
\begin{bmatrix}
\dot{x}_{BR}(t) \\
\dot{y}_{BR}(t)
\end{bmatrix} =
\begin{bmatrix}
0 & -A_{BR} \\
-B_{BR} & 0
\end{bmatrix}
\begin{bmatrix}
x_{BR}(t) \\
y_{BR}(t)
\end{bmatrix} -
\begin{bmatrix}
A^\ast B_n y_B(t)/3 \\
B^\ast n x_R(t)/3
\end{bmatrix}
\]

\[
x_{BR}(t^{n-1}) = \zeta_n x_2(t^{n-1}),
y_{BR}(t^{n-1}) = \gamma_n y_2(t^{n-1}),
\]

\[x_{BR}(t), y_{BR}(t) \geq 0 \]

4. Modeling \(A_1(n, \zeta_{n-1}, \gamma_{n-1}) \), \(B_1(n, \zeta_{n-1}, \gamma_{n-1}) \)

We assume

\[
A_1(n, \zeta_{n-1}, \gamma_{n-1}) = f_n^{R}(\zeta_{n-1}, \gamma_{n-1}, \rho_R(t^{n-1}))A'_1(n)
\]

\[
B_1(n, \zeta_{n-1}, \gamma_{n-1}) = f_n^{B}(\zeta_{n-1}, \gamma_{n-1}, \rho_B(t^{n-1}))B'_1(n)
\]

where \(\rho_q(t^{n-1}), A'_1(n), B'_1(n) \) are as previously defined.
Let

$$f_n^{B}(\zeta_{n-1}, \gamma_{n-1}, l^B_{B}(t^{n-1})) = \frac{\rho_B(t^{n-1}) \wedge x_{3}(t^{n-1})}{\rho_B(t^{n-1})}.$$

$$f_n^{R}(\zeta_{n-1}, \gamma_{n-1}, l^R_{R}(t^{n-1})) = \frac{\rho_R(t^{n-1}) \wedge y_{3}(t^{n-1})}{\rho_R(t^{n-1})}.$$

Modeling $a_l(n, \gamma_{n3})$, $b_l(n, \zeta_{n3})$

$$a_l(n, \gamma_{n3}) = a_l'(n) \gamma_{n3} \parallel y_2(t^{n-1})$$

$$b_l(n, \zeta_{n3}) = b_l'(n) \zeta_{n3} \parallel x_2(t^{n-1})$$.
B. The Formulated Game

\(\mathcal{B}(\mathcal{R}) \) picks \(\zeta = (\zeta_n)_{n \in \mathbb{N}} \) to max(min) the payoff function

\[
\begin{bmatrix}
\dot{X}_1(t) \\
\dot{Y}_1(t)
\end{bmatrix} = \begin{bmatrix}
0 & \frac{\mathcal{A}_R(t^{n-1}) \wedge x Y_3(t^{n-1})}{\mathcal{A}_R(t^{n-1})} \\
\frac{\mathcal{A}_B(t^{n-1}) \wedge x X_3(t^{n-1})}{\mathcal{A}_B(t^{n-1})} & B'(n)
\end{bmatrix} \begin{bmatrix}
X_1(t) \\
Y_1(t)
\end{bmatrix}
\]

so that for \(1 \leq n \leq N, t^{n-1} \leq t \leq t^n \)

\[
\begin{align*}
\dot{X}_3(t) &= x_R - (1 - \alpha_n) x B'(t), \\
\dot{Y}_3(t) &= x_R - (1 - \alpha_n) x B'(t);
\end{align*}
\]

\[
\begin{align*}
\dot{x}_B(t) &= 0 \\
\dot{y}_B(t) &= 0 \\
\dot{x}_{BR}(t) &= -A_B / 3 \\
\dot{y}_{BR}(t) &= -A_B / 3
\end{align*}
\]

\[
\begin{align*}
X_1(t), Y_1(t), X_3(t), Y_3(t), x_q(t), y_q(t) &\geq 0 \quad (q = R, BR);
\end{align*}
\]

\[
\begin{align*}
x_R(t^{n-1}) &= \gamma_n x_2(t^{n-1}), \\
y_R(t^{n-1}) &= \gamma_n y_2(t^{n-1}), \\
x_{BR}(t^{n-1}) &= \gamma_n x_2(t^{n-1}), \\
y_{BR}(t^{n-1}) &= \gamma_n y_2(t^{n-1});
\end{align*}
\]

and \(X_1(0) = X_1, Y_1(0) = Y_1 \).
C. The Solution of the Differential Equations

Throughout $t \geq t^{n-1}$. The system

\[
\begin{bmatrix}
\dot{X}_1(t) \\
\dot{Y}_1(t)
\end{bmatrix} =
\begin{bmatrix}
0 \\
-\left(\varphi_B(t^{n-1}) \wedge \xi(t^{n-1})\right) B'(n)
\end{bmatrix}
\begin{bmatrix}
\varphi_R(t^{n-1}) \\
\varphi_B(t^{n-1})
\end{bmatrix}
\begin{bmatrix}
A'(n) \\
0
\end{bmatrix}
\begin{bmatrix}
X_1(t) \\
Y_1(t)
\end{bmatrix}
\]

has the solution

\[
X_1(t) = X_1(t^{n-1}) + \frac{\left(b_1'(n) \gamma_{n_3 n_2}(t^{n-1}) \xi(t^{n-1})\right)}{\left(\varphi_B(t^{n-1}) \wedge \xi(t^{n-1})\right) B'(n)}
\]

\[
\times \cosh\left(\frac{\left(\varphi_R(t^{n-1}) \wedge \xi(t^{n-1})\right) A'(n)}{\varphi_R(t^{n-1}) \varphi_B(t^{n-1})} (t-t^{n-1})\right)
\]

\[
- \left(Y_1(t^{n-1}) \left(\varphi_R(t^{n-1}) \wedge \xi(t^{n-1})\right) A'(n) B'(n)\right)
\]

\[
\times \sinh\left(\frac{\left(\varphi_R(t^{n-1}) \wedge \xi(t^{n-1})\right) A'(n)}{\varphi_R(t^{n-1}) \varphi_B(t^{n-1})} (t-t^{n-1})\right)
\]

\[
+ \frac{\left(\varphi_2'(n) \gamma_{n_3 n_2}(t^{n-1}) \xi(t^{n-1})\right)}{\left(\varphi_B(t^{n-1}) \wedge \xi(t^{n-1})\right) B'(n)}
\]

\[
\times \cosh\left(\frac{\left(\varphi_R(t^{n-1}) \wedge \xi(t^{n-1})\right) A'(n)}{\varphi_R(t^{n-1}) \varphi_B(t^{n-1})} (t-t^{n-1})\right)
\]

\[
- \left(Y_1(t^{n-1}) \left(\varphi_R(t^{n-1}) \wedge \xi(t^{n-1})\right) A'(n) B'(n)\right)
\]

\[
\times \sinh\left(\frac{\left(\varphi_R(t^{n-1}) \wedge \xi(t^{n-1})\right) A'(n)}{\varphi_R(t^{n-1}) \varphi_B(t^{n-1})} (t-t^{n-1})\right)
\]

\[
+ \frac{\left(\varphi_2'(n) \gamma_{n_3 n_2}(t^{n-1}) \xi(t^{n-1})\right)}{\left(\varphi_B(t^{n-1}) \wedge \xi(t^{n-1})\right) B'(n)}
\]

29
\[
Y_1(t) = \left(Y_1(t^{n-1}) + \frac{a_1^{(n)} n_3 n_2}{\beta_R(t^{n-1})} Y_2(t^{n-1}) \frac{\alpha_{c_R}(t^{n-1})}{(\beta_R(t^{n-1}) \wedge y_{13}(t^{n-1})) A'(n)} \right)
\times \cosh\left(\left[\frac{\left(\alpha_{c_B}(t^{n-1}) \wedge y_{13}(t^{n-1}) \right) A'(n) \left(\left(\alpha_{c_R}(t^{n-1}) \wedge x_{13}(t^{n-1}) \right) B'(n) \right)}{\beta_R(t^{n-1})} \right]^{\frac{1}{2}} (t-t^{n-1}) \right) - \left(\frac{b_1'(n) n_3 n_2}{\beta_R(t^{n-1})} \right) \left[\left(\alpha_{c_B}(t^{n-1}) \wedge y_{13}(t^{n-1}) \right) A'(n) \left(\left(\alpha_{c_R}(t^{n-1}) \wedge x_{13}(t^{n-1}) \right) B'(n) \right) \right]^{\frac{1}{2}} \right) + \left(\frac{\left(\alpha_{c_R}(t^{n-1}) \wedge y_{13}(t^{n-1}) \right) A'(n) \left(\left(\alpha_{c_R}(t^{n-1}) \wedge x_{13}(t^{n-1}) \right) B'(n) \right)}{\beta_R(t^{n-1})} \right) \times \sinh\left(\left[\frac{\left(\alpha_{c_B}(t^{n-1}) \wedge y_{13}(t^{n-1}) \right) A'(n) \left(\left(\alpha_{c_R}(t^{n-1}) \wedge x_{13}(t^{n-1}) \right) B'(n) \right)}{\beta_R(t^{n-1})} \right]^{\frac{1}{2}} (t-t^{n-1}) \right)
\end{align*}

The differential equation
\[
\dot{X}_3(t) = \beta_{s_n} - (1-B_n)A^{s_s} y_j(t), \quad X_3(t^{n-1})
\]
has the solution
\[
X_3(t) = X_3(t^{n-1}) + \beta_{s_n} (t-t^{n-1}) - (1-B_n)A^{s_s} \int_{t^{n-1}}^{t} y_j(s)ds.
\]

The differential equation
\[
\dot{Y}_3(t) = \beta_{n_n} - (1-A_n)B^{s_s} y_j(t), \quad Y_3(t^{n-1})
\]
has the solution
\[
Y_3(t) = Y_3(t^{n-1}) + \beta_{n_n} (t-t^{n-1}) - (1-A_n)B^{s_s} \int_{t^{n-1}}^{t} y_j(s)ds.
\]

30
Routine calculations show that the system of differential equations

\[
\begin{bmatrix}
\dot{x}_R(t) \\
\dot{x}_B(t) \\
\dot{y}_B(t) \\
\dot{y}_R(t)
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & -A^s n /3 & -A_R \\
0 & 0 & - (A_B + A^s n /3) & 0 \\
- B^u n /3 & - B_R & 0 & 0 \\
- (B_R + B^u n /3) & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_R(t) \\
x_B(t) \\
y_B(t) \\
y_R(t)
\end{bmatrix}
\]

(1)

\[x_R(t^{n-1}) = \zeta_{n1} x_2(t^{n-1}) , \quad x_B(t^{n-1}) = \zeta_{n2} x_2(t^{n-1}) , \]
\[y_B(t^{n-1}) = \gamma_{n1} y_2(t^{n-1}) , \quad y_R(t^{n-1}) = \gamma_{n2} y_2(t^{n-1}) \]

has the solution

\[
\begin{bmatrix}
x_R(t) \\
x_B(t) \\
y_B(t) \\
y_R(t)
\end{bmatrix} = B \exp\{\hat{A}(t-t^{n-1})\} B^{-1}
\begin{bmatrix}
\zeta_{n2} x_2(t^{n-1}) \\
\zeta_{n1} x_2(t^{n-1}) \\
\gamma_{n1} y_2(t^{n-1}) \\
\gamma_{n2} y_2(t^{n-1})
\end{bmatrix}
\]

where

\[
\hat{A} =
\begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]

\[\lambda_1 = \left\{ - b + \left[b^2 - 4c \right]^{1/2} \right\} / 2 , \quad \lambda_2 = \left\{ - b - \left[b^2 - 4c \right]^{1/2} \right\} / 2 , \]

\[b = - \left\{ (A_B + A^s n /3) B_B + A^s n B^u \alpha / 9 + A_R(B_R + B^u \alpha /3) \right\} , \]

\[c = A_R B_R (A_B + A^s n /3) (B_R + B^u \alpha /3) , \]

31
and $B^{-1} = \begin{bmatrix}
- \frac{B^b \alpha_{n,1}}{6(\lambda_1^2 - \lambda_2^2)} & \frac{\lambda_1}{2} \left[(A_R + A^b B_n / 3) B_R - \lambda_1^2 / 2 \right] & - \frac{A_R (B_R + B^b \alpha_{n} / 3) - \lambda_1^2}{2(\lambda_1^2 - \lambda_2^2 / 2)} & - \frac{A_R B^b \alpha_{n}}{6(\lambda_1^2 - \lambda_2^2)} \\
\frac{B^b \alpha_{n,2}}{6(\lambda_1^2 - \lambda_2^2)} & - \frac{\lambda_2}{2} \left[(A_R + A^b B_n / 3) B_R - \lambda_2^2 / 2 \right] & \frac{A_R (B_R + B^b \alpha_{n} / 3) - \lambda_2^2}{2(\lambda_1^2 - \lambda_2^2 / 2)} & - \frac{A_R B^b \alpha_{n}}{6(\lambda_1^2 - \lambda_2^2)} \\
- \frac{B^b \alpha_{n,1}}{6(\lambda_1^2 - \lambda_2^2)} & \frac{\lambda_1}{2} \left[(A_R + A^b B_n / 3) B_R - \lambda_1^2 / 2 \right] & - \frac{A_R (B_R + B^b \alpha_{n} / 3) - \lambda_1^2}{2(\lambda_1^2 - \lambda_2^2 / 2)} & - \frac{A_R B^b \alpha_{n}}{6(\lambda_1^2 - \lambda_2^2)} \\
- \frac{B^b \alpha_{n,2}}{6(\lambda_1^2 - \lambda_2^2)} & - \frac{\lambda_2}{2} \left[(A_R + A^b B_n / 3) B_R - \lambda_2^2 / 2 \right] & - \frac{A_R (B_R + B^b \alpha_{n} / 3) - \lambda_2^2}{2(\lambda_1^2 - \lambda_2^2 / 2)} & - \frac{A_R B^b \alpha_{n}}{6(\lambda_1^2 - \lambda_2^2)}
\end{bmatrix}$
D. Comments

We make the following definitions:

\[t^n_B = \inf \{ t \geq t^{n-1}_B : X_1(t) = 0 , \ Y_1(t) > 0 \} \]

\[t^n_R = \inf \{ t \geq t^{n-1}_R : Y_1(t) = 0 , \ X_1(t) > 0 \} \]

\[t^n = \infty \text{ if } X_1(t) > 0 , \ t \geq t^{n-1}_R \]

and

\[t^n = \infty \text{ if } Y_1(t) > 0 , \ t \geq t^{n-1}_B \]

\[t^n(s) = (s \land \frac{n}{q}) - t^{n-1}_q \quad q = B, R \]

\[t^n_B = \inf \{ t \geq t^n_R : X_1(t) = 0 \} \]

\[t^n_R = \inf \{ t \geq t^n_B : Y_1(t) = 0 \} \]

\[t^n = \infty \text{ if } X_1(t) > 0 , \ t \geq t^n_B \]

\[t^n = \infty \text{ if } Y_1(t) > 0 , \ t \geq t^n_B \]

Incorporating the restriction that the order of battle of the various combat forces must be nonnegative, the ground force levels at stage \(n \) are given by:

\[
\begin{aligned}
X_1(t) &= X_1(t^n_R) - \sum_{i=1}^{n} a_i(t^n_R) X_1(t^n_R - \frac{n}{i}) (t^n_R - \frac{n}{i+1}) \quad \text{if } t^n_R < t^n_B \text{ and } t^n < t^n_R

\wedge X_1(t) &= 0 \quad \text{if } t^n_B < t^n_R \text{ and } t^n_B < t \quad \text{or } t^n < t^n_B \text{ and } t^n < t
\end{aligned}
\]
\[
\mathcal{Y}_1(t) = \begin{cases}
Y_1(t) , & \text{if } t \leq t^n_B \wedge t^n_R \\
Y_1(t_B^n) - \zeta \beta_{1}^{n} \xi X_2(t_{n}^{n-1})(t-t_B^n), & \text{if } t_B^n < t_R^n \text{ and } t_R^n < t \\
0 & \text{if } t_R^n < t_B^n \text{ and } t_R^n < t \\
& \text{or } t_B^n < t_R^n \text{ and } t_R^n < t .
\end{cases}
\]

The payoff at stage \(n \) is therefore:

\[
\hat{X}_1(t^n) - Y_1(t^n) = \begin{cases}
x_1(t^n) - Y_1(t^n) , & \text{if } t^n \leq t_B^n \wedge t_R^n \\
x_1(t_R^n) - Y_1(t_R^n) + \zeta \beta_{1}^{n} \xi X_2(t_{n}^{n-1})(t_R^n - t_B^n), & \text{if } t_R^n < t_B^n \text{ and } t_R^n < t \\
- Y_1(t_B^n) + \zeta \beta_{1}^{n} \xi X_2(t_{n}^{n-1})(t_B^n - t_R^n), & \text{if } t_B^n < t_R^n \text{ and } t_B^n < t \\
0 & \text{if otherwise .}
\end{cases}
\]

It can be shown that

\[
t_B^n = t_{n-1} + (a b_{n}^{-1} \ln b_{n}^{-1} \zeta n_{3}) + \frac{k}{n} \left(Y_1(t_{n}^{n-1}) + \frac{a \ln n_{3}}{a_{n}} \right) - \frac{a}{n} \left(a \ln n_{3} \right)
\]

when

\[
b_{n}^{\frac{k}{n}} \left(x_1(t_{n}^{n-1}) + \frac{b \ln n_{3}}{b_{n}} \right) > a_{n}^{\frac{k}{n}} \left(Y_1(t_{n}^{n-1}) + \frac{a \ln n_{3}}{a_{n}} \right)
\]

35
implies
\[b, \xi_{n3} / b_n^{1/2} \geq \alpha_1, \]
\[t_B^n = \infty \text{ otherwise}; \]

and
\[t_R^n = t^{n-1} + \left(a_n t_n \right)^{-\frac{1}{2}} \ln \left(\frac{b_n}{b} \right) \]
\[\frac{\left(a_n t_n \right)^{1/2} X_1(t^{n-1}) + b_n \xi_{n3}}{b_n} + a_n \left(Y_1(t^{n-1}) + \frac{a_n \gamma_{n3}}{a_n} \right) \]
\[a_n \gamma_{n3} + \left(a_n \gamma_{n3} \right)^2 + a_n \gamma_{n3} \frac{2}{a_n} \frac{1}{a_n} \]
\[\text{when } b_n \left(X_1(t^{n-1}) + b_n \xi_{n3} \right) < a_n \left(Y_1(t^{n-1}) + \frac{a_n \gamma_{n3}}{a_n} \right) \]

implies
\[a_n \gamma_{n3} / a_n \geq \alpha_2, \]
\[t_R^n = \infty \text{ otherwise}; \]

where
\[\alpha_1^2 = b_n \left(X_1(t^{n-1}) + b_n \xi_{n3} \right)^2 - a_n \left(Y_1(t^{n-1}) + \frac{a_n \gamma_{n3}}{a_n} \right)^2 = -\alpha_2^2 \]
\[a_n = A_1(n, \xi_{n-12}, \gamma_{n-12}) \]
\[= A_1'(n) \left(\frac{\rho_B(t^{n-1}) \wedge xY_3(t^{n-1})}{\rho_B(t^{n-1})} \right) \]
\[b_n = B_1(n, \xi_{n-11}, \gamma_{n-11}) \]
\[= B_1'(n) \left(\frac{\rho_B(t^{n-1}) \wedge xY_3(t^{n-1})}{\rho_B(t^{n-1})} \right) \]
\[a_{n1} = a_{1_1}'(n) \gamma_{n2}(t^{n-1}) \]
\[b_{n1} = b_{11}'(n) \delta_{n2}(t^{n-1}) \]
We verify that \(\zeta_{N3} = 1, \gamma_{N3} = 1 \) are optimal strategies for the game at stage \(N \). Suppose \(t^{N-1} \leq t \leq t^N_B \wedge t^N_R \), writing out \(\hat{X}_1(t) \) and \(\hat{Y}_1(t) \), where functional dependence has been suppressed except with respect to \(\zeta \) and \(\gamma \), we have

\[
\hat{X}_1(t) = X_1(t^{N-1}) \cosh \left((a_{N1}b_{N})^{\frac{1}{2}}(t-t^{N-1}) \right) - Y_1(t^{N-1}) \left(\frac{a_{N1}}{b_{N}} \right)^{\frac{1}{2}} \sinh \left((a_{N1}b_{N})^{\frac{1}{2}}(t-t^{N-1}) \right)
\]

\[+ \zeta_{N3} \frac{b_{N1}}{b_{N}} \left(\cosh \left((a_{N1}b_{N})^{\frac{1}{2}}(t-t^{N-1}) \right) - 1 \right) - \gamma_{N3} \frac{a_{N1}}{(a_{N1}b_{N})^{\frac{1}{2}}} \sinh \left((a_{N1}b_{N})^{\frac{1}{2}}(t-t^{N-1}) \right)\]

\[
\hat{Y}_1(t) = Y_1(t^{N-1}) \cosh \left((a_{N1}b_{N})^{\frac{1}{2}}(t-t^{N-1}) \right) - X_1(t^{N-1}) \left(\frac{b_{N1}}{a_{N1}} \right)^{\frac{1}{2}} \sinh \left((a_{N1}b_{N})^{\frac{1}{2}}(t-t^{N-1}) \right)
\]

\[+ \gamma_{N3} \frac{a_{N1}}{a_{N1}} \left(\cosh \left((a_{N1}b_{N})^{\frac{1}{2}}(t-t^{N-1}) \right) - 1 \right) - \zeta_{N3} \frac{b_{N1}}{(a_{N1}b_{N})^{\frac{1}{2}}} \sinh \left((a_{N1}b_{N})^{\frac{1}{2}}(t-t^{N-1}) \right)\]

Since \(a_{N1}, a_{N1}, b_{N1}, b_{N1} \geq 0 \) and \(\cosh(u) \geq 1 \) it is clear that \(\hat{X}_1(t) \) is non-decreasing in \(\zeta_{N3} \) and nonincreasing in \(\gamma_{N3} \), while \(\hat{Y}_1(t) \) is nondecreasing in \(\gamma_{N3} \) and nonincreasing in \(\zeta_{N3} \), all this for any fixed \(t \). Thus \(t^N_B(t^N_R) \) is nondecreasing in \(\zeta_{N3}(\gamma_{N3}) \) and nonincreasing in \(\gamma_{N3}(\zeta_{N3}) \). Suppose \(t^N_R < t^N_B \) and \(t^N_R < t \leq t^N_B \), then

37
\[\hat{X}_1(t) = X_1(t_{N-1}) \cosh \left((a_{N}b_{N})^{\frac{1}{2}}(t_{R}^N-t_{N-1}) \right) \]

\[- Y_1(t_{N-1}) \left(\frac{a_{N}}{b_{N}} \right) \sinh \left((a_{N}b_{N})^{\frac{1}{2}}(t_{R}^N-t_{N-1}) \right) \]

\[+ \zeta \frac{b_{1N}}{b_{N}} \left(\cosh \left((a_{N}b_{N})^{\frac{1}{2}}(t_{R}^N-t_{N-1}) \right) - 1 \right) \]

\[- Y_1 N_3^{a_{1N}} \left(t_{N} - t_{R} \right) \]

So

\[\frac{\hat{X}_1(t)}{\hat{N} \hat{t}_{R}} = X_1(t_{N-1}) \sinh \left((a_{N}b_{N})^{\frac{1}{2}}(t_{R}^N-t_{N-1}) \right) \left(a_{N}b_{N} \right)^{\frac{1}{2}} \]

\[- Y_1(t_{N-1}) \left(\frac{a_{N}}{b_{N}} \right) \cosh \left((a_{N}b_{N})^{\frac{1}{2}}(t_{R}^N-t_{N-1}) \right) \left(a_{N}b_{N} \right)^{\frac{1}{2}} \]

\[+ \zeta \frac{b_{1N}}{b_{N}} \sinh \left((a_{N}b_{N})^{\frac{1}{2}}(t_{R}^N-t_{N-1}) \right) \left(a_{N}b_{N} \right)^{\frac{1}{2}} \]

\[- Y_1 N_3^{a_{1N}} \cosh \left((a_{N}b_{N})^{\frac{1}{2}}(t_{R}^N-t_{N-1}) \right) \left(a_{N}b_{N} \right)^{\frac{1}{2}} \]

\[+ \zeta N_3^{a_{1N}} \]
= - \left(a_{N} b_{N} \right)^{\frac{1}{2}} \left[Y_{1}(t^{N-1}) \left(\frac{a_{N}}{b_{N}} \right)^{\frac{1}{2}} \cosh \left(\left(a_{N} b_{N} \right)^{\frac{1}{2}} \left(t^{N} - t^{N-1} \right) \right) \right. \\
- X_{1}(t^{N-1}) \sinh \left(\left(a_{N} b_{N} \right)^{\frac{1}{2}} \left(t^{N} - t^{N-1} \right) \right) \\
+ \gamma_{N3} \left(\frac{a_{N}}{b_{N}} \right)^{\frac{1}{2}} \left(\cosh \left(\left(a_{N} b_{N} \right)^{\frac{1}{2}} \left(t^{N} - t^{N-1} \right) \right) - 1 \right) \\
- \zeta_{N3} \left(\frac{b_{N}}{a_{N}} \right)^{\frac{1}{2}} \sinh \left(\left(a_{N} b_{N} \right)^{\frac{1}{2}} \left(t^{N} - t^{N-1} \right) \right) \right]

= - a_{N} \left[Y_{1}(t^{N-1}) \cosh \left(\left(a_{N} b_{N} \right)^{\frac{1}{2}} \left(t^{N} - t^{N-1} \right) \right) \right. \\
- X_{1}(t^{N-1}) \left(\frac{b_{N}}{a_{N}} \right)^{\frac{1}{2}} \sinh \left(\left(a_{N} b_{N} \right)^{\frac{1}{2}} \left(t^{N} - t^{N-1} \right) \right) \\
+ \gamma_{N3} a_{N} \left(\cosh \left(\left(a_{N} b_{N} \right)^{\frac{1}{2}} \left(t^{N} - t^{N-1} \right) \right) - 1 \right) \\
- \zeta_{N3} \left(\frac{b_{N}}{a_{N}} \right)^{\frac{1}{2}} \sinh \left(\left(a_{N} b_{N} \right)^{\frac{1}{2}} \left(t^{N} - t^{N-1} \right) \right) \right]

= - a_{N} Y_{1}(t^{N}) = 0 .

We conclude \(X_{1}(t) \) and \(\tau_{B}^{N} (t_{R}^{N} < t_{B}^{N} \text{ and } t_{R}^{N} < t \leq t_{B}^{N}) \) are nondecreasing in \(\zeta_{N3} \) and nonincreasing in \(\gamma_{N3} \). In a similar fashion \(Y_{1}(t) \) and \(\tau_{R}^{N} (t_{B}^{N} < t_{R}^{N} \text{ and } t_{B}^{N} < t \leq t_{R}^{N}) \) are nondecreasing in \(\gamma_{N3} \) and nonincreasing in \(\zeta_{N3} \).
Suppose $\gamma_{N3} = 1$, then the payoff at stage N is as above. We have seen if

$$\tau_{N-1} \leq \tau_{N} \leq \min(\tau_{B}, \tau_{R})$$

then $\hat{X}_1(t_{N})$ and $-\hat{Y}_1(t_{N})$ are nondecreasing in ζ_{N3}; thus $\hat{X}_1(t_{N}) - \hat{Y}_1(t_{N})$ is maximized at $\zeta_{N3} = 1$. If $\tau_{R} < \tau_{N}$ and $\tau_{B} < \tau_{N} \leq \tau_{B}$, then $\hat{X}_1(t_{N})$ and τ_{B} are nondecreasing in ζ_{N3}, $\hat{Y}_1(t_{N}) = 0$, and τ_{R} is nonincreasing in ζ_{N3}; thus $\hat{X}_1(t_{N}) - \hat{Y}_1(t_{N})$ is maximized at $\zeta_{N3} = 1$. If $\tau_{B} < \tau_{N}$ and $\tau_{B} < \tau_{N} \leq \tau_{R}$, then $\hat{X}_1(t_{N}) \geq 0$, τ_{B}, and $-\hat{Y}_1(t_{N})$ are nondecreasing in ζ_{N3}, while τ_{R} is nonincreasing in ζ_{N3}; thus $\hat{X}_1(t_{N}) - \hat{Y}_1(t_{N})$ is maximized at $\zeta_{N3} = 1$.

In an analogous fashion we can show if $\zeta_{N3} = 1$, then $\hat{X}_1(t_{N}) - \hat{Y}_1(t_{N})$ is minimized at $\gamma_{N3} = 1$. Thus we have proved

Theorem: At stage N an optimal strategy for B assigns all aircraft to $BR (~\zeta_{N3} = 1)$, and an optimal strategy for R assigns all aircraft to $BR (~\gamma_{N3} = 1)$. The value of the game, $V_{N}(\zeta_{N-1}, \gamma_{N-1})$, is

$$V_{N}(\zeta_{N-1}, \gamma_{N-1}) = X_{1}(t_{N-1}) \left[\cosh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) + \left(\frac{b_{N}}{a_{N}} \right)^{\frac{1}{2}} \sinh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) \right]$$

$$- Y_{1}(t_{N-1}) \left[\left(\frac{a_{N}}{b_{N}} \right)^{\frac{1}{2}} \sinh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) + \cosh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) \right]$$

$$+ b_{N} \left[\cosh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) - 1 \sinh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) \right]$$

$$+ a_{N} \left[\cosh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) - 1 \sinh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) \right]$$

$$- a_{N} \left[\cosh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) - 1 \sinh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right) \right]$$

$$+ \frac{1}{\sinh \left((a_{N} b_{N})^{\frac{1}{2}} (t_{N} - t_{N-1}) \right)}.$$
if \(t^N \leq t^N_R \wedge t^N_R \)

\[= X_1(t^{N-1}) \cosh \left((a_{N N} b_{N N})^{\frac{1}{2}}(t^N - t^{N-1}) \right) - Y_1(t^{N-1}) \left(\frac{a_{N N}}{b_{N N}} \right)^{\frac{1}{2}} \sinh \left((a_{N N} b_{N N})^{\frac{1}{2}}(t^N - t^{N-1}) \right) \]

\[+ \frac{b_{1N}}{b_{N N}} \left[\cosh \left((a_{N N} b_{N N})^{\frac{1}{2}}(t^N - t^{N-1}) \right) - 1 \right] \]

\[- \frac{a_{1N}}{a_{N N}} \left[\sinh \left((a_{N N} b_{N N})^{\frac{1}{2}}(t^N - t^{N-1}) \right) + t^N - t^N_R \right] \]

\[\text{if } t^N_R < t^N_B \quad \text{and} \quad t^N_R < t^N \leq t^N_B \]

\[= - Y_1(t^{N-1}) \cosh \left((a_{N N} b_{N N})^{\frac{1}{2}}(t^N - t^{N-1}) \right) + X_1(t^{N-1}) \left(\frac{b_{N N}}{a_{N N}} \right)^{\frac{1}{2}} \sinh \left((a_{N N} b_{N N})^{\frac{1}{2}}(t^N - t^{N-1}) \right) \]

\[- \frac{a_{1N}}{a_{N N}} \left[\cosh \left((a_{N N} b_{N N})^{\frac{1}{2}}(t^N - t^{N-1}) \right) - 1 \right] \]

\[+ \frac{b_{1N}}{b_{N N}} \left[\sinh \left((a_{N N} b_{N N})^{\frac{1}{2}}(t^N - t^{N-1}) \right) + t^N - t^N_B \right] \]

\[\text{if } t^N_B < t^N_R \quad \text{and} \quad t^N_B < t^N \leq t^N_R \]

\[= 0, \quad \text{otherwise.} \]

A major difficulty is now evident. Recall that \(a_{N N}, b_{N N}, a_{1N}, \) and \(b_{1N} \), as well as \(X_1(t^{N-1}) \) and \(Y_1(t^{N-1}) \), are functions of \(\zeta_{N-1} \) and \(\gamma_{N-1} \).

Thus \(V_N \) is a complicated function of the strategies in stage \(N-1 \). In
fact, as a result of this functional dependence, a prodigious amount of analytical effort would be required simply to establish the behavior of \(V_N \) as a function of \(\zeta_{N-1} \) or \(\gamma_{N-1} \). Rather than expend this effort, it was judged more profitable to construct a more tractable model. In this model, attrition is given by difference equations and the payoff is a simple linear function.
IV MODEL III
(THE SURROGATE MODEL)

As a matter of convenience, we number the stages from the end of the game; i.e., stage 1 is the last stage, stage 2 is the second from the last stage, etc. Let $X_n(Y_n)$ be the number of B(R) aircraft available for assignment at the beginning of stage n. Let $X_{nq}(Y_{nq})$ be the number of B(R) aircraft assigned to region q ($q = B, R, BR$) at the beginning of stage n. An air allocation for B(R) in stage n is a vector $X_n(Y_n) \in \mathbb{R}^3$, where $X_n = (X_{nB}, X_{nR}, X_{nBR})$ and $Y_n = (Y_{nB}, Y_{nR}, Y_{nBR})$.

Let $a_n(Y_n)$ be the fraction of $X_{nq}(Y_{nq})$ suballocated to the airfield in region q, $q = B, R$. Let $x_n^i(Y_n^i)$, $1 \leq i \leq 3$, be the order of battle of B(R)’s AN, CAS, and I mission, respectively, at the end of stage n. Let $x_n^i(Y_n^i)$, $i = 4, 5$ be the order of battle of B(R)’s AD vs AN, and AD vs I mission, respectively, at the end of stage n. Let $x_n^i(Y_n^i)$ be the number of B(R) aircraft destroyed on the ground by R(B)’s AN mission survivors. Thus $x_n^i, y_n^i, \hat{x}_n^i, \hat{y}_n^i$ are functions of X_n, Y_n, a_n^q and S_q.

A. The Air and Ground War

1. Ground War and Logistic Pipelines

In an effort to circumvent the complexities in Model II, the explicit representation of the ground war was sacrificed and replaced by a simple linear function of the order of battle of B and R CAS missions:

$$aX_{nBR} - Y_{nBR}$$

$a > 0$ and $1 \leq n \leq N$.

43
2. **Difference Equations for the Air War**

The following system of difference equations is assumed to represent air attrition from stage \(n \) to \(n-1 \).

3. **Airfield Neutralization**

\[
\begin{align*}
 x_n^1 &= 0 \vee \left(\alpha_n^R - \beta_n^Y \right), \\
 y_n^4 &= 0 \vee \left(\beta_n^Y - \alpha_n^X \right), \\
 y_n^1 &= 0 \vee \left(\beta_n^Y - \alpha_n^X \right), \\
 y_n^4 &= 0 \vee \left(\alpha_n^X - \beta_n^Y \right), \\
 \hat{x}_n &= X \wedge y_n^1, \\
 \hat{y}_n &= Y \wedge x_n^1.
\end{align*}
\]

4. **Close Air Support**

\[
\begin{align*}
 x_n^2 &= 0 \vee \left(X_{nBR} - Y_{nBR} \right), \\
 y_n^2 &= 0 \vee \left(Y_{nBR} - X_{nBR} \right).
\end{align*}
\]

5. **Interdiction**

\[
\begin{align*}
 x_n^3 &= 0 \vee \left((1-\alpha_n^R)X_{nR} - (1-\beta_n^Y)Y_{nR} \right), \\
 y_n^5 &= 0 \vee \left((1-\beta_n^Y)Y_{nR} - (1-\alpha_n^X)X_{nR} \right), \\
 y_n^3 &= 0 \vee \left((1-\beta_n^Y)Y_{nR} - (1-\alpha_n^X)X_{nR} \right), \\
 x_n^5 &= 0 \vee \left((1-\alpha_n^X)X_{nR} - (1-\beta_n^Y)Y_{nR} \right).
\end{align*}
\]
So
\[X_{n-1} = 0 \lor \left[\sum_{1 \leq i \leq 5} x_i - x_n \right] \]
and
\[Y_{n-1} = 0 \lor \left[\sum_{1 \leq i \leq 5} y_i - y_n \right] \] .

B. The Formulated Game

B(R) picks \(X_n = (X_{nB}, X_{nR}, X_{nBR}) \) \(Y_n = (Y_{nB}, Y_{nR}, Y_{nBR}) \) to \(\max(\min) \)
the payoff function

\[\sum_{1 \leq n \leq N} \left[aX_{nBR} - Y_{nBR} \right] \]

so that for \(1 \leq n \leq N \)

\[X_{n-1} = 0 \lor \left[\sum_{1 \leq i \leq 5} x_i - x_n \right] \]
\[Y_{n-1} = 0 \lor \left[\sum_{1 \leq i \leq 5} y_i - y_n \right] \]

\[X_{nB} + X_{nR} + X_{nBR} = X_n \]
\[Y_{nB} + Y_{nR} + Y_{nBR} = Y_n \]
\[x_{nq}, y_{nq} \geq 0 \].

C. The Solution of the Game (A Beginning)

Consider stage 1. Then for a choice of strategies for B and R the payoff is \(M_1(X_1, Y_1) = aX_{1BR} - Y_{1BR} \). Obviously \(M_1 \) is maximized(minimized) for B(R) when \(X_{1BR} = X_1(Y_{1BR} = Y_1) \). The value of the game is \(V_1(X_1, Y_1) = aX_1 - Y_1 \). Thus, we have shown

Theorem: At stage 1 an optimal strategy for B assigns all aircraft to \(BR \) \((X_{1BR} = X_1) \); an optimal strategy for R assigns all aircraft to \(BR \) \((Y_{1BR} = Y_1) \). The value of the game is \(V_1(X_1, Y_1) = aX_1 - Y_1 \).
Consider stage 2. Then for a choice of strategies for B and R, the payoff is

\[M_2(X_2, Y_2) = a(X_{2BR} + X_1) - (Y_{2BR} + Y_1) \]

\[= a\left(X_{2BR} + 0 \lor \left[\sum_{1 \leq i \leq 5} x_i^{'} - \hat{x}_2 \right]\right) \]

\[- \left(Y_{2BR} + 0 \lor \left[\sum_{1 \leq i \leq 5} y_i^{'} - \hat{y}_2 \right]\right) . \]

For the remainder of this section we will usually suppress the subscript denoting the stage. We shall assume B is that player in stage 2 with larger resources, i.e., \(X \geq Y \). (From symmetry and the solution for the case when \(X \geq Y \), we may easily obtain the solution for \(X \leq Y \).) Thus \(\hat{x} = y^1 \) whence

\[x^1 - \hat{x} = \alpha_{B} + \beta_{B} Y_{B} \]

Furthermore, it is not difficult to show that

\[y^4 - \hat{y} = \beta_{R} Y_{R} - \alpha_{R} Y_{R} + (Y + \beta_{R} Y_{R}) \]

In what follows we shall determine the conditions to be satisfied by \(a \) so that an optimal strategy for B assigns all aircraft to \(BR (X_{BR} = X) \), and an optimal strategy for R assigns all aircraft to \(BR (Y_{BR} = Y) \).

If \(X^o = (0,0,X) \) and \(Y^o = (0,0,Y) \), then \(M_2(X^o, Y^o) = 2aX - (a+1)Y \).

Let \(Y \) be any R strategy, then

\[M_2(X^o, Y) = a\left(X + 0 \lor [X - Y_{BR} - \beta_{B} Y_{B}]\right) - Y \]

\[= 2aX - Y - aY_{BR} - a\beta_{B} Y_{B} . \]

Since \(0 \leq \beta_{B} \leq 1 \), it is obvious that \(M_2(X^o, Y) \) is minimized at \(Y_{BR} = Y \).
Whence \[\min_{Y} M_2(X^0, Y) = 2aX - (1+a)Y \]
and this result is independent of \(a > 0 \).

Let \(X \) be any \(B \) strategy; then
\[
M_2(X, Y^0) = a(X + 0 \lor (X_{BR} - Y)) \\
- (Y + 0 \lor [0 \lor (Y - X_{BR}) - \omega R X^0 \land Y])
\]

There are several cases.

Case 1: \(\omega R X \leq Y, X_{BR} \geq Y \).
Then \(M_2(X, Y^0) = aX - (1+a)Y + aX_{BR} \).
Certainly \(\max_{X} M_2(X, Y^0) = 2aX - (1+a)Y \),
in this case, and it occurs when \(X_{BR} = X \).
Thus \(X^0 \) is optimal here.

Case 2: \(\omega R X \leq Y, X_{BR} \leq Y, \) and \(X_{BR} + \omega R Y \geq Y \).
Then \(M_2(X, Y^0) = aX - Y \).
Thus \(\max_{X} M_2(X, Y^0) = aX - Y \) in this case and any \(X \) in Case 2
is optimal here.

Case 3: \(\omega R X \leq Y, X_{BR} \leq Y \) and \(X_{BR} + \omega R X \leq Y \).
Then \(M_2(X, Y^0) = aX - 2Y + X_{BR} + \omega R X_{BR} \).
So \(\max_{X} M_2(X, Y^0) = aX - 3Y \) and a maximum occurs at \(X_{BR} = X - Y, \)
\(X = Y \).
Case 4: $\alpha_{R} X_R \geq Y$.

Then $M_2(X, Y) = aX - Y + a(0 \vee (X_{BR} - Y))$.

Consequently, $\max_X M_2(X, Y) = aX - Y + a(0 \vee (X - \frac{1 + \alpha_R}{\alpha_R} Y))$

and a maximum occurs at $X_R = Y/\alpha_R$, $X_{BR} = X - Y/\alpha_R$.

Note that there always exists an X in Cases 1, 2, and 3; while there exists an X in Case 4 if and only if $X \geq Y/\alpha_R$. Thus

$$\max [2aX - (1+a)Y, aX - Y, aX - 3Y]$$

if $X < Y/\alpha_R$,

$$\max_X M_2(X, Y) = \max \left[2aX - (1+a)Y, aX - Y, aX - 3Y, \right.$$

$$\left. aX - Y + a\left(0 \vee \left(X - \frac{1 + \alpha_R}{\alpha_R} Y\right)\right) \right]$$

if $X \geq Y/\alpha_R$.

Since $X \geq Y$, it follows that $2aX - (1+a)Y \geq aX - Y \geq aX - 3Y$. Furthermore,

$$2aX - (1+a)Y \geq aX - Y + a\left(0 \vee \left(X - \frac{1 + \alpha_R}{\alpha_R} Y\right)\right)$$

if and only if

$$X - Y \geq 0 \vee \left(X - \frac{1 + \alpha_R}{\alpha_R} Y\right).$$

The inequality is obviously true when

$$X \leq \frac{1 + \alpha_R}{\alpha_R} Y.$$

When

$$X > \frac{1 + \alpha_R}{\alpha_R} Y,$$

48
we conclude

\[X - Y \geq X - \frac{1 + \alpha_R}{\alpha_R} Y \]

if and only if

\[1 \leq \frac{1 + \alpha_R}{\alpha_R} . \]

Hence \(\max_{X} M_2(X, Y^0) = 2aX - (1+a)Y \) and the maximum occurs when \(X_{BR} = X \).

So we have

\[M_2(X^0, Y^0) = 2aX - (1+a)Y , \]

and

\[\min_{Y} M_2(X^0, Y) = M_2(X^0, Y^0) = \max_{X} M_2(X, Y^0) . \]

Hence we conclude that a saddlepoint exists with \(X^0 \) and \(Y^0 \) optimal pure strategies.

Thus we have proven

Theorem: Suppose \(X_2 \geq Y_2 \), then at stage 2 an optimal strategy for B assigns all aircraft to \(BR \) \((X_{2BR} = X_2) \), and an optimal strategy for R assigns all aircraft to \(BR \) \((Y_{2BR} = Y_2) \). The value of the game is

\[V_2(X_2, Y_2) = 2aX_2 - (1+a)Y_2 . \]

From symmetry we also have

Theorem: Suppose \(X_2 \leq Y_2 \), then at stage 2 an optimal strategy for B assigns all aircraft to \(BR \) \((X_{2BR} = X_2) \), and an optimal strategy for R assigns all aircraft to \(BR \) \((Y_{2BR} = Y_2) \). The value of the game is

\[V_2(X_2, Y_2) = (1+a)X_2 - 2Y_2 . \]

Consider stage 3. For a choice of strategies for B and R the payoff is
\[M_3(x_3, y_3) = a_{X_{3\text{BR}}} - y_{3\text{BR}} + v_2(x_2, y_2) \]

\[= a(x_{3\text{BR}} + x_2 + 0 \vee [x_2 - y_2]) - (y_{3\text{BR}} + y_2 + 0 \vee [y_2 - x_2]) \]

\[= a(x_{3\text{BR}} + 0 \vee \left[\sum_{i=1}^{5} x_i^i - x_3^i \right]) \]

\[+ 0 \vee \{ 0 \vee \left[\sum_{i=1}^{5} x_i^i - x_3^i \right] - 0 \vee \left[\sum_{i=1}^{5} y_i^i - y_3^i \right] \} \]

\[- (y_{3\text{BR}} + 0 \vee \left[\sum_{i=1}^{5} y_i^i - y_3^i \right]) \]

\[+ 0 \vee \{ 0 \vee \left[\sum_{i=1}^{5} y_i^i - y_3^i \right] - 0 \vee \left[\sum_{i=1}^{5} x_i^i - x_3^i \right] \} . \]

We assume \(B \) is that player in stage 3 with larger resources, i.e., \(x_3 \geq y_3 \). The case for \(x_3 \leq y_3 \) follows easily from symmetry.

In what follows we shall determine the conditions to be satisfied by \(a \) so that an optimal strategy for \(B \) assigns all aircraft to \(B \) (\(x_{3\text{BR}} = x_3 \)), and an optimal strategy for \(R \) assigns all aircraft to \(B \) (\(y_{3\text{BR}} = y_3 \)). For the remainder of this section we usually suppress the subscript denoting the stage.

If \(x^0 = (0,0,X) \) and \(y^0 = (0,0,Y) \), then \(M_3(x^0, y^0) = 3aX - (2a+1)Y \).

Let \(y \) be any \(R \) strategy, then

\[M_3(x^0, y) = 2aX - Y - a(y_{BR} + B_{Y_B} + a(X - Y - B_{Y_B}) \vee 0 \]

\[- (Y + B_{Y_B} - x) \vee 0 . \]

There are two cases.

Case 1: \(x \geq Y + B_{Y_B} \)

Then \(M_3(x^0, y) = 3aX - (a+1)Y - aY_{BR} - 2B_{Y_B}aY_B . \)
If \(2\beta_B \leq 1 \), \(\min_{Y} M_3(\bar{X}^0, Y) = 3aX -(2a+1)Y \) and the minimum occurs when \(Y_{BR} = Y \). If \(2\beta_B > 1 \),

\[
\min_{Y} M_3(\bar{X}^0, Y) = 3aX -(a+1)Y - a\left(Y - Y \wedge \left(\frac{X-Y}{\beta_B}\right)\right) - 2\beta_B a\left(Y \wedge \left(\frac{X-Y}{\beta_B}\right)\right)
\]

\[
= 3aX -(2a+1)Y - a(2\beta_B - 1)\left(Y \wedge \left(\frac{X-Y}{\beta_B}\right)\right)
\]

and the minimum occurs when

\[
Y_B = Y \wedge \left(\frac{X-Y}{\beta_B}\right), \quad Y_{BR} = Y - Y \wedge \left(\frac{X-Y}{\beta_B}\right).
\]

Case 2: \(X \leq Y + \beta_B Y \).

Then \(M_3(\bar{X}^0, Y) = (2a+1)X - 2Y - aY_{BR} - \beta_B (a+1)Y \).

If \(a \geq \beta_B/(1-\beta_B) \), then

\[
\min_{Y} M_3(\bar{X}^0, Y) = (2a+1)X - 2Y - a\left(Y - \frac{X-Y}{\beta_B}\right) - \beta_B (a+1)\left(\frac{X-Y}{\beta_B}\right)
\]

\[
= a(1 + 1/\beta_B)X - (a/\beta_B +1)Y
\]

and the minimum occurs when

\[
Y_B = \frac{X-Y}{\beta_B} \quad \text{and} \quad Y_{BR} = Y - \frac{X-Y}{\beta_B}.
\]

If \(a \leq \beta_B/(1-\beta_B) \), then

\[
\min_{Y} M_3(\bar{X}^0, Y) = (2a+1)X - 2Y - \beta_B (a+1)Y = (2a+1)X - (\beta_B a + \beta_B + 2)Y,
\]

and the minimum occurs when \(Y_B = Y \).

Note that there always exists \(Y \) in Case 1, namely \(Y = (0, Y_{R}, Y_{BR}) \), where \(Y_{R} + Y_{BR} = Y \), while there exists \(Y \) in Case 2 if and only if \(X \leq (1+\beta_B)Y \). We may conclude therefore that
\[
\min_{\mathbf{Y}} M_3(\mathbf{X}^0, \mathbf{Y}) = 3aX - (2a+1)Y, \quad \text{if}
\]
\[
X \geq (1+\beta_B)Y \quad \text{and} \quad 2\beta_B \leq 1,
\]
\[
= 3aX - ((1+2\beta_B)a + 1)Y, \quad \text{if}
\]
\[
X \geq (1+\beta_B)Y \quad \text{and} \quad 2\beta_B > 1,
\]
\[
= \min \left[3aX - (2a+1)Y, a(1+1/\beta_B)X - (a/\beta_B + 1)Y \right], \quad \text{if}
\]
\[
X \leq (1+\beta_B)Y, \quad 2\beta_B \leq 1, \quad \text{and} \quad a \geq \beta_B/(1-\beta_B),
\]
\[
= \min \left[3aX - (2a+1)Y, (2a+1)X - (\beta_B a + \beta_B + 2)Y \right], \quad \text{if}
\]
\[
X \leq (1+\beta_B)Y, \quad 2\beta_B \leq 1, \quad \text{and} \quad a < \beta_B/(1-\beta_B),
\]
\[
= a(1+1/\beta_B)X - (a/\beta_B + 1)Y, \quad \text{if}
\]
\[
X \leq (1+\beta_B)Y, \quad 2\beta_B > 1, \quad \text{and} \quad a \geq \beta_B/(1-\beta_B),
\]
\[
= \min \left[a(1+1/\beta_B)X - (a/\beta_B + 1)Y, (2a+1)X - (\beta_B a + \beta_B + 2)Y \right], \quad \text{if}
\]
\[
X \leq (1+\beta_B)Y, \quad 2\beta_B > 1, \quad \text{and} \quad a < \beta_B/(1-\beta_B).
\]

It is easy to see that \(3aX - (2a+1)Y \leq a(1+1/\beta_B)X - (a/\beta_B + 1)Y\) if and only if \(2\beta_B \leq 1\).
Suppose that $X \leq (1+\beta_x)Y$, $2\beta_x \leq 1$, and $a < \beta_x/(1-\beta_x)$. Then $a < 1$ and $3aX - (2a+1)Y \leq (2a+1)X - (\beta_x a + \beta_x + 2)Y$ if and only if $((\beta_x - a(1-\beta_x))/(1-a) + 1)Y \leq X$. Yet, $(\beta_x - a(1-\beta_x))/(1-a) \leq \beta_x$ if and only if $\beta_x \leq 1 - \beta_x$, which is true by assumption. Whence

$$\min_{X,Y} M_3(x^o, Y) = 3aX - (2a+1)Y$$

if any one of the following three conditions is satisfied:

1. $(1+\beta_x)Y \leq X$, and $2\beta_x \leq 1$;
2. $Y \leq X < (1+\beta_x)Y$, $2\beta_x \leq 1$, and $a \geq \beta_x/(1-\beta_x)$;
3. $((\beta_x - a(1-\beta_x))/(1-a) + 1)Y \leq X < (1+\beta_x)Y$, $2\beta_x \leq 1$, and $a < \beta_x/(1-\beta_x)$.

Let X be any B strategy, then

$$M_3(x^o, Y) = aX - Y + a(0 \lor (X_{BR} - Y))$$

$$+ 0 \lor \{X_B + X_R + 0 \lor (X_{BR}^o - Y)$$

$$- 0 \lor \{0 \lor (Y-X_{BR}) - Y \land \alpha_{XBR} R\} \}$$

$$- (0 \lor [0 \lor (Y-X_{BR}) - Y \land \alpha_{XBR} R]$$

$$+ 0 \lor \{0 \lor (Y-X_{BR}) - Y \land \alpha_{XBR} R\}$$

$$- X_B - X_R - 0 \lor (X_{BR}^o - Y) \} \}.$$

There are several cases.

Case 1: $\alpha_{XBR} R \leq Y$, $X_{BR} R \geq Y$.

Then $M_3(x^o, Y) = 2aX - (2a+1)Y + aX_{BR}$,

53
max $M_3 \left(\bar{X}, \bar{Y}^\circ \right) = 3aX - (2a+1)Y$, and the maximum occurs when $X = \bar{X}_{BR} = X$.

Case 2: $\alpha X \leq Y$, $X_{BR} \leq Y$, and $X_{BR} + \alpha X \geq Y$.

Then $M_3 \left(\bar{X}, \bar{Y}^\circ \right) = 2aX - Y - a\bar{X}_{BR}$.

If $\alpha X \geq Y$, then $\max M_3 \left(\bar{X}, \bar{Y}^\circ \right) = 2aX - Y$ and the maximum occurs at $X_B = X/Y/\alpha$, $X = Y/\alpha$. If $\alpha X \leq Y$, then

$$\max M_3 \left(\bar{X}, \bar{Y}^\circ \right) = \frac{(2-\alpha_R)aX - (a+1-\alpha_R)Y}{(1-\alpha_R)}$$

and the maximum occurs at $X_R = \frac{X - Y}{1-\alpha_R}$, $X_{BR} = \frac{Y - \alpha_R X}{1-\alpha_R}$.

Case 3: $\alpha X \leq Y$, $X_{BR} \leq Y$, and $X_{BR} + \alpha X \leq Y$.

Then $M_3 \left(\bar{X}, \bar{Y}^\circ \right) = 2aX - (a+2)Y + X_{BR} + (a+1)\alpha X_{BR}$.

Suppose $\alpha X \geq Y$. Then $\max M_3 \left(\bar{X}, \bar{Y}^\circ \right) = 2aX - Y$ and the maximum occurs at $X_B = X/Y/\alpha$, $X = Y/\alpha$. Suppose $\alpha X \leq Y$. Then if $a \leq (1-\alpha_R)/\alpha_R$, $\max M_3 \left(\bar{X}, \bar{Y}^\circ \right) = \frac{(2-\alpha_R)aX - (a+1-\alpha_R)Y}{(1-\alpha_R)}$,

and the maximum occurs at $X_R = (X-Y)/(1-\alpha_R)$, $X_{BR} = (Y-\alpha_R X)/(1-\alpha_R)$.

If $a > (1-\alpha_R)/\alpha_R$, then $\max M_3 \left(\bar{X}, \bar{Y}^\circ \right) = (2a + \alpha_R a + \alpha_R)X - (a+2)Y$

and the maximum occurs at $X_R = X$.

Case 4: $\alpha X \geq Y$ and $X_{BR} \geq Y$.

Then $M_3 \left(\bar{X}, \bar{Y}^\circ \right) = 2aX - (2a+1)Y + a\bar{X}_{BR}$.

max $M_3 \left(\bar{X}, \bar{Y}^\circ \right) = 3aX - (2a + a/\alpha_R + 1)Y$, and the maximum occurs at $X_R = Y/\alpha_R$, $X_{BR} = X - Y/\alpha_R$.

54
Case 5: $\alpha R X_R \geq Y$ and $X_{\max} \leq Y$.

Then $M_3(X, Y^o) = 2aX - Y - aX_{\max}$, and the maximum occurs at $X_R = X$.

Note that there always exists X in Cases 1, 2, and 3, although there exists X in Case 4 if and only if $X \geq (1+1/\alpha_R)Y$ and there exists X in Case 5 if and only if $X \geq Y/\alpha_R$.

We may conclude

$$\max_{X} M_3(X, Y^o) = \max \left[3aX - (2a+1)Y, 2aX - Y, 3aX - (2a + a/\alpha_R + 1)Y \right]$$

if $(1+1/\alpha_R)Y \leq X$,

$$= \max \left[3aX - (2a+1)Y, 2aX - Y \right]$$

if $Y/\alpha_R \leq X < (1+1/\alpha_R)Y$,

$$= \max \left[3aX - (2a+1)Y, ((2-\alpha_R)aX - (a+1-\alpha_R)Y)/(1-\alpha_R) \right]$$

if $X < Y/\alpha_R$ and $a \leq (1-\alpha_R)/\alpha_R$,

$$= \max \left[3aX - (2a+1)Y, ((2-\alpha_R)aX - (a+1-\alpha_R)Y)/(1-\alpha_R) \right]$$

if $X < Y/\alpha_R$ and $a > (1-\alpha_R)/\alpha_R$,
One may easily show:

\[3aX - (2a+1)Y \geq 2aX - Y \quad \text{if and only if} \quad X \geq 2Y\ ;\]

\[3aX - (2a+1)Y \geq 3aX - (2a + a/\alpha_R + 1)Y \quad \text{if and only if} \quad aY/\alpha_R > 0 \ ;\]

\[3aX - (2a+1)Y \geq ((2-\alpha_R)aX - (a+1-\alpha_R)Y)/(1-\alpha_R) \quad \text{if and only if} \quad (1-2\alpha_R)aX \geq (1-2\alpha_R)Y \quad \text{if and only if} \quad 1 \geq 2\alpha_R .\]

Now suppose \(a > (1-\alpha_R)/\alpha_R \) and \(\alpha_R \leq 1/2 \). It is obvious that

\[3aX - (2a+1)Y \geq (2a+a_\alpha_R)aX - (a+2)Y \quad \text{if and only if} \quad (a(1-\alpha_R) - \alpha_R)X \geq (a-1)Y. \]

Then \(a > (1-\alpha_R)/\alpha_R \) if and only if \(a - (a+1)\alpha_R < a - 1 \) and if and only if \(\alpha_R > 1/(a+1) \). Since \(\alpha_R \leq 1/2 \), we must have \(1/(a+1) < 1/2 \), from which we infer \(a > 1 \). Because \(\alpha_R \leq 1/2 \) implies that \(\alpha_R/(1-\alpha_R) \leq 1 \), we also infer \(a > \alpha_R/(1-\alpha_R) \). Thus \((a(1-\alpha_R) - \alpha_R)X \geq (a-1)Y \) if and only if \(X \geq (a-1)Y/(a(1-\alpha_R) - \alpha_R) \). Thus \(3aX - (2a+1)Y \geq (2a+a_\alpha_R)aX - (a+2)Y \), if \(a > (1-\alpha_R)/\alpha_R \), \(\alpha_R < 1/2 \), and \(X \geq (a-1)Y/(a(1-\alpha_R) - \alpha_R) \). Suppose \(X < Y/\alpha_R \) is true. Then necessarily \((a-1)/(a(1-\alpha_R) - \alpha_R) < 1/\alpha_R \). This inequality is true if and only if \(\alpha_R < 1 - \alpha_R \), and \(\alpha_R < 1 - \alpha_R \) if and only if \(\alpha_R < 1/2 \).

Whence \(\max \frac{M_3(X, Y^0)}{X} = 3aX - (2a+1)Y \) if any one of the following three conditions is satisfied:

\[\left(2 + (1/\alpha_R)\right)Y \leq X ;\]

\[Y < X < Y/\alpha_R, \ 2\alpha_R \leq 1, \ \text{and} \ a \leq (1-\alpha_R)/\alpha_R ;\]

\[(a-1)Y/(a(1-\alpha_R) - \alpha_R) \leq X < Y/\alpha_R, \ 2\alpha_R < 1, \ \text{and} \ a > (1-\alpha_R)/\alpha_R .\]

We have derived conditions, involving \(X, Y, a, \) and \(\alpha_R \), that ensure, if satisfied, \(\min \frac{M_3(X^0, Y)}{Y} = M_3^*(X^0, Y^0) \). We have also derived conditions, involving \(X, Y, a, \) and \(\alpha_R \), that ensure, if satisfied, \(\max \frac{M_3(X, Y^0)}{X} = M_3^*(X^0, Y^0) \). The conditions that must be satisfied so that
\[
\min_{\mathbf{Y}} M_3(\mathbf{x}^0, \mathbf{y}) = M_3(\mathbf{x}^0, \mathbf{y}^0) = \max_{\mathbf{X}} M_3(\mathbf{x}, \mathbf{y}^0)
\]
follow immediately from the conditions derived above. Thus
\[
\min_{\mathbf{Y}} M_3(\mathbf{x}^0, \mathbf{y}) = M_3(\mathbf{x}^0, \mathbf{y}^0) = \max_{\mathbf{X}} M_3(\mathbf{x}, \mathbf{y}^0)
\]
if any one of the following five conditions is satisfied:

(7) \((2 \lor (1/\alpha_R))X \leq Y, 2\beta_B \leq 1\)

(8) \((1+\beta_B)Y \leq X < Y/\alpha_R, 2\beta_B \leq 1, 2\alpha_R \leq 1, \text{ and } 0 < \alpha \leq (1-\alpha_R)/\alpha_R\)

(9) \(Y \leq X < (1+\beta_B)Y, 2\beta_B \leq 1, 2\alpha_R \leq 1, \text{ and } \beta_B/(1-\beta_B) \leq \alpha \leq (1-\alpha_R)/\alpha_R\)

(10) \((a-1)Y/(a-\alpha_R) \leq X < (1+\beta_B)Y, 2\beta_B \leq 1, 2\alpha_R \leq 1, \text{ and } (1-\alpha_R)/\alpha_R \leq \alpha \leq \beta_B/(1-\beta_B)\)

(11) \(((\beta_B(a+1) - a)/(1-a) + 1)Y \leq X < (1+\beta_B)Y, 2\beta_B \leq 1, 2\alpha_R \leq 1, \text{ and } 0 < \alpha \leq (1-\alpha_R)/(1-\beta_B)\)

So, if any one of conditions 7 to 11 is satisfied, and \(X \geq Y\), a saddle-point exists with \(x^0\) and \(y^0\) optimal pure strategies.

Suppose \(X \leq Y\). In this case \(M_3(x^0, y^0) = (a+2)X - 3Y\). By symmetry we may conclude
\[
\min_{\mathbf{Y}} M_3(\mathbf{x}^0, \mathbf{y}) = M_3(\mathbf{x}^0, \mathbf{y}^0) = \max_{\mathbf{X}} M_3(\mathbf{x}, \mathbf{y}^0)
\]
if any one of the following five conditions is satisfied:

(7') \((2 \lor (1/\beta_B))X \leq Y, 2\alpha_R \leq 1\)

(8') \((1+\alpha_R)X \leq Y < X/\beta_B, 2\alpha_R \leq 1, 2\beta_B \leq 1, \text{ and } \beta_B/(1-\beta_B) \leq \alpha \leq (1-\alpha_R)/(1-\beta_B)\)
(9') \(X \leq Y < (1+\alpha)X, \ 2\alpha_R \leq 1, \ 2\beta_B \leq 1, \) and
\[
\frac{\beta_B}{(1-\beta_B)} \leq a < \frac{(1-\alpha)/(1+\alpha)}{\alpha} ;
\]

(10') \((1-a)X/(1-\beta_B(1+a)) \leq Y < (1+\alpha)X, \ 2\alpha \leq 1, \ 2\beta_B < 1, \) and
\[
0 < a < \frac{\beta_B}{(1-\beta_B)} ;
\]

(11') \(((\alpha_R(a+1) - 1)/(a-1) + 1)X \leq Y < (1+\alpha_R)X, \ 2\alpha_R \leq 1, \ 2\beta_B < 1, \) and
\[
(1-\alpha_R)/(\alpha_R) < a .
\]

Whence, if any one of conditions 7' to 11' is satisfied, and \(X \leq Y, \) a saddlepoint exists with \(X^0 \) and \(Y^0 \) optimal pure strategies. Thus we have proven:

Theorem: Suppose, at stage 3, \(X_3 \geq Y_3 \) and any one of conditions 7 to 11 is satisfied, then an optimal strategy for B assigns all aircraft to
\(BR \) \((X_3) \), an optimal strategy for R assigns all aircraft to
\(BR \) \((Y_3) \), and the value of the game is \(V_3(X_3, Y_3) = 3aX_3 - (2a+1)Y_3 \).

Theorem: Suppose, at stage 3, \(X_3 \leq Y_3 \) and any one of conditions 7' to 11' is satisfied, then an optimal strategy for B assigns all aircraft to
\(BR \) \((X_3) \), an optimal strategy for R assigns all aircraft to
\(BR \) \((Y_3) \), and the value of the game is \(V_3(X_3, Y_3) = (a+2)X_3 - 3Y_3 \).

Pure optimal strategies may not exist in stage 3 if any one of the following 10 conditions is satisfied:

(12) \(Y \leq X, \) and \(1 < 2\beta_B \);

(13) \(Y \leq X < 2Y, \ 2\beta_B \leq 1, \) and \(1 < 2\alpha_R \);

(14) \(Y \leq X < ((\beta_B(a+1) - a)/(1-a) + 1)Y, \ 2\beta_B \leq 1, \ 2\alpha_R \leq 1, \) and
\[
0 < a < \frac{\beta_B}{(1-\beta_B)} ;
\]

(15) \(Y \leq X < (a-1)Y/(a-\alpha_R(a+1)), \ 2\beta_B \leq 1, \ 2\alpha_R < 1, \) and
\[
(1-\alpha_R)/\alpha_R < a ;
\]
Because of analytic difficulties encountered in attempting to develop a closed form solution to the N-stage game given in IV-B, it was not possible to proceed with the research beyond this point due to the practical constraints of the present program. However, it is believed that this work will provide a practical basis for continuation of this research by analysts engaged in formulating solutions to this and similar problems. In this regard, it is believed that a firm foundation has been laid for any future research in this area.
REFERENCES

18. SRI/NWRC letter dated 2 April 1975 from Lawrence J. Low to Commander William A. Arata, USN, Acting Director, Naval Analysis Programs (Code 431), Office of Naval Research, Arlington, Virginia.

19. Staff, "Methodology for Use in Measuring the Effectiveness of General Purpose Forces," Studies and Analysis, Office of the Assistant Chief of Staff, United States Air Force (March 1971).
<table>
<thead>
<tr>
<th>Addresses</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Documentation Center</td>
<td>12</td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>3</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 431</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td></td>
</tr>
<tr>
<td>Mr. Everett Brown</td>
<td>1</td>
</tr>
<tr>
<td>OP-921-D6</td>
<td></td>
</tr>
<tr>
<td>Room 4C564</td>
<td></td>
</tr>
<tr>
<td>Pentagon</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20350</td>
<td></td>
</tr>
<tr>
<td>Division of Mathematical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>Purdue University</td>
<td></td>
</tr>
<tr>
<td>ATTN: Professor Leonard Berkovitz</td>
<td></td>
</tr>
<tr>
<td>West Lafayette, IN 47907</td>
<td></td>
</tr>
<tr>
<td>Institute for Defense Analyses</td>
<td>1</td>
</tr>
<tr>
<td>400 Army Navy Drive</td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. Jerome Bracken</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22202</td>
<td></td>
</tr>
<tr>
<td>School of Organization and Management</td>
<td>1</td>
</tr>
<tr>
<td>3742 Yale Station</td>
<td></td>
</tr>
<tr>
<td>56 Hillhouse Avenue</td>
<td></td>
</tr>
<tr>
<td>Yale University</td>
<td></td>
</tr>
<tr>
<td>ATTN: Professor Garry Brewer</td>
<td></td>
</tr>
<tr>
<td>New Haven, CT 06520</td>
<td></td>
</tr>
<tr>
<td>Quantitative Business Analysis Department</td>
<td>1</td>
</tr>
<tr>
<td>University of Southern California</td>
<td></td>
</tr>
<tr>
<td>ATTN: Professor Melvin Dresher</td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA 90007</td>
<td></td>
</tr>
<tr>
<td>Dr. Roy F. Linsenmeyer</td>
<td>1</td>
</tr>
<tr>
<td>Director for Review and Analysis</td>
<td></td>
</tr>
<tr>
<td>CINCPAC J021</td>
<td></td>
</tr>
<tr>
<td>Box 13</td>
<td></td>
</tr>
<tr>
<td>FPO San Francisco, CA 96610</td>
<td></td>
</tr>
<tr>
<td>Addresses (con't.)</td>
<td>Copies (Con't)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| Control Analysis Corporation
800 Welch Road
ATTN: Dr. Zachary Lansdowne
Palo Alto, CA 94304 | 1 |
| Naval Postgraduate School
ATTN: Professor Michael Sovereign
Professor James Taylor
Monterey, CA 93940 | 1 each |
| Professor Gerald J. Lieberman
Department of Operations Research
Stanford University
Stanford, CA 94305 | 1 |