OFFICE OF NAVAL RESEARCH

Contract Number N00014-76-WR60021
Task No. NR 205-009

BIODEGRADATION OF OIL IN SEAWATER FOR NAVAL POLLUTION CONTROL

by

T. B. O'Neill

Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, California 93043

1 June 1977

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Distribution of this report is unlimited.
The report describes the isolation and utilization of pure and mixed microbial cultures for experiments on the biodegradation of crude oil Bunker C fuel and marine diesel. Many microbial species were found that had hydrocarbonoclastic activity. When pure cultures were combined in mixtures the activity was much greater, 91% oxidation in seven days, than the activity of any one of the component species when used in a pure culture.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodeterioration</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Oils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Spills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine micro-organisms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidizers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degradation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>1</td>
</tr>
<tr>
<td>RESULTS</td>
<td>2</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>7</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>8</td>
</tr>
</tbody>
</table>
INTRODUCTION

The problem of oil spillage is one of great magnitude and concern to the Navy, particularly in this era of increasing legal restrictions and ecological awareness. Oil on the seas is a fire hazard and a menace to organisms of the marine environment as well as an offense against aesthetics to those who use the seas for recreation and inspiration.

The negative consequences of oil spillage on waters and beaches are not new. They are concomitant with the origin and development of propulsion units and other devices utilizing fossil fuels. Pertinent to the context of this report, it is imperative to maintain that natural oil seeps from the ocean floor have undoubtedly existed for millennia. Merz (1959) reported on the almost universal presence of oil, derived from natural oil seeps, on the beaches of Southern California. The amounts of oil cited are small, approximately 60cc per 50m², and generally non-persistent. Coal Oil Point, in the Santa Barbara Channel, is an extreme example of a beach having continued deposits of large amounts of crude oil and tar. Allen, et al (1970) determined this spillage to be on the order of 50 to 70 barrels (8,000 to 11,000 liters) of oil per day into the channel and on the beaches. The beach deposits are estimated to be greater than any other beach in Southern California.

As well known as the appearance of oil and tar on the beaches and adjacent waters is its disappearance after unspecified periods of time. ZoBell (1969) reported that oil-oxidizing bacteria are often abundant in marine sediments and seawater of coastal areas where natural or man-induced pollution is persistent. ZoBell further noted that oil-oxidizing bacteria, yeasts, and molds have been identified in water and mud samples in many parts of the world.

The present report is concerned with the measurable activity of micro-organisms to oxidize certain fossil fuels. The organisms utilized were isolated from beaches and inshore marine waters where oil spills are common or were secured from type culture collections.

PROCEDURE

The literature, from 1943 to the contemporary period, dealing with microbial oxidation of hydrocarbons was searched to prepare a listing of micro-organisms reported to possess an ability to degrade hydrocarbons. Subsequently, where possible, lyophilized cultures were secured from type culture collections, notably the American Type Culture Collection of Rockville, Maryland.
Other sources of micro-organisms were the local beaches and harbor areas where oil spills are common; e.g., Coal Oil Point, Carpenteria Beach, and Los Angeles-Wilmington Harbor. Aliquot samples of beach sand or harbor soil or water were placed in a mineral salts medium made with aged filtered sea water and containing 0.75 percent hydrocarbon, either crude oil, marine diesel or Bunker C fuel as a sole source of organic material. Incubation was at room temperature, 20°C-25°C, upon a rotary shaker and varied from periods of one week to ten days. During the periods of incubation microbial populations were determined daily, by plate counts, and hydrocarbon oxidizing micro-organisms were isolated.

The isolated pure cultures were maintained on optimal media and transferred as required. Prior to the utilization of the cultures they were transferred to broth and during the late exponential growth phase the cells were centrifuged and washed three times with the mineral salts medium to remove the major portion of the organic matter of the media. In the experiments approximately 3 x 10^{12} cells were used as an inoculum in 250ml flasks containing 150ml of mineral salts medium containing 0.75% of hydrocarbon as the sole source of organic matter. Controls were identical flasks without added micro-organisms. The flasks were incubated at room temperature upon a rotary shaker for seven days. At the end of the incubation period, the quantity of hydrocarbon remaining was determined by an extraction process.

In the extraction procedure, several washings of chloroform were used as the hydrocarbon solvent. The extract was dried over anhydrous sodium sulfate, filtered to remove the drying agent and evaporated to dryness under reduced pressure. Evaporation was continued until three consecutive weighings were identical to the nearest milligram.

Initial experiments utilized pure cultures of one microbial species and subsequent experiments involved mixtures of two or more pure cultures in single flasks.

Over the period of experimentation many media modifications were tested as were other conditions that might optimize hydrocarbon oxidizing activity.

A longevity study was also performed. In these experiments pure cultures of one or more microbial species were added to a mineral salts hydrocarbon mixture and incubated for a period of a year with occasional additions of mineral salts solution to maintain an appropriate level of liquid.

RESULTS

In the period of experimentation, the media and conditions of
experiments significantly changed. This represents an increasing knowledge of parameters that facilitate microbial oxidation of hydrocarbons. For example, the use of ammonium salts as a nitrogen source lowered the pH of sea water used in the media from a pH of 8 to a detrimental pH of 4 as the bacteria multiplied. The unfavorable pH was a principal factor in the reduction of microbial population. The use of buffer solutions alleviated this condition. The addition of sterile air to flasks increased microbial activity approximately seven-fold. The incorporation of sterile diatomaceous earth to flasks increased adsorptive surface air for hydrocarbon and microbes and increased activity three-fold.

Fifty-five species of hydrocarbon oxidizing species of microorganisms were secured from type culture collections and 62 species were isolated from local habitats. The maintenance of this comparatively large collection of micro-organisms is time consuming for they must be transferred monthly to fresh media.

Many of the organisms previously cited in the literature as having hydrocarbon-oxidizing ability and secured from culture collections failed to demonstrate activity under the conditions of the present experiments. That all media were prepared using salt water (75%) and fresh water (25%) rather than fresh water alone might well explain lack of microbial activity. Possibly the microbes could not oxidize the specific hydrocarbons used in these experiments. The species not demonstrating any hydrocarbonoclastic activity are:

Achromobacter delicatulus
Arthrobacter ureafaciens
Brevibacterium pusillum
Candida parapsilosis
Flavobacterium arborescens
Hydrogenomonas facilis
Hyphomicrobium indicum
Micrococcus varians
Hyphobacterium rubrum
Mycobacterium smegmatis
Pseudomonas cruciviae
Pseudomonas dacunhae
Pseudomonas stutzeri
Serratia marinorubra
Vibrio cyclosites
The pure cultures of microorganisms that demonstrated a significant hydrocarbonoclastic actively are:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Hydrocarbon Oxidized (%) in a 7-day period</th>
<th>Hydrocarbon Oxidized (Crude Oil, Bunker C, Marine Diesel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achromobacter cycloclastes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeromonas hydrophila</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subsp formicans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrobacter arthrobotryoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrobacter citreus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrobacter simplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azotobacter chroococcum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azotomonas insoluta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus insolitus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida lipolytica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida petrophilum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulomonas fimi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporium acremonium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladosporium resinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium hydrocarboclastus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cunninghamella elegans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavobacterium ferrugineum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavobacterium marinotypicum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyphomicrobium neptunium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrococcus roseus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrococcus paraffinolyticus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycobacterium hyalinum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycobacterium phlei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycobacterium rhodochrous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycoplasma bullata</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The selection of microbial species for experiments involving more than one species was based on performance in the above described exercises utilizing but one species. The components of the mixed cultures were individually grown as pure cultures in broth, centrifuged and washed, and then added to the flasks containing mineral salts medium and hydrocarbon. The combined total of all microorganisms added was approximately 3×10^{12} cells.

In some experiments the total of hydrocarbons oxidized did not exceed that of either component when used alone. In such a category are the mixed cultures of *Arthrobacter simplex* and *Bacillus insolitus*, *Corynebacterium hydrocarbonoclasticus* and *Candida petrophilum*, and *Micrococcus roseus* with *Nocardia corralina*.

More encouraging are those combinations of cultures whose activity is greater than either of the component cultures individually, or greater than both collectively. Some examples of these results are as follows:
<table>
<thead>
<tr>
<th>Organism</th>
<th>Hydrocarbon Oxidized (% in a 7-day period)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude Oil</td>
</tr>
<tr>
<td>Corynebacterium hydrocarbonostatus and Candida petrophilum</td>
<td>63</td>
</tr>
<tr>
<td>Flavobacterium marinotypicum and Hyphomicrobium neptunium</td>
<td>57</td>
</tr>
<tr>
<td>Arthrobacter arthrobotryoides and Candida lipolytica</td>
<td>61</td>
</tr>
<tr>
<td>Arthrobacter simplex and Arthrobacter arthrobotryoides</td>
<td>44</td>
</tr>
<tr>
<td>Candida petrophilum and Flavobacterium marinotypicum</td>
<td>54</td>
</tr>
<tr>
<td>Hyphomicrobium neptunium and Arthrobacter simplex</td>
<td>51</td>
</tr>
<tr>
<td>Candida petrophilum and Arthrobacter arthrobotryoides</td>
<td>64</td>
</tr>
<tr>
<td>Micrococcus paraffinolyticus and Arthrobacter arthrobotryoides</td>
<td>67</td>
</tr>
<tr>
<td>Mycobacterium rhodochrous and Arthrobacter arthrobotryoides</td>
<td>85</td>
</tr>
<tr>
<td>Mycoplana bullata and Pseudomonas desmolytica</td>
<td>43</td>
</tr>
</tbody>
</table>
Cunninghamella elegans and Arthrobacter simplex

Cunninghamella elegans and Arthrobacter arthrobotryoides

Nocardia paraffinica and Penicillium zonatum

Vibrio sp and Cunninghamella elegans

Nocardia hydrocarbonoxydans and Arthrobacter arthrobotryoides

Candida lipolytica and Cunninghamella elegans

Corynebacterium hydrocarboclastus and Pseudomonas desmolytica

Several experiments utilized combinations of three or four cultures. The procedure was similar to that employing two cultures. With a single exception, the mixtures yielded results no better than mixtures involving but two species. The single exception was a mixture of Cunninghamella elegans, Arthrobacter arthrobotryoides, Nocardia hydrocarbonoxydans, and Pseudomonas desmolytica, which in seven days oxidized 91%, 73%, and 50% of crude oil, Bunker C, and marine diesel, respectively.

In those experiments allowed to incubate for a year at room temperature, the bacteria reached a peak activity after from 10 to 14 days and subsequently the activity significantly dropped, but nevertheless did continue at a slow rate for the entire year.

CONCLUSIONS

There appears to be no dearth of microbes, including bacteria, fungi, and yeasts that have the capacity to oxidize crude oil, Bunker C fuel, and marine diesel. In most experiments the percentage of crude oil oxidized
exceeded the percentage of Bunker C oxidized in the same period. In general, Bunker C was oxidized at a faster rate than marine diesel.

Many organisms that demonstrated an ability to survive in media with a hydrocarbon as a sole source of organic matter lacked a perceptible ability to degrade measurable amounts of hydrocarbon. Commonly, the combination of different species was more active than the activity of either of the component species alone. This effect appears to be synergistic. On the contrary, an antagonistic effect also occurs when the sum total of hydrocarbon degeneration is less than that achieved by any component of a mixed culture when used alone as a pure culture.

The author concludes that the continued endeavor of putting together different combinations of cultures will ultimately yield a mixture that, with appropriate nutrients, can be added in a lyophilized form to an oil spill, after physical methods of clean-up have been completed, to eliminate the last vestiges of oil.

REFERENCES

Merz, R.C.. Determination of the Quality of Oily Substances on Beaches and in Nearshore Waters. California State Water Pollution Control Board, 1959, Publication No. 21.

OFFICE OF NAVAL RESEARCH
NAVAL BIOLOGY PROJECT
STANDARD DISTRIBUTION LIST

Number of copies:

(12) Administrator, Defense Documentation Center
Cameron Station
Alexandria, VA 22314

(6) Director, Naval Research Laboratory
Attention: Technical Information Division
Code 2627
Washington, D.C. 20375

(6) Office of Naval Research
Code 1021P (ONRL DOC)
800 N. Quincy Street
Arlington, VA 22217

(3) Office of Naval Research
Naval Biology Project
Code 443
Arlington, VA 22217

(1) Office of Naval Research
Code 200
Arlington, VA 22217

(1) Office of Naval Research Branch Office
495 Summer Street
Boston, MA 02100

(1) Office of Naval Research Branch Office
536 South Clark Street
Chicago, IL 60605

(1) Office of Naval Research Branch Office
1030 East Green Street
Pasadena, CA 91101

(1) Director, Oceanic Biology Program (Code 214)
Naval Ocean Research & Development Activity
National Space Technology Laboratory
Bay St. Louis, MS 39520

(1) Assistant Commander for Research & Development (Code 03)
Naval Facilities Engineering Command
200 Stovall Street
Alexandria, VA 22332
OFFICE OF NAVAL RESEARCH
NAVAL BIOLOGY PROJECT
STANDARD DISTRIBUTION LIST (Cont'd)

Number of copies:

(1) Biological Sciences Staff (Code 101B)
 Naval Facilities Engineering Command
 200 Stovall Street
 Alexandria, VA 22332

(1) Scientific Library
 Naval Biosciences Laboratory
 Naval Supply Center
 Oakland, California 94625

(1) Technical Library
 U. S. Army Natick Laboratories
 Natick, MA 01760

(1) Commander
 Attention: Dr. Morthland
 U. S. Army Research Office, Durham
 Box CM, Duke Station
 Durham, NC 27706

(1) National Environmental Research Center
 Edison Water Quality Research Division
 Edison, NJ 08817

(1) Agricultural & Marine Pollution Control Branch
 Environmental Protection Agency
 1901 Fort Myers Drive
 Arlington, VA 22209

(1) Technical Advisory Division
 National Marine Fisheries Service
 Department of Commerce
 Washington, D.C. 20235

(1) Director
 Gulf Breeze Laboratory
 Environmental Protection Agency
 Sabine Island
 Gulf Breeze, FL 32561

(1) Matthew Stevenson
 National Academy of Sciences
 Room JH 538
 2101 Constitution Avenue
 Washington, D.C. 20418
OFFICE OF NAVAL RESEARCH
NAVAL BIOLOGY PROJECT
STANDARD DISTRIBUTION LIST

Number of copies:

() Commandant, DAT
U. S. Coast Guard
400 Seventh Street, SW
Washington, DC 20511

() Commandant, DAS
U. S. Coast Guard Research & Development Center
Avery Point
Groton, CT 06340

() Office of the Oceanographer of the Navy
Code N5
732 North Washington Street
Alexandria, VA 22314

() Director
U. S. Army Cold Regions Research and
Engineering Laboratory
Hanover, NH 03755

() Commanding Officer
Attention: Dr. Hoogstraal
U. S. Naval Medical Research Unit #3
Camp Lejeune, NC 24582

() Officer in Charge
Naval Disease Vector Control Center
Naval Air Station
Alameda, CA 94501

() Chief, Entomology Research Branch
Preventive Medicine Division
U. S. Army Medical R & D Command
Forrestal Building
Washington, D.C. 20314

() Office of Naval Research Resident Representative
2110 G. Street, NW
Washington, D.C. 20037

3