MEASUREMENT OF BATTERY SEPARATOR RESISTANCES IN LOW IMPEDANCE CONDUCTIVITY
BY A. C. BRIDGE TECHNIQUES

BY
W.P. Kilroy
C.T. Moynihan

26 APRIL 1977

NAVAL SURFACE WEAPONS CENTER
WHITE OAK LABORATORY
SILVER SPRING, MARYLAND 20910

Approved for public release; distribution unlimited.
Measurement of the resistance of battery separator membranes is frequently accomplished by taking the difference between the resistances of an electrolyte filled conductivity cell with and without the separator inserted between the electrodes. For low resistance separators this may involve measurements of impedances of a few tenths of an ohm. It is shown via equivalent circuit analysis and experimental data on a low impedance cell filled with 45% aqueous KOH solution that ac bridge measurements of separator resistances can be seriously in error if proper account is not taken of electrode impedances.
A new separator material for alkaline batteries is presently under development. One of the criteria that membranes made from this material must meet is a low electrical resistance. Since resistance measurements are used during development to accept or reject a material, it is important that the technique used yield accurate values.

This investigation was undertaken to examine the reliability of measuring very low separator resistances ($< 0.01 \Omega$) in low impedance conductivity cells.

J. R. Dixon
By direction
TABLE OF CONTENTS

INTRODUCTION .. 3
EXPERIMENTAL .. 7
RESULTS AND DISCUSSION .. 8
CONCLUSIONS ... 10

ILLUSTRATIONS

Figure Title Page

1. A.C. Wheatstone bridge for measuring equivalent parallel resistance
 \(R_p \) and capacitance \(C_p \) of a conductivity cell. 11
2. Approximate equivalent circuits of a conductivity cell containing
 (a) electrolyte solution; (b) electrolyte solution plus separator. 11
3. Conductivity cell for measurement of membrane resistances. 12
4. Equivalent parallel and series resistances and capacitances versus
 frequency of a conductivity cell filled with 45% KOH solution at
 25.0°C using unplatinized Pt electrodes. Insert is an enlarged
 plot of the data at high frequency. 13
5. Equivalent parallel and series resistances and capacitances versus
 frequency of a conductivity cell filled with 45% KOH solution at
 25.0°C using platinized Pt electrodes. 14
6. Equivalent circuit of conductivity cell containing electrolyte. 15

TABLES

Table Title Page

1. Calculated values of apparent electrolyte plus lead resistance
 \(R_p \) and apparent separator resistance \(R_{sep,app} \) as a function
 of double layer capacitance, \(C_{dl} \), and frequency, \(f \), for the circuits
 of Figs. 2a and 2b. Assumed value of the other components
 were \(R_L = 0.1 \, \Omega \), \(R_{sol} = 0.1 \, \Omega \) and \(R_{sep} = 0.01 \, \Omega \). 6

APPENDIX 1. Equivalent Circuit Analysis of Fig. 6. 16
INTRODUCTION

In order to increase the electrochemical efficiency, batteries are designed to have a low internal resistance. The major contributors to the internal resistance of a battery are the electrolyte and the separator. The separator is usually a membrane permeable to the electrolyte ions and is used to prevent direct mixing of the anolyte and catholyte. Efforts to improve battery performance are often centered on the development of a stable separator which contributes relatively little to the internal resistance, ideally, a small fraction of the electrolyte resistance.

Assessment of the contribution of a separator material to the battery internal resistance is typically made first by measuring the resistance of the electrolyte solution, R_{sol}, between two plane parallel electrodes in a conductivity cell. After this the separator is inserted between the two electrodes in the electrolyte filled cell and the new resistance, $(R_{sol} + R_{sep})$, measured. The contribution of separator to the internal resistance, R_{sep}, is then the difference between the two resistance measurements. Plainly an accurate measurement of R_{sep} requires that R_{sep} not be negligible compared to R_{sol}, i.e., R_{sep} must contribute an accurately measurable increment to R_{sol}.

A case in point for the present paper is a separator for silver-zinc batteries using 30-45% KOH solution as electrolyte in which a good separator material may contribute as little as 15.5 Ω/m^2 (0.01 Ω/in^2) to the internal resistance. An accurate measurement of R_{sep} thus requires that R_{sol} be of the order of 155 Ω/m^2 (0.1 Ω/in^2) or smaller.

The usual method of carrying out resistance measurements of this type is by means of a conventional ac Wheatstone bridge at audio frequencies. The cell impedance is balanced against a parallel resistance-capacitance combination (R_p, C_p) as shown in Fig. 1. The balancing resistance R_p is usually identified

with the cell resistance, R_{sol} or $(R_{\text{sep}} + R_{\text{sol}})$. As has been pointed out numerous times in the literature2, the equivalent ac circuit of the cell is not a parallel resistance-capacitance combination, i.e., it does not correspond to the balancing circuit configuration, R_p in parallel with C_p. This in turn can lead to large errors in the measurement of R_{sol} and $(R_{\text{sep}} + R_{\text{sol}})$, as shown below.

The simplest approximations2 to the true equivalent circuits of a low impedance conductivity cell containing electrolyte and electrolyte plus separator are shown respectively in Figs. 2a and 2b. R_L is the resistance of the leads between the bridge and conductivity cell, and C_{dl} represents the double layer capacitances at the electrode surfaces. Hence the true first approximation of the equivalent circuit of the cell has the resistive elements (R_L, R_{sol}, and R_{sep}) in series with a capacitance, C_{dl}.

For Fig. 2a, the complex impedance is

$$Z(a) = (R_L + R_{\text{sol}}) + \frac{1}{i\omega C_{\text{dl}}}$$ \hspace{1cm} (1)

where $\omega = 2\pi f$ is the angular frequency. If the circuit of Fig. 2a were measured on the bridge of Fig. 1, the equivalent parallel resistance would be

$$R_p(a) = \frac{\frac{1}{\text{Re}(1/Z(a))}}{R_L + R_{\text{sol}}}$$ \hspace{1cm} (2)

where Re designates the real part of the complex number. Similarly the complex impedance of the circuit of Fig. 2b is

$$Z(b) = (R_L + R_{\text{sol}} + R_{\text{sep}}) + \frac{1}{i\omega C_{\text{dl}}}$$ \hspace{1cm} (3)

and the equivalent parallel resistance is

$$R_p(b) = \frac{\frac{1}{\text{Re}(1/Z(b))}}{R_L + R_{\text{sol}} + R_{\text{sep}}}$$ \hspace{1cm} (4)

In the usual procedure for determination of the separator resistance using a

bridge like that of Fig. 1, the apparent separator resistance would be taken to be

\[R_{\text{sep,app}} = R_p(b) - R_p(a) = R_{\text{sep}} \left[1 - \frac{1}{(R_L + R_{\text{sol}} + R_{\text{sep}})(R_L + R_{\text{sol}})(1/\omega C_{\text{dl}})^2} \right] \]

(5)

In Table 1, we show the results of calculations via Eqs. (2), (4), and (5) of the apparent electrolyte plus lead resistance \(R_p(a) \) and the apparent separator resistance \(R_{\text{sep,app}} \) as a function of \(C_{\text{dl}} \) and frequency in the audio range. We have used values of \(R_L \), \(R_{\text{sol}} \), and \(R_{\text{sep}} \) typical for low resistance separator membranes in a highly conducting electrolyte such as 45% aqueous KOH solution. Clearly \(R_p(a) \) approaches the actual value, 0.2 Ω, of \((R_L + R_{\text{sol}}) \) and \(R_{\text{sep,app}} \) approaches the actual value, 0.01 Ω, of \(R_{\text{sep}} \) only in the limits of high frequency and/or high double layer capacitance.

At present it is not known to what degree these limiting conditions have been satisfied in actual measurements of separator resistances. Indeed, it is similarly unknown to what degree the simple circuits of Fig. 2 are a sufficiently accurate representation of the cell for obtaining an accurate determination of \(R_{\text{sep}} \) by measuring the equivalent series resistance of the cell. We do note, however, from Table 1 that a correct determination of \((R_L + R_{\text{sol}}) \) guarantees a correct determination of \(R_{\text{sep}} \). Consequently, in the present study we have carried out a series of resistance and capacitance measurements at various frequencies in order to determine what errors, if any, may arise in these determinations. The measurements were made on a cell used in measurements of separator resistances and filled with 45% KOH.
TABLE 1 Calculated values of apparent electrolyte plus lead resistance $R_p^{(a)}$ and apparent separator resistance $R_{sep,app}$ as a function of double layer capacitance C_{dl} and frequency f for the circuits of Figs. 2a and 2b. Assumed values of the other components were

$R_L = 0.1 \, \Omega$

$R_{sol} = 0.1 \, \Omega$

$R_{sep} = 0.01 \, \Omega$

<table>
<thead>
<tr>
<th>C_{dl} (\mu F)</th>
<th>$R_p^{(a)}$ (\Omega)</th>
<th>$R_{sep,app}$ (\Omega)</th>
<th>$R_p^{(a)}$ (\Omega)</th>
<th>$R_{sep,app}$ (\Omega)</th>
<th>$R_p^{(a)}$ (\Omega)</th>
<th>$R_{sep,app}$ (\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>12.7 x 10^4</td>
<td>-6.03 x 10^3</td>
<td>12.7 x 10^2</td>
<td>-6.03 x 10^1</td>
<td>12.9</td>
<td>-0.593</td>
</tr>
<tr>
<td>10^3</td>
<td>12.7 x 10^2</td>
<td>-6.03 x 10^1</td>
<td>12.9</td>
<td>-0.593</td>
<td>0.327</td>
<td>0.0040</td>
</tr>
<tr>
<td>10^4</td>
<td>12.9</td>
<td>-0.593</td>
<td>0.327</td>
<td>0.0040</td>
<td>0.201</td>
<td>0.0099</td>
</tr>
<tr>
<td>10^5</td>
<td>0.327</td>
<td>0.0040</td>
<td>0.201</td>
<td>0.0099</td>
<td>0.200</td>
<td>0.0100</td>
</tr>
<tr>
<td>10^6</td>
<td>0.201</td>
<td>0.0099</td>
<td>0.200</td>
<td>0.0100</td>
<td>0.200</td>
<td>0.0100</td>
</tr>
</tbody>
</table>
EXPERIMENTAL SECTION

The conductivity cell used in these experiments was obtained from RAI Research Corporation and is shown in Fig. 3. It consists of two heavy gauge square Pt electrodes, 2.54 cm on a side mounted plane parallel and 0.25 cm apart in a lucite holder. The cell can be disassembled and the electrodes removed. The cell also contains a provision for inserting a separator film between the two electrodes. This feature was not used in the present study.

In order to assess the effect of electrode double layer capacitance, measurements were carried out for two electrode conditions: bright, polished platinum electrodes (unplatinized) and electrodes coated electrolytically with a heavy deposit of platinum black (platinized). The fine granular Pt black deposit causes a large increase in the electrode surface area, leading to an increase in double layer capacitance.

The assembled cell was filled with Fisher Scientific 45 wt % aqueous KOH solution and allowed to stand overnight, refilled with fresh solution and the equivalent parallel resistance and capacitance, R_p and C_p, measured at 25.0 \pm 0.1°C over the frequency range 50 to 5000 Hz. Resistance measurements (accuracy 1%) were made using a General Radio 1650B impedance bridge. An external capacitance balancing decade box adjustable in steps of 10^{-4} µF was connected via shielded cables in parallel with the balancing resistance slide wire in the bridge. Current (ac) was supplied by a Hewlett Packard 200 CD Oscillator; frequency was measured with an Anadex CF 500R counter.

A similar set of measurements of R_p and C_p were made at 25°C with the conductivity cell with platinized electrodes filled with 0.01 M KCl aqueous solution in order to obtain the calibration constant for the cell. To obtain the resistance of the leads to the cell, R_L, the cell was filled with mercury to short circuit the two electrodes and the resistance measured; this gave a value of $R_L = 0.173 \ \Omega$.

A capillary conductivity cell with platinized platinum electrodes whose cell constant (22.3 cm$^{-1}$) had been determined previously by calibration with 0.01 M KCl solution was used to measure the conductivity of the 45% KOH solution. The equivalent parallel resistance of this cell filled with the KOH solution was 47.9 Ω at 25.0°C and 1 kHz.
RESULTS AND DISCUSSION

The resistance, \(R_p \), of the cell filled with 0.01 M KCl solution was 27.5 ± 0.1 \(\Omega \) and independent of frequency over the entire frequency range. This indicates (cf. Eq. (2)) that contributions to \(R_p \) from frequency dependent electrode impedance terms such as \((1/\omega C_d) \) are negligible compared to the contribution from the \((R_L + R_{sol}) \) term, so that \((R_L + R_{sol}) \) may be taken as the measured \(R_p \) value of 27.5 \(\Omega \). Subtracting the measured value of \(R_L \) from this gives \(R_{sol} = 27.3 \Omega \). The cell calibration constant, \((L/A) \), may then be calculated from

\[
K_{sol} = \frac{(L/A)}{R_{sol}}
\]

where \(K_{sol} \) is the conductivity of the electrolyte solution. Using \(K_{sol} = 0.0014127 \mho^{-1} \text{cm}^{-1} \) for 0.01 M KCl solution at 25°C, the cell constant \((L/A) \) is 0.0386 cm\(^{-1}\). This is in good agreement with the less precise \((L/A) \) value of 0.039 cm\(^{-1}\) calculated from the electrode area \((A = (2.54 \text{cm})^2) \) and electrode separation \((L = 0.25 \text{cm}) \).

Similarly the resistance \(R_p \) of the 45% KOH solution in the capillary conductivity cell is sufficiently large that it may be used directly to calculate the conductivity of this solution. This gives 0.465 \(\mho^{-1} \text{cm}^{-1} \) for \(K_{sol} \) of the 45% KOH solution at 25°C.

In Figs. 4 and 5 the bridge measurements of \(R_p \) and \(C_p \) respectively are plotted versus frequency for the 45% KOH solution in the conductivity cell with unplatinized and platinized electrodes. Also plotted are the equivalent series resistance \(R_s \) and capacitance \(C_s \) calculated from the complex admittance

\[
Y = \frac{1}{R_p} + i\omega C_p
\]

via the equations

\[
R_s = \text{Re}(1/Y) = \frac{R_p}{1 + (\omega R_p C_p)^2}
\]

\[C_s = -\frac{1}{\omega \text{Im}(1/Y)} = C_p \left[1 + \frac{1}{(\omega R_p C_p)^2} \right] \]

(9)

where \(\text{Re} \) and \(\text{Im} \) designate the real and imaginary parts respectively.

If the circuit of Fig. 2a were an accurate representation of the cell equivalent circuit, \(R_s \) and \(C_s \) would be frequency independent and equal respectively to \((R_L + R_{\text{sol}}) \) and \(C_{\text{dl}} \). \(R_s \) and \(C_s \) are not frequency independent, but are less so than \(R_p \) and \(C_p \), so that the equivalent circuit of Fig. 2a is clearly a better approximation to the cell circuit than a parallel \(R_p \), \(C_p \) combination.

A more realistic representation \(^2\), \(^4\), \(^5\) of the equivalent cell circuit is shown in Fig. 6. \(R_{W}(\omega) + C_{W}(\omega) \) are the resistive and capacitive components of the so-called Warburg impedance, which arises from concentration polarization due to electrode reactions, and \(R_F \) is the so-called Faradaic impedance associated with the electrode reaction itself. In Fig. 6 we have neglected capacitance between the conductivity cell leads and capacitance due to the dielectric constant of the electrolyte, since these contribute a negligible amount to the audio frequency impedance of the low impedance cell under consideration.\(^2\)

Equivalent circuit analysis of Fig. 6 (Appendix 1) gives for the equivalent series resistance:

\[
R_s = R_L + R_{\text{sol}} + \frac{\left[R_F + R_{W}(\omega) \right]^2 + \left[\frac{1}{\omega C_{W}(\omega)} \right]^2 \left[R_F + R_{W}(\omega) \right]}{\left[R_F + R_{W}(\omega) \right]^2 + \left\{ \omega C_{\text{dl}} \left[\left(R_F + R_{W}(\omega) \right)^2 + \left(\frac{1}{\omega C_{W}(\omega)} \right)^2 \right] + \left(\frac{1}{\omega C_{W}(\omega)} \right)^2 \right\}^2}.
\]

(10)

Both \(R_{W}(\omega) \) and \(\left(\frac{1}{\omega C_{W}(\omega)} \right) \) are frequency dependent with an \(\omega^{-1/2} \) dependence,\(^4\) so that the high frequency limit of \(R_s \) is

\[
\lim_{\omega \to \infty} R_s = R_L + R_{\text{sol}}
\]

(11)

Equivalent circuit analysis of Fig. 6 shows that \(R_p \) approaches an identical high frequency limit, but at a slower rate (compare Eq. (2)).

The data of Figs. 4 and 5 exhibit this predicted behavior, that is
(a) both R_S and R_p converge to the same limiting values at high
frequencies, R_S more quickly than R_p;
(b) the resistance values for both platinized and unplatinized
electrodes converge to the same high frequency limit.

The electrode impedances for the platinized electrodes are such that R_S and R_p
converge at lower frequencies than for the unplatinized electrodes, so that we
may take the limiting high frequency value of $R_S = 0.261 \Omega$ for the platinized
electrodes and identify it with $(R_L + R_{sol})$. This agrees within experimental
error with the value of $(R_L + R_{sol}) = 0.256 \Omega$ calculated from the independently
measured values of R_L, (L/A), and K_{sol} for the 45% of KOH solution:

\[
(R_L + R_{sol}) = R_L + (L/A)/K_{sol}
\]

CONCLUSIONS

We have shown here that one may obtain correct measurements of $(R_L + R_{sol})$
and hence also obtain correct measurements of $(R_L + R_{sol} + R_{sep})$ and therefore
of R_{sep} by audio frequency ac bridge measurements on low impedance conductivity
cells if some precautions are observed. In particular, since even with
platinized electrodes (cf. Fig. 5) R_p and R_S reach their limiting high frequency
values only at the higher frequency end of the audio range, it is plainly not
sufficient to make a measurement of R_p at a single frequency and assume it equal
to $(R_L + R_{sol})$ or $(R_L + R_{sol} + R_{sep})$. Rather it is recommended that for low
impedance cells R_p and C_p measurements be made as a function of frequency, that
R_S be calculated from R_p and C_p via Eq. 8, and that the limiting high frequency
value of R_S be identified with $(R_L + R_{sol})$ or $(R_L + R_{sol} + R_{sep})$. Heavily
platinized electrodes should be used, since these lead to convergence of R_S to
its limiting value within the observable frequency range (Fig. 5), while unplati-
nized electrodes may require extrapolation of R_S beyond the audio range in
order to obtain the high frequency limit.
FIG. 1 A. C. WHEATSTONE BRIDGE FOR MEASURING EQUIVALENT PARALLEL RESISTANCE R_p AND CAPACITANCE C_p OF CONDUCTIVITY CELL.

FIG. 2 APPROXIMATE EQUIVALENT CIRCUITS OF CONDUCTIVITY CELL CONTAINING (a) ELECTROLYTE SOLUTION AND (b) ELECTROLYTE SOLUTION PLUS SEPARATOR.
FIG. 3 CONDUCTIVITY CELL FOR MEASUREMENT OF MEMBRANE RESISTANCES.
FIG. 4 EQUIVALENT PARALLEL AND SERIES RESISTANCES AND CAPACITANCES VERSUS FREQUENCY OF A CONDUCTIVITY CELL FILLED WITH 45% KOH SOLUTION AT 25.0°C USING UNPLATINIZED Pt ELECTRODES. INSERT IS AN ENLARGED PLOT OF THE DATA AT HIGH FREQUENCY.
FIG. 5 EQUIVALENT PARALLEL AND SERIES RESISTANCES AND CAPACITANCES VERSUS FREQUENCY OF CONDUCTIVITY CELL FILLED WITH 45% KOH SOLUTION AT 25.0°C USING PLATINIZED Pt ELECTRODES.
FIG. 6 EQUIVALENT CIRCUIT OF CONDUCTIVITY CELL CONTAINING ELECTROLYTE.
APPENDIX 1

Equivalent Circuit Analysis of Fig. 6.

\[Z = R_L + R_{sol} + Z_{el} = R_L + R_{sol} + 1/Y_{el} \]
\[= R_L + R_{sol} + 1/(Y_1 + Y_2) \] \hspace{1cm} (I)

where \(Y_1 = i\omega C_{dl} \) \hspace{1cm} (II)

refers to the lower branch of the electrode circuit, and

\[Y_2 = 1/Z_2 = \frac{1}{R_F + R_W + 1/i\omega C_W} \] \hspace{1cm} (III)

refers to the upper branch of the electrode circuit.

Substituting equations (II) and (III) into equation (I) and taking the real part gives Eq. (10):

\[R_s = \text{Re} (Z) \]
<table>
<thead>
<tr>
<th>NAME</th>
<th>COPIES</th>
</tr>
</thead>
</table>
| Naval Sea Systems Command
Washington, D. C. 20362
Attention: Code SEA 09G32 | 2 |
| Code SEA 03B | 1 |
| Code SEA 0331J (S. J. Matesky) | 1 |
| Code SEA 0331 (J. W. Murrin) | 1 |
| Code SEA 0841B (J. R. Cipriano) | 1 |
| Office of Naval Research
Washington, D. C. 20360
Attention: Library | 1 |
| Office of Naval Research
800 N Quincy Street
Arlington, VA 22217
Attention: Code 472 (Dr. G. A. Neece) | 1 |
| Naval Research Laboratory
Washington, D. C. 20390
Attention: Code 6170 (A. C. Simon) | 1 |
| Defense Nuclear Agency
Washington, D. C. 20301
Attention: Library | 1 |
| Headquarters, USAFSS
Air force Special Communications Center
San Antonio, TX 78243
Attention: Library | 1 |
| Defense Documentation Center
Cameron Station
Alexandria, VA 22314
Attention: Library | 12 |
Headquarters, US Army Development & Readiness Command
5001 Eisenhower Avenue
Alexandria, VA 22333
Attention: Code DRCDE-L (J. W. Crellin) 1

US Army Electronics Command
Fort Monmouth, NJ 07703
Attention: Code DRSEL-TL-P (D. Linden) 1
Code DRSEL-TL-PR (Dr. S. Gilman) 1

Naval Weapons Center
China Lake, CA 93555
Attention: Dr. Aaron Fletcher 1

US Army Mobility Equipment R & D Command, Electrochemical Div
Fort Belvoir, VA 22060
Attention: Code DRDME-EC 1

Naval Ship Engineering Center
Washington, D. C. 20362
Attention: Code 6157D (A. Himy) 1

Naval Intelligence Support Center
4301 Suitland Road
Washington, D. C. 20390
Attention: Code 362 (Dr. H. E. Ruskie) 1

Naval Material Command
Washington, D. C. 20360
Attention: Code NAVMAT 0323 (I. Jaffe) 1
Code NAVMAT 03533 (R. H. Abrams) 1

National Aeronautics and Space Administration
Washington, D. C. 20546
Attention: Library 1

Naval Undersea Center
San Diego, CA 92132
Attention: Library 1

EIC Corporation
55 Chapel Street
Newton, MA 02158
Attention: J. R. Driscoll 1
Edgewood Arsenal
Aberdeen Proving Ground, MD 21010
Attention: Library

AF Aero Propulsion Lab
Wright-Patterson AFB, OH 45433
Attention: Code AFAPL/POE-1 (W. S. Bishop)
Code AFAPL/POE-1 (J. Lander)

NASA Goddard Space Flight Center
Greenbelt, MD 20771
Attention: Code 711 (G. Halpert)

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attention: Code MS 309/1 (Dr. J. S. Fordyce)

Frank J. Seiler Research Laboratory
AFSC, USAF Academy, CO 80840
Attention: Code FJSRL/NC (Capt. J. K. Erbacher, USAF)

Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, IN 47522
Attention: Code 305 (D. G. Miley)

Energy Research & Development Administration
Division of Electric Energy Systems
Room 2101
Washington, D. C. 20545
Attention: L. J. Rogers

Energy Research & Development Administration
Division of Applied Technology
Washington, D. C. 20545
Attention: Code M/S E-463 (Dr. A. Langrebe)

Strategic Systems Project Office
Engineering Development Project Office
Washington, D. C. 20360
Attention: Code NSP-2721 (K. N. Boyley)

Nuclepore Corporation
7035 Commerce Circle
Pleasanton, CA 94566
Attention: Dr. M. C. Porter