AFOSR-TR-77-0716

INTERIM SCIENTIFIC REPORT
for the period
1 May 1976 through 30 April 1977

Contract F44620-74-C-0075

Prepared for
Air Force Office of Scientific Research (NA)
Bolling Air Force Base, D. C. 20332
Attention: Dr. Joseph F. Masi
June 1977

HEATS OF FORMATION OF GASEOUS METALLIC HALIDES

Approved for public release; distribution unlimited.

Prepared by:
Milton Farber
Principal Investigator
I. INTRODUCTION

Reliable data for the gas phase reactions of the diatomic metal compounds are required to assess accurately the candidate species which are potentially significant to chemical laser technology for use by the Air Force in weaponry and defense systems. For example, the dissociation energies for a number of these diatomic oxides and halides are presently undetermined or uncertain. Thus the purpose of the studies conducted under this contract is to obtain experimental data with a high degree of accuracy for certain alkaline earth species important to chemical laser technology.

Thus far dissociation energies have been obtained for the diatomic alkaline earth oxides, BaO(g), MgO(g), SrO(g) and CaO(g), for the alkaline earth monatomic halide MgCl(g), and for SiF(g) and SiCl(g). The heats of formation of SiF₂(g), SiF₃(g); SiCl₂(g) and SiCl₃(g) have also been obtained. Scientific papers involving these eleven species have already appeared or have been submitted for publication in the open literature. The results obtained under the past twelve months effort are described below and a comparison with previously published data is presented.

II. RESULTS

A. Silicon Chlorides

The reaction of SiCl₄(g) with Si(c) was studied in the temperature range 1593 to 1792 K. Second and third law reaction enthalpies were determined for

\[
\begin{align*}
\text{SiCl}_4(g) + \text{Si}(g) &= 2\text{SiCl}_2(g), \\
\text{SiCl}_4(g) + \text{SiCl}_2(g) &= 2\text{SiCl}_3(g), \\
\text{SiCl}_2(g) + \text{Si}(g) &= 2\text{SiCl}(g).
\end{align*}
\]

The third law heats of reaction, ΔH_{298}, obtained were -30.4 ± 0.6, 12.3 ± 0.5 and 27.1 ± 0.5 kcal/mole for reactions (1), (2) and (3), respectively.
The heats of reaction yielded third law ΔH_{f298} values of 47.1 ± 0.6, -40.6 ± 0.6 and -93.3 ± 0.5 kcal/mole for SiCl(g), SiCl$_2$(g) and SiCl$_3$(g), respectively. A third law dissociation energy value of 88.6 ± 0.6 kcal/mole was calculated for the dissociation of SiCl(g) → (3P_0)Si(g) + ($^2P_{3/2}$)Cl(g). The second law ΔH_{f298} values from least squares plots of the intensity data (Fig. 1) were SiCl(g) = 45.1 ± 4 kcal/mole, SiCl$_2$(g) = -40.5 ± 2 kcal/mole and SiCl$_3$(g) = -95.6 ± 5 kcal/mole.

1. **Heat of Formation of SiCl$_2$(g)**

The ΔH_{f298} value of -40.6 kcal/mole for SiCl$_2$(g) obtained in this study compares favorably with the results of transpiration experiments of Schafer, et al., 1,2 (-38.2 kcal/mole), and of Teichmann and Wolf 3 (-38.3 ± 2 kcal/mole). Other transpiration and static studies by Chechentsev, et al., 4 Antipin and Sergeev, 5 and Ishino, et al., 6 yielded values for the ΔH_{f298} of SiCl$_2$(g) of -41, -41.5 and -42.5 kcal/mole, respectively. The JANAF Tables recommend a value of -40 ± 1 kcal/mole from a review of these experimental results.

2. **Heat of Formation of SiCl$_3$(g)**

Analyzing the electron impact studies of Steele, et al., 8 who derived an average value for D(Cl$_3$Si-H) of 93 ± 4 kcal/mole, the JANAF Tables employed -122.6 kcal/mole for ΔH_{f298} (Cl$_3$SiH(g)) and calculated ΔH_f SiCl$_3$ = -82 kcal/mole, with an estimated uncertainty of approximately 10 kcal/mole. However, the JANAF Tables adopted -96 ± 10 kcal/mole for the ΔH_{f298} of SiCl$_3$(g) from comparisons with bond energies in the carbon halides and with linear plots of ΔH_f (SiCl$_n$) versus ΔH_f for SiF$_n$, CCl$_n$ and CF$_n$.

Cadman, et al., 9 from an examination of the infrared emission studies of Jonathan, et al., 10 for the reaction

$$F(g) + HSiCl_3(g) \rightarrow HF(g) + SiCl_3(g) \quad (4)$$

set limits to the ΔH of the reaction between -40.4 and -50.0 kcal and
chose -45.2 kcal, since they felt that the upper limit was the better estimate, and thus reported a value of -87.5 kcal/mole for the ΔH_{f298} of SiCl$_3$(g).

Additional non-equilibrium studies have been performed, including an electron impact study by Steele, et al., who calculated a value of -69 \pm 4 kcal/mole for the ΔH_{f298} of SiCl$_3$(g) from ionization potentials and ion heat of formation. Wang, et al., performed dissociative electron attachment experiments on SiCl$_4(g)$ and assumed the formation of Cl$^-$ and SiCl$_3$(g). Measuring an appearance potential for the Cl$^-$ ion of 1.2 \pm 0.2 eV and applying a correction of 7.6 kcal/mole for the excess vibrational and transitional energies they calculated a value of -81 \pm 5 kcal/mole for ΔH_{f298} of SiCl$_3$(g). More recently, Pabst, et al., as reported by Franklin from the same laboratory also employed dissociative electron processes and obtained -90 kcal/mole for the ΔH_{f298} of SiCl$_3$(g).

Generally, the electron collisional processes would be uncertain to at least \pm 10 kcal/mole due to a lack of the positive identification of the ionic and radical species and the difficulty in precisely determining the excess energies involved in the process. Likewise, the kinetic processes involving silanes in reactions similar to equation (4) would have similar error limits. A discrepancy of at least 12 kcal/mole is seen from the values of -110 and -122.6 for the ΔH_{f298} for HSiCl$_3$ reported by Steele, et al., and the latest JANAF Table for this species (December 31, 1969), respectively.

3. Dissociation Energy of SiCl

The dissociation energy for SiCl(g), 88.6 \pm 0.6 kcal/mole (or 88.6 \pm 2 kcal/mole, including error limits), obtained in these studies lies between those calculated from spectroscopic constants. The spectroscopic constants of Verma were examined by the JANAF Tables scientists, Gaydon, and Kuzyakov, with recommended values of 90 \pm 15, 76 \pm 12, and 103 \pm 15 kcal/mole, respectively, for the dissociation energy of SiCl(g).

B. Silicon Fluorides

The reaction of SiF$_4(g)$ with Si(c) was studied in the
temperature range 1590 - 1782 °K. A double boiler Knudsen cell arrangement was used in which a stainless steel bulb containing SiF\textsubscript{4} was connected through an alumina tube with a 1 mm diameter annulus to an alumina effusion cell containing metallic silicon. The SiF\textsubscript{4} flow rate was controlled by a variable leak.

Second and third law reaction enthalpies were obtained for

\[\text{SiF}_4(g) + \text{Si}(g) = 2\text{SiF}_2(g), \quad (5) \]
\[\text{SiF}_4(g) + \text{SiF}_2(g) = 2\text{SiF}_3(g), \quad (6) \]

and
\[\text{SiF}_2(g) + \text{Si}(g) = 2\text{SiF}(g). \quad (7) \]

The third law heats of reaction, \(\Delta H_{f298} \), determined were \(-2.9 \pm 0.25, 7.8 \pm 0.5 \) and \(21.1 \pm 0.5 \) kcal/mole for reactions (5), (6) and (7), respectively. The heats of reaction yielded third law \(\Delta H_{f298} \) values of \(-5.8 \pm 0.5, -140.6 \pm 0.3 \) and \(-259.3 \pm 0.5 \) kcal/mole for \text{SiF}(g), \text{SiF}_2(g) \) and \text{SiF}_3(g) \), respectively. A third law dissociation energy value of \(131.2 \pm 0.5 \) kcal/mole was calculated for the dissociation of \(\text{SiF}(g) \rightarrow (^3P_0)\text{Si}(g) + (^2P_{3/2})\text{F}(g) \). The second law \(\Delta H_{f298} \) values obtained from intensity data (Fig. 2) were \(\text{SiF}(g) = -3.8 \pm 5 \) kcal/mole, \(\text{SiF}_2(g) = -140.3 \pm 2 \) kcal/mole, and \(\text{SiF}_3(g) = -259.5 \pm 5 \) kcal/mole.

1. **Heat of Formation of SiF\textsubscript{2}(g)**

The reaction of SiF\textsubscript{4} with Si(c) was studied in a flow system in the temperature range 1400 - 1600 °K by Margrave, Kanaan and Pease.16 The product was assumed to be SiF\textsubscript{2} or its polymer. A heat of formation of \(-148 \pm 4 \) kcal/mole for the \(\Delta H_{f298} \) of SiF\textsubscript{2}(g) was reported. Our studies showed that other silicon species account for approximately 30% of the total. From transpiration studies, Schafer, et al,1 reported \(-139.0 \) kcal/mole for the \(\Delta H_{f298} \) of SiF\textsubscript{2}(g). Effusion-mass spectrometer experiments by Ehlert and Margrave17 involving the reaction of CaF\textsubscript{2} with silicon resulted in \(-140.5 \pm 3 \) kcal/mole for the \(\Delta H_{f298} \) of SiF\textsubscript{2}(g),
in excellent agreement with the value of -140.6 ± 0.3 kcal/mole obtained in our studies.

2. **Heat of Formation of SiF$_3$(g)**

This is apparently the first thermochemical value for the ΔH_f of SiF$_3$(g). Two electron impact studies have yielded -235 ± 20 kcal/mole for the ΔH_f^{298}.

Wang, et al.,18,19 reported this value from dissociative electron attachment processes to SiF$_4$ while McDonald, et al.,18 determined their value from electron impact studies on SiF$_4$ producing SiF$_3^+$. In analyzing the work of McDonald, et al.,17 and that of Wang, Margrave and Franklin19 the JANAF Supplement dated June 30, 1976 cites a paper by Franklin20 in which he suggests that the assumption of the fraction of active vibrations as a constant in the previous electron impact studies may have caused a bias of 15 kcal/mole or more in the heat of formation. The JANAF Tables7 report an estimated value of -263 ± 5 kcal/mole assuming the ΔH of the reaction

$$\text{SiF}_4(g) + \text{SiF}_2(g) = 2\text{SiF}_3(g)$$

(8)

to be 0.5 kcal.

3. **Dissociation Energy of SiF**

Ehlert and Margrave17 in their effusion-mass spectrometer study also obtained ion intensity data for SiF$^+$. With these data for the reaction

$$\text{Si}(g) + \text{SiF}_2(g) = 2\text{SiF}(g)$$

(9)

they reported 129.5 ± 3 kcal/mole for the D_0 of SiF, which is in good agreement with the present value. Hastie and Margrave21 from the reaction enthalpy of

$$\text{Ge}(g) + \text{SiF}_2(g) = \text{GeF}(g) + \text{SiF}(g)$$

(10)

obtained 135 ± 3 kcal/mole for the D_0 of SiF.

Johns and Barrow22 reported a value of 125 ± 10 kcal/mole
for the \(D_0 \) of SiP from a Birge-Sponer extrapolation of several spectroscopic states. Gaydon,\(^{14}\) on the other hand, obtained \(115 + 12 \) kcal/mole for the \(D_0 \) from a Birge-Sponer extrapolation of the ground state. Kuzyakov\(^{15}\) recommended 110 kcal/mole for the \(D_0 \) based on a review of the spectroscopic data.

III. PUBLICATIONS TO DATE

5. Milton Farber and R. D. Srivastava, "Mass Spectrometric Determination of the Heats of Formation of the Silicon Subchlorides \(\text{SiCl}(g), \text{SiCl}_2(g) \) and \(\text{SiCl}_3(g) \)," J. Chem. Soc., Faraday Transactions I, accepted for publication.

6. Milton Farber and R. D. Srivastava, "Mass Spectrometric Determination of the Heats of Formation of the Silicon Fluorides \(\text{SiF}(g), \text{SiF}_2(g) \) and \(\text{SiF}_3(g) \)," submitted for publication in J. Chem. Soc., Faraday Transactions I.
REFERENCES

Fig. 1. Plots of the log K vs. $1/T$ for the Equilibria involved in the Reactions of Si(c) with SiCl$_4$(g)
Fig. 2. Plots of the log K_1 vs. $1/T$ for the gaseous isomolecular equilibria resulting from the reactions of Si(c) with SiF$_4$(g)
HEATS OF FORMATION OF GASEOUS METALLIC HALIDES

Title: HEATS OF FORMATION OF GASEOUS METALLIC HALIDES

Authors: Milton Farber

Performing Organization: SPACE SCIENCES, INC
235 WEST MAPLE AVE
MONROVIA, CALIFORNIA 91016

Contract or Grant Number: F44620-74-C-0075

Program Element Project Task Area Work Unit Numbers: 61102F

Report Date: June 1977

Number of Pages: 11

Distribution Statement (of the Report): Approved for public release, distribution unlimited.

Supplementary Notes:

Key Words:
- Silicon Chlorides
- Silicon Fluorides
- Thermochemistry
- Heats of Formation
- Energies of Dissociation

Abstract: The heats of formation and dissociation energies for the silicon subchlorides and silicon subfluorides SiCl$_3$(g), SiCl$_2$(g), SiCl(g), SiF$_3$(g), SiF$_2$(g) and SiF were determined from high temperature thermochemical reactions of SiCl$_4$(g) and SiF$_4$(g). Ion intensities for the species involved in the reactions were obtained mass spectrometrically, leading to equilibrium constants and reaction enthalpies. The heats of formation were obtained by both second and third law methods and found to be in good agreement.