ADIABATIC OSCILLATIONS OF THE ONE-DIMENSIONAL SGEMP BOUNDARY LAYER

Mission Research Corporation
735 State Street
Santa Barbara, California 93101

October 1976

Topical Report

CONTRACT No. DNA 001-77-C-0009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE NUCLEAR DEFENSE AGENCY UNDER RDT&E RMSS CODE B323077464 R990AXEE50104 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305
Destroy this report when it is no longer needed. Do not return to sender.
Title: Adiabatic Oscillations of the One-Dimensional SGEMP Boundary Layer

Performing Organization: Mission Research Corporation
735 State Street
Santa Barbara, California 93101

Director: Defense Nuclear Agency
Washington, D.C. 20305

Report Date: October 1976

Number of Pages: 44

Project Name: Subtask R99QAXEE501-04

Abstract: Adiabatic oscillations of the one-dimensional SGEMP boundary layer about equilibrium are described in a fluid approximation. The solution for monoenergetic emission normal to the surface is found and compared with a computer solution. Solutions for photoelectron emission with a cosine distribution for a monoenergetic and a linear times exponential energy distribution are also found. It appears that these latter solutions are not physically meaningful.
20. ABSTRACT (Continued)

If physically meaningful modes of oscillation do exist, for other emission configurations, they are probably stable.
I am indebted to Dr. Conrad Longmire and Dr. Neal Carron for writing a very useful and readable report. Thanks go to Dr. Carron for setting up the parameters for the computer solution (although it was originally used for a different purpose) presented in Appendix II. Thanks also go to Dr. Longmire for helpful comments after reading the first draft of this report. I am indebted to Ms. Colleen Hannigan for her efforts in typing this report.
TABLE OF CONTENTS

SUMMARY 1
ILLUSTRATIONS 3
SECTION
1 INTRODUCTION 5
2 GENERAL EQUATION OF OSCILLATIONS 9
3 ADIABATIC OSCILLATION CONDITIONS 13
4 MODES OF OSCILLATION OF KNOWN SOLUTIONS 18
5 SUMMARY AND SPECULATION 23
REFERENCES 25
APPENDIX I 27
APPENDIX II 29
List of Illustrations

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geometry of the problem.</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Emission energy distribution.</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Charge density vs distance from the emitting surface (at a time 9.4).</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>Current density vs. time (at .3 length units from the emission surface).</td>
<td>33</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

When high-intensity X-rays strike a conducting surface in vacuum a negatively-charged layer forms just above the surface. This layer—called the space-charge-boundary layer—is formed by the photoelectrons ejected from the surface. The properties of the boundary layer, in particular the modes of oscillation, can be important in the study of SGEMP.

Recent experiments using low-energy X rays to form such a boundary layer may not be wholly interpretable in terms of purely static (time independent) boundary layer theory. The unambiguous interpretation of future experiments, with low-energy photons, will depend upon an understanding of the dynamic properties of the boundary layer. This paper attempts to contribute to that understanding by investigating small oscillation of the boundary layer about static equilibrium.

To properly analyze the dynamic properties of the one-dimensional boundary layer requires the simultaneous solution of the Vlasov equation and the Poisson equation. Since this is a non-linear system of equations its complete time-dependent solution is most easily made by means of computer codes. A computer analysis of this problem has been made by Carron. The analytic investigation of small oscillations about equilibrium will be made by means of the linearized Vlasov equation and by utilizing an analog of the adiabatic condition for an ideal gas. This latter condition
is equivalent to solving the linearized second order Vlasov moment equation (energy equation).

The Vlasov equation used to solve the boundary layer system contains only one species, namely electrons. The system is therefore not a plasma in the literal sense of the word. Although some of the terminology of plasma physics is convenient for a description of the boundary layer, concepts such as the frequency of plasma oscillations should not be accepted uncritically. The definition of a plasma requires that the plasma system is neutral outside a length called a Debye length. Plasma theory describes the plasma system only for dimensions greater than a Debye length. Exactly the opposite is true for the boundary layer. There exists a length, called the boundary layer thickness (sometimes also called a Debye length) which basically defines the dimension beyond which the system is neutral. For the boundary layer all the physics happens within this length not outside of it. One of the results of this investigation will be the determination of the frequencies of adiabatic oscillation of the boundary system for known static solutions. A general way to approximate the lowest mode of oscillation for a general static solution will also be described.

In Section 2 of this report the wave equation, describing oscillations of the boundary layer, for a general static solution is derived. In Section 3 the condition for adiabatic oscillations is formulated and the wave equation of Section 2 is particularized to the case of adiabatic oscillations. Boundary conditions are also discussed in this section. One of interesting results that follows from the properties of the new wave equation is that all fluid oscillations—if they exist at all—of any boundary layer, are stable.

In Section 4 we solve for the modes of oscillation for three known static solutions2,3. These static solutions are for electrons emitted
either normal to the surface or for electrons emitted with a cosine distribution with respect to the normal to the surface. One of these static solutions describes normal emission with a monoenergetic energy distribution. This is the only static solution of the three which allows physically meaningful solutions. This result seems to correspond with the findings of computer code investigations of the one-dimensional boundary layer. Oscillations have been observed with monoenergetic, normal emission code simulations but the oscillations do not seem to occur with other types of emission.

In Section 5 the results of the reported investigation are summarized and speculated upon. In Appendix I we demonstrate that the means by which we obtained the adiabatic condition for the boundary layer yields the usual adiabatic condition in the case of an ideal gas. Appendix II contains a comparison between the oscillations observed in a computer simulation of monoenergetic normal emission with that of the analytic result of Section 4. The lowest mode of the analytic result is equal to the measured frequency, within the accuracy of the measurement.
Emission Surface

Figure 1. Geometry of the problem.
SECTION 2
GENERAL EQUATION OF OSCILLATIONS

In this section the wave equation which describes oscillations about equilibrium will be derived. We take the point of view that the perturbations of physical interest manifest themselves in terms of an observable fluid velocity $\partial \xi / \partial t$ (an observable charged current flow, for example). ξ can be interpreted as a displacement of a particle of fluid from its equilibrium position. We look for those equations that describe the displacement ξ. We begin by taking the usual zero order and first order velocity moments of the linearized Vlasov equation. Combining these two equations we will obtain the equation we seek.

The Vlasov equation in one dimension is

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + a \frac{\partial f}{\partial v} = 0,$$ \hspace{1cm} (1)

where $f(x,v,t)$ is the distribution function for electrons, x is the variable of position, v is the velocity variable, t is the time and a is the acceleration. The acceleration is defined by

$$a = - \frac{e}{m} \frac{\partial \phi}{\partial x},$$ \hspace{1cm} (2)

where the electrostatic potential ϕ is defined through the Poisson equation

$$\frac{\partial^2 \phi}{\partial x^2} = - \frac{4\pi (e/m) \rho}{},$$ \hspace{1cm} (3)

and the mass density is defined by
\(\rho(x,t) = m \int f dv . \) \hspace{1cm} (4)

We now linearize Equation 1. If \(f_0 \) represents a static solution of Equations 1 through 3 and \(\delta f \) represents a perturbation about equilibrium, then using

\[f = f_0 + \delta f , \] \hspace{1cm} (5)

in Equations 1 to 3 the equations describing the perturbation becomes

\[\frac{\partial (\delta f)}{\partial t} + v \frac{\partial (\delta f)}{\partial x} + a_0 \frac{\partial (\delta f)}{\partial v} + \delta a \frac{\partial (f_0)}{\partial v} = 0 , \] \hspace{1cm} (6)

\[\frac{\partial^2 (\delta \phi)}{\partial x^2} = - \frac{4\pi e}{m} \delta \rho , \] \hspace{1cm} (7)

and

\[\delta a = - \frac{e}{m} \frac{\partial (\delta \phi)}{\partial x} . \] \hspace{1cm} (8)

Here we have used the static equilibrium equation

\[\frac{\partial f_0}{\partial x} + a_0 \frac{\partial f_0}{\partial v} = 0 , \] \hspace{1cm} (9)

and the notation that a subscript zero corresponds to a quantity defined by means of the static distribution function \(f_0 \), a \(\delta \) before a quantity is defined by means of the perturbation \(\delta f \). For example, the mass densities \(\rho_0 \) and \(\delta \rho \) are defined by inserting \(f_0 \) and \(\delta f \) respectively in Equation 4 for \(f \):

\[\rho_0 = m \int f_0 dv , \] \hspace{1cm} (10)

and

\[\delta \rho = m \int \delta f dv . \] \hspace{1cm} (11)

Taking the zero order and first order moments of Equation 6 while using the definitions
\begin{align}
\rho_0 \frac{\partial \xi}{\partial t} &= m \int v \delta f dv \ , \tag{12} \\
\text{and} \nonumber \\
P &= m \int v^2 f dv \ , \tag{13}
\end{align}

where $\delta \xi / \delta t$ is the perturbed fluid velocity and P is the pressure, we find that

\begin{equation}
\frac{\partial (\delta \rho)}{\partial t} + \frac{\partial^2 (\rho_0 \xi)}{\partial t \partial x} = 0 \ , \tag{14}
\end{equation}

and

\begin{equation}
\rho_0 \frac{\partial^2 \xi}{\partial t^2} + \frac{\partial \delta P}{\partial x} - a_0 \delta \rho - \delta \rho_0 = 0 \ . \tag{15}
\end{equation}

Substituting Equation 2 (with ϕ replaced by ϕ_0) and Equation 8 into Equation 15 we find

\begin{equation}
\rho_0 \frac{\partial^2 \xi}{\partial t^2} + \frac{\partial \delta P}{\partial x} + \frac{e}{m} \left(\frac{\partial \phi_0}{\partial x} \delta \rho + \frac{\partial^2 \phi}{\partial x^2} \rho_0 \right) = 0 \ . \tag{16}
\end{equation}

Equations 14 and 16 are defined totally in terms of fluid concepts. From Equation 14 the expression for the conservation of mass, we see that

\begin{equation}
\delta \rho = \frac{\partial}{\partial x} \left(\rho_0 \xi \right) \ . \tag{17}
\end{equation}

Upon substituting (17) into (7) we have

\begin{equation}
\frac{\partial \delta \phi}{\partial x} = - 4\pi \frac{e}{m \rho_0} \xi \ . \tag{18}
\end{equation}

Substituting Equations 17 and 18 into 16, using Equation 7 and the equation of static equilibrium

\begin{equation}
\frac{\partial P_0}{\partial x} = - \frac{e}{m} \rho \frac{\partial \phi_0}{\partial x} \ , \tag{19}
\end{equation}

we find that
Equation 20 is the general differential equation we seek which describes oscillations about static solutions. In the next section we will relate δP to ξ for a particular type of motion.

$$\rho_0 \frac{\partial^2 \xi}{\partial t^2} + \frac{\partial}{\partial x} \left(\delta P + \frac{\partial P_0}{\partial x} \right) = 0 \tag{20}$$
SECTION 3
ADIABATIC OSCILLATION CONDITIONS

To find an expression for δP in Equation 20 we formulate a condition which maintains the energy in any given volume of fluid constant throughout the perturbation. In Appendix I we demonstrate that this condition is analogous to adiabatic motion in an ideal gas. The condition in the circumstances which describe the boundary layer, will also be called the adiabatic condition.

If the energy density of the electron gas at x is $\epsilon(x)$ then the total energy δW is

$$\delta W = \int_0^d \epsilon(x) \, dx .$$

(21)

Taking the point of view that ξ is the displacement of the electron gas at the point x it can be shown that the change in energy δW due to this displacement is

$$\delta W = \int_0^d \left(\delta \epsilon + \frac{\partial (\epsilon \xi)}{\partial x} \right) \, dx .$$

(22)

If we wish δW to equal zero for every element of volume we must have

$$\delta \epsilon = - \frac{\partial}{\partial x} (\epsilon \xi) .$$

(23)

Equation 23 is the condition we need but to use it we must construct the energy density of the electron gas.

The time derivative of Equation 23 is the second order moment equation of the linearized Vlasov equation and defines the heat flow as
\(\varepsilon_0 \frac{\partial \varepsilon}{\partial t} \). Instead of obtaining Equation 23 by means of Equations 21 and 22 we could, alternatively, have assumed that the heat flow was given by \(\varepsilon_0 \frac{\partial \varepsilon}{\partial t} \) and solved the linearized energy equation.

The energy density \(\varepsilon_0 \) is composed of the electric field energy and the kinetic energy of the electrons. In general the energy density \(\varepsilon(x) \) is given by

\[
\varepsilon(x) = \frac{1}{8\pi} \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} p ,
\]

and so

\[
\delta \varepsilon = \frac{1}{4\pi} \frac{\partial \phi}{\partial x} p \frac{\partial \phi}{\partial x} + \frac{1}{2} \delta p .
\]

Substituting Equations 18 and 19 into (25) we find

\[
\delta \varepsilon = -\frac{\partial p}{\partial x} \xi + \frac{1}{2} \delta p .
\]

From Equations 3 and 19 one can show that

\[
\frac{\partial p_0}{\partial x} = \frac{1}{8\pi} \left(\frac{\partial \phi}{\partial x} \right)^2 ,
\]

or that

\[
p_0 = \frac{1}{8\pi} \left(\frac{\partial \phi_0}{\partial x} \right)^2 ,
\]

if both \(p_0 \) and \(\frac{\partial \phi_0}{\partial x} \) vanish at the outer boundary. Substituting Equation 28 into Equation 25 we have

\[
\varepsilon_0 = \frac{3}{2} p_0 .
\]

Equation 29 states that the total energy density in the one-dimensional boundary layer, for normal emission is three times the kinetic energy. If the electrons were not emitted normally the expression for \(\varepsilon_0 \) would not be Equation 29. For example if electrons were emitted with a \(\cos \theta \) distribution.
with respect to the normal to the surface the fraction multiplying \(P_0 \) in Equation 29 would be 5/2 instead of 3/2 (see Reference 2 pgs. 21 through 23). Substituting Equations 26 and 29 into Equation 23 we arrive at the condition we seek, namely
\[
\delta P + P \frac{\partial \xi}{\partial x} = -3P_0 \frac{\partial \xi}{\partial x}.
\]
(30)

For cos\(\theta \) emission 5/3 would replace the 3 on the right-hand side of Equation 30. (This is so because a 3/2 would replace the 1/2 multiplying \(\delta P \) on the right-hand side of Equation 25 for cos\(\theta \) emission.) Substituting Equation 30 into Equation 20 we arrive at the wave equation for oscillations
\[
\rho_0 \frac{\partial^2 \xi}{\partial t^2} - Y \frac{\partial}{\partial x} (P_0 \frac{\partial \xi}{\partial x}) = 0,
\]
(31)

where
- \(Y = 3 \) normal emission
- \(Y = 5/3 \) cos\(\theta \) emission

Equation 31 is analogous to the equation describing the velocity of sound in a gas. \(Y \) is analogous to the ratio of specific heats. Since for a one-dimensional ideal gas one would expect the ratio of specific heat \(C_p/C_v \) to be
\[
\frac{C_p}{C_v} = \frac{3/2}{1/2} \frac{k}{k} = \frac{3}{1},
\]
(33)

where \(C_p \) is the specific heat at constant pressure, \(C_v \) is the specific heat at constant volume and \(k \) is Boltzmann’s constant. For an ideal gas with 3 degrees of freedom the ratio of specific heats would be 5/3. Equation 33 is a result of the Boltzmann distribution function. Equation 32 is not, although the results are similar. We will now discuss boundary conditions and a general method of finding the lowest mode of Equation 31. If we assume that
\[
\xi = \xi_0(x)e^{i\omega t},
\]
(34)

then substituting Equation 34 into Equation 31 we find that
\begin{equation}
\rho_0 \omega^2 \xi_0 - \gamma \frac{\partial}{\partial x} \left(P_0 \frac{\partial \xi_0}{\partial x} \right) = 0.
\end{equation}

The spatial boundary conditions for Equation 35 can be found by an examination of Equation 35. For \(x < 0 \), \(\xi_0 \) is equal to zero. Equation 35 implies that \(\frac{\partial \xi_0}{\partial x} \) is continuous at \(x = 0 \) so that (this argument is analogous to the "pill box" argument used in describing the boundary condition at the surface of a conductor):

\begin{equation}
\left. \frac{\partial \xi_0}{\partial x} \right|_{x=0} = 0,
\end{equation}

is the boundary condition at the inner surface. Equation 36 expresses the fact that the fluid is incompressible at the \(x = 0 \) boundary and is also consistent with our intuition that the perturbation should be, at least, a local extremum at the boundary. Other boundary conditions are conceivable and they could change the nature of our conclusions about the frequencies of oscillations (the form of the particular solutions discussed in Section 4 would not change if the boundary conditions were changed, however). It is the opinion of this author that Equation 36 is the most "natural" condition for this system.

For \(x > d \), \(\xi_0 \) is equal to zero also. Continuity of \(\xi_0 \) at the outer boundary would require \(\xi_0(d) \) to equal zero. To make the perturbations physically meaningful we require \(\xi_0 \) to be finite everywhere including the position of the outer boundary.

We can investigate the roots \((\omega)^2\) of Equation 35 by doing a few manipulations. Multiplying Equation 35 by \(\xi_0 \), integrating over \(x \) and using the fact that \(P_0(d) \) vanishes, while also using Equation 36 we see that
Equation 37 is the basis for an approximation of ω^2. It also shows us that ω is either imaginary or zero since both the integrals on the right-hand side are positive definite. That is the adiabatic oscillations are never unstable! Equation 37 forms the basis of a variational principle: any function $f(x)$ which satisfied the boundary conditions on ξ_0 can be substituted into Equation 37; the resulting integrations make the right-hand side of Equation 37 greater or equal to the lowest mode of the system. The variational principle arises because Equation 35 together with the boundary conditions are a self-adjoint system.
SECTION 4
MODES OF OSCILLATION OF KNOWN SOLUTIONS

In this section we find the modes of oscillation of three known static solutions. The first is a monoenergetic energy distribution emitted normal to the surface. We need both \(P_0 \) and \(\rho_0 \) as functions of \(x \). From Reference 2 (we use the variable \(x \) instead of \(z \)) page 25 we have, after using Equation 28

\[
P_0 = a \left(1 + \frac{x}{\ell} \right)^{3/2},
\]
\[
\rho_0 = b \left(1 + \frac{x}{\ell} \right)^{-3/2},
\]

where

\[
\ell = -d,
\]
\[
a = 2 \frac{m r_0 v_1}{v_1},
\]

and

\[
b = \frac{2 m r_0}{v_1}. \tag{42}
\]

\(r_0 \) is number of electrons emitted /cm\(^2\)/sec and \(v_1 \) is the emission velocity. Substituting Equations 38 and 39 into Equation 35 while letting

\[
y = (1 + x/\ell), \tag{43}
\]

and

\[
\beta^2 \equiv - \frac{\omega^2 b}{ya} \frac{\ell^2}{a}, \tag{44}
\]
we have

\[
\frac{\partial}{\partial y}\left(y^{2/3} \frac{\partial}{\partial y} \xi_0\right) + \beta y^{-2/3}.
\]

By means of a simple transformation

\[
y = \left(z', \frac{1}{3}\right).
\]

Equation 46 can be transformed to

\[
\frac{\partial^2 \xi_0}{\partial z'^2} + \beta^2 \xi_0 = 0.
\]

The solutions are then

\[
\xi_0 = \cos \left[3\beta(1 - x/d)^{1/3}\right],
\]

and

\[
\xi_0 = \sin \left[3\beta(1 - x/d)^{1/3}\right].
\]

In order to satisfy continuity of \(\xi_0\) at \(d\) we choose Equation 49 as our solution. To satisfy Equation 56 for \(\beta \neq 0\) we must have

\[
\beta = \frac{2n+1}{6} \pi \quad n = 0,1,2, \ldots
\]

or

\[
\omega_n = \pm i \left(\frac{\gamma a}{bd^2}\right)^{1/2} \frac{2n+1}{6} \pi
\]

or from Equations 41, 42 and 32

\[
\omega_n = \pm i \frac{\nu_1}{d} \frac{2n+1}{2\sqrt{3}} \pi
\quad n = 0,1,2, \ldots
\]

The longest period is 3.46 multiplied by the time it takes on electron with velocity \(\nu_1\) to go twice the boundary distance \(d\). If we used the solution of Equation 48, \(\xi_0\) would be discontinuous at \(x = d\) and the frequency would be:
A comparison of the lowest mode of Equation 52 with a computer solution is made in Appendix II.

We now proceed to the next static solution. It can be interpreted as either a constant energy spectrum with normal emission or a monoenergetic energy distribution with a cosθ emission spectrum. With either interpretation the results are the same. From Reference 2 pages 26 and 30 we have

\[p_0 = a (1 + x/z)^6, \tag{54} \]
\[\rho_0 = b (1 + x/z)^2, \tag{55} \]

where

\[z = -d, \quad a = m r_0 v_1^2, \tag{56} \]
\[b = 4 r_0/v_1. \tag{57} \]

Here constants \(r_0 \) and \(v_1 \) have the same meaning they had in the previous example. Using the transformation expressed by Equations 54, 55, 43, and also Equation 44 we find that Equation 36 becomes

\[\frac{\partial}{\partial y} \left(y^6 \frac{\partial}{\partial y} \xi_0 \right) + \beta^2 y^2 \xi_0 = 0. \tag{59} \]

If we let

\[\xi_0 = y^{-3} \mu, \tag{60} \]

and

\[y = z^{-1}, \tag{61} \]

Equation 59 transforms to
\[
\frac{\partial^2 \mu}{\partial z^2} + \frac{2}{z} \frac{\partial \mu}{\partial z} - \frac{6}{z^2} + \beta^2 \mu = 0 \tag{62}
\]

The solutions of Equation 62 are spherical Bessel functions of order 2. If \(H_2 \) represents a spherical Hankel function of order 2 then the solutions are

\[
\xi_0 = y^{-3} H_2(\beta/y) \tag{63}
\]

In order for \(\xi_0 \) to be finite at \(x = d \) (\(y = 0 \)), \(\beta \) must be imaginary. Referring to Equation 44 we see then that \(\omega \) would be real which contradicts the conclusions drawn from Equation 37. (If we assumed that \(\omega \) were real we could not satisfy the boundary condition at \(x = 0 \).) Physically realistic solutions of \(\xi_0 \) do not exist for this static solution.

We next consider the static solution which describes normal emission with an exponential distribution or a cosine angular distribution with a linear times exponential energy distribution. From Reference 2, page 51

\[
P_0 = a(1 + x/\xi)^{-2}, \tag{64}
\]

\[
\rho_0 = b(1 + x/\xi)^{-2}, \tag{65}
\]

where

\[
\xi = \left(\frac{2\omega_1 v_1}{8\pi^{3/2} e^2 r_0^2} \right), \tag{66}
\]

\[
a = \pi^{1/2} m r_0 v_1, \tag{67}
\]

and

\[
b = 2\pi^{1/2} r_0 \frac{r_0}{v_1}. \tag{68}
\]

The constants have the meaning they had previously except that \(\omega_1 \) is the exponentiation energy of the energy distribution \(e^{-w/\omega_1} \) and
\[v_1 \equiv \sqrt{2w_1/m}. \] (69)

Using Equations 64, 65, 43 and Equation 44 we find that Equation 35 becomes

\[\frac{3}{\beta y} \left(y^{-2} \frac{d}{dy} \left(\frac{3}{\beta y} \varepsilon_0 \right) \right) + \beta^2 y^{-2} = 0. \] (70)

With the help of the transformation

\[\varepsilon_0 = y^2 \mu, \] (71)

Equation 70 becomes

\[\frac{3^2 \mu}{\beta y^2} + 2/y \frac{3^2 \mu}{\beta y} - 2/y^2 \mu + \beta^2 \mu = 0. \] (72)

The solutions of Equation 72 are spherical Bessel functions of order 1. If \(H_1 \) denotes a Hankel function of order 1 then

\[\varepsilon_0 \propto y^2 H_1(\beta y). \] (72)

In order for \(\varepsilon_0 \) to be finite at \(y = \infty \), \(\beta \) must be negative or \(\omega \) must be positive. By arguments similar to those of the previous section we conclude that a physically meaningful perturbed solution does not exist for this static solution.
SECTION 5

SUMMARY AND SPECULATION

Adiabatic fluid theory has been used successfully in plasma physics to describe Langmuir waves\(^5\). Here we have evoked an adiabatic fluid theory to describe oscillations of the one-dimensional boundary layer. The results of the analysis (utilizing a "natural" boundary condition for the problem) are that a boundary layer formed from monoenergetic emission of electrons normal to the surface supports plasma-type oscillations. A boundary layer formed by either a monoenergetic energy distribution of electrons emitted with a cosine angular dependence or a linear times exponential energy distribution of electrons emitted with a cosine angular dependence do not support oscillations.

These results, together with the form of the equation (Equation 35) describing the oscillations, suggest that monoenergetic emission of electrons normal to the surface may be one of the only conditions under which oscillations can occur in a one-dimensional boundary layer. This suggestion is supported by the one-dimensional computer simulations done at MRC with the SCALE1D code\(^1\). If a velocity space analysis were undertaken it would probably show that perturbations of the electron gas are critically damped for distributions other than that of monoenergetic normal emission.

If in fact there are other emission configurations which allow oscillations of the boundary layer and these oscillations are described by an adiabatic fluid, Section 3 demonstrates that the frequencies of oscillations must be real. This means that the static boundary layer is stable with respect to adiabatic perturbations.
The implications for experiments is that any instability that arises within an experiment with a one-dimensional boundary layer probably comes from an interaction with the experimental system and the layer but not from the electron gas itself. A linear times exponential energy distribution with cosine emission may be particularly relevant to photon experiments. Under these circumstances the electron gas does not support oscillations itself and probably damps oscillations occurring because of an interaction with an external system.
REFERENCES

APPENDIX I

In this appendix we demonstrate that the adiabatic condition for an ideal gas, under constraints similar to that of the SGEMP boundary layer, follows directly from Equation 23. We consider the idealized circumstance of a one-dimensional system of gas held together by self-gravitation rather than electric forces. The energy density \(\varepsilon\), including gravitational energy, is

\[
\varepsilon = \frac{1}{8\pi G} \left(\frac{\partial \phi}{\partial x}\right)^2 + U,
\]

where \(\phi\) is the gravitational potential, \(U\) is the internal energy of the gas per unit volume and \(G\) is the gravitational constant. If \(\alpha\) is the number of degrees of freedom, then assuming a Boltzman distribution

\[
U = \frac{\alpha}{2} P.
\]

Because of the equation of equilibrium

\[
P_0 = \frac{1}{8\pi G} \left(\frac{\partial \phi}{\partial x}\right)^2.
\]

Substituting Equations 1-2 and 1-3 into Equation 1-1 we see that

\[
\varepsilon_0 = \frac{\alpha + 2}{2} P_0.
\]

Substituting Equation 1-4 into Equation 23 we have

\[
\delta \varepsilon = -\frac{\alpha}{2} \gamma \frac{\partial}{\partial x} (P_0 \varepsilon),
\]

where we have recognized \(\gamma\) as the ratio of specific heats. By using the Poisson equation for the gravitational system one can show, in a way
analogous to the derivation of Equation 25, that

$$\delta \varepsilon = \frac{\alpha}{2} \delta P + \frac{\partial P_0}{\partial x} \xi . \tag{1-6}$$

Substituting Equation 1-6 into 1-5 we find that

$$\delta P = - \gamma P_0 \frac{\delta \xi}{\partial x} - \frac{\partial P_0}{\partial x} \xi . \tag{1-7}$$

Equation 1-7 is the correct adiabatic relation for one-dimensional perturbations of an ideal gas.
APPENDIX II

In this appendix we compare a computer solution made with the code SCALE1D for normal monoenergetic emission with the analytical result of Section 4. We compare the period of the lowest mode derived analytically with the oscillations observed in the computer simulation. We find the results agree to within the accuracy of measurement.

The code solution describes the physical situation where electrons are emitted normally with a very nearly monoenergetic energy distribution. The emission energy is 1 keV. The time history of the emission spectrum rises to a maximum in 10 nanoseconds along a linear ramp. It remains constant for 50 nanoseconds and then drops discontinuously to zero. The output of the code is in terms of normalized parameters. The relevant ones are:

- Time: 1.010×10^{-9} sec
- Length: 1.892 cm
- Velocity: 1.873×10^{9} cm/sec
- Charge Density: 1.479×10^{-1} ESU/cm³
- Current Density: 9.239×10^{-5} abamps/cm²

Figure 2 shows the emission velocity distribution. Figure 3 shows the charge density as a function of distance from the surface at a time large enough to correspond roughly to equilibrium. For the static problem the charge density (Equation 38) approaches infinity for $x = d$. In the computer
Figure 2. Emission energy distribution.
Figure 3. Charge density vs distance from the emitting surface (at a time 9.4).
solution the charge density is discontinuous at \(d \). From Figure 2 this distance is \((.467)(1.892) = .883\). From the static solution theory (Reference 2, page 24) the distance \(d \) is given in terms of

\[
d = \frac{2}{3} \sqrt{\frac{w_1 v_1}{8\pi e^2 r_0}}.
\] (II-1)

The parameters in the above equation have the same meaning they did in Section 4. \(w_1 \) is the emission energy. In the computer problem \(1.73 \times 10^{10} \) electrons are emitted / cm\(^2\) over the total time of 60 ns. To find an average emission current we divide the emitted electrons by a time of 55 ns (10 ns of the time history is a ramp). Thus

\[
r_0 = 3.15 \times 10^{17} \text{ cm}^2 \text{ sec}^{-1}.
\] (II-2)

Substituting this \(r_0 \) together with the appropriate values of the other parameters into Equation II-1 we find that

\[
d = .855 \text{ cm}.
\] (II-3)

This value corresponds quite well with the value taken from Figure 2 and lends credence to the assumption that we are dealing with a static solution.

Figure 3 shows the current density at .568 cm from the emitting surface. From the graphs the oscillations have a period \(\tau_0 \) of

\[
\tau_0 = 3.24 \times 1.01 \times 10^{-9} = 3.26 \times 10^{-9} \text{ sec}.
\] (II-4)

The value for the lowest mode \((n=0)\) in Equation 52 is

\[
\tau_0 = \frac{(3.46) 2d}{v_1} = \frac{(3.46)(2)(.883)}{1.875 \times 10^{-9}} = 3.26 \times 10^{-9} \text{ sec}.
\]

If we had used the value of \(d \) expressed by Equation II-3, we would have obtained \(\tau_0 \) equal to \(3.16 \times 10^{-9} \text{ sec} \). This number is within .3 percent of the measured value.*

* Dr. Longmire has pointed out that the oscillations depicted in Figure 4 are not really the sinusoidal oscillations suggested by the theory. The oscillations of Figure 4 appear to be actually non-linear. A code run designed specifically to describe oscillations about an actual equilibrium solution would be a better check of the theory.
Figure 4. Current density vs. time (at .3 length units from the emission surface).
DEPARTMENT OF DEFENSE

Commander in Chief
U.S. European Command, JCS
ATTN: EC36-P

Director
Defense Advanced Rsch. Proj. Agency
ATTN: SMR

Director
Defense Civil Preparedness Agency
Assistant Director for Research
ATTN: T8 AED

Defense Communication Engineer Center
ATTN: Robert Bostrom
ATTN: Code R103P
ATTN: Code 1055, Nicholas A. Sica

Director
Defense Communications Agency
ATTN: Code 800, Fred Bond
ATTN: Code B205, George B. Adkins
ATTN: Code 420
ATTN: Code 936, Monte L. Burgett, Jr.
ATTN: SMR

Defense Documentation Center
Cameroon Station
12 cy ATTN: TC

Director
Defense Intelligence Agency
ATTN: DB-4C, Edward O’Farrell

Director
Defense Nuclear Agency
ATTN: DDEST
ATTN: SNSI, Archives
ATTN: RAYN
2 cy ATTN: RAEV
3 cy ATTN: STAFL, Tech. Library

Commander
Field Command
Defense Nuclear Agency
ATTN: FCLMC
ATTN: FCPH

Director
Interservice Nuclear Weapons School
ATTN: Document Control

Director
Joint Strat. Tgt. Planning Staff JCS
ATTN: J1TW-2

Chief
Livermore Division Fld. Command DNA
Lawrence Livermore Laboratory
ATTN: FCPRL

National Communications System
Office of the Manager
ATTN: NSC-TS, Charles D. Bodson

DEPARTMENT OF DEFENSE (Continued)

Director
National Security Agency
ATTN: Orland O. Van Ganten, R-425

OIC/3-3
ATTN: J-3, RDTA Br., WWMICs, Plans Div.

OIC/3-5

DEPARTMENT OF THE ARMY

Director
BMD Advanced Tech. Ctr.
ATTN: RDMM-O, F. M. Bole

Commander
BMD System Command
ATTN: BDMSC-TEN, Noah J. Hurst
ATTN: SSc-TEN, L. L. Dickerson

Dep. Chief of Staff for Rsch. Dev. & Eqq.
ATTN: DAMA-CSM-N, LTC G. Ogden

Commander
Harry Diamond Laboratories
ATTN: DRXDO-TR, Edward E. Conrad
ATTN: DRXDO-RB, Joseph R. Miletta
ATTN: DRXDO-RCC, John E. Thompkins
ATTN: DRXDO-RCC, John A. Rosado
ATTN: DRXDO-RCC, Elaine Gilbert
ATTN: DRXDO-EM, Robert E. McCloskey
ATTN: DRXDO-BB1, Stewart S. Graybull
ATTN: DRXDO-RC, Robert B. Oswald, Jr.
ATTN: DRXDO-EM, George Merkel
ATTN: DRXDO-EM, R. Bostak
ATTN: DRXDO-EM, John Burkhardt
ATTN: DRXDO-SP, Francis N. Wimenitz

Commander
Picatinny Arsenal
ATTN: SMUPA-SD-W
ATTN: SARPA-SD-C-E, Amina Nordio
ATTN: SARPA-TS-I-E, Abraham Gruenoch
ATTN: SARPA-SD-N-D
ATTN: SMEPA-TN, Barton V. Franks
ATTN: SARPA-FR-I, Louis Avrami

Commander
Redstone Scientific Information Ctr.
U.S. Army Missile Command
3 cy ATTN: Chief, Documents

Commander
TRASANA
ATTN: ATAA-EAC, Francis N. Wiman

Director
U.S. Army Ballistic Research Labs.
ATTN: DRKBR-AM, Donald Eccleshall

Chief
U.S. Army Communications Sys. Agency
ATTN: SCCM-AD-SV, Library
DEPARTMENT OF THE AIR FORCE (Continued)

AF Materials Laboratory, AFSC
ATTN: Library

AF Weapons Laboratory, AFSC
ATTN: SAB
ATTN: ELC
ATTN: EL, John Darrah
ATTN: ELA
ATTN: SAS
ATTN: SUL
ATTN: EL

AFTAC
ATTN: TFS, Maj Marion F. Schneider
Commander

ASD
ATTN: ASD-ENESS, Peter T. Marth
ATTN: ASD-YH-EX, Lt Col Robert Leverette

Headquarters
Electronic Systems Division, (AFSC)
ATTN: XHDR
ATTN: OCD/SATIN IV

Commander
Foreign Technology Division, AFSC
ATTN: ETFT, Capt Richard C. Hausemann

HQ USAF/RD
ATTN: RDQM

Commander
Rose Air Development Center, AFSC
ATTN: P. Gianino

SAMSO/DY
ATTN: DYS, Capt Wayne Schober
ATTN: SYS, Maj Larry A. Darla

SAMSO/IN
ATTN: IND, Maj Darrell S. Maskin

SAMSO/IN
ATTN: MXNG, Capt David J. Strobel
ATTN: MXNH, Capt William M. Carra
ATTN: MXNH, Capt Michael V. Bell
ATTN: MXNG

SAMSO/SK
ATTN: SKF, Peter H. Stadler

SAMSO/XR
ATTN: XRS

Commander in Chief
Strategic Air Command
ATTN: XFPS, Capt Dernaad
ATTN: NRI-STINFO Library

ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION

Sandia Laboratories
Livermore Laboratory
ATTN: Doc. Con. for Theodore A. Dellen

ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION
(Continued)
University of California
Lawrence Livermore Laboratory
ATTN: Tech. Info., Dept. L-3
ATTN: Hans Kruger, L-36
ATTN: Frederick R. Koval, L-31
ATTN: Donald W. Vollmer, L-154
ATTN: Donald J. Meeker, L-545
ATTN: Louis F. Wolters, L-48
ATTN: William J. Hogan, L-521
ATTN: Walter W. Hofer, L-24

Los Alamos Scientific Laboratory
ATTN: Doc. Con. for Bruce W. Noel
ATTN: Doc. Con. for Donald R. Westervelt
ATTN: Doc. Con. for J. Arthur Freed
ATTN: Doc. Con. for John S. Malik
ATTN: Doc. Con. for Marvin M. Hoffman
ATTN: Doc. Con. for P. W. Keaton
ATTN: Doc. Con. for Richard L. Wakefield
ATTN: Doc. Control for Reports Lib.

Sandia Laboratories
ATTN: Doc. Con. for 5240, Gerald Youn
ATTN: Doc. Con. for Elmer F. Hartman
ATTN: Doc. Con. for Org. 2315, James E. Gover
ATTN: Doc. Con. for Org. 9320, R. L. Parker
ATTN: Div. 5231, James H. Renken
ATTN: Doc. Con. for Org. 2110, J. A. Hood

OTHER GOVERNMENT AGENCIES

Administrator
Defense Electric Power Admin.
Department of the Interior
ATTN: Document Control

Department of Commerce
National Bureau of Standards
ATTN: Jesse C. French

Department of Transportation
Federal Aviation Administration
ATTN: Fredrick S. Sakone, ARD-350

NASA

NASA
Lewis Research Center
ATTN: Library
ATTN: Robert F. Levitt, MS 54-3

DEPARTMENT OF DEFENSE CONTRACTORS

Aerojet Electro-Systems Co., Div.
Aerojet-General Corporation
ATTN: Thomas D. Hanscom

Aeromatrix Ford Corporation
Western Development Laboratories, Div.
ATTN: Donald R. McCormack, MS G30
ATTN: Library
ATTN: J. T. Mattingley, MS X22
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Aerospace Corporation
ATTN: C. B. Pearlstone
ATTN: Norman D. Stockwell
ATTN: Frank Hui
ATTN: William W. Willis
ATTN: V. Josephson
ATTN: J. Beveniste
ATTN: Irving M. Garfunkel
ATTN: Julian Reineheimer
ATTN: Library

Avco Research & Systems Group
ATTN: Research Lib, AS30 Rm. 7201

Ballistene Memorial Institute
ATTN: Robert H. Blazer

The IBM Corporation
ATTN: T. H. Neighbors

The Bendix Corporation
Navigation and Control Division
ATTN: George Gartner

The Boeing Company
ATTN: Donald W. Egelrout, MS 2H-00
ATTN: Aerospace Library
ATTN: David L. Dye, MS 87-75
ATTN: Howard W. Wieckeln, MS 17-11
ATTN: Kenneth D. Friddell, MS 2H-00
ATTN: Robert S. Caldwell, 2H-00

Booz-Allen and Hamilton, Inc.
ATTN: Raymond J. Chrisner

Brown Engineering Company, Inc.
Cummings Research Park
ATTN: John M. McSwain, MS 18

University of California at San Diego
ATTN: Sherman De Forest

Charles Stark Draper Laboratory, Inc.
ATTN: Richard G. Haltmaier
ATTN: Paul R. Kelly
ATTN: Kenneth Fertig

Computer Sciences Corporation
ATTN: Barbara F. Adams

Computer Sciences Corporation
ATTN: Alvin T. Schiff
ATTN: Richard H. Dierkhaut

Cutler-Hammer, Inc.
ATTN: Central Tech. Files, Anne Anthony

Dr. Eugene P. dePlomb
ATTN: Eugene P. dePlomb

The Dickwood Corporation
ATTN: Tech. Lib.
ATTN: K. Lee

F-Systems, Inc.
ATTN: Library, 8-50100

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

EG&G, Inc.
Albuquerque Division
ATTN: Tech. Lib.
ATTN: Belda H. Hoffman

Exp. & Math Physics Consultants
ATTN: Thomas M. Jordan

Fairchild Camera and Instrument Corp.
ATTN: Sec. Dept. for 2-233, David K. Myers

The Franklin Institute
ATTN: Rame H. Thompson

General Electric Company
Space Division
ATTN: Larry I. Chasen
ATTN: Joseph C. Peden, VFS, Rm. 4230M
ATTN: Daniel Edelman
ATTN: John L. Andrews

General Electric Company
Re-entry & Environmental Systems Div.
ATTN: Robert V. Benedict

General Electric Company
TEMPO-Center for Advanced Studies
ATTN: Rayden R. Rutherford
ATTN: DASIC
ATTN: William McNamara
ATTN: John D. Higen

General Electric Company
Aircraft Engine Group
ATTN: John A. Elberhorst, E 2

General Electric Company
Aerospace Electronics Systems
ATTN: W. J. Patterson, Drop 233
ATTN: Charles M. Howison, Drop 624

General Research Corporation
ATTN: John Lee, Jr.

Georgia Institute of Technology
Georgia Tech. Research Institute
ATTN: R. Curry

Goodyear Aerospace Corporation
Arizona Division
ATTN: B. Manning

Grumman Aerospace Corporation
ATTN: Jerry Rogers, Dept. 533

GTE Sylvania, Inc.
Electronics Systems Grp-Eastern Div.
ATTN: Leonard L. Blaisdell
ATTN: Charles A. Thornhill, Librarian

GTE Sylvania, Inc.
ATTN: H & V Group, Mario A. Nareforsa
ATTN: David P. Flood
ATTN: Herbert A. Ullman
ATTN: ASM Dept., S. E. Perlman

Hazeltine Corporation
ATTN: Tech. Info. Ctr., M. Waite
Texas Instruments, Inc.
ATTN: Donald J. Mams, MS 72

Texas Tech. University
ATTN: Travis L. Simpson

TRW Systems Group
ATTN: Jerry L. Labell
ATTN: Aaron H. Narevsky, R1-2144
ATTN: R. H. Holloway, R1-2606
ATTN: R. K. Plebsch, R1-2978
ATTN: Tech. Info. Center, S-1950
2 cy ATTN: Robert M. Webb, R1-2410

TRW Systems Group
ATTN: J. M. Gorman, 520/114
ATTN: F. B. Fay, 327/710
ATTN: Earl W. Allen, 520/141

TRW Systems Group
ATTN: Donald W. Pugsley

United Technologies Corp.
Norden Division
ATTN: Conrad Corda

Westinghouse Electric Corporation
Defense and Electronic Systems Ctr.
ATTN: Henry P. Kalapaca, MS 3525