ITERATIVE METHODS FOR SINGULAR SYSTEMS OF EQUATIONS

JUN 77 R J PLEMMONS

END
ITERATIVE METHODS FOR SINGULAR SYSTEMS
OF EQUATIONS

FINAL REPORT

ROBERT J. PLEMMONS

JUNE 3, 1977

U. S. ARMY RESEARCH OFFICE

CONTRACT NO. DAHC04-74-C-0019

UNIVERSITY OF TENNESSEE

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 - DA-36-039-M-11755.17-M

2. **GOV'T ACCESSION NO.**
 - F01

3. **RECIPIENT'S CATALOG NUMBER**
 - FT

4. **TITLE (and Subtitle)**
 - Iterative Methods for Singular Systems of Equations

5. **TYP OF REPORT & PERIOD COVERED**
 - Final Report 15 Apr 74 - 14 Apr 77

6. **PERFORMING ORG. REPORT NUMBER**
 - DAHC04-74-C-0019

7. **AUTHOR(s)**
 - Robert J. Plemmons

8. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 - University of Tennessee
 Knoxville, Tennessee 37916

9. **CONTRACT OR GRANT NUMBER(S)**
 - DAHC04-74-C-0019

10. **PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS**
 -

11. **CONTROLLING OFFICE NAME AND ADDRESS**
 - U.S. Army Research Office
 Post Office Box 1221
 Research Triangle Park, NC 27709

12. **REPORT DATE**
 - Jul 1977

13. **NUMBER OF PAGES**
 - 69

14. **MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)**
 -

15. **SECURITY CLASS. (of this report)**
 - Unclassified

15a. **DECLASSIFICATION/DEGRADED INFORMATION**
 -

16. **DISTRIBUTION STATEMENT (of this Report)**
 - Approved for public release; distribution unlimited.

17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**
 -

18. **SUPPLEMENTARY NOTES**
 - The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

19. **KEY WORDS (Continue on reverse side if necessary and identify by block number)**
 - Approximation
 - Partial differential equations
 - Iterations
 - Markov processes
 - Equations
 - Statistical Analysis
 - Geodesy
 - Structural properties
 - Finite difference theory

20. **ABSTRACT (Continue on reverse side if necessary and identify by block number)**
 - The objectives of the research were to study direct and iterative methods for approximating solutions to systems of linear equations $A\mathbf{x} = \mathbf{b}$, where the coefficient matrix A is singular or in general rectangular. Such problems arise in geodesy calculations, in finite difference and finite element methods for approximating solutions to certain types of partial differential equations such as the Neumann problem or Poisson's equation on a sphere, in statistical calculations in structural analysis and in Markov analysis.
I. THE PROBLEMS STUDIED

The objectives of the research were to study direct and iterative methods for approximating solutions to systems of linear equations \(Ax = b \), where the coefficient matrix \(A \) is singular or in general rectangular. Such problems arise in geodesy calculations, in finite difference and finite element methods for approximating solutions to certain types of partial differential equations such as the Neumann problem or Poisson's equation on a sphere, in statistical calculations, in structural analysis and in Markov analysis.

Direct and iterative methods were to be investigated. Direct algorithms for obtaining minimal \(\ell_2 \) - solutions to consistent rectangular systems of linear equations were to be developed and compared numerically. The primary emphasis of the research was to be placed iterative methods and the case where the coefficient matrix \(A \) of the system is large and sparse. Both the consistent and the inconsistent cases were to be investigated here. In the consistent case, special emphasis was to be placed upon certain types of matrices \(A \), such as M-matrices, that commonly arise in these applications. Finally, the inconsistent case was to be studied with the purpose of developing an SOR type iterative method for large sparse linear least squares problems.
II. SUMMARY OF THE MOST IMPORTANT RESULTS

The most important research accomplishments by the principal investigator are as follows:

1. Minimum $\|x\|_2$ - Solutions to Rectangular Systems of Linear Equations.
 This joint research, with R. E. Cline, involved the development and testing of some new algorithms for using various combinations of orthogonal decomposition methods and elimination methods for computing solutions to $Ax = b$, minimal with respect to the Euclidean norm. Some new techniques were designed, implemented on the computer and were compared with existing techniques. Growing out of this research was a 28 page paper in the SIAM Review.

2. Iterative Methods for Consistent Linear Systems. This research involved the investigations of iterative methods for approximating solutions to consistent systems, based upon various splittings of $A = M - N$ with M nonsingular. Particular attention was given to the study of the convergence of such methods and upon extending the usual linear stationary iterative methods, such as the SOR method, to the singular case. Some new convergence results were obtained and five papers were published on this subject, some with joint authors C. Meyer, M. Neumann and J. Ortega.

3. M-matrices and Related Topics. The investigation of iterative methods for consistent linear systems led in a natural way to the study of the properties of some important classes of matrices. Particular attention was given to the roles of matrix monotonicity and nonnegative matrices in the mathematical sciences. Some of the major results of this research were (1) characterizations of various types of matrix monotonicity and their relationships to monotone iterations, (2) a solution of the classical problem of characterizing in a useful way the diagonal stability of a real, square matrix and (3) the collection and classification of
40 characterizations of nonsingular M-matrices. Five papers or reports were written on these subjects, some with joint authors G. Barker, A. Berman and M Neumann.

4. Block SOR Type Methods for Certain Large Sparse Linear Least Squares Problems. One of the primary research contributions under this contract was the investigation of block iterative methods for solving the large sparse linear least squares problem

$$\min_{x} ||b - Ax||_2$$

where A has full column rank and has been permuted into the form

$$A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \; A_1 \text{ nonsingular.}$$

It has been shown that a block SOR type iterative method is both feasible and practical whenever

$$A_1^tA_1 - A_2^tA_2$$

is positive definite. The method is especially attractive for solving the linear least squares problem with equality constraints. Methods for approximating the optimum SOR relaxation parameter (which is shown to lie in the interval $.9,1$) were obtained, thus extending some earlier work of Chen and Gentleman. A preliminary report on this work has been written with G. Melendez and research is continuing on this project.

The principal investigator feels that the majority of the research objectives of this three year contract have been met and that the overall results will provide useful tools for U.S. Army Researchers and others working in these areas.

No scientific personnel other than the principal investigator was employed on this contract.
III. LIST OF PUBLICATIONS

A. Papers Published or Accepted for Publication.

2. "Convergent powers of nonnegative matrices."

In addition, the book Nonnegative Matrices in the Mathematical Sciences, in preparation, with A. Berman, contains some new and unpublished material. The book will be published by Academic Press in 1978.