AN EXAMPLE OF A TRADING ECONOMY WITH THREE COMPETITIVE EQUILIBRIA — ETC (U)

JAN 77 L S SHAPLEY, M SHUBIK
AN EXAMPLE OF A TRADING ECONOMY WITH THREE COMPETITIVE EQUILIBRIA.

L. S. Shapley and M. Shubik
AN EXAMPLE OF A TRADING ECONOMY WITH THREE COMPETITIVE EQUILIBRIA

by

L. S. Shapley and M. Shubik

This brief note is presented merely as a convenience for those who wish to see what an actual numerical example of a smooth trading economy with multiple equilibria looks like in terms of an Edgeworth box diagram. We present a two trader two commodity example in terms of a fanciful exchange between two kinds of money. The example is robust, in that its qualitative features would survive small perturbations in the data.

THE TOURISTS. Ivan has 40 rubles in his pocket, and wants some dollars; John has 50 dollars to spare, and would be happy to exchange some for rubles. Their utility functions \((x = \text{rubles}, y = \text{dollars})\) are:

\[
\begin{align*}
 u^1(x, y) &= x + 100(1 - e^{-y/10}) \quad (\text{Ivan, in rubles}) \\
 u^2(x, y) &= y + 110(1 - e^{-x/10}) \quad (\text{John, in dollars})
\end{align*}
\]

Note that these functions are not only concave and smooth \((C^\infty)\), but additively separable, with one good entering linearly in each. It is well known* that the competitive equilibrium is unique if the same good is linear and separable in all utility functions, provided only that this good is in sufficient supply and the preference sets are smooth \((C^1)\) and strictly convex, as they are here. The present

*Supported by NSF grant SOO71-03779 A02, and ONR contract N00014-76-C-0085, respectively.

*But virtually ignored in many textbook treatments of competitive uniqueness, see e.g., Arrow and Hahn (1971), Chap. 9.
example shows that this "transferable utility" or "welfare maximization" approach to uniqueness does not allow even a modest tinkering with the hypotheses.

In Fig. 1, the indifference curves are indicated by the broken lines. The locus of points of tangency is the straight line \(D_1 D_2 \), given by

\[
(2) \quad y = x + 50 - 10 \log 110 = x + 2.995.
\]

Edgeworth's "contract curve" \(C_1 C_2 \) runs along this line and a short piece of the boundary. The conditions for a competitive allocation reduce by elementary calculus to the following transcendental equation:

\[
(3) \quad x(1 + 11e^{-x/10}) = 10 \log 110,
\]

which has three roots in the region of interest. These lead to the three solutions indicated by \(W, W', W'' \) in Fig. 1 and given numerically in Table 1. Their relation to the two response curves* (solid lines) is also shown in Fig. 1.

If we take a contract point between \(W \) and \(W' \), the direction of common tangency (dot-dash line) passes above the initial point \(I \); if we take one between \(W' \) and \(W'' \), it passes below \(I \). This means that the equilibrium prices associated with \(W' \) are dynamically unstable,

*To illustrate the definition of "response curve", suppose a price ray \(IS \) is given exogenously. Then Ivan's best trade is \(M_1 \), John's \(M_2 \).
Fig. 1 — Three competitive equilibria
Table 1

<table>
<thead>
<tr>
<th></th>
<th>ALLOCATION (to John*)</th>
<th>EXCHANGE RATIO (dol : rub)</th>
<th>UTILITY PAYOFFS (Ivan) (John)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(rub) (dol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0.00 50.00</td>
<td>---</td>
<td>40.00 50.00</td>
</tr>
<tr>
<td>C^1</td>
<td>40.00 44.89</td>
<td>{0.20 : 1(m) 0.13 : 1(a)}</td>
<td>40.00 152.88</td>
</tr>
<tr>
<td>C^2</td>
<td>4.83 7.83</td>
<td>{6.79 : 1(m) 8.73 : 1(a)}</td>
<td>133.69 50.00</td>
</tr>
<tr>
<td>W</td>
<td>7.74 10.74</td>
<td>5.07 : 1</td>
<td>130.29 70.01</td>
</tr>
<tr>
<td>W'</td>
<td>26.83 29.82</td>
<td>0.75 : 1</td>
<td>99.88 132.30</td>
</tr>
<tr>
<td>W''</td>
<td>36.78 39.77</td>
<td>0.28 : 1</td>
<td>67.27 146.99</td>
</tr>
<tr>
<td>V</td>
<td>23.00 25.99</td>
<td>{1.10 : 1(m) 1.04 : 1(a)}</td>
<td>107.94 124.96</td>
</tr>
</tbody>
</table>

(m) = marginal
(a) = average
*for Ivan, subtract from (40, 50).
in the sense that raising the price of either good would create a positive excess demand for that good. This in turn (in a suitable dynamic model) would tend to drive that price up still further. The two other solutions, W and W", are dynamically stable (see Gale, 1963, who provides another simple example of nonuniqueness).

In Table 1 we have also indicated the core and value solutions of the trading game, in order to suggest outcomes alternative to those of the competitive equilibrium (see e.g., Shapley and Shubik, 1969).
REFERENCES

