CONTRACTOR REPORT ARLCD-CR-77003

NONLINEAR ANALYSIS OF FRAME STRUCTURES
SUBJECTED TO BLAST OVERPRESSURES

WILLIAM STEA
GEORGE TSENG
DAVID KOSOVOVER
AMMANN & WHITINLY
NEW YORK, NEW YORK

PAUL PRICE
JOSEPH CALTAGIRONE
ARRADCOM

MAY 1977

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
In modern day explosive manufacturing and LAP facilities, many of the structural steel buildings will be required to provide protection for personnel and/or equipment against the effects of HE-type explosions. Therefore, a computer program entitled "Dynamic Nonlinear Frame Analysis" (DYNFA) has been developed whereby the responses of frame structures subjected to blast loadings can be determined. This report contains the background for the development of DYNFA as well as the

<table>
<thead>
<tr>
<th>Dynamic analysis</th>
<th>Pre-engineered buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast-resistant structures</td>
<td>Inelastic and elastic analyses</td>
</tr>
<tr>
<td>Structural steel</td>
<td></td>
</tr>
<tr>
<td>Frame structures</td>
<td></td>
</tr>
</tbody>
</table>
20. Abstract (continued)

The equations and procedures necessary for its use. The report also contains example problems illustrating the use of DYNFA for the design of blast-resistant frame structures.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS

SUMMARY 1

SECTION 1 - INTRODUCTION 3

1.1 Background 3
1.2 Purpose and Scope 4
1.3 Format of the Report 5
1.4 Components and Behavior of Steel Structures 7
 General 7
 Structural Behavior 7
1.5 Dynamic Analysis and Design 7
 General 7
 Basis of Analysis 8
 Design Procedure 9

SECTION 2 - PRELIMINARY FRAME DESIGN METHOD 11

2.1 Introduction 11
2.2 Computation of the Blast Pressures for Preliminary Design 13
2.3 Computation of Plastic Moment Capacities 15
 General 15
 Rigid Frames 15
 Frames with Supplementary Bracing 18
 Dynamic Load Factors 19
2.4 Preliminary Sizing of Frame Members 19

SECTION 3 - BASIS OF DYNFA FRAME ANALYSIS 23

3.1 Introduction 23
3.2 Analytical Model 23
TABLE OF CONTENTS
(continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Inelastic Behavior of Frame Members</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specification and Simulation of Inelastic Behavior of Frame Members</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Interaction Equation</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Equation of Motion of System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mass Matrix</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Damping Matrix</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>System Stiffness Matrix</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Matrix of Applied Loads</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Numerical Solution</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Second Order Effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-Δ Effect</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Beam Column Effect</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Calculation of Second Order Effects</td>
<td>28</td>
</tr>
<tr>
<td>SECTION 4 - MODELING TECHNIQUES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Development of Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Scope of Model</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Placement of Nodal Points in the Model</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Intermediate Nodal Points on Exterior Members</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Intermediate Nodal Points Other Than Mass Points</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Members with Varying Cross-Sections</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of Structural Mass in Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Designation of Dynamic Degrees of Freedom</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Computation of Nodal Masses</td>
<td>34</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

(continued)

4.4 Cross-Sectional Properties and Capacities of the Frame Members

- General
- Dynamic Tensile Strength
- Ultimate Tensile Capacity
- Ultimate Compressive Capacity
- Ultimate Bending Capacity

SECTION 5 - COMPUTATION OF BLAST LOADINGS

5.1 Introduction
5.2 Computation of Tributary Loading Areas
5.3 Construction of Pressure-Time Histories for Frame Analysis

General
- Computation of Pressure-Time Histories at Mass Points on Structure
- Phasing of Pressure-Time Histories for the Frame Analysis
- Modification of Pressure-Time Histories for the Frame Analysis
- Calculation of Arrival Time, Rise Time and Average Pressure for Tributary Areas on the Various Surfaces
- Calculation of Blast Loading Parameters t_{pk}, t_c, t_T

5.4 Special Considerations

SECTION 6 - DESIGN CRITERIA

6.1 Introduction
6.2 Measurement of Ductility Ratio
6.3 Ductility Ratios for Members Subjected to Bending Alone or to Simultaneous Bending and Axial Tension
TABLE OF CONTENTS
(continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Ductility Criteria for Beam Columns</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Failure Mode of Beam Columns</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Basis of Criteria</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Members Subjected to End Moments</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Members Subjected to Lateral Loads</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Factors of Safety and Limiting</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Ductility Ratios</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Use of Rotation Capacity Curves</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Limitations in Ductility Ratio</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Criteria for Beam Columns</td>
<td>62</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary of Criteria</td>
<td>63</td>
</tr>
</tbody>
</table>

SECTION 7 - DESIGN METHODS FOR BI-AXIAL BENDING OF COLUMNS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>7.2</td>
<td>Basic Procedure</td>
<td>65</td>
</tr>
<tr>
<td>7.3</td>
<td>Use of Results of First Group of Analyses</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Preliminary Assessment of Structural Integrity</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Reduced Bending Capacities of Columns</td>
<td>67</td>
</tr>
<tr>
<td>7.4</td>
<td>Use of Results of Second Group of Analyses</td>
<td>68</td>
</tr>
</tbody>
</table>

SECTION 8 - USER'S MANUAL FOR DYNFA

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>8.2</td>
<td>Capabilities of Program</td>
<td>69</td>
</tr>
<tr>
<td>8.3</td>
<td>Input Data</td>
<td>69</td>
</tr>
<tr>
<td>8.4</td>
<td>Nodal Coordinates</td>
<td>70</td>
</tr>
<tr>
<td>8.5</td>
<td>Conditions of Restraint</td>
<td>71</td>
</tr>
<tr>
<td>8.6</td>
<td>Lumped Masses</td>
<td>71</td>
</tr>
<tr>
<td>8.7</td>
<td>Input Data for Elements</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Nodal Connectivities</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Pinned Connections of Elements</td>
<td>73</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>Integration Time Interval and Duration of Response</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Integration Time Interval</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Duration of Response</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Time Interval for Printed Output</td>
<td>76</td>
</tr>
<tr>
<td>8.9</td>
<td>Pressure-Time Histories and Tributary Areas</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Input Specification of Pressure-Time Histories</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Input Specification of Tributary Areas</td>
<td>77</td>
</tr>
<tr>
<td>8.10</td>
<td>Specification of Dead and Live Loads</td>
<td>77</td>
</tr>
<tr>
<td>8.11</td>
<td>Computer Usage and Restrictions</td>
<td>79</td>
</tr>
<tr>
<td>8.12</td>
<td>Units</td>
<td>79</td>
</tr>
<tr>
<td>8.13</td>
<td>Formats of Input Data Cards</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Structural Data Cards</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Loading Data Cards</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Input Cards for Dynamic Loads</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Input Cards for Static Loads</td>
<td>87</td>
</tr>
<tr>
<td>8.14</td>
<td>Arrangement of Input Data Deck</td>
<td>89</td>
</tr>
<tr>
<td>8.15</td>
<td>Multiple Job Processing</td>
<td>89</td>
</tr>
</tbody>
</table>

SECTION 9 - COMPUTER PROGRAM OUTPUT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>90</td>
</tr>
<tr>
<td>9.2</td>
<td>Summary of the Input Data</td>
<td>90</td>
</tr>
<tr>
<td>9.3</td>
<td>Response of the Structure</td>
<td>90</td>
</tr>
<tr>
<td>9.4</td>
<td>Compilation of the Significant Response Parameters</td>
<td>93</td>
</tr>
<tr>
<td>9.5</td>
<td>Use of the Printed Output</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Sideway Deflections</td>
<td>94</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(continued)

<table>
<thead>
<tr>
<th>Section/Tables</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chordal Angles</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Ductility Ratios</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Establishing Adequacy of Frame</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Connection Design</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>SECTION 10 - CONCLUSIONS AND RECOMMENDATIONS</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>98</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Collapse mechanisms for rigid frames with fixed and pinned bases</td>
<td>100</td>
</tr>
<tr>
<td>Table 2</td>
<td>Collapse mechanisms for rigid frames with supplementary bracing and pinned bases</td>
<td>101</td>
</tr>
<tr>
<td>Table 3</td>
<td>Collapse mechanisms for frames with supplementary bracing, non-rigid girder-to-column connections and pinned bases</td>
<td>102</td>
</tr>
<tr>
<td>Table 4</td>
<td>Dynamic load factors and equivalent static loads for preliminary design</td>
<td>103</td>
</tr>
<tr>
<td>Table 5</td>
<td>Limiting width-thickness ratios for the compression flanges of single-web members subjected to plastic bending</td>
<td>104</td>
</tr>
<tr>
<td>Table 6</td>
<td>Sample bi-axial bending moment capacities</td>
<td>105</td>
</tr>
<tr>
<td>Table 7</td>
<td>Values of constant "C" for Equation (35)</td>
<td>106</td>
</tr>
<tr>
<td>Table 8</td>
<td>Stiffness factors for single-story multi-bay frames subjected to uniform horizontal loading</td>
<td>107</td>
</tr>
<tr>
<td>Table 9</td>
<td>Units for parameters in printed output of structural response</td>
<td>108</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1</td>
<td>Typical frame structures</td>
<td>109</td>
</tr>
<tr>
<td>Fig 2</td>
<td>Framing systems</td>
<td>110</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 3</td>
<td>Elevation of a typical frame</td>
<td>111</td>
</tr>
<tr>
<td>Fig 4</td>
<td>Loading conditions for bi-axial bending</td>
<td>112</td>
</tr>
<tr>
<td>Fig 5</td>
<td>Locations for computing blast pressures for preliminary frame design</td>
<td>113</td>
</tr>
<tr>
<td>Fig 6</td>
<td>Supplementary data for shock-wave parameters for hemispherical TNT surface explosion at sea level</td>
<td>114</td>
</tr>
<tr>
<td>Fig 7</td>
<td>Lumped parameter representation of typical frame</td>
<td>115</td>
</tr>
<tr>
<td>Fig 8</td>
<td>Elasto-plastic moment versus end rotation relationship for constant axial load</td>
<td>116</td>
</tr>
<tr>
<td>Fig 9</td>
<td>Behavior of component elements</td>
<td>117</td>
</tr>
<tr>
<td>Fig 10</td>
<td>Response history of element</td>
<td>118</td>
</tr>
<tr>
<td>Fig 11</td>
<td>Calculation of second order effects</td>
<td>119</td>
</tr>
<tr>
<td>Fig 12</td>
<td>Model of frame including foundation and soil</td>
<td>120</td>
</tr>
<tr>
<td>Fig 13</td>
<td>Laterally supported frame</td>
<td>121</td>
</tr>
<tr>
<td>Fig 14</td>
<td>Locations of nodal points in model</td>
<td>122</td>
</tr>
<tr>
<td>Fig 15</td>
<td>Modeling of members with varying cross-sections</td>
<td>123</td>
</tr>
<tr>
<td>Fig 16</td>
<td>Dynamic degrees of freedom for typical frames</td>
<td>124</td>
</tr>
<tr>
<td>Fig 17</td>
<td>Expressions for computing concentrated masses for exterior wall panels</td>
<td>125</td>
</tr>
<tr>
<td>Fig 18</td>
<td>Typical framing plans of wall panels</td>
<td>126</td>
</tr>
<tr>
<td>Fig 19</td>
<td>Expressions for computing concentrated masses for roof and floor panels</td>
<td>127</td>
</tr>
<tr>
<td>Fig 20</td>
<td>Typical framing plans of roof and floor panels</td>
<td>128</td>
</tr>
<tr>
<td>Fig 21</td>
<td>Portion of sidewall mass lumped with end frame: sidewall with vertical girts</td>
<td>129</td>
</tr>
<tr>
<td>Fig 22</td>
<td>Distribution of sidewall mass on end frame: sidewall with horizontal girts</td>
<td>130</td>
</tr>
<tr>
<td>Fig 23</td>
<td>Dimensions of tributary areas for panel with secondary members parallel to frame</td>
<td>131</td>
</tr>
<tr>
<td>Fig</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>24</td>
<td>Dimensions of tributary areas for panel with secondary members perpendicular to frame</td>
<td>132</td>
</tr>
<tr>
<td>25</td>
<td>Example of area subdivision for entire strip supported by frame</td>
<td>133</td>
</tr>
<tr>
<td>26</td>
<td>Blastward wall reflected pressure waveforms</td>
<td>135</td>
</tr>
<tr>
<td>27</td>
<td>Pressure history for roof, side wall and leeward wall</td>
<td>136</td>
</tr>
<tr>
<td>28</td>
<td>Phased and modified pressure waveform with linear decay</td>
<td>137</td>
</tr>
<tr>
<td>29</td>
<td>Phased and modified reflected pressure waveform with bilinear decay</td>
<td>138</td>
</tr>
<tr>
<td>30</td>
<td>Example of values for a and D for tributary areas on blastward wall - normal shock wave</td>
<td>139</td>
</tr>
<tr>
<td>31</td>
<td>Examples of values of a and D for tributary areas on blastward wall - quartering shock wave</td>
<td>140</td>
</tr>
<tr>
<td>32</td>
<td>Examples of values of a and D for tributary areas on roof</td>
<td>141</td>
</tr>
<tr>
<td>33</td>
<td>Examples of values of a and D for tributary areas on leeward wall with wall taken as extension of roof</td>
<td>142</td>
</tr>
<tr>
<td>34</td>
<td>Examples of values of a and D for tributary areas on leeward wall with wall taken as extension of adjacent wall - normal shock wave</td>
<td>143</td>
</tr>
<tr>
<td>35</td>
<td>Examples of values of a and D for tributary areas on leeward wall with wall taken as extension of adjacent wall - quartering shock wave</td>
<td>144</td>
</tr>
<tr>
<td>36</td>
<td>Sidesway deflection and member end rotations for frame structures</td>
<td>145</td>
</tr>
<tr>
<td>37</td>
<td>Components of element end rotation in the elastic response range</td>
<td>146</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Fig 38</td>
<td>Components of element end rotation in the inelastic response range</td>
<td>147</td>
</tr>
<tr>
<td>Fig 39</td>
<td>Load deformation response for laterally loaded beam column</td>
<td>148</td>
</tr>
<tr>
<td>Fig 40</td>
<td>Index of figures for rotation capacity curves of beam columns subjected to end moments</td>
<td>149</td>
</tr>
<tr>
<td>Fig 41</td>
<td>Rotation capacity curves for beam column bent to single curvature by a moment applied at one end or bent to reverse curvature</td>
<td>150</td>
</tr>
<tr>
<td>Fig 42</td>
<td>Rotation capacity curves for beam column bent to single curvature by equal and opposite end moments</td>
<td>151</td>
</tr>
<tr>
<td>Fig 43</td>
<td>Index of figures for rotation capacity curves of beam columns subjected to lateral loads</td>
<td>152</td>
</tr>
<tr>
<td>Fig 44</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.0625</td>
<td>153</td>
</tr>
<tr>
<td>Fig 45</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.125</td>
<td>154</td>
</tr>
<tr>
<td>Fig 46</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.250</td>
<td>155</td>
</tr>
<tr>
<td>Fig 47</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.500</td>
<td>156</td>
</tr>
<tr>
<td>Fig 48</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.750</td>
<td>157</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 49</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned; distribution factor = 0.0525</td>
</tr>
<tr>
<td>Fig 50</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned; distribution factor = 0.125</td>
</tr>
<tr>
<td>Fig 51</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned; distribution factor = 0.250</td>
</tr>
<tr>
<td>Fig 52</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned; distribution factor = 0.500</td>
</tr>
<tr>
<td>Fig 53</td>
<td>Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned; distribution factor = 0.750</td>
</tr>
<tr>
<td>Fig 54</td>
<td>Interpolation of rotation capacity data for member with unequal distribution factors at ends</td>
</tr>
<tr>
<td>Fig 55</td>
<td>Typical rectangular building rigidly framed in two directions</td>
</tr>
<tr>
<td>Fig 56</td>
<td>Identification numbers for the nodal points and elements of a typical model</td>
</tr>
<tr>
<td>Fig 57</td>
<td>Specification of restraints for common types of support conditions</td>
</tr>
<tr>
<td>Fig 58</td>
<td>Local coordinate system for element</td>
</tr>
<tr>
<td>Fig 59</td>
<td>Specification of pin codes for common types of frame connections</td>
</tr>
<tr>
<td>Fig 60</td>
<td>Digitized pressure-time data for pressure waveform with linear decay</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(continued)

<table>
<thead>
<tr>
<th>Fig 61</th>
<th>Digitized pressure-time data for reflected pressure waveform with bi-linear decay</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 62</td>
<td>Arrangement of input data deck</td>
<td>171</td>
</tr>
<tr>
<td>Fig 63</td>
<td>Positive directions of element axial loads, shears and bending moments in local coordinate system</td>
<td>172</td>
</tr>
<tr>
<td>Fig 64</td>
<td>Measurement of chordal angles for girder</td>
<td>173</td>
</tr>
<tr>
<td>Fig 65</td>
<td>Measurement of chordal angles for exterior column</td>
<td>174</td>
</tr>
</tbody>
</table>

APPENDIX A - ILLUSTRATIVE EXAMPLES 175

APPENDIX B - SAMPLES OF INPUT AND OUTPUT OF DYNFA 325

APPENDIX C - METHOD OF INELASTIC DYNAMIC ANALYSIS 351

APPENDIX D - FORTRAN LISTING OF COMPUTER PROGRAM DYNFA 371

APPENDIX E - LIST OF SYMBOLS 421

APPENDIX F - INTERNATIONAL SYSTEM OF UNITS 437

DISTRIBUTION LIST 445
ACKNOWLEDGEMENTS

The authors wish to express their sincere appreciation to the following persons for valuable contributions and assistance in the preparation of this report: Messrs. I. Forsten, J. Canavan, J. Marsicovete and R. Ridner of the U.S. Army Armament Research and Development Command; and Messrs. R. Arya, T. Basu, M. Dede, G. Pecone, L. Sanchez, and Drs. K. Gandhi, J. Healey and J. Vellozzi of Ammann & Whitney. A special note of thanks to Ms. Marie Mitchell of Ammann & Whitney for technical typing and to Messrs. V. Kald, A. Maggio and F. Wendling for preparing the artwork contained in this report.
SUMMARY

This report was developed in recognition of the need for expanded design information pertaining to structures subjected to blast environments produced by accidental explosions. It was prepared by the Manufacturing Technology Division of the Large Caliber Weapons Systems Laboratory, U.S. Army Armament Research and Development Command (AARADCOM). The purpose of the report is to provide facility designers with criteria and procedures for the design of the primary structural frames of steel buildings subjected to the effects of HE-type explosions. Integral with this purpose, the report presents a computer program titled "Dynamic Non-linear Frame Analysis" (referred to as DYNFA) for determining the response of frame structures subjected to time-dependent blast loadings. This report is intended to be used in conjunction with Picatinny Arsenal Technical Report 4837, "Design of Steel Structures to Resist the Effects of HE Explosions", the tri-service design manual, "Structures to Resist the Effects of Accidental Explosions" (TM 5-1330), and the AISC "Manual of Steel Construction".

The blast-resistant design of a frame structure is based on a dynamic analysis with the DYNFA program. The program implements a method of analysis which couples a lumped parameter representation of the structure with a numerical integration procedure to obtain a solution for the response. Inelastic behavior of the frame members and second order effects produced by the deflections of the frame are considered in the analysis performed by DYNFA. The response of the structure is expressed in terms of the deformations of the structure and the axial loads, bending moments and shears in each of the members. Inelastic behavior is measured on the basis of the end rotations of the frame members.

The report presents the basis for the DYNFA analysis, as well as methods and guidelines for applying lumped parameter modeling concepts to simulate frame structures and the blast environments to which they are subjected. A user's manual is provided which gives instructions for transmitting to DYNFA the input data describing the lumped parameter model of the structure. The manual describes the capabilities of the program, the required input data, the formats of the input data cards and the arrangement of the input data deck. A discussion on the utilization of the printed output of the program is also provided.

A preliminary frame design method is presented for use in conjunction with the DYNFA analysis. This method provides a means for making efficient and rational selections of initial
member sizes which are subsequently verified, and, if necessary, modified on the basis of the DYNFA analysis.

Methods are also presented for applying DYNFA to situations involving the design of columns subjected to bi-axial bending.

Criteria governing the design of blast-resistant frames are presented in terms of limits on the maximum deflections, member end rotations and levels of inelastic dynamic response.

Detailed procedures are presented for the blast-resistant design of frame structures. Procedures are given for two general design cases, namely: buildings subjected to normal shock waves and buildings subjected to quartering shock waves. For each general case, procedures are presented which correspond to the various phases of the frame design. The material presented includes procedures for the following: the preliminary frame design, the preparation of the analytical model of the structure and the related input data for DYNFA, and the utilization of the results of DYNFA in conjunction with the design criteria to verify the blast resistance of the frame. Each such procedure is illustrated by a numerical example.
SECTION 1
INTRODUCTION

1.1 Background

In the design of steel buildings to withstand the effects of high-explosive (HE) and other types of chemical explosions, standard structural members can be utilized for structures located in pressure ranges of 70.0 kPa (10.0 psi) or less. However, because of the transient nature and relatively high intensity of the applied loads, special procedures and criteria are required to fully define the response of the structure to the blast output.

Steel buildings consist of three general structural systems: (1) the walls and roof panels, (2) supporting members such as girts, purlins, diagonal bracing and other members which can be treated as individual elements, and (3) the main structural frame. The blast-resistant design of the first two systems, because of their relative simplicity, can be accomplished with analyses of single-degree-of-freedom systems (Ref 1, 2 and 3); whereas the design of the main frames will involve multi-degree-of-freedom system analyses. The complexities inherent in this type of analysis combined with the effects produced by the transient loads and the inelastic action of a frame require the aid of high-speed computers for a solution. Hence, a computer program titled "Dynamic Non-linear Frame Analysis" (hereinafter referred to as DYNFA) was developed whereby the response of general types of frame structures (such as those shown in Fig 1) subjected to arbitrary blast loads could be obtained. In addition, design criteria are presented which establish upper limits for the frame response as computed with DYNFA.

The U.S. Army, under the direction of the Project Manager for Production Base Modernization and Expansion, is currently engaged in a multi-billion dollar program to modernize and expand its ammunition production capability. In support of this program, the Manufacturing Technology Division of the Large Caliber Weapons Systems Laboratory, AARADCOM, with the assistance of Ammann & Whitney, Consulting Engineers, has, for the past several years, been engaged in a broad based program to improve explosive safety at these facilities. One segment of this program deals with the development of design criteria for explosion-resistant protective structures. Part of this effort involves the development of a comprehensive procedure for the design of blast-resistant steel frames. Computer program DYNFA and the related frame design criteria form the basis of this procedure.
The frame design procedure and the aforementioned computer program and related criteria are presented in this report.

1.2 Purpose and Scope:

The basic purpose of this report is to provide ammunition facility designers with criteria and procedures for the design of the primary structural frames of steel buildings subjected to the effects of HE-type explosions.

Integral with the basic purpose stated above, this report also provides facility designers with instructions and guidelines for the use of DYNFA. Illustrative examples are also provided to assist facility designers in using the program.

This report has been prepared with the following general guidelines:

1. The material contained in this report supplements and, in some instances, modifies the criteria and procedures presented in Picatinny Arsenal Technical Report 4637 (Ref 1). Therefore, it is assumed that this report will be used in conjunction with TR 4837 by designers possessing a basic familiarity with the contents of that report.

2. As in the case of TR 4837, the blast loads used in the dynamic analysis are determined using the procedures and data contained in the Tri-Service Design Manual, TM 5-1300, "Structures to Resist the Effects of Accidental Explosions" (Ref 3).

3. Although the method of analysis presented herein is directed primarily towards structural steel frame buildings, it is also applicable to reinforced concrete frame structures. It should be noted, however, that the design criteria provided in this report is primarily applicable to steel structures and will require modification for the design of concrete structures.

4. The major emphasis has been placed on design of structures located some distance from the immediate blast area and, therefore, the material presented herein has limited application to structures located close-in to an explosion.
5. The detailed provisions for inelastic blast-resistant design of steel members shall be consistent with conventional static plastic design procedures as presented in the AISC "Specification for the Design, Fabrication and Erection of Structural Steel for Buildings" (Ref 4) with the following exceptions: (1) the plastic strength of a section under the blast loading is determined using the appropriate dynamic yield stress for the material instead of the specified minimum yield stress, and (2) the load factors specified in Section 2.1 of Reference 4 are not applied when designing for blast loads.

6. In all cases, the static provision of the AISC Specification represents a minimum requirement for conventional dead and live loads. Moreover, it is presumed that designers using this report are familiar with static plastic design procedures for steel.

7. In general, the influence of conventional dead and live loads can be neglected in blast design or in the evaluation of the capacity of a blast-resistant structure. However, the effect of such loads upon the available capacity for blast resistance may be significant in the design of structures for relatively low overpressures; e.g., less than 7.0 kPa (1 psi) or in the evaluation of the blast resistance of a structure designed for conventional loads.

1.3 Format of the Report

This report is divided into sections and appendices devoted to individual topics related to the analysis and design of steel frame structures subjected to blast overpressures. For the purpose of clarity of presentation, most of the directly applicable material from TR 4837, TM 5-1300 and the AISC Specification and Manual is not repeated in this report. As far as possible, applicable equations, design charts and tables, and commentary material are included herein by reference. However, certain data provided in TR 4837 is repeated in Sections 2, 6 and 8 of this report for continuity. The following sections contain quantitative description of the frame analysis and related items:

Section 2 provides a procedure for the preliminary design of single-story frames subjected to blast loads. The procedure presented is a simplification of the preliminary frame design procedure presented in TR 4837.
Section 3 presents the basis for the dynamic analysis of frame structures as performed by DYNFA.

Sections 4 and 5 present methods and guidelines for analytically simulating frame structures and the blast loading environments to which they are subjected. The discussion is directed towards translating the various aspects of the physical problem into the input data for DYNFA.

Section 6 outlines the design criteria which is utilized to ascertain whether the computed response of a frame is within acceptable limits.

Section 7 presents procedures and criteria for utilizing DYNFA when the frame design includes bi-axial bending of the columns.

The last two sections are devoted entirely to the use of DYNFA. Section 8 describes the capabilities of the program together with a detailed description of the required input. Section 9 describes the printed output of the program and includes a discussion on the interpretation and utilization of the results to verify the adequacy of a frame.

Appendix A is devoted to illustrative examples on the use of DYNFA. In Appendix A, the methods, equations and guidelines presented in the body of the report, are implemented in several illustrative examples including one showing the design of frames with in-plane bending of the columns, and another illustrating a frame design which includes bi-axial bending of the columns.

Appendix B contains samples of the printed output of the program.

Appendices C through F contain supporting data for the report. The theory implemented in the program is presented in Appendix C, while Appendix D contains the program listing. Symbols and definitions of the terms used in the report (and program) are listed in Appendix E.

Since future standards of measurements in the United States will be based upon the SI Units (International System of Units), instead of the United States System of Units now in use, all measurements presented in this report will conform to those of the SI Units. However, for those individuals not completely familiar with the SI Units, the equivalent units in the U.S. System are provided in parentheses adjacent to the SI Unit, where appropriate.

A list containing the units, symbols, and the United States System conversion factors for the SI Units is presented in Appendix F.
1.4 Components and Behavior of Steel Structures

General

In most cases, single-story rectangular structures will be encountered in the design of ammunition production and explosive manufacturing facilities. Depending upon the operation involved, the rectangular structure may be subdivided into one or more bays in either direction. The size (or sizes) of the bays will be determined by the layout of the column supports of the frame. In general, steel buildings may be rigidly framed either in one or both directions, as shown in Figure 2. Buildings which are framed in one direction are usually provided with lateral bracing in the other direction. Two-directional framing systems usually utilize common column supports, as illustrated in Figure 2b.

The rigid frame is the primary support component of a steel building (Fig 3), while the purlins, girts, roof and wall paneling form the secondary support system. As previously mentioned, the elements of the secondary system usually can be designed using single-degree-of-freedom system analyses (Ref 1, 2 and 3), while the design of the rigid frames will involve multi-degree-of-freedom system analyses.

Structural Behavior

The economy of facility design generally requires that steel structures be designed to perform in the inelastic response range when subjected to blast overpressures. In order to insure the structure's integrity throughout such severe conditions, the facility designer must be cognizant of the various possible failure modes and their inter-relationships. The limiting design values are dictated by the attainment of inelastic deflections and rotations without complete collapse. The amount of inelastic deformation is dependent not only upon the ductility characteristics of the material, but also upon the intended use of the structure following an incident. For the structure to maintain large plastic deformations, steps must be taken to prevent premature failure by either brittle fracture or instability (local or overall). Guidelines and criteria for dealing with these effects are presented in this report.

1.5 Dynamic Analysis and Design

General

The design of steel buildings subjected to blast pressures involves performing dynamic analyses of a series of interior and
exterior frames spanning transversely and/or longitudinally through the buildings. For a given structure, the analysis of one representative interior and one exterior frame, spanning in each direction, generally can be used as a basis for designing all the frames throughout the building. However, in situations where large differentials in the blast loads occur and/or where large variations in frame spacings are prevalent, analyses of additional frames may be needed.

Basis of Analysis

The design of rigid frames, as treated in this report, is based upon the premise that the frames provide the entire resistance to lateral loads; hence, the sidesway resistance, afforded by the diaphragm action of the roof and wall panels, is neglected. In recent years, the use of diaphragm action has become more common in the design of conventional buildings for wind loads. Data and criteria pertaining to the strength and stiffness of cold-formed steel panels subjected to in-plane loads have been developed through extensive test programs (Ref 5). In applications involving conventional structures, the utilization of diaphragm action can produce substantial economies in design and construction. However, the wall and roof panels of blast-resistant buildings are normally designed to perform in the inelastic response range under the action of normal loads. The occurrence of inelastic strains in the material will decrease, to some extent, the in-plane shear capacity produced by the diaphragm action of the panels. In the absence of test data, the extent of the decrease of the in-plane shear capacity cannot be ascertained. It is quite possible that the diaphragms, in the inelastic condition, will have a very small in-plane shear capacity; therefore, until test data indicates otherwise, it is not considered appropriate to utilize diaphragm action in the design of blast-resistant structures.

In addition to diaphragm action, some resistance to the lateral movement of the exterior frames will be afforded by the presence of the wall girts spanning between the columns of the frames. The girts will tend to distribute the lateral loads among all of the columns; whereas in the frame analysis, the entire load is applied to the blastward column. Because of this, a somewhat conservative design for the exterior frames will be realized.

Each rigid frame is assumed to support a portion (or strip) of the building (Fig 4a). The supported strip is framed by the girts and purlins which span between adjoining frames. The portion of the building supported by a given frame extends to the full height of the structure and, for an interior frame, has a width equal to one-half of the sum of the distances between the
frame in question and the two adjacent frames. End frames are
assumed to support a strip equal in width to one-half of the dis-
tance between the end frame and the first interior frame.

In the frame analysis, the loads acting on the contributory
areas of the building are assumed to be concentrated at the cen-
terline of the frames. This assumption neglects two effects
which, if included in the analysis, would reduce the response of
the frame; hence, the assumption introduces a measure of conserva-
tism into the design of the frames. The effects referred to are:
the energy absorption produced by the inelastic action of the
secondary members (purlins, girts, etc.) and the rise time on the
loading of the frame members due to the response of the secondary
framing. However, the analysis does consider the time-lag effects
associated with the blast wave sweeping across the structure.

In most cases, each frame can be analyzed independently;
therefore, the scope of the analysis can be limited to two-
dimensional rigid frames. However, when bi-axial bending of the
building columns occurs, provision must be made in the analysis to
account for the reduction in the column capacities caused by the
simultaneous application of bending moments about both axes of the
members.

In general, bi-axial bending occurs in some, if not all, of
the columns of the building, depending on the direction of propa-
gation of the blast wave. When the building is loaded in a quar-
tering direction (Fig 4b), all of the columns experience bi-axial
bending. When the shock front is parallel to the front wall of
the building, only the exterior columns of the side walls undergo
bi-axial bending. In these latter cases, the analyses of the
frames perpendicular to the blast direction may be omitted. How-
ever, the response of the exterior columns to the side-on blast
pressures is still required to design these members. This re-
sponse may be estimated by a single-degree-of-freedom analysis of
the member.

Design Procedure

The design of steel frames is basically a trial-and-error
procedure. In order to determine the required member sizes, the
response of the frame must be known. However, the response of
the frame cannot be computed unless the sizes of the members have
been determined; consequently, it is usually necessary to proceed
with the analysis and design of the frame simultaneously.

The first step in the design of a frame is the selection of
sizes of trial members. In situations involving structures loaded
in the low-to-intermediate pressure range, the designs will involve
the use of standard structural shapes strengthened to provide the required blast protection. The adequacy of these members is determined by analyzing the frames using DYNFA. The results of the DYNFA analysis will indicate whether the inelastic deformations which occur during response are within the limiting design values specified in the body of this report.

The final design is determined by achieving an economical balance between stiffness and resistance such that the calculated response under the blast loading lies within the limiting values dictated by the operational requirements of the facility. In some cases, this may require several analyses of the frame with DYNFA. The number of analyses required is dependent upon the accuracy with which the trial members are selected. In order to limit the number of analyses required, a preliminary design method is provided in this report for the purpose of providing facility designers with the means for making efficient and rational selections of the initial member sizes. The method provided is a simplified version of the preliminary design procedure presented in Chapter 5 of Reference 1.
SECTION 2
PRELIMINARY FRAME DESIGN METHOD

2.1 Introduction

The objective of this section is to provide rational procedures for efficiently performing the preliminary design of the primary structural frames of steel buildings subjected to the effects of HE-type explosions. The preliminary frame design method comprises four tasks, which are:

1. Computation of the peak blast loads acting on the structure.

2. Selection of representative frames for analysis with DYNFA.

3. Computation of required plastic moment capacities for the members of the selected frames.

4. Selection of member sizes for all frames throughout the building.

The member sizes thus obtained are subsequently verified and, if necessary, revised on the basis of a series of rigorous dynamic analyses of the selected frames with DYNFA.

The blast loads used for the preliminary design are computed using the peak pressures obtained from Section 4 of Reference 3. A description of the procedures for computing these pressures is provided in Section 2.2. The determination of the blast loads for the preliminary design is not related to the discussion in Section 5, which is directed towards generating mathematical functions of pressure versus time for use with DYNFA.

For the general case of structures subjected to quartering shock waves, the quantities required are the peak loads acting on blastward walls as well as the roof. For structures subjected to normally directed shock waves, the quantities required are the peak loads on the blastward wall, the roof and the side wall. The effects of the loading on the leeward wall(s) is not considered for the preliminary design.

Following the computation of the blast loads, several frames are selected for analysis with DYNFA. For structures subjected to quartering shock waves, several representative frames spanning in
each direction are chosen. In such cases, the basis for the selection is a comparison of the blast loads (horizontal and vertical) acting on all frames positioned normal to each blastward wall. If the loads on all interior frames positioned normal to a given wall are nearly equal (within a few percent), analysis of only one such frame is required. In addition, if the loads on the exterior frames differ slightly, only one exterior frame is analyzed. Hence, in cases such as these, the frames selected for analysis are the blastward exterior frame and the interior frame adjacent to it.

If the blast loads on successive frames differ greatly, several additional interior frames, as well as the leeward exterior frame, should be analyzed for economy of design. Such differences in the blast loading on successive frames are produced by: rapid decaying of shock front pressure as the blast wave traverses the structure; unequal spacing of frames; and variations in the secondary framing plan of the roof and walls from one framing bay to another. In most cases involving normal shock waves, DYNFA analyses are required for only two frames: a typical interior frame and an exterior frame. However, variations in the frame spacing or the secondary framing plan of the roof or walls may produce a requirement for analyses of additional frames.

Upon the completion of the first two tasks, the preliminary design proceeds with the computation of the required plastic moment capacities for the members of the selected frames. These quantities are computed on the basis of an analysis of each selected frame using the mechanism method as employed in static plastic design (Ref 6). Section 2.3 presents general expressions for computing the limiting bending capacities which correspond to the possible collapse mechanisms of single-story rigid and braced frames.

Each selected frame is analyzed independently; interactions between orthogonal frames caused by bi-axial bending of the columns are not considered. However, where bi-axial bending occurs, the flexural capacities about both axes of the member are required for the preliminary design. Bi-axial bending in the building columns is caused by the simultaneous action of the horizontal blast loads on two adjoining walls of the structure. Generally, to design for this condition, preliminary analyses of both longitudinal and transverse frames are necessary in order to compute the required flexural capacities about both axes of the columns. In cases involving normally directed shock waves, analyses of frames perpendicular to the direction of the blast can be eliminated since the sidesway motions of these structures are prevented by the symmetric loading on the sides of the building. However, consideration must be given to the occurrence of bi-axial bending in the columns of the end frames parallel to the blast.
For the preliminary design of these columns, the flexural capacities required to resist the side-on pressures can be estimated by a simplified mechanism analysis of the individual members.

With the required flexural capacities determined on the basis of the mechanism analyses, the preliminary sizing of the frame members can be accomplished by applying the design criteria presented in Section 2.4.

The preliminary design procedure of this section is a simplification of the frame design method presented in Chapter 5 of Reference 1. The referenced material contains procedures for the preliminary selection of member sizes, as well as expressions for approximating the overall sidesway response of the frame, and the individual responses of the exterior members of the frame. These latter procedures were included to provide facility designers with a means for evaluating the adequacy of the frame members selected on the basis of the preliminary design method. Based on experience with DYNFA, however, it has been determined that these latter procedures can be eliminated. Hence, the preliminary design procedure presented in this report is limited in scope to the initial selection of the member sizes for the main frames. In addition, the preliminary sizing of the frame members is simplified by the exclusion of the axial load and related beam column effects from the design criteria.

To facilitate the utilization of this report, the applicable equations and data presented in Chapter 5 of Reference 1 are reproduced in Sections 2.3 and 2.4 of this report. The reproduced material includes the expressions for the collapse mechanisms of single-story frames, the preliminary dynamic load factors for establishing the equivalent static loads for the various failure mechanisms considered and the moment capacity reduction equations for the effects of lateral torsional buckling.

Examples A.1 and A.2 of Appendix A demonstrate the use of the preliminary design method.

2.2 Computation of the Blast Pressures for Preliminary Design

The blast pressures utilized for the preliminary design of the main frames are:

1. The peak-reflected pressures acting on the blastward wall(s) of the structure, and

2. The peak pressure acting on the roof of the structure.
In situations involving quartering shock waves, the above quantities are computed at the corner of the building nearest the detonation and at the far corner of each blastward wall. The pressures thus obtained are then utilized to compare the blast loads acting on the frames positioned normal to each blastward wall. The peak pressures computed at the blastward corner of the building are utilized for the preliminary design of the blastward exterior frames and the interior frames adjacent to them. When analyses of additional frames are required because of large pressure differentials between the ends of the building, the peak reflected pressure utilized for the mechanism analysis of each such frame should be computed at the location of the frame and the roof pressure should be computed at a point halfway between the blastward and leeward ends of the frame. The occurrence of large pressure differentials between the ends of the building is prevalent in high pressure regions or situations involving relatively long structures.

For designing structures subjected to normal shock waves, the peak pressures are computed at the point on the blastward wall nearest the detonation, as shown in Figure 5.

The data for computing the blast pressures for the preliminary design are contained in Figures 4-5, 4-6, 4-11 and 4-12 of Reference 3. Figures 4-5, 4-11 and 4-12 contain curves of the incident and normal reflected pressures plotted as functions of the scaled distance \(Z = R_A/W^{1/3} \), where \(R_A \) is the radial distance from the charge and \(W \) is the charge weight. The data in Figure 4-5 is applicable to TNT explosions in free air; while the data in Figures 4-11 and 4-12 applies to TNT surface explosions. Supplementary data for surface explosions is provided in Figure 6 of this report. To determine the value of a specific parameter, enter the appropriate figure with the scaled distance from the charge to the point of interest on the structure, and read the value from the appropriate curve.

For the preliminary design of frames located in the low-to-intermediate pressure level range (70.0 kPa or less), the peak pressure acting at a point on the roof can be taken as the peak positive incident pressure. This quantity can be read directly off of the appropriate curve in one of the aforementioned figures. For the design of structures located in higher pressure regions, the peak roof pressure should be taken as the sum of the peak incident pressure plus the drag pressure, which is computed as outlined in Section 4-14 of Reference 3.

When computing the reflected pressure at a point on a blastward wall, the angle of incidence between the direction of the blast wave and the wall must be considered. In cases where the
blast wave is normal to the wall, the peak reflected pressure can be read directly from the curves in Figure 4-5 or 4-12 of Reference 3. However, in situations involving quartering loads, supplementary data are required for the computation of the peak reflected pressure. These data are provided in Figure 4-6 of Reference 3. The referenced figure contains curves which relate the reflected pressure to both the incident pressure and the angle of incidence between the direction of the shock front and the wall.

To compute the reflected pressures in cases involving quartering loads, read from the appropriate curve in Figure 4-5, 4-11 or 4-12, the incident pressure at the point of interest on the structure. Next, compute the angle of incidence between the shock front and the blastward wall at the point of interest. Enter Figure 4-6 with these two quantities and read from the appropriate curve the value of the reflected pressure coefficient, which is defined as the ratio of the peak reflected to the peak incident pressure. Multiplication of the peak incident pressure by this coefficient will yield the peak reflected pressure.

2.3 Computation of Plastic Moment Capacities

General

The plastic moment capacities of the members are determined by establishing the governing failure mode for the frame. The design objective is to proportion the frame members such that the governing mechanism represents an economical solution.

Rigid Frames

General expressions for the possible collapse mechanisms of single-story rigid frames are presented in Table 1 for pinned and fixed-base frames subjected to combined vertical and horizontal loading.

For a particular frame within a framing system, the ratio of total horizontal-to-vertical peak loading (denoted by α) is dependent upon the following: the values of the peak pressures computed as discussed in Section 2.2, and the configuration of the secondary framing of the structure. Hence, the quantity α is determined as follows:

$$\alpha = \frac{q_h}{q_v}$$

where $q_v = p_v b_v = \text{peak vertical load on rigid frame}$
\[q_h = p_h b_h = \text{peak horizontal load on rigid frame} \]

\[p_v = \text{peak pressure on roof} \]

\[p_h = \text{peak reflected pressure on blastward wall} \]

\[b_v = \text{tributary width for vertical loading on the roof girder} \]

\[b_h = \text{tributary width for horizontal loading on the exterior column of the blastward wall} \]

The ratio, \(\alpha \), will usually lie in the range from about 1.8 to 2.5 when the direction of the blast wave propagation is perpendicular to the roof purlins. The value of \(\alpha \) is much higher when the direction of the blast wave is parallel to the purlins, since in this case, only part of the vertical load is carried by the girders of the frame.

The following assumptions were made in developing the expressions given in Table 1:

1. The plastic bending capacity of the roof girder, \(M_p \), is constant for all bays.

2. Both exterior columns have the same plastic bending capacity, \(M_p \). It was also assumed that the bending capacity of an exterior column is equal to or greater than the bending capacity of the girder (hence, \(C \geq 1.0 \)).

3. All interior columns have the same plastic bending capacity, \(C_j M_p \).
In most cases, more economical designs of blast-resistant frames are realized when the failure mode corresponds to either a panel or combined mechanism (Mechanisms 3 through 6 in Table 1). It will normally be uneconomical to proportion a rigid frame such that the mode of failure for the structure corresponds to a simple beam mechanism (Mechanisms 1 and 2 in Table 1). Such a failure results from a localized failure of either the roof girder or the columns and therefore may occur while the remaining frame members remain elastic. Failure due to the formation of simple beam mechanisms is prevalent in laterally restrained frames where the lateral restraint is provided by a rigid support member connected to the frame or the application of equal, but opposite, horizontal loads to the exterior columns. The latter condition applies to frames which are positioned perpendicular to the direction of the blast wave. When the lateral restraint is provided by an elastic member (such as a diagonal brace), failure may occur due to other types of mechanisms (panel, combined, etc.) as discussed in subsequent sections.

The mechanism method is based on the upper-bound plastic limit theorem (Ref 6) which states that a load determined for an assumed mechanism will always be greater than or equal to the true plastic limit load for the structure. Thus, for a given frame with known member properties, the true plastic limit load is the minimum of the plastic limit loads computed for all of the possible collapse mechanisms, and the governing collapse mechanism is the one corresponding to the true plastic limit load. In design, the applied load is fixed while the member sizes are unknown. Applying the upper-bound theorem for design, the governing mechanism corresponds to the one requiring the largest plastic moment, \(M_p \). For economical design, the designer should attempt to proportion the bending capacities of the columns and girders such that the governing mechanism is either a panel or combined mechanism. This is accomplished by several trial calculations in which the values of \(C \) and \(C_1 \), and the corresponding maximum value of \(M_p \) computed for all mechanisms, are minimized in successive trials. Here, engineering judgement is required, since several sets of values of \(C \) and \(C_1 \) may yield similar values of \(M_p \). Based on experience with the mechanism method, the following values of \(C \) and \(C_1 \) are recommended for initiating the trial calculation:

1. \(C \geq 2.0 \)
2. \(C_1 = 2.0 \)

After a few trials, it will become obvious which choices of \(C \) and \(C_1 \) should be utilized. In most cases, the bending capacity of an
exterior column will be greater than the bending capacity of an interior column; hence, when choosing values for \(C \) and \(C_1 \), \(C \) should generally be greater than or equal to \(C_1 \). However, in some situations, this may not achieve an economical solution; here, economy may dictate that \(C \) should be less than equal to \(C_1 \).

Frames with Supplementary Bracing

The possible collapse mechanisms of single-story frames with diagonal tension bracing are given in Tables 2 and 3 for pinned-base frames with rigid and non-rigid girder to column connections. In each case, the ultimate capacity is expressed in terms of the equivalent static load and the member ultimate strength (either \(M \) or \(A_b F_{dy} \)). In these tables, the cross-sectional area of the tension brace is denoted by \(A_b \), the parameter \(m \) is the number of braced bays, and \(F_{dy} \) is the dynamic yield stress for the bracing member. The dynamic yield stress is determined according to the provisions in Section 2.2 of Reference 1. The derivations of the expression given in Tables 2 and 3 are based on the same assumptions utilized in developing the expressions given in Table 1.

For non-rigid girder-to-column connections, the resistance functions for local mechanisms of the roof girder depend upon whether the girder is continuous over the columns or is framed between the columns. When the girder is continuous, the interior bay girder mechanisms are the same as those for a fixed beam; while the resistance of the exterior girder is the same as that of a fixed-pinned beam. In certain cases, it may be economical to provide a rigid connection at the exterior girder-to-column joint and non-rigid connections at interior girder-to-column joints.

For rigid frames with tension bracing, it is necessary to vary \(C \), \(C_1 \) and \(A_b \) in order to achieve an economical design. When non-rigid girder-to-column connections are used, \(C \) and \(C_1 \) drop out of the resistance function for the sidesway mechanism and the area of the bracing can be calculated directly.

The preliminary design procedure for frames with supplementary diagonal braces is similar to the procedure described for rigid frames. For braced frames with rigid connections, however, the procedure is slightly more involved since it is necessary to assume a value for the brace area in addition to the assumptions for the coefficients \(C \) and \(C_1 \). In selecting a trial value for \(A_b \) for frames with rigid connections, the minimum brace size will be controlled by limiting the slenderness ratio for the member, in order to prevent vibration or "slapping" during the response. This design condition can be expressed as:
\[r_b \geq \frac{L_b}{300} \] \hspace{1cm} (2)

In which \(r_b \) is the minimum radius of gyration of the bracing member and \(L_b \) is its length between points of support. Even though a compression brace is not considered effective in providing resistance, the tension and compression braces should be connected together where they cross. In this manner, \(L_b \) for each brace may be taken equal to half of the total length.

In addition, in each particular application, there will be a limiting value of \(A_b \), beyond which there will be no substantial weight savings in the frame members since minimum sizes for the frame members are required based upon the maximum slenderness ratio requirements given in Section 4.2 of Reference 1. In general, values of \(A_b \) of about 6 to 25 square centimeters (1 to 2 square inches) will result in a substantial increase in the overall resistance for frames with rigid connections; hence, an assumed brace area in this range is recommended as a starting point. The determination of \(C \) and \(C_1 \) then follows the same procedure as outlined for rigid frames.

Dynamic Load Factors

For the purpose of preliminary design, it is necessary to make certain initial assumptions regarding the dynamic effect of the load on the deflection of the frame. These assumptions are required since the natural period of the system is initially unknown. To obtain initial estimates of the required mechanism resistance, the dynamic load factors of Table 4 may be used to obtain equivalent static loads for the indicated mechanisms. These factors are based, in part, on the data provided in Chapter 5 of Reference 1.

2.4 Preliminary Sizing of Frame Members

Member sizes are selected on the basis of the plastic section moduli. These quantities are computed using the required bending capacities determined from the mechanism analyses of several representative frames spanning in one or both directions of the building. The member sizes thus obtained must satisfy the provisions for the design of members subjected to combined axial load and bending moment that are set forth in Reference 1 and adapted, with some modifications, in this report.

The plastic section moduli for a member designed for bi-axial bending are computed with the following equations:
\[
Z_x = \frac{(M_p)_x}{F_{dy}} \\
Z_y = \frac{(M_p)_y}{F_{dy}}
\]

(3a)

(3b)

where

\(Z_x, Z_y\) = the plastic section moduli for both axes of bending

\((M_p)_x, (M_p)_y\) = the required plastic bending capacities about both axes of bending

\(F_{dy}\) = the dynamic yield stress which is computed as described in Section 2.2 of Reference 1

Select a member whose \(x\)- and \(y\)-axes plastic section moduli are equal to or greater than \(Z_x\) and \(Z_y\), respectively. The plastic section modulus for a member designed for uni-axial bending is computed with the equation given below:

\[
Z_n = \frac{(M_p)_n}{F_{dy}}
\]

(4)

where the subscript \(n\) refers to the axis of bending of the member.

The provision set forth in Reference 1 for the design of members subjected to combined axial load and bending moment comprise the following requirements:

1. Members subjected to combined axial load and bi-axial bending moments should be proportioned to satisfy the interaction formulas which consist of Equations 4.4 and 4.5 of Reference 1.

2. Members subjected to bending about their strong axis should be provided, where possible, with sufficient lateral bracing to prevent lateral-torsional buckling. Lateral bracing requirements are specified in Section 3.3.6 of Reference 1. Where the placement of lateral bracing is not possible, as in the case of the building columns, reductions in the moment capacities of members, unbraced in the weak direction, must be effected in order to account for the effects of lateral torsional buckling. These reductions are made on the basis of Equation 4.7 of Reference 1 which is repeated on the following page.
\[M_{mx} = [1.07 - (z/r_y)\sqrt{F_{dy}/262394}]M_{px} \leq M_{px} \quad (5a) \]

\[M_{my} = [1.07 - (z/r_x)\sqrt{F_{dy}/262394}]M_{py} \leq M_{py} \quad (5b) \]

where \(M_m \) = the ultimate bending capacity in the absence of axial load

\(M_p \) = the design plastic bending capacity

\[= F_{dy}Z \]

\(Z \) = the plastic section modulus

\(F_{dy} \) = the dynamic yield stress. In the above equations, the units for the dynamic yield stress are kilopascals.

\(I \) = unbraced length of the member

\(r \) = radius of gyration

These reduced capacities are used in the interaction formulas [Eq (4.4) and (4.5)] of Reference 1.

3. The member must satisfy the overall stability criteria as specified by the maximum allowable slenderness ratio (in the plane of bending) computed according to Equation 4.1 of Reference 1. The overall stability criteria must be satisfied for both axes of bending when a member is designed for bi-axial bending.

4. The member must satisfy the local stability criteria specified in Section 3.3.4 of Reference 1. These criteria are expressed in terms of the following quantities:

a. Limiting width-thickness ratios for the flanges of I- and W-shapes (and similar built-up single-web shapes) that are subjected to compression involving plastic hinge rotation. To facilitate the utilization of the SI System of Units, these criteria are reproduced in Table 5 with the appropriate quantities expressed in SI units.
b. Limiting values (as given by Equations 3.12 and 3.13 of Reference 1) of the depth-thickness ratios for the webs of members subjected to plastic bending.

Based on experience with DYNFA, it has been determined that considerations related to the simultaneous effects of axial loads and bi-axial bending can be eliminated from the preliminary design. Hence, some portions of the above criteria can be simplified for the preliminary sizing of the frame members. First, the interaction formulas of Reference 1 (Item 1 above) can be replaced with the simplified equations given below:

\[
\frac{(M_p)_x}{M_{mx}} \leq 1.1 \tag{6a}
\]

\[
\frac{(M_p)_y}{M_{my}} \leq 1.1 \tag{6b}
\]

The design of members subjected to bending about one axis is governed by the uni-axial bending equation given below:

\[
\frac{(M_p)_n}{M_{mn}} \leq 1.1 \tag{7}
\]

where the subscript \(n \) refers to the axis of bending of the member.

The design requirements specified in Items 2 and 3 above remain unchanged and should be applied as described in Reference 1. The design requirements referred to in Item 4 also remain unchanged; however, the equations given in Reference 1 (Equations 3.12 and 3.13) which govern the minimum depth-thickness ratios of the webs of members subjected to plastic bending, are replaced by the following equation:

\[
d/t_w \leq 29,060/\sqrt{F_y} \tag{8}
\]

Here, \(F_y \) is specified in kilopascals, \(d \) is the total depth of the member and \(t_w \) is the web thickness.
SECTION 3
BASIS OF DYNFA FRAME ANALYSIS

3.1 Introduction

This section presents the analytical techniques utilized by DYNFA to perform rigorous dynamic analyses of frame structures subjected to the blast loads from a high explosive detonation. The presentation here is primarily intended to provide facility designers with background material which describes the basis of the dynamic analysis as performed by DYNFA. As such, a complete understanding of most of this material, while desirable, is not mandatory for using DYNFA. However, it is necessary that the concept of the analytical model, as described in this section, be fully understood, as it provides the basis for the material related to the use of DYNFA.

The response of a frame to the blast loads is computed using an approach which couples a lumped parameter representation of the structure with a numerical computation procedure in which the equations of motion of the system are integrated directly using the linear acceleration method. Inelastic behavior of individual members is introduced into the analysis by the formation of concentrated plastic hinges whenever the combined axial load and bending moment capacity of a section are reached. The results of the analysis consist of the deformations of the structure and the axial loads, bending moments and shears in each of the members. End rotations of each member are computed and utilized to monitor the amount of plastic deformation occurring in the structure. The DYNFA computer program implements this analytical procedure. The details of the mathematical techniques utilized in the DYNFA analysis are provided in Appendix C.

A static analysis routine was incorporated into DYNFA in order to determine the initial conditions of the structure under the effects of dead and live loads. Normally, in single-story frame buildings, the magnitudes of the dead and live loads are usually small compared to the magnitude of the blast load. In multi-story structures, however, the dead and live loads could be significant.

3.2 Analytical Model

The essential step required for the rigorous dynamic analysis is the formulation of an analytical model of the structure. The model utilized to compute the response of frame structures subjected
to blast loads must satisfy three basic requirements. First, it must accurately reflect the configuration of the structure under consideration. Next, the elastic and inelastic behavior of the structure must be duplicated in the model. Third, the distribution of the mass of the structure, as well as the loads applied to it, must be reproduced in the model such that all of the desired responses are obtained in the analysis. Of equal importance is the requirement that the modeling technique employed in the analysis reduces the problem to a simpler form which readily lends itself to a solution.

In order to satisfy all of these requirements, the lumped parameter method for modeling complex structures is utilized in the analysis. This method greatly simplifies the analysis but still retains the capability for an accurate determination of the desired structural responses. For the problem at hand, the desired responses consist of the overall sidesway response of the frame and the individual responses of the exterior members of the frame.

The lumped parameter method enjoys extensive use in a wide range of applications throughout the industry. The principal reason for this is the ease with which it can be interfaced with high speed computers to obtain a solution. A lumped parameter model of a structure consists of an assemblage of massless structural elements interconnected at nodal points. An example of a typical model is shown in Figure 7. The mass of the structure, as well as the applied loads, are assumed to be concentrated at selected nodal points which are referred to as "mass points". Rotary inertia is not included in the analysis.

As discussed in Section 1, each frame of the building is analyzed individually using a two-dimensional representation of the structural system. In a two-dimensional model, the structure is limited to motions in one plane and therefore each nodal point has three degrees of freedom; namely, horizontal translation (D_H), vertical translation (D_Y), and rotation (θ). These quantities are illustrated in Figure 7.

In the model, an individual member of the frame is represented by one or more structural elements, depending upon the detail required. The structural element is capable of transmitting axial loads as well as shears and bending moments.

3.3 Inelastic Behavior of Frame Members

The inelastic behavior of the frame members is treated in the analysis by:
1. Specifying the behavior of a member in the inelastic response range by defining the element's response (axial loads and bending moments) in terms of the element's elastic and plastic deformations. With the element behavior specified, an analytical technique is developed to simulate the desired inelastic behavior in the analysis.

2. An interaction equation which establishes the point at which inelastic behavior commences for each element.

3. An analytical method which accommodates the variations in the stiffness properties of the structural system that result from the inelastic behavior of the members.

Items 1 and 2 are discussed in this section and Item 3 is covered in the discussion pertaining to the formulation of the system stiffness matrix (Section 3.4).

Specification and Simulation of Inelastic Behavior of Frame Members

The specification of the inelastic behavior of the frame members is based on the assumption that a fully plastic section offers no additional resistance to the load (Ref 6). Hence, the desired behavior of the elements is represented by the bilinear hysteresis loop shown in Figure 8. The figure depicts the bending moment versus end rotation relationship (in the absence of axial load) for a typical element. A similar relationship exists between the axial load and axial deformations. The portion of the loop between points A and B represents the elastic behavior of the element when initially loaded. Once point B is reached, yielding of the element commences (plastic hinge forms) and continues until a maximum curvature at point C is reached. From point C to point D, the element unloads. The linear segment of the loop from C to D (and eventually to E) has the same slope as the initial loading segment (from A to B). The portion of the loop below the end rotation axis represents the load reversal (or rebound) in the element.

In single-degree-of-freedom analyses of individual members, the behavior described above can be readily accommodated by simply adjusting the resistance for the member such that a constant moment, and therefore a constant resistance, is designated when yielding commences. Ideally, it would be desirable if this same procedure could be made applicable to the multi-degree-of-freedom analysis of a frame structure by introducing plastic hinges at those sections in the structure which have yielded. However, the
use of this procedure may result in the formation of unstable members and/or substructures within the structural system. Such effects cannot be treated analytically as they produce mathematical anomalies in the solution. In order to avoid these problems, an alternate method is utilized to simulate the inelastic behavior. The method consists of subdividing the element stiffness into two components which are:

1. An elastoplastic component, and
2. An infinitely elastic component.

Such an element has been examined in References 7 through 9. The two components act in parallel and the total stiffness of the elements is the summation of the factored stiffnesses of the two components. The factors applied in DYNFA are 0.95 for the elastoplastic component and 0.05 for the elastic component. The composite behavior of the two components is illustrated in Figure 9a, where the behavior shown is similar to the hysteresis loop of Figure 8 with the exception that the magnitude of the moment varies in the inelastic portion of the response (Segments B-C and E-F). The individual behavior of the two components is illustrated in Figure 9b. As shown in the figure, the stiffness of the infinitely elastic component, k_{ie}, remains constant throughout the response; while the stiffness of the elastoplastic component, k_{ep}, depends upon the yield condition at the end of the element. From point A to point B in Figure 9a, the total stiffness of the element, k_c, equals the sum of the two component stiffnesses, k_{ie} and k_{ep} (point a to points b and b', Fig 9).

As yielding commences at point B (which corresponds to points b and b' in Fig 9b), the stiffness of the elastoplastic component becomes zero as illustrated by line bc (Fig 9b); while the stiffness of the elastic component remains constant at a value of 0.05k_c, as illustrated by line b'c'. Hence, the total stiffness of the element reduces to a small percentage (0.05k_c) of its actual value, as illustrated by line B-C in Figure 9a. Appendix C contains a table of equations for the combined element stiffnesses for the various yield conditions at the ends of an element.

Interaction Equation

In blast-resistant design, structures must withstand the simultaneous application of horizontal and vertical loads of roughly equal magnitude; therefore, the members of the structure will be subjected to significant axial loads which limit their ultimate bending resistances. In addition, the axial loads will be time dependent and, for a given member, this time dependency will not
be related to the transient behavior of the member in its bending mode. In order to properly account for the axial load/bending moment interaction on the yielding of a member, a two-dimensional yield criterion is utilized to define inelastic action. A member is considered to have yielded at a section when the following relationship has been satisfied:

\[\left| \frac{P}{P_c} \right| + \left| \frac{M}{M_m} \right| \geq 1 \]

(9)

In the preceding equation, the values of \(P \) and \(M \) are the applied axial load and bending moment, respectively; while \(P_c \) and \(M_m \) are equal to the axial load and bending moment capacity, respectively. \(P_c \) is equal to either the axial load at yielding \((P_p) \) when the member is in tension or the ultimate buckling load \((P_u) \) when the member is in compression. The bending moment and axial load capacities are computed on the basis of the criteria specified in Chapter 4 of Reference 1 and reproduced in Section 4 of this report.

In the inelastic response range, the axial loads and bending moments of the modeling elements vary as illustrated in Figure 10. The occurrence of these variations stems from the utilization of the two-component approximation to the element behavior as described in the preceding section. Because of this, the peak plastic deformations may not be readily discerned from the time history of what may be considered a significant response parameter, such as the element bending moment or end rotation. Therefore, an algorithm is required to perform the following operations, namely: (1) to determine the maximum plastic deformations occurring at the yielded end of an element and, in conjunction with this, (2) to detect the point at which the element commences to unload elastically. The occurrence of these events is detected in the analysis with the use of the following relationship:

\[\frac{P_2(P_2 - P_1)}{|P_2|P_c} + \frac{M_2(M_2 - M_1)}{|M_2|M_m} < 0 \]

(10)

The maximum plastic deformation at the yielded end of an element is assumed to have occurred when the above relationship is satisfied. The parameters \(P, M, P_c \) and \(M_m \) in Equation (10) are defined in the preceding paragraphs. The subscripts 1 and 2 refer to the values of the parameters at two successive time stations in the response of the structure.

The above equation is utilized in the following manner. In the inelastic range, the element axial load and bending moment continue to increase at a relatively slow pace until a maximum
plastic deformation is attained. After this occurs, the element axial load/moment will decrease producing negative values for one or both of the ratios in Equation 10. When the sum of the two ratios becomes a negative quantity, the element is considered to rebound elastically.

3.4 Equation of Motion of System

The general equations of motion of the system are:

$$\begin{align*}
[M]\dddot{u} + [C]\dot{u} + [K]u &= \{F(t)\} \quad (11)
\end{align*}$$

where \(\{u\}, \{\dot{u}\}, \{\ddot{u}\}\) = displacements, velocities and accelerations of the nodal points of the analytical model

- \([M]\) = mass matrix of the system
- \([C]\) = damping matrix of the system
- \([K]\) = stiffness matrix of the system
- \(\{F(t)\}\) = matrix of the transient loads applied to the system

Mass Matrix

The mass matrix consists of discrete masses, the sum of which adds up to the total mass of the structure. These discrete masses are concentrated at selected nodal points in a manner which is consistent with the actual distribution of mass in the structure. A complete discussion of the techniques employed in assigning mass to the nodal points is provided in Section 4.

Damping Matrix

The damping matrix represents the internal energy absorption properties of the structure. For purposes of analysis, the damping matrix is usually assumed to be proportional to either the stiffness or mass matrices. In DYNFA, the damping matrix is taken as proportional to the mass matrix.

In most analyses involving steel structures, damping can be neglected; however, provisions were made in DYNFA for including this effect for special applications; e.g., reinforced concrete frames.
System Stiffness Matrix

The system stiffness matrix is an array of coefficients of the unknown displacements in a series of simultaneous equations which express the applied loads as functions of the deflections of the structure. It is generated by applying conventional methods of matrix structural analysis such as those utilized in Reference 11. Briefly, the system stiffness matrix is composed of the stiffness matrices of the individual elements of the model. For a beam element with three degrees of freedom at each end, the entries in the element stiffness matrix are the coefficients of the displacement variables in six simultaneous equations which relate forces and moments to the displacements and rotations at the ends of the element. Shear deformations are not included in the formulation. The system stiffness matrix is constructed by superimposing, in their proper position in the matrix (according to degree of freedom), the coefficients of the element stiffnesses.

In the analysis, the structure is assumed to respond linearly during a given time interval. However, the coefficients in the system stiffness matrix may be changed from one interval to the next, depending upon the yield conditions at the ends of the elements. Therefore, the non-linear response is obtained by sequencing the linear responses of the system (with varying stiffness coefficients) at successive time intervals.

Matrix of Applied Loads

The matrix of the applied loads contains the time history of the blast loads which are concentrated at the mass points on the exterior members of the structure. Included also are the unbalanced shears caused by the second order effects which occur as the structure responds to the blast loads. A description of these effects is provided in Section 3.5.

Numerical Solution

The solution to the equations of motion is obtained by a step-by-step integration procedure (Ref 8) in which the acceleration during a time interval is assumed to vary linearly.

3.5 Second Order Effects

Two important aspects of the problem which have been incorporated into the analytical procedure and computer program are: the P-Δ effect on the overall sidesway response of the frame, and the beam column effects on the responses of the individual members subjected to transverse loads between their supports.
P-\(\Delta\) Effect

For a rigid frame structure subjected to lateral loads, the vertical loads combine with the sidesway deflection to produce additional bending moments in the members. For elastic structures, the deflections are relatively small; therefore, this effect, commonly called "the P-\(\Delta\) effect", is generally of secondary significance in comparison with the flexural resistance of the structural members. Inelastic structures, however, may undergo relatively large sidesway deflections. These large deflections combined with the large vertical loads prevalent in blast design, produce bending moments which must be considered in the analysis. The P-\(\Delta\) effect is included in the analysis primarily because of its influence on the sidesway response of the frame.

Beam Column Effect

When a member is subjected to both transverse and axial loads, the axial loads combine with the bending deflections to produce additional moments. In blast design, these "second order" bending moments cannot be neglected, as large deflections are expected when the member responds to the transverse load. The beam column effect is considered because of its influence on the individual bending responses of the exterior members of the frame.

Calculation of Second Order Effects

A rigorous treatment of these second order effects would significantly increase the complexity of the frame analysis. However, both of these effects can be approximated by introducing equivalent shears at both ends of each element (Ref 10). These shears form a couple which is equal in magnitude but opposite in direction to the secondary moments produced by the axial loads combined with the differential displacements between the ends of the element. Figure 11 illustrates the calculation of these equivalent shears. However, it should be noted that the procedure depicted in this figure is a simplification of the actual computation. The figure was included for illustrative purposes only. The actual computation of the equivalent shears, together with the mathematics involved in introducing these quantities into the matrix of the applied loads, are presented in Appendix C.
SECTION 4
MODELING TECHNIQUES

4.1 Introduction

The initial task in the analysis is the formulation of the analytical model of the frame under consideration. When constructing the model of the structure, the basic requirements of Section 3.2 must be satisfied in order to achieve the desired degree of accuracy and detail in the analysis.

Briefly, the requirements of Section 3.2 dictate that the model must accurately reflect the configuration, stiffness characteristics, and mass distribution of the structure. To assist facility designers in the preparation of analytical models which satisfy these requirements, modeling techniques and guidelines are presented in this section and in Section 5. The discussion is directed primarily towards the preparation of lumped parameter representations of frame structures for use in their analyses with DYNFA.

The lumped parameter representation of a frame structure is composed of the following: (1) an analytical model of the structure consisting of an assemblage of beam elements interconnected at nodal points, (2) a series of discrete masses assigned to selected nodal points in the model, (3) the section properties (area, moment of inertia) and capacities (axial load capacities, flexural capacity) of the members of the structure, and (4) idealizations of the transient loadings acting on the structure. The discussion in this section is directed towards the preparation of data related to the first three items. Procedures for generating loading functions for the analysis are presented in Section 5.

4.2 Development of Model

General

The systems under consideration in this report are the primary structural frames of rectangular steel buildings. For the analysis to produce the desired response quantities, (namely, displacements, member end rotations, column loads, etc.), the model of a frame must have the same configuration as the frame itself. As shown in Figure 7, the actual model is a line diagram of the structure under consideration. The diagram reflects the configuration of the structure and shows the placement of the nodal points in the model. All of the frame members are included in the model.
Models of braced frames include the diagonal braces as well as the columns and girders.

In the model, the members of the frame are represented by one or more beam elements. The section properties and capacities of the beam elements are identical to those of the frame members. However, as depicted in Figure 7, the beam elements are one-dimensional; that is, they have length but neither width nor depth. This limitation is generally not significant in analyses of steel frames, as the length-to-depth ratios of the frame members are generally quite large.

Since the modeling elements are one-dimensional, all of the significant dimensions (length, height, locations of nodal points, etc.) in the model must be related to the longitudinal axes of the frame members, which are located at the centroids of their cross-sections. The intersection of two members is generally taken as the intersection of their respective longitudinal axes.

A basic assumption in the analytical formulation of DYNFA is that structural continuity exists at all nodal points in the model, except at those nodes corresponding to support points. However, provision is made in DYNFA for modeling structural discontinuities, such as non-rigid girder to column connections. Modeling of such discontinuities is accomplished by pinning the ends of the appropriate elements (see Section 8.7). This provision is useful for modeling braced frames, where the ends of the diagonal braces are assumed to be pin-connected to the frame. Such a condition is modeled by pinning both ends of the element representing each diagonal brace.

Scope of Model

In general, the model used to compute the blast-induced response of frame structures includes the principal components (girders, columns and diagonal braces) of the main frame only. Except for their mass and load contribution, the secondary framing members of the roof and walls are not included in the model.

A basic assumption in the frame analysis is that the motions of the concrete foundation on the supporting soil have a negligible effect on the peak responses of the frame. Based on this, the foundation/soil systems are excluded from the model, and the nodal points, corresponding to the column foundation connections, are taken as completely fixed against horizontal and vertical translation. If these connections are capable of transmitting moments, the rotations of the column base nodal points are also fixed. A model such as this produces a conservative estimate of the frame's response.
To justify the exclusion of the foundation/soil systems, the foundation must have sufficient mass to react to the dynamic loads transmitted to the base of the frame. A foundation mass exceeding twice the mass of the steel superstructure will suffice for the task at hand. When an insufficiency of foundation mass exists, a significant interaction may occur between the sidesway response of the frame and the rigid body response of the combined steel superstructure/foundation system. Since this interaction may appreciably reduce the frame response, it is advisable in these situations to extend the model such that the responses of the foundation/soil systems are included in the analysis. Figure 12 illustrates this modeling extension. The model contains elements representing both the foundation and the soil system. Not shown, however, are the discrete masses concentrated at selected nodal points on the foundation. Only the foundation mass is distributed among these nodal points. Soil mass is not included in the model. The reader is referred to Sections 5-7 and 5-8 of Reference 3 for guidance in computing the elastic properties of concrete foundations. Procedures and data for computing the stiffness properties of the soil are provided in Section 4 of Reference 12.

In some cases, additional supporting systems may be integral with the main framing. A typical example of this situation is shown in Figure 13. In this structure, the main frames are laterally supported by a massive concrete wall. The degree of support provided is determined by comparing the lateral stiffness of the wall with that of the frame. A wall whose lateral stiffness is at least ten times that of the frame is simulated analytically by restraining the nodal point at the girder-to-wall connection. On the other hand, a relatively flexible wall may have to be included in the model as its response would affect the frame response.

Placement of Nodal Points in the Model

Nodal points are usually positioned in the model at the following locations:

1. The intersection of two or more frame members or the connections of frame members to a supporting structure (such as the foundation).

2. Intermediate points on the exterior members to accommodate mass points.

3. Intermediate points on exterior members, other than mass points, where additional response information (deflection, bending moments, etc.) are required.
4. Intermediate points on members with gradual or abrupt variations in shape, or at the locations of structural discontinuities.

The first item requires no explanation, while the other three are discussed below.

Intermediate Nodal Points on Exterior Members

A structure has, in reality, an infinite number of normal modes of vibration (Ref 13) because of the uniform distribution of the structural mass along the individual members. In a frame analysis, however, the mass of the structure is concentrated at specified nodal points in the model (commonly referred to as "mass points"). Consequently, the model has a limited number of the structure's normal modes of vibration. The nature of these normal modes of vibration that are reproduced in the model is determined by the manner in which the mass is distributed among the mass points. The inclusion of specific modes in the model is dictated by the nature of the structural response to the applied loads. Under the action of the blast, the frame responds to the horizontal blast loads in a sidesway mode. At the same time, the frame responds in a series of local bending modes due to the transverse loads acting directly on the exterior members. These local bending modes are often characterized by pronounced bending of only one or two exterior members. In most cases, the primary response of an exterior member occurs in one of these local modes.

The fundamental sidesway mode of the frame can be produced by concentrating (also referred to as "lumping") all of the mass of the structure at the girder/column intersections. The modeling detail required to accomplish this is illustrated in Figure 14a. However, such a model lacks sufficient detail to produce the individual bending responses of the exterior members. To develop these responses, the distribution of mass in the model must be refined by lumping a portion of the structural mass at intermediate points on the exterior members. To accommodate this refinement, intermediate nodal points are generally placed along the exterior members, as shown in Figure 14b. In general, multiple intermediate mass points are utilized as a more accurate representation of the local bending modes of the frame will be reproduced in the model. The number of such points utilized depends, to some extent, on the secondary framing of the exterior surfaces. When the secondary members of a given exterior surface (wall or roof) are parallel to the frame, use three intermediate mass points within the span of each frame member supporting the surface. Locate these mass points at equal intervals along each member. In cases where the
secondary members are positioned normal to the frame, use either one of the following procedures:

1. When three or less secondary members are supported within the span of a frame member, locate the intermediate mass points at the connections of the secondary members to the frame proper.

2. When more than three secondary members are supported within the span of a frame member, locate three intermediate mass points at equal intervals along the member.

The utilization of two or three intermediate mass points on a member is sufficient to achieve the desired accuracy in the analysis. A greater number will greatly increase the computer costs without significantly improving the accuracy of the results. It is also recommended that, when possible, the same number of mass points be utilized on all exterior members in order to avoid gross discontinuities in the application of the blast loads in the analysis.

Intermediate Nodal Points Other Than Mass Points

In some cases, additional response data (displacements, rotations, bending moments, etc.) may be required at intermediate locations other than mass points on both interior and exterior members. In order to generate this data in the analysis, additional nodal points are placed at the locations in the model where these data are required. Additional nodal points are always required in those cases where there are no intermediate mass points located at the midspan of an exterior member. In such cases, the analysis will not generate data regarding the member's response at the midspan. Such data are required in order to produce a better approximation of the beam column effects in the analysis (see Section 3.5), as well as to ascertain whether the deflections and ductility ratios at the midspan are within the limits specified (Section 6) for the frame design; hence, a nodal point is required and should be placed at the midspan of each exterior member. The addition of this nodal point in no way implies that it must be assigned a concentrated mass. Such a situation occurs in Example A.3 in which the intermediate mass points on the exterior members are located at the intersections of the secondary members with the primary frame members.

Members with Varying Cross-Sections

In the analysis, the section properties and capacities of the elements are constant over their entire lengths. Therefore,
members with varying cross-sectional properties must be modeled with several elements and consequently, nodal points must be inserted between the ends of these members.

Two examples of members with varying cross-sectional properties are illustrated in Figure 15. The member shown in Figure 15a has a gradual taper and is symmetric about its centerline. Hence, it is modeled with four elements of equal length: two elements represent each half of the member. The member shown in Figure 15b has an abrupt variation in shape due to the presence of the haunch near the left end, and a structural discontinuity caused by the pin near the right end. In this case, three elements of unequal lengths are used and two intermediate nodal points are placed at the locations of the discontinuities. When abrupt discontinuities such as these occur on exterior members, intermediate mass points are first placed at equal intervals along the span in order to accommodate the desired distribution of the mass, and then additional nodal points are placed at the locations of the discontinuities. Hence, if three equally spaced intermediate mass points were desired on a member with two abrupt discontinuities, such as those shown in Figure 15b, a total of five intermediate nodal points would be placed in the span of the member: three to accommodate the mass points and two for the discontinuities.

4.3 Distribution of Structural Mass in Model

General

With the model completely defined in terms of beam elements and nodal points, the data preparation proceeds with the distribution of the mass among the nodal points of the model. Before the mass can be distributed, however, the locations of the dynamic degrees of freedom must be specified for the model.

Designation of Dynamic Degrees of Freedom

When the frame responds to the blast loads, horizontal and vertical inertial forces are developed by the accelerating mass of the structure. In order to reproduce these forces in the dynamic analysis, each discrete mass of the model must be assigned a degree of freedom (either horizontal or vertical) as well as a magnitude. Therefore, two sets of discrete masses are required: one for the horizontal degrees of freedom and one for the vertical degrees of freedom.

In the model, two distinct masses can be lumped at each mass point. Each lumped mass is associated with one of the translational degrees of freedom of the mass point. Degrees of freedom with assigned masses are generally referred to as "dynamic or
independent degrees of freedom"; whereas, those without mass are known as "dependent degrees of freedom".

The designation of the dynamic degrees of freedom for the model is governed by the nature of the desired responses. To develop the primary sideways response of the frame, each nodal point corresponding to a gider/column intersection is assigned horizontal and vertical dynamic degrees of freedom. In gabled frames, the nodal point at the peak in the roof is also assigned a pair of dynamic degrees of freedom.

Intermediate mass points on exterior members are allotted one dynamic degree of freedom. The direction of these degrees of freedom is always normal to the longitudinal axis of the member. On inclined members, with slopes exceeding ten degrees, each intermediate mass point is assigned two dynamic degrees of freedom.

The responses of the higher order extensional modes of the frame members should not be included in the analysis as they have a negligible effect on the frame response. These modes are developed by including intermediate dynamic degrees of freedom parallel to the longitudinal axes of the members. The inclusion of these dynamic degrees of freedom, although simplifying the mass distribution for the model, adds significantly to the computer costs incurred and could possibly cause numerical inaccuracies in the analysis.

Figure 16 shows the distribution of the dynamic degrees of freedom for two typical frame models, where the directions of the dynamic degrees of freedom are represented by arrows.

Computation of Nodal Masses

As discussed in Section 1, each frame is assumed to support a tributary strip of the building. In the analysis, the structural mass within this strip is distributed among the mass points of the model. Live loads are generally not included in the mass computation.

The computation of the nodal masses is accomplished in three stages. The first stage involves computing the masses of individual panels of the walls, roof or intermediate floors (if any) within the tributary strip. For this computation, a wall panel is defined as the area between successive floor levels; whereas, a floor or roof panel is defined by the area between successive columns of the frame. In general, the mass of a panel comprises the mass of the following structural components within the panel:
the decking or siding, the secondary members and the primary frame member. The mass of the secondary framing is not included as part of the panel mass in cases involving a coarse secondary framing consisting of three or less members positioned normal to the frame. Instead, the mass of each secondary member is concentrated at the mass point on the model corresponding to its intersection with the frame. The masses of primary transverse framing members are also not included as part of the panel mass; instead, they are concentrated at the mass points on the model corresponding to the intersections of orthogonal frames with the frame being analyzed.

In the second stage, the mass of each panel is distributed as concentrated masses among the dynamic degrees of freedom on the primary frame member within the panel. General expressions for computing the values of the concentrated masses are provided in Figure 17 for wall panels, and Figure 19 for roof and floor panels. The parameters utilized in Figures 17 and 19 for computing the concentrated masses are illustrated in Figures 18 and 20, respectively.

As shown in Figures 17 and 19, two different distributions of the panel mass are given: one for dynamic degrees of freedom in the plane of the panel and another for those normal to the panel. The in-plane mass distribution is accomplished by equally dividing the panel mass among the in-plane dynamic degrees of freedom on the frame member. Based on the discussion of the previous section, two dynamic degrees of freedom are provided in the plane of the frame member, with each one placed at the member end. Hence, the distribution consists of simply concentrating one half of the panel mass at each end of the member.

The distribution of the panel mass among the dynamic degrees of freedom normal to the frame member is a more involved process. To accomplish this task, consideration must be given to the load paths followed in the transfer of normally directed forces from the secondary members of the panel to the frame proper. As the secondary framing plan establishes these load paths, the mass distribution is dependent upon the framing plan within the panel, as well as the number of dynamic degrees of freedom normal to the frame member. The expressions provided in the tables are based on these two considerations. It should be noted that these expressions are also based on the premise that the intermediate mass points are equally spaced along the member; consequently, when the mass points are unequally spaced, the equations in Figures 17 and 19 are not directly applicable. However, they may still be applied by using the techniques described in the discussion further on in this section.
Referring to Figures 17 and 19 and to the corresponding figures (Figures 18 and 20), when the secondary framing is parallel to the main frame, only a small portion of the total panel mass is distributed among the normally directed dynamic degrees of freedom at the intermediate mass points; the remaining panel mass is concentrated at the ends of the member. On the other hand, when the secondary framing is perpendicular to the main frame, the bulk of the total panel mass is distributed among the intermediate mass points.

In some cases, the expressions provided in Figures 17 and 19 may not be directly applicable for distributing the panel mass. One such case occurs when one end of an exterior frame member is a support point, as in the case of an exterior column of a single-story structure. To apply the data in Figures 17 or 19 in such a situation, consider the support node as a mass point and consider each restrained degree of freedom (degree of freedom restrained from moving) as a dynamic degree of freedom. Distribute the mass of the panel using the equations in Figures 17 or 19 and discard the masses assigned to the support node. In many cases, the framing plan within a panel will not correspond exactly to one of those shown in Figures 18 and 20. Nevertheless, the tabulated expressions of Figures 17 and 19 can still be applied. For example, if different framing plans are utilized on either side of the frame centerline, consider the panel as consisting of two subpanels whose longitudinal boundary is the frame member itself, and apply the appropriate expressions of Figure 17 or 19 to distribute the mass of each subpanel (note that the mass of each subpanel should include only one half the mass of the frame member). A similar situation occurs when the secondary framing within a panel contains a relatively large transverse member which transfers a major portion of the total panel load to the frame proper. Since the panel is essentially subdivided by the member, it can be considered as two subpanels whose common boundary is the transverse member for the purpose of computing the masses. Therefore, the mass of each subpanel can be distributed using the equations of Figures 17 and 19. The same technique can be utilized when the intermediate mass points are unequally spaced along a member due to the unequal spacing of secondary framing members within the panel. In this case, the panel is subdivided into several subpanels and the length of each subpanel is defined by the length of the frame member between successive mass points. Thus, the mass of the entire panel can be distributed by apportioning the mass of each subpanel according to the equations in Figures 17 and 19.

When analyzing an end frame, a portion of the mass of the end wall structure should be included in the mass associated with
the model of the frame. The procedures for accomplishing this are as follows:

1. When the girts on the end wall are positioned vertically, consider one half of the wall to be rotated upward 90 degrees, thereby becoming an extension of the roof, as shown in Figure 21. Thus, the mass of this portion of the side wall is taken as part of the roof mass.

2. When the girts of the end wall are positioned horizontally, consider the side wall to be partitioned as shown in Figure 22b and each such partition to be rotated 90 degrees, thereby forming extensions to the blastward and leeward walls, and adding a fictitious interior wall. The mass of these wall extensions are then included as part of the wall mass. The fictitious interior wall is considered as a separate wall panel and its mass is distributed using the appropriate equations of Figure 17.

The third stage of the mass computation consists of preparing a tabulation of the concentrated masses assigned to each mass point of the model. The following general guidelines are to be followed when preparing this tabulation:

1. The masses of interior columns or walls are divided equally among the mass points at the ends of the members.

2. Several masses assigned to one mass point are added to yield the total mass concentrated at the mass point. For mass points with two dynamic degrees of freedom, two summations are required: one for each dynamic degree of freedom at the nodal point.

4.4 Cross-Sectional Properties and Capacities of the Frame Members

General

In order to simulate the elastic and inelastic behavior of the frame, certain physical properties and capacities of the frame members are assigned to the elements of the model. The assigned quantities are:
1. Cross-sectional area

2. Moment of inertia about an axis normal to the plane of the frame

3. Ultimate dynamic load capacity in axial tension

4. Ultimate dynamic load capacity in axial compression

5. Ultimate bending capacity in the absence of axial load.

In most of the structures encountered, standard steel shapes are utilized. Sufficient information is available in Reference 14 to determine the physical properties and capacities listed above.

Tapered members are generally modeled with several elements of equal length and the physical properties of each such element are computed at the midpoint of the corresponding segment of the member. For the pin-connected tension braces of diagonally-braced frames, assigned values of zero for the moment of inertia (Item 2) and the ultimate bending capacity (Item 5) are used in the analysis; and a fictitiously small value is used for the ultimate compressive capacity (Item 4).

Dynamic Tensile Strength

In order to determine the ultimate capacities of the frame members, the appropriate dynamic yield stress for the material must be specified. Generally, the dynamic yield stress is taken as:

\[F_{dy} = cF_y \]

(12)

where

- \(F_{dy} \) = dynamic yield stress of material
- \(F_y \) = static yield stress of material
- \(c \) = the dynamic increase factor

The dynamic increase occurs because of the rapid rate of strain experienced by the material due to the sudden onset of the blast load. Table 2.1 of Reference 1 contains recommended values of the dynamic increase factor for most applications involving structural steel members.
Ultimate Tensile Capacity

The ultimate dynamic load capacity in axial tension is computed as follows:

\[P_p = F_{dy}A \]

(13)

where \(P_p \) = ultimate tensile load capacity of the member
\(A \) = cross-sectional area of the member.

Ultimate Compressive Capacity

The ultimate dynamic load capacity in axial compression is computed with the following equation:

\[P_u = 1.7F_aA \]

(14)

where \(P_u \) = the ultimate compressive load capacity of the member
\(F_a \) = the maximum compressive stress permitted in the absence of bending. This quantity is computed using Equation 4.3 of Reference 1.

Ultimate Bending Capacity

The ultimate bending capacities for the frame members are specified as follows:

\[M_{mx} = [1.07 - (z/r_y)\sqrt{F_{dy}/262,394}]M_{px} \leq M_{px} \]

(5a)

and

\[M_{my} = [1.07 - (z/r_x)\sqrt{F_{dy}/262,394}]M_{py} \leq M_{py} \]

(5b)

The parameters in these equations are defined in Section 2.4.

Reductions of the member bending capacities to account for second order effects are not required, as these phenomena are simulated in the analysis.
SECTION 5
COMPUTATION OF BLAST LOADINGS

5.1 Introduction

Basic to protective design is the capability of calculating efficiently and accurately the anticipated output of an accidental explosion. As applied to the frame analysis, this requirement consists of translating the various blast loading parameters (charge weight, distance, pressure, time, area, etc.) into simplified mathematical functions, of force versus time, which are suitable for use in multi-degree-of-freedom system analyses. The objective of this section is to present the methods to accomplish this task.

The development of loading functions for the frame analysis proceeds in two stages. In the first stage, the exposed area is subdivided into a series of tributary loading areas; each area is associated with a given mass point on one of the exterior members of the frame. With the completion of this initial task, the data preparation then proceeds to the development of the pressure-time histories for the analysis. These pressure-time histories are modified versions of the pressure waveforms determined using the methods and data provided in Section 4 of Reference 3.

The methods and guidelines for accomplishing each of the above tasks are presented in the remainder of this section. Included also is a section containing a discussion of two special effects which must be considered when generating the loading functions in order to avoid introducing spurious effects or numerical errors into the dynamic analysis.

5.2 Computation of Tributary Loading Areas

As discussed in Section 1, each frame is assumed to resist the load on a tributary strip of the building. To distribute the applied loads, the total exposed surface area of the supported strip is subdivided into tributary areas; and each tributary area is assigned to a mass point on an exterior member. In the analysis, the total blast load on a tributary area is taken as acting at its associated mass point. A loaded mass point always lies within the boundaries of its assigned tributary area.

The dimensions of the tributary areas are established on the basis of the framing plan of the exposed areas. Figures 23 and 24 show the dimensions of the tributary areas for panels with the two
most common types of framing plans. The data provided is generally applicable to roof panels as well as wall panels. The term "panel" is used, in the context of this section, in the same manner as described in Section 4.3. It should be noted that the panel boundaries designated for distributing the tributary areas must always correspond to those established for the purpose of distributing the panel mass among the normally directed dynamic degrees of freedom (see Section 4.3).

When sloped surfaces (such as the roof of a gabled structure) are encountered, the loading areas utilized in the analysis comprise the projections of the area onto horizontal and vertical planes.

The boundaries of the tributary areas are determined in the following manner. First, the total panel area is divided into two parts: one part being the area directly supported by the frame member, and the other being the area supported by primary transverse framing members. The directly supported area is divided among the mass points on the member; while the area supported by transverse members is divided equally among the mass points at the ends of the member. The area distributions illustrated in Figures 23 and 24 are based on this procedure.

The utilization of the data provided (Fig 23 and 24) is illustrated in Figure 25 which depicts the subdivision of the exposed area for a two-bay frame. In this figure, the tributary areas for the roof and wall panels are apportioned on the basis of the data provided in Figure 24, which indicates that the secondary framing members are normal to the plane of the frame. However, the guidelines provided in the subsequent discussion apply as well to cases where the secondary framing corresponds to that shown in Figure 23.

Inspection of Figure 25 reveals that mass points on the common boundary of two panels are assigned tributary areas from each of the intersecting panels. In the case of the mass point at the exterior column/girder intersection, the intersecting panels are orthogonal, and therefore two tributary areas are assigned: one in the plane of the wall for the horizontal loading and one in the plane of the roof for vertical loadings. When the intersecting panels are coplanar, as occurs at the connections of the girders to the interior columns, the respective areas of each panel are combined to form a single tributary area which is assigned to the mass point at the column.

5.3 Construction of Pressure-Time Histories for Frame Analysis

General
With the boundaries of the tributary areas established, the development of the loading for the frame analysis proceeds with the construction of the pressure-time histories. The pressure-time histories utilized in the frame analysis are generally multi-linear functions characterized by: a peak pressure; a rise time (time required for pressure to build up to a peak value); and a decay time (time interval over which pressure decays from a peak value to zero).

The construction of these pressure-time histories involves combining the procedures and data in Chapter 4 of Reference 3 with lumped parameter modeling concepts applied in the frame analysis. This task is accomplished in the following order: first, the procedures of Reference 3 are applied to generate pressure-time histories at the locations of the mass points on each exposed surface [blastward wall(s), roof, leeward wall(s), etc.] of the structure. Then these waveforms are phased, in the time domain, to simulate the effect of the wave traversing the structure and, finally, the waveforms are modified to account for the time lag effects and the non-uniformity of the loading that occur as the wave traverses the individual tributary areas.

Computation of Pressure-Time Histories at Mass Points on Structure

The pressure-time history for a mass point on a blastward wall is computed using the procedures outlined in Section 4-14a of Reference 3. The referenced material provides all of the necessary guidance and data required to accomplish this task. Application of these methods will yield either of the reflected pressure waveforms depicted in Figure 26. The waveform in Figure 26a will be apparent in most cases. However, at high pressure levels, such a representation of the loading may be inaccurate due to the extremely short pressure pulse durations involved. In such cases, the reflected pressure waveform will conform to the one shown in Figure 26b.

A typical pressure waveform for a mass point on the roof, side wall or leeward wall is illustrated in Figure 27. The necessary data for constructing this waveform is contained in Figure 4-5, 4-11 or 4-12, depending upon whether the explosion is above or on the ground, and in Figure 4-66 of Reference 3. Briefly, the peak pressure on these surfaces is taken as the sum of the incident \(P_{so} \) and drag pressures \(C_{p} q_0 \). The incident pressure is computed using the data provided in Figure 4-66 together with the drag coefficients supplied in Section 4-14b. The duration, \(t_{of} \), is expressed as twice the positive incident impulse divided by the peak
incident pressure, \(21_s/P_{co} \). The positive incident impulse is obtained from either Figure 4-5, 4-11 or 4-12 in Reference 3.

Example A.3 illustrates the procedures for computing both the reflected and incident/drag pressure-time histories.

The minimum data required for the analysis of a given frame consists of the following: the reflected pressure-time history at the blastward wall, and the combined incident/drag pressure histories together with the shock front velocities at both the blastward and leeward ends of the roof. In cases involving quartering shock waves, these data are computed at the location of the frame line. The reflected pressure-time history is utilized to generate the loading function on the exterior blastward column. In cases involving normal shock waves, the loading function for the exterior blastward column corresponds to the reflected pressure-time history determined using the procedures of Reference 3.

To generate the loading functions for the roof girder and leeward column, the combined incident/drag pressure-time histories are first utilized to determine the pressure-time histories at all of the mass points on these members. For the mass points on the roof girder, this task is accomplished by linearly interpolating for both the peak pressure and duration using the data (incident and drag pressure durations) computed at each end of the roof. This interpolation is performed on the basis of the distance from the mass point in question to the blastward end of the roof, as shown below:

\[
(P_{pk})_i = (P_{pk})_B - \frac{[(P_{pk})_B - (P_{pk})_L](z_{ir})}{L_R} \quad (15)
\]

\[
(t_{dr})_i = (t_{dr})_B - \frac{[(t_{dr})_B - (t_{dr})_L](z_{ir})}{L_R} \quad (16)
\]

where \((P_{pk})_i\), \((P_{pk})_B\), and \((P_{pk})_L\) = the peak pressures acting at the mass point \(i\), and at the blastward and leeward ends of the roof, respectively

\((t_{dr})_i\), \((t_{dr})_B\), and \((t_{dr})_L\) = the durations of the pressure at the mass point \(i\) and at the blastward and leeward ends of the roof

\(L_R\) = the length of the roof

\(z_{ir}\) = the distance from the blastward end of the roof to the mass point \(i\)
To determine the pressure-time history for a mass point on the leeward wall, extrapolate the pressure data computed for the roof. Such an approach is utilized when the leeward wall is taken as an extension of the roof (Section 5.3); when the leeward wall is considered as an extension of the side wall, no such extrapolation is required, as all mass points on the leeward wall are equidistant from the blastward end of the frame. Here, the loading for the entire wall is based on the pressure-time history at the leeward end of the roof.

The extrapolation of the pressure data for the leeward wall is accomplished on the basis of the vertical distance from the roof to the mass point in question, as shown below:

\[
(P_{pk})_i = (P_{pk})_L - [(P_{pk})_B - (P_{pk})_L](Z_{iL})/L_R \tag{17}
\]

\[
(t_{dr})_i = (t_{dr})_L - [(t_{dr})_B - (t_{dr})_L](Z_{iL})/L_R \tag{18}
\]

The parameters in these equations are defined above with the exception of \(Z_{iL} \), which is the vertical distance from the roof to the mass point in question on the leeward wall.

Interpolation and extrapolation for the shock front velocities at the mass points on the roof and leeward walls are accomplished in a similar manner. In cases involving structures located in low-to-intermediate pressure ranges, the shock front velocity will be constant across the structure. Therefore, there will generally be no requirement for interpolating or extrapolating for these quantities at the mass points on the roof and leeward wall.

In situations involving very long structures or structures located in higher pressure regions, a more accurate interpolation for the peak roof pressures, load durations and shock front velocities can be achieved by determining the combined incident/drag pressure-time histories and shock front velocities at one or more locations along the roof girder, such as the middle of the roof or at every column/girder intersection. The data computed at two such locations is then utilized to interpolate for the pressures, durations and velocities at intervening mass points. Such an approach is also applicable for computing the pressure-time histories and shock front velocities at points on the leeward column when the leeward wall is taken as an extension of the roof. Here, pressure-time histories and velocities are computed at each floor level (including the foundation) and the interpolation is performed for the mass points between successive floor levels.
Phasing of Pressure-Time Histories for the Frame Analysis

The waveforms are phased on a time scale in order to simulate the effect of the blast wave traversing the structure. This phasing is accomplished by specifying a time lag before commencing the loading at each mass point. This quantity represents the time between the initial impingement of the blast wave on the frame and the arrival of the wave at the leading edge of the tributary area associated with a given mass point. This quantity, generally referred to as the arrival or travel time, is computed as follows:

\[t_a = \frac{D}{U_{AVG}} \quad (19) \]

where

\(t_a \) = the arrival time

\(D \) = the distance from the blastward surface of the frame to the leading edge of the tributary area. This distance is always measured parallel to the direction of the blast wave.

\(U_{AVG} \) = the average shock front velocity between the blastward end of the frame and the mass point

Modification of Pressure-Time Histories for the Frame Analysis

Two modifications of the phased pressure waveforms are needed which will account for the time lag effects and non-uniformity in the loading on the individual tributary areas. A typical modified waveform is depicted in Figure 28.

The first modification consists of applying a rise time, \(t_{rt} \), to the loading. This quantity represents the time required for the blast wave to traverse the tributary area, and is computed using the following equation:

\[t_{rt} = \frac{a}{U} \quad (20) \]

where

\(t_{rt} \) = the rise time which is the time required for the blast wave to traverse the tributary area

\(a \) = the maximum dimension of the tributary area measured parallel to the direction of propagation of the shock front
U = the shock front velocity at the mass point

The second modification is effected to simulate the non-uniformity of the loading on the tributary area. As the wave moves across the area, an unequal pressure distribution will exist. To account for this effect, an average pressure, $(P_{pk})_{AVG}$, is utilized in the analysis.

For the usual case of the linearly decaying loading function (see Fig 28), the average pressure acting on the area is computed using the following expression:

$$(P_{pk})_{AVG} = P_{pk}[1 - (a/2Ut_{dr})]$$ \hspace{1cm} (21)

where $(P_{pk})_{AVG}$ = the average peak pressure acting on the tributary area

P_{pk} = the peak pressure (the peak reflected pressure or the sum of the incident and drag pressures, whichever is the case) initially acting at a given mass point

t_{dr} = the duration of the pressure waveform (whether incident or reflected) computed using the methods of Section 4-14 of Reference 3

= t_{of} for the incident pressure-time history

= t_{r} for the reflected pressure-time history with a linear decay (Fig 26b).

For the particular case of the reflected pressure waveform with the bilinear decay (Fig 26a), the parameter t_{dr} is replaced in Equation 21 by a fictitious duration for the reflected pressure, t_{R}, which is computed using the following equation:

$$t_{R} = t_{c}/[1 - (P_{S}/P_{R})]$$ \hspace{1cm} (22)

where t_{c} = the clearing time required to relieve the reflected pressure. This quantity is computed as outlined in Section 4-14 of Reference 3.
\[P_s = \text{the value of the pressure at time } t_c \text{ (Fig 26a)} \]

\[P_r = \text{the peak reflected pressure (Fig 26a)} \]

The modified reflected pressure waveform with a bilinear decay is illustrated in Figure 29.

Calculation of Arrival Time, Rise Time and Average Pressure for Tributary Areas on the Varicus Surfaces

To compute the blast loading parameters, \(t_a \), \(t_r \), and \((P_{pk})_{AVG} \), the quantities \(a \) and \(D \) must be known. Examples of \(a \) and \(D \) are shown in Figures 30 and 31 for tributary areas on blastward walls; in Figure 32 for tributary areas on the roof; and in Figures 33 through 35 for tributary areas on leeward walls. Illustrations showing both normal and quartering shock waves are provided. The figures are not meant to specify the expressions for computing the values of \(a \) and \(D \); instead, they are included to illustrate the manner in which these quantities are determined, and therefore provide guidance for accomplishing this task.

Three illustrations related to the leeward walls are supplied because of the complex nature of the loading on these surfaces. Briefly, the loading on the leeward wall of the structure consists of secondary waves formed by the expanding pressure front as it moves past the rear edges of the building. These waves spillover from the roof and adjacent walls. For the purpose of computing the pressure-time histories for the analysis, the leeward wall is assumed to be an extension of either the roof or adjacent wall. If the spillover from the roof produces a more rapid loading of the leeward wall, the leeward wall is taken as an extension of the roof and the values for \(a \) and \(D \) are determined as illustrated in Figure 33. On the other hand, if the spillover from the adjacent wall produces a more rapid loading, Figures 34 and 35 are applicable.

In most cases involving single-story buildings, the spillover from the roof produces the more rapid loading on the portion of the leeward wall supported by the interior frames; while the spillover from the adjacent walls produces the same effect for the portion of the leeward wall supported by the end frames. In situations involving multi-story buildings, the tributary areas at the upper stories may be initially loaded by the spillover from the roof; whereas those areas at the base will initially be engulfed by the spillover from adjacent walls.
Calculation of Blast Loading Parameters t_{pk}, t_{c}, t_{T}

The time, t_{pk}, at which pressure $(P_{pk})_{AVG}$ occurs is computed using the following equation:

$$t_{pk} = t_{a} + t_{rt}$$ \hspace{1cm} (23)

The fictitious clearing time, $t_{c'}$, for the modified reflected pressure-time history with a bilinear decay is computed using the equation below:

$$t_{c'} = t_{a} + t_{rt}/2 + t_{c}$$ \hspace{1cm} (24)

The duration, t_{DI}, of the pressure-time history is computed as follows:

$$t_{DI} = t_{rt}/2 + t_{dr}$$ \hspace{1cm} (25)

and the time, t_{T}, at which the pressure decays to zero is:

$$t_{T} = t_{a} + t_{DI}$$ \hspace{1cm} (26)

The parameters, t_{a}, t_{rt}, t_{c} and t_{dr} are defined in the preceding sections.

5.4 Special Considerations

An area of special concern involves the use of pressure pulses with zero rise times; a situation common in analyses of frames for normal shock waves. Since a portion of the front wall area is assigned to the mass point at the exterior girder/column connection, some of the horizontal load will be applied directly along the longitudinal axis of the roof girder. When this occurs, an artificial magnification of the axial load in the girder may result due to the response of the member in its extensional mode. This magnification, combined with the spurious extensional mode vibrations of the member, will warp the axial load/bending moment interaction, which is the basis for determining when plastic action occurs. As discussed in Section 4.2, one method of avoiding this problem is to use multiple intermediate mass points (up to a maximum of three) on the exterior columns. This will reduce the magnitude of the axial load applied directly to the girder. If this remedy cannot be applied, another means of avoiding the problem is to alter the pressure waveform. This alteration can be accomplished by computing the period of the exterior column taken as a single-degree-of-freedom system. Using one quarter
of this period in place of the rise time, \(t_r \), in the equations of the preceding sections, a waveform corresponding to either of those shown in Figures 28 and 29 (as the case may be) can be constructed and utilized in the analysis.

Problems can also occur when the duration of the blast loading is small compared to the frequencies of the analytical model. This problem will arise in applications of DYNFA to situations involving close-in explosions. Although such applications of DYNFA will be rare, facility designers should be aware of the problem. In these situations, the integration time interval must be short enough to insure that the total impulse is included in the analysis. The use of a maximum time interval equal to \(1/20 \)th of the loading duration will achieve the desired result. Too large an interval will produce a stunted representation of the loading in the analysis which, in turn, will produce a lower calculated response of the frame than that which actually occurs.
6.1 Introduction

In order to restrict the amount of damage a structure will experience when resisting the effects of an accidental explosion, limiting values must be assigned to the appropriate response quantities. For members which can be analyzed as single degree-of-freedom systems (beams, floor and wall panels, joists, etc.), the appropriate quantities are the maximum ductility ratio (defined as the ratio of the maximum deflection to the equivalent elastic deflection) and the maximum end support rotation. Both of these quantities are computed as functions of the deflection at the midspan of the member. A detailed discussion of these criteria is presented in Chapter 2 of Reference 1.

Frame structures, on the other hand, must be analyzed as multi-degree of freedom systems and therefore the peak response of these structures cannot be determined on the basis of a single response quantity. This fact, combined with the wide range and time-varying nature of end conditions of the individual frame members, makes the measurement of ductility ratios and support rotations more complex. Consequently, other criteria are required to measure the complex responses of a frame structure. The deformation criteria in Section 2.3.2 of Reference 1 establishes acceptable limits for certain quantities related to the frame response. However, these response quantities do not, in some cases, provide a clear indication of the amount of inelastic action occurring. Hence, some members may be on the verge of collapsing due to the occurrence of excessive plastic strains while the analysis indicates that the deflections of the frame are within the deformation criteria. Therefore, other response quantities must be monitored in order to provide a more precise measurement of the plastic deformations. In addition, limits for these quantities must be specified in order to restrict the amount of damage suffered by the structure. The designation of appropriate response quantities for measuring the plastic deformations, together with the limiting values specified for these quantities, provide the basis for the ductility criteria for frame structures. These ductility criteria and the applicable deformation criteria in Reference 1 govern the design of blast-resistant frame structures.

The remainder of this section is devoted to the frame design criteria. Consistent with the standards established in
Reference 1, the criteria are specified for two different levels of damage. Structures in the first category are designated as "reusable" structures; while those in the second category are referred to as "non-reusable" structures.

The first part of the frame design criteria consists of the applicable portions of the deformation criteria given in Reference 1. These criteria establish limits on the following response quantities: (1) the sidesway deflection, \(\delta \), of each story, and (2) the end rotation, \(\theta \), (also referred to as the "chordal angle") of the individual members with reference to a chord joining the member ends. These quantities are illustrated in Figure 36. They are computed using the appropriate portions of the response history printed by DYNFA (Section 9.5).

As specified in Reference 1, the limiting values for the aforementioned response quantities are:

1. Reusable structures:
 - For sidesway, maximum \(\delta / H = 1/50 \)
 - For individual frame members, \(\theta_{\text{max}} = 1^\circ \).

2. Non-reusable structures:
 - For sidesway, maximum \(\delta / H = 1/25 \)
 - For individual frame members, \(\theta_{\text{max}} = 2^\circ \).

The second part of the frame design criteria, consisting of the limiting ductility ratios, is presented in the remainder of this section.

A summary of the frame design criteria is provided at the end of this section.

6.2 Measurement of Ductility Ratio

The response quantity used to measure the ductility ratio is the element end rotation, \(\gamma \) (Fig 37 and 38), which is the angle between the longitudinal axis of an element in its initial position, and a tangent to the elastic curve of the element. In contrast, the member end rotation, \(\theta \) (Fig 36), is measured between one chord joining both ends of a member and another chord joining one end with a point at the midspan of the deformed member.
In the elastic response range, the element end rotation, γ (Fig 37), consists of the two components listed below:

1. A rigid body component, α, which is computed as follows:
\[
\alpha = \frac{(y_B - y_A)}{L} \quad (27)
\]
 where $(y_B - y_A) = \text{the differential displacement between the ends of the element}$
 $L = \text{the length of the element}$

2. An elastic component, ϕ, which is the difference between the total element end rotation, γ, and the rigid body rotation, α:
\[
\phi = \gamma - \alpha \quad (28)
\]
The elastic components, ϕ_A and ϕ_B, at points ends A and B (Fig 36), are a direct measure of the bending moments at the ends of the element.

In the inelastic response range, the element end rotation consists of three components (Fig 37), namely: a rigid body rotation, α, which varies throughout this period as the element continues to deform; the elastic component, ϕ_{max}, measured at the onset of yielding at the end of the element; and a plastic component, β, which commences with initial yielding at the end of the element and increases until a peak plastic rotation, β_{max}, is realized. The elastic component of the rotation remains constant at a value of ϕ_{max} throughout the yielding process until a peak plastic rotation, β_{max}, is achieved. At this time, the element unloads and the elastic rotation varies accordingly. Appendix C presents the equations for the plastic component of the element end rotation for all of the possible combinations of yield conditions.

The computation of the various components of the element end rotations is performed by DYNFA as part of the frame analysis. The program also records the maximum positive and negative plastic and elastic components of the rotations at both ends of each element and uses these values to compute the maximum ductility ratios for each element using the following equation:
\[
u = 1.0 + \frac{\beta_{\text{max}}}{\phi_{\text{max}}} \quad (29)
\]
6.3 Ductility Ratios for Members Subjected to Bending Alone or to Simultaneous Bending and Axial Tension

Since the members of the frame are subjected to axial loads as well as bending moments, consideration must be given to the impact of the axial load on the ability of the member to sustain plastic deformations. In cases of steel members subjected to bending alone or to simultaneous bending and axial tension, ductility ratios between 13 and 20 were measured at collapse (Ref 16). In order to avoid a failure, however, the maximum ductility ratios have been specified as 3 for reusable structures and 6 for non-reusable structures. These quantities were derived by placing factors of safety (approximately 4 for reusable structures and 2 for non-reusable structures) on the minimum ductility ratio measured at collapse. In assigning these safety factors, the primary consideration in the case of reusable structures was to limit the amount of damage; whereas in the case of non-reusable structures, the primary consideration was to provide an ample margin of safety against collapse.

6.4 Ductility Criteria for Beam Columns

Failure Mode of Beam Columns

Beam columns may suffer an instability failure at ductility ratios below those measured for members subjected to simultaneous bending and axial tension. Consider the typical load-deformation response, depicted in Figure 39, for a laterally loaded beam column. Note that the load-carrying ability of the member dissipates after the peak load has been achieved. As the unloading progresses, an instability failure occurs due to the formation of plastic hinges on the member. Hence, the effects of stability must be considered for beam columns, because in some situations, plastic deformations corresponding to ductility ratios of 3 and 6 may not be attainable without a failure occurring.

Basis of Criteria

In order to incorporate the effects of beam column instability into the failure criteria, the data and methods of Galambos and others (References 16 and 17) were used to develop limiting ductility ratios for beam columns. In this report and in References 16 and 17, the ultimate ductility ratios are expressed in terms of the rotation capacity of the member end. The rotation capacity, R_c, is defined as the ratio of the maximum plastic rotation at failure, ϕ_{max}, to the maximum elastic rotation, ϕ_{max}, which occurred at the onset of inelastic action (see Fig 39).
The ultimate ductility ratio is defined in terms of the rotation capacity as follows:

\[\mu_{\text{ult}} = 1.0 + R_c \]

(30)

In References 16 and 17, the quantities \(\phi_{\text{max}} \) and \(\beta_{\text{max}} \) are measured in terms of the total member end rotation; whereas in DYNFA, these quantities are measured in terms of the relative member end rotation. Nevertheless, computing \(R_c \) in terms of either of these quantities produces similar results. Hence, the DYNFA method for computing the ductility ratios is consistent with the method used in References 16 and 17 for establishing the ductility criteria.

Members Subjected to End Moments

The limiting rotation capacities will vary depending upon the nature of the applied loads/moments and the conditions of restraint existing at the member ends. To provide a basis for the design of beam columns, data were developed for most, if not all, of the various types of loadings and end conditions encountered in frame structures. Rotation capacity data are provided in Reference 16 for beam columns subjected to bending moments applied at one or both ends of the member. These data are presented in Figures 41 and 42. The figures present the relationship between the rotation capacity and the applied axial load for members with varying slenderness ratios. In the figures, the applied axial load, \(P \), is expressed in non-dimensional form as a fraction of the ultimate tensile capacity, \(P_{\text{ult}} \), and the slenderness ratio is designated by the ratio \(L/r \) where \(L \) is the total length of the member and \(r \) is the radius of gyration about the axis of bending. Figure 40 contains an index which correlates the loading condition with the appropriate ductility criteria.

Members Subjected to Lateral Loads

The design data for laterally-loaded members were developed using the methods and data provided in References 17 and 18. Rotation capacity curves for laterally-loaded members were developed using a numerical integration procedure (Ref 18) to determine the lateral load versus end rotation relationship for the member. A typical curve is depicted in Figure 39. As illustrated in the figure, the maximum elastic \((\phi_{\text{max}}) \) and plastic \((\beta_{\text{max}}) \) rotations are defined as the rotations which correspond to a lateral load equal to 95 percent of the peak load on the curve. This definition is based on the results of tests on beam columns subjected to applied end moments (Ref 16). These tests revealed a marked
increase in the rate of collapse as the member unloaded to a moment equal to 95 percent of its measured capacity.

The design data developed is presented in Figures 44 through 53. The loading condition considered for the generation of these data consisted of a uniformly distributed lateral load applied simultaneously with a compressive axial load. The curves in these figures express the limiting rotation capacity as a function of the slenderness ratio of the member and the applied axial load. The rotation capacities are computed for the location on the member at which the first plastic hinge forms. Each curve in these figures corresponds to a constant slenderness ratio.

In developing the design data for this report, the methods of Reference 17 were extended to situations in which rotational restraints are provided at the ends of the member. The purpose of this extension was to more accurately simulate conditions in an actual structure, where all members are provided with elastic rotational restraints at their ends.

Two general conditions of rotational end restraint were considered, namely: both ends of the member restrained by elastic elements of equal stiffness; and one end of the member elastically restrained and the other end pinned. The data provided for each condition of end restraint were computed for five values of the rotational stiffness of the restraining element. Each of Figures 44 through 53 contains the rotation capacity curves for one value of the rotational stiffness. In each figure, the stiffness of the restraining element is expressed in terms of the moment distribution factor of the beam column. Figure 43 contains an index of the figures for the various values of the distribution factors.

The distribution factor is commonly used in performing moment distribution (Hardy-Cross) analyses of continuous beams. The distribution factor at one end of a frame member is computed as follows:

\[
DF_{AB} = \frac{K_{AB}}{\sum K}
\]

where \(DF_A\) = the distribution factor for frame member AB at joint A

\(K_{AB}\) = the relative rotational stiffness of frame member AB

\(\sum K\) = the sum of the relative rotational stiffnesses of all frame members (including member AB) intersecting at joint A.
The reader is referred to one of the standard texts on indeterminate structural analysis (such as Ref 19) for additional guidance in computing these factors.

The rotation capacity data provided in the figures cover a range of cases in which the distribution factors for the frame members vary from a minimum of 0.0625 to a maximum of 0.75. The lower values (0.0625 through 0.25) reflect conditions of restraint approaching fixidity; whereas the highest value (0.75) reflects a condition approaching a pin-ended support.

Factors of Safety and Limiting Ductility Ratios

The data contained in the aforementioned figures represents the values of the rotation capacities at a condition of imminent failure. In order to provide an ample margin against collapse of the member, a factor of safety is applied to these values in the frame design. The safety factors specified are 4 for reusable structures and 2 for non-reusable structures. Since the rotation capacity data preclude fracture of the material, limiting ductility ratios of 3 for reusable structures and 6 for non-reusable structures are specified.

The ductility ratio utilized for the design of a beam column is the minimum of either the ductility ratio derived from the data in Figures 41, 42 and 44 through 53, or the limiting ductility ratio.

Use of the Rotation Capacity Curves

The data contained in Figures 41, 42 and 44 through 53 are used in conjunction with the output of DYNFA to determine the adequacy of the members of the frame. The maximum allowable ductility ratio for a member is determined in the following manner. First, using the computed moments which occur when the maximum ductility ratio is realized in the response, sketch the moment diagram for the member. Compare this moment diagram with those shown in Figures 40 and/or 43. These figures correlate the data contained in Figures 41, 42 and 44 through 53 with the various loading conditions for which the criteria were developed. This correlation is accomplished on the basis of the moment diagrams produced by the various loading conditions.

It should be noted that the bending moment diagrams shown in Figures 40 and 43 conform to the standard beam sign convention (i.e., negative moment produces tension at upper or outside flange of member). On the other hand, the bending moments printed by DYNFA conform to a sign convention which is based entirely on
the direction of rotation produced by the moment (i.e., negative moment produces clockwise rotation). Therefore, when sketching the moment diagram for a member, the signs of the moments must be altered to conform to the standard beam sign convention.

Find the moment diagram in Figure 40 or 43 which has the closest resemblance to the moment diagram constructed using the DYNFA output and extract the ductility criteria for the member from the appropriate figure(s) of those listed. Figure 40 is generally applicable to members subjected to end moments; whereas Figure 43 applies to laterally-loaded members. Figure 40 may also apply in cases where small lateral loads are encountered. Due to the complexities inherent in the blast-induced response of a frame structure, the peak response of an exterior member may be produced by two effects, namely: the transverse loads acting directly on the member, and the bending moments applied at the ends of the member. The latter effect is usually produced by the direct loading on adjacent members or the overall sidesway response of the frame. In such cases, the bending moment diagram for the member at the instant it attains its peak response, will exhibit characteristics of the moment diagrams for each of these load cases. When this occurs, the ductility criteria for the member is taken as the minimum of the ductility criteria for the two loadings producing the member's peak response. Generally, the ductility criteria for the member will correspond to that for the lateral load case (Fig 43).

Second, from the printed output of DYNFA, read the axial load ratio, P/P_p, where P corresponds to the axial load in the member when the maximum plastic rotation occurs and P_p is the ultimate tensile capacity of the member. Enter the appropriate curve (in Fig 41, 42 or 44 through 53) with this quantity together with the slenderness ratio (z/r) for the axis of bending of the member, and read the limiting rotation capacity. Here, the total length, z, instead of the effective length, Kz, (where K is the effective length factor), is used to compute the slenderness ratio. In some cases, interpolation of the data may be required in areas where the curves are extremely sensitive to variations in one or more parameters, such as: the slenderness ratio, z/r, or, in cases involving laterally-loaded members, the distribution factor, DF. Here, engineering judgement will have to be exercised to determine whether the interpolation is required. The following guidelines are offered to assist in the interpolation:

1. For values of P/P_p less than 0.20, plot a curve of the values of R_p versus z/r for a constant value of DF and P/P_p. Read from this curve the
value of R_c for the value of l/r required. For values of P/P_p greater than 0.20, interpolate for l/r by inspection.

2. To interpolate for values of DF, plot curves of R_c versus DF for constant values of P/P_p and l/r; use at least three points for this curve. Read from this curve the value of R_c for the distribution factor, DF, required.

3. When the distribution factor is less than 0.0625 or greater than 0.75, the values of R_c shall be taken as equal to those for distribution factors of 0.0625 and 0.75, respectively.

4. When the distribution factors, DF_{AB} and DF_{BA} for a member restrained at both ends are unequal, enter the curves with the lower of the two values of the DF, and read the corresponding values of R_c for each of the following cases:

 a. Both ends of member restrained (Ref Fig 44 through 48). The value of R_c for this case is the upper limit of the rotation capacity for the member.

 b. One end restrained, other end pinned (Ref Fig 49 through 53). The value of R_c for this case is the lower limit of the rotation capacity for the member.

Using the two values of R_c thus obtained, the value of the rotation capacity for the member is computed as illustrated in Figure 54. In the example shown the distribution factor DF_{AB} is taken as the lower of the two distribution factors for the member. The upper portion of the figure shows the tabulated rotation capacities for cases a and b above. In the lower portion of the figure, the tabulated values of R_c are plotted versus the corresponding values of DF for end B of the member. Since data for only two points are available, the plot is taken as a straight line. The value of $(R_c)_m$ for the member is then determined by entering the plot with the actual value of distribution factor, DF_{BA}.

Finally, the limiting ductility ratio is computed by dividing the rotation capacity by the appropriate factor of safety and adding one to the resulting quotient.
Limitations in Ductility Ratio Criteria for Beam Columns

The failure criteria related to beam columns was developed on the basis of a series of non-linear analyses (Ref 16, 17 and 18) in which the following simplifying assumptions were made:

1. The member is subjected to in-plane bending only.
2. The ends of the member remain stationary; that is, no differential displacement occurs between the member ends.
3. In most cases, collapse will be caused by the overall instability of the member, and therefore, the effects of local failure modes, such as local or torsional buckling, can be neglected.

In the first instance, it was considered appropriate to base the criteria on the in-plane bending behavior of beam columns and account for the effects of bi-axial bending by using reduced bending capacities in the frame analysis, as described in Section 7. Application of the provisions in Section 7 will yield an ample margin of conservatism which precludes the need for a three-dimensional stability criteria.

The second assumption neglects the possible reductions in the rotation capacities of the columns due to sidesway motions of the frame. However, these reductions are partially accounted for by the inclusion of the P-Δ effect in the analysis. In addition, they will be offset, to some extent, by the stabilizing effects of the inertial forces on the member, which retard the buckling process.

Frame members designed according to the provisions contained in Sections 3.3.4 through 3.3.6 of Reference 1 will not be susceptible to local failures, such as local buckling or lateral torsional buckling. Therefore, the exclusion of the local failure modes from the development of the criteria is appropriate. However, in some cases, the design cannot conform to the referenced specifications and, therefore, the possible occurrence of these types of failures may reduce the available rotation capacity of the member (Ref 16). Reductions caused by lateral torsional buckling are partially accounted for by using a reduced bending capacity for the member in the analysis (Section 4.4). However, additional data is required to establish criteria for beam columns subjected to local failures. At present, there is little data available for this purpose and, therefore, in the absence of this data, it may be necessary to restrict the amount of inelastic
action to much lower levels than those specified in this section. In extreme cases, it may even be necessary to design the members to remain elastic throughout the response. Here, the designer must exercise some judgement in assessing what level of inelastic dynamic response is tolerable.

6.5 Summary of Criteria

1. Sidesway and end rotation criteria
 a. Reusable structures
 For sidesway, maximum \(\delta/H = 1/50 \)
 For individual frame members, \(\theta_{\text{max}} = 1^\circ \)
 b. Non-reusable structures
 For sidesway, maximum \(\delta/H = 1/25 \)
 For individual frame members, \(\theta_{\text{max}} = 2^\circ \)

2. Ductility criteria
 a. Reusable structures
 Members subjected to combined bending and axial tension, \(\mu_{\text{max}} = 3 \)
 Members subjected to combined bending and axial compression:
 \[
 \mu_{\text{max}} = 1 + \frac{R_C}{4}
 \]
 or
 \[
 \mu_{\text{max}} = 3, \text{ whichever governs.}
 \]
 b. Non-reusable structures
 Members subjected to combined bending and axial tension, \(\mu_{\text{max}} = 6 \)
 Members subjected to combined bending and axial compression:
 \[
 \mu_{\text{max}} = 1 + \frac{R_C}{2}
 \]
or

\[
\mu_{\text{max}} = 6, \text{ whichever governs.}
\]

Note: 1. \(R_c \) in the above equations designates the ultimate rotation capacity read from the appropriate curve of those provided in Figures 41, 42 and 44 through 53.

2. The limits specified apply to plastic deformations occurring within the span of a member or at the member ends.
SECTION 7
DESIGN METHODS FOR BI-AXIAL BENDING OF COLUMNS

7.1 Introduction

The nature of the blast loading on rectangular buildings is such that, for any direction of shock wave propagation, some building columns, if not all, are subjected to bi-axial bending. To illustrate this, consider the structure shown in Figure 55, which is typical of those encountered in ammunition facilities. Under the influence of Shock Front I, all of the Y-direction frames will experience sidesway motion, while those in the X-direction will not. In addition, all of the exterior columns on lines 1 and 4 will respond to the side-on pressures. As a consequence, all of the exterior columns will undergo bi-axial bending while the interior columns experience bending about one axis only. If the effects of Shock Front II are considered, bi-axial bending occurs in all of the columns.

When designing the interior Y-direction frames for Shock Front I, each frame can be analyzed with DYNFA as an independent structural system. However, in situations where bi-axial bending occurs (such as those described above), the frame design, and therefore the DYNFA analysis, must account for the interactions between the responses of orthogonal frames. Since the analysis performed by DYNFA is restricted to uni-axial bending of the frame members, an approach is needed whereby the applicability of the program can be extended to situations involving bi-axial bending. Such an approach is presented in this section.

7.2 Basic Procedure

A more rigorous approach to the problem would entail a three-dimensional elasto-plastic analysis of the entire building. For the general type of structure encountered, this would constitute an impractical task. An alternate approach has been developed which utilizes the DYNFA program as described below.

Briefly, several representative frames spanning in each direction are selected for analysis with DYNFA. In cases involving shock waves normal to one of the exterior walls of the building (such as Shock Wave I shown in Fig 55), the procedure can be simplified as only the exterior columns of the side wall experience bi-axial bending. Hence, the analyses of the frames positioned perpendicular to the blast direction can be omitted and the responses of the exterior columns to the side-on pressures
can be estimated on the basis of single degree-of-freedom analyses.

Two DYNFA analyses are performed for each selected frame. In the first analysis, inelastic behavior of the columns is neglected. This is accomplished by using fictitiously high bending moment capacities (at least 2 to 3 times the actual capacity) for the elements representing these members. Based on the results of the first group of analyses, the bending capacity about each axis of each building column is reduced to account for the simultaneous application of bending moments about both axes. With reduced bending capacities specified for the columns, each frame is re-analyzed with DYNFA. The inelastic behavior of the columns is included in the second group of analyses. The adequacy of all frame members is assessed on the basis of the results of this second group of analyses.

Additional information on the procedure is provided in the remainder of this section.

7.3 Use of Results of First Group of Analyses

General

The results of the first group of analyses are used for two purposes, namely: to make a preliminary assessment of the structural integrity of each frame analyzed, and to determine the reduced bending capacities of the columns for use in the second group of analyses.

Preliminary Assessment of Structural Integrity

The structural integrity of the frame members is investigated on the basis of the criteria specified in Section 6. From the DYNFA results, tabulate the following response parameters, namely: the peak sidesway deflection of each frame, and the maximum chordal angle and ductility ratio for each girder. Also tabulate the maximum chordal angle for each exterior column. Procedures for using the printed output of DYNFA to determine the sidesway deflections and chordal angles are presented in Section 9. The ductility ratios are computed and printed by DYNFA. Compare these quantities with the frame design criteria of Section 6. At this stage of the design, margins of 10 to 20 percent of the limiting values are required between the computed response parameters and the design criteria. Where such margins are not apparent, increase the sizes of the under-designed members and rerun the analysis of that particular frame. These margins are necessary to insure that the inelastic deformations of the frames in the second group of analyses will not exceed the design criteria.
Reduced Bending Capacities of Columns

Following the preliminary assessment of the structural integrity, the design proceeds with the computation of the reduced bending capacities of the columns. For a given column, tabulate at each nodal point on the member, the maximum bending moments which occur about each axis. Because only a few representative frames in each direction are analyzed, the printed output of DYNFA will not contain the peak bi-axial bending moments for every column being investigated. However, it can generally be assumed that the response histories of several successive frames spanning in one direction will be similar in magnitude, frequency and duration, provided that the members of these frames have similar properties and the loadings on each frame are similar in magnitude and duration. By virtue of this assumption, the DYNFA results for one column may be applied to another. For instance, suppose the desired quantity is the peak moment about the X-axis of column B3 (see Fig. 55), but frame 2 was analyzed, not frame 3. In this case, the desired moment is taken as the peak X-axis moment for column B2. This assumption applies for estimating the responses of the leeward exterior frames; that is, the response of frame 4 can be assumed to be equal to the response of frame 1 provided that the loadings for both frames are similar. When larger pressure differentials occur between the ends of the building, it may be necessary to analyze all of the exterior frames.

With the peak-applied moments, M_x and M_y, tabulated at each nodal point, the nodal capacity reduction factors, R_n, are computed as shown below:

$$\frac{|M_x|}{M_{mx}} + \frac{|M_y|}{M_{my}} = R_n$$ \hspace{1cm} (32)

where M_{mx} and M_{my} are defined and computed as described in Section 2.4.

To eliminate unnecessary analyses, the following limits are specified for the nodal reduction factor:

$$R_n \leq 1.25 \text{ for a reusable structure, and}$$

$$R_n \leq 1.50 \text{ for a non-reusable structure.}$$

These values apply to all but corner columns. The limits for corner columns are:

$$R_n \leq 1.5 \text{ for a reusable structure, and}$$

$$R_n \leq 2.0 \text{ for a non-reusable structure.}$$
If all nodal reduction factors for a member are greater than the limiting value, the member should be increased in size. On the other hand, if all of the reduction factors are less than one, decrease the size of the member. Compute nodal reduction factors for the new member using its bending capacities and the bending moments, M_x and M_y, computed for the original member.

Reduced moment capacities for the second group of analyses are then computed as follows:

$$\overline{M}_x = \frac{|M_x|}{R_n} \quad (33a)$$
$$\overline{M}_y = \frac{|M_y|}{R_n} \quad (33b)$$

Moment capacity reductions are effected at every nodal point on each column. To illustrate the use of Equation (33), a sample computation is provided in Table 6 for a column subjected to bi-axial bending. The column involved is modeled with two elements (7 nodal points).

7.4 Use of Results of Second Group of Analyses

In the second phase of the analysis, the frames are re-analyzed with reduced bending capacities specified for the elements representing the columns. The results of this second group of analyses are then checked against the design criteria of Section 6 to determine the adequacy of the frame members.
SECTION 8
USER'S MANUAL FOR DYNFA

8.1 Introduction

The material presented in this User's Manual includes a summary of the program capabilities, descriptions of the input data, specifications of the computer usage, dimensional limitations of the program, and the formats for the input data cards. A graphical illustration showing the arrangement of a typical data deck is presented at the end of the section. The printed output of the program is described in Section 9.

8.2 Capabilities of Program

The DYNFA program performs a multi-degree-of-freedom non-linear dynamic analysis of a frame structure subjected to arbitrary time-dependent loadings. The program considers the P-Δ and beam-column effects in the analysis. In addition, the program contains a static analysis routine. When this routine is utilized, the static nodal displacements and element loads are used as the initial conditions for the dynamic analysis.

The results of the dynamic analysis consist of the deformations of the structure expressed in terms of the nodal displacements and rotations, the axial loads, bending moments and shears in each of the elements, and the plastic deformations expressed in terms of ductility ratios for the elements.

8.3 Input Data

The input data are transmitted to the computer program via punched cards containing the following data which are related to the analytical model of the structure:

1. The coordinates of the nodal points in a right-handed Cartesian coordinate system.
2. The translational and rotational restraints specified for the support nodes.
3. The masses assigned to the mass points.
4. The nodal connectivities, cross-sectional properties, and the axial load and bending moment capacities of the elements.
5. The integration time interval and the number of these time intervals for computing the response of the structure.

6. The pressure waveforms for simulating the transient loading on the structure.

7. The tributary loading areas assigned to the mass points on the exterior members.

Before the input data can be punched on cards, identification numbers must be assigned to the nodal points, elements and pressure waveforms. Three distinct sets of identification numbers are established: one set for the nodal points, one for the elements and a third for the pressure waveforms. The numbers in each set must be in sequential order beginning with the number 1; gaps in the numbering are not permissible. The appropriate identification number must be entered on input cards containing data pertaining to any of the aforementioned input parameters. Figure 56 shows identification numbers for the nodal points and elements of a typical model. In the figure, the element numbers are enclosed in circles in order to distinguish them from the nodal point numbers. It is often desirable to do this in order to avoid confusion.

Additional information pertaining to the various input quantities is contained in the following sections.

8.4 Nodal Coordinates

The nodal coordinates locate the position of the nodal points with respect to the origin of a right-hand Cartesian coordinate system (commonly referred to as the global coordinate system). The orientation of this coordinate system and the location of its origin is chosen by the analyst. The nodal coordinates, in effect, define the geometry of the analytical model.

The sign convention of the global coordinate system must be rigidly adhered to when specifying such input parameters as the nodal coordinates, tributary areas and static loads. To facilitate the data preparation, the axes of the global coordinate system should be directed horizontally and vertically, and the positive directions of these axes should be established as follows:

1. The positive direction of the horizontal axis should be taken in the direction of the propagation of the shock front, and

2. The positive vertical axis should be directed upward.
Figure 56 shows the global coordinate system for a typical model. In order to minimize the possibility of errors in the preparation of the input data cards, the origin of the global system should be located such that most, if not all, of the nodal coordinates are positive quantities. This is accomplished by locating the origin at the lower left-hand corner of the model, as shown in Figure 56.

In the input data specifications and in the printed output of the program, the global axes in the plane of the model are designated as the X and Y axes. The global Z axis is perpendicular to the plane of the model. The positive direction of the global Z axis is established by the application of the right-hand rule.

The global coordinate system establishes the signs and directions of the nodal displacements computed by DYNFA.

8.5 Conditions of Restraint

Translational and/or rotational restraints are specified for nodal points corresponding to support points. Restraints are specified for the individual components (translations in the X and Y axes and rotation about the Z axis) of the displacement vector at a nodal point. Where no restraint is apparent, none should be specified. Figure 57 illustrates the manner in which the support conditions for a structure are specified in terms of nodal restraints.

Caution must be exercised when specifying this input data as errors will completely alter the results of the analysis. In addition, enough nodes must be restrained to prevent rigid body motion of the model.

8.6 Lumped Masses

Masses are assigned to selected nodal points in the model. The methods utilized to distribute the mass in the model are presented in Section 4.3. Two masses, one for each translational degree of freedom, may be specified for each mass point; however, the mass quantities specified for a single mass point need not be equal. Positive and/or negative signs must never be assigned to these quantities.
8.7 Input Data for Elements

General

The data required consists of the nodal connectivities, the cross-sectional properties and the axial load (tensile and compressive) and bending moment capacities. The input data related to the nodal connectivities are discussed in this section. The other items are treated in Section 4.4.

Nodal Connectivities

The nodal connectivities are the nodal points at the ends of each element. These quantities define the connectivity of the members of the structure; hence, they establish the configuration of the model.

The nodal connectivities are also used to define a right-hand Cartesian coordinate system associated with each element. This system is commonly referred to as the local coordinate system. The local axes in the plane of the model are designated the x-y axes; the local axis perpendicular to the plane of the model is designated as the z axis.

The local x axis for an element coincides with its longitudinal axis; the direction of the local x axis is determined by the order in which the nodal connectivities are entered on the element input card. The first nodal point number punched on the element card is taken by DYNFA as the origin of the local system. The positive direction of the x axis is from the first to the second nodal point number specified for the element. The direction of the positive z axis taken by the program to be identical to that chosen by the analyst for the global Z axis. The positive direction of the local y axis is determined in the program by the application of the right-hand rule. The local coordinate system for an element is shown in Figure 58. The designations JA and JB in the figure refer to the first and second nodal points entered on the element input card.

Local coordinate systems for colinear and/or parallel elements should have the same orientation. In this way, the axial loads and shears for these elements will conform to the same sign convention. It is also recommended that the elements representing a single frame member be numbered sequentially, and that the numbering of these elements begin at one end of the member and proceed to the other end. In this manner, the loads and bending moments for the member will be printed out in a properly ordered block of data.
Pinned Connections of Elements

In the DYNFA analysis, it is assumed that the relationships between all force and displacement vector components of an element are governed by identical continuity and equilibrium equations. In many structures, there may be local deviations from this condition. In frame structures, such deviations are caused by non-rigid member connections and other types of structural discontinuities such as splices in the span of a member or the pinned connections of diagonal braces in braced frames. The DYNFA program has provisions for including these structural discontinuities in the analysis. In DYNFA, structural discontinuity is simulated by inserting a local pin at the end of an element. The specification of a local pin indicates that the moment at the pinned end of the element is zero. Local pins produce discontinuities in the individual elements for which they are specified; they do not alter the conditions of continuity and equilibrium for other elements. Figure 59 illustrates the manner in which several types of member connections are specified in terms of local pins.

The careless use of local pins can lead to errors in the analysis. Where a moment discontinuity exists at the intersection of two elements, only one intersecting element should be pinned; pinning both elements at the same node will produce a singularity in the system stiffness matrix causing a premature abortion of the program execution. Local pins should never be used to specify a pinned support node. The pinned condition at a support node is automatically created by the exclusion of a rotational restraint for the node.

8.8 Integration Time Interval and Duration of Response

Integration Time Interval

Determining the integration time interval, to be utilized for the numerical integration, involves estimating the frequency of the highest mode of vibration of the model. The increment to be used should be approximately 1/20 of the period of vibration of the highest mode in the model, whether it be an extensional or bending mode.

The equation for the period of the primary extensional mode of a member is:

\[T_a = \frac{2\pi \sqrt{I_m/EI}}{AE} \]

(34)
where \(T_a \) = the period of the primary extensional mode

\[L = \text{the total length of the member} \]

\[M_e = \text{the concentrated mass at the end of the member. The mass utilized is associated with the dynamic degree-of-freedom in the direction of the longitudinal axis of the member. When masses are concentrated at both ends of a member, the lesser of the two should be used to compute the period.} \]

\[A = \text{the cross-sectional area of the member} \]

\[E = \text{the modulus of elasticity of the material.} \]

The bending modes considered comprise the higher order bending modes of the individual members. Only members with intermediate mass points are investigated. The general equation for computing the natural period of vibration for the bending mode of a beam is:

\[T_b = \frac{1}{C} \sqrt{\frac{M_i L^3}{E I}} \]

(35)

where the parameters \(L \) and \(E \) are defined above and the remaining parameters are defined below:

\[T_b = \text{the natural period of vibration} \]

\[M_i = \text{the summation of the masses at all intermediate mass points on the member} \]

\[I = \text{the moment of inertia of the member} \]

\[C = \text{constant} \]

Values of the constant "\(C \)" are provided in Table 7 for beams with up to four intermediate mass points between supports. In the table, data are provided for members with different support conditions. In choosing which support condition applies for a given member, consideration should be given to the rotational restraint provided at the ends of the member by adjoining members. Only the period of the highest mode of the member is required.

The proper selection of an integration time interval is mandatory when utilizing numerical integration procedures. Using an increment that is too large will result in a numerical integration which either produces erroneous results or becomes
unstable; while using an increment that is too small entails greatly increased computer costs.

Duration of Response

The number of integration time intervals specified in the input is determined on the basis of the natural period of the sidesway mode of the frame. Generally, the response is computed for a duration of one half the period of the sidesway mode. In most cases, all of the significant responses will occur during this time interval. If the rebound of the frame is desired, the computation of the response is extended to a duration equal to the period of the sidesway mode.

The sidesway natural period of single-story rectangular frames is computed using the following equation:

\[T_s = \frac{2\pi \sqrt{m_e/KK_L}}{K} \] \hspace{1cm} (36)

where
- \(T_s \) = the natural period of the frame
- \(m_e \) = the equivalent mass of the frame consisting of the total roof mass plus one third of the column and wall masses
- \(K \) = the stiffness factor for single-story rectangular frames subjected to uniform horizontal loads. This quantity is defined in Table 8.
- \(K_L \) = a load factor that modifies \(K \) = 0.55(1 - 0.25\(\beta \))
- \(\beta \) = base fixity factor (i.e., \(\beta = 0 \) for a pinned base and \(\beta = 1 \) for a fixed base)

The natural period for rigid frames with supplementary diagonal bracing is given by:

\[T_s = \frac{2\pi \sqrt{m_e/(KK_L + K_b)}}{Kb} \] \hspace{1cm} (37)

All parameters in this equation, with the exception of \(K_b \), are defined above. \(K_b \) is the horizontal stiffness of the diagonal bracing system which is given by:

\[K_b = (nA_bE\cos^3\gamma)/L \] \hspace{1cm} (38)
where \(n \) = the number of diagonal braces

\[
A_b = \text{the cross-sectional area of a diagonal bracing member}
\]

\(\gamma \) = the angle between the bracing member and a horizontal plane

Note that the frame stiffness, \(k \), is zero for braced frames with non-rigid connections.

The number of time increments specified in the input is computed as shown below:

\[
NDT = 1 + \frac{T_f}{\Delta t} \quad (39)
\]

where \(NDT \) = the number of time increments specified in the input

\(T_f \) = the desired duration of the response

\(\Delta t \) = the integration time increment

When computing \(NDT \), the quotient \(T_f/\Delta t \) is always rounded off to a whole number.

Time Interval for Printed Output

An additional time parameter can be specified in the input. This parameter indicates the number of integration time stations to be skipped in the printed output. Since the significant responses of the structure occur in low frequency modes, the response need not be printed out at every integration time station as much of these data would be of little interest. Generally, the time interval utilized for printing the response output is taken as \(0 \) to \(20 \) times the integration time increment.

8.9 **Pressure-Time Histories and Tributary Areas**

General

The blast loading on the frame is specified in two parts. The first part consists of the pressure-time histories; the second part consists of the tributary areas assigned to the mass points. Methods for computing these data are provided in Section 5.
Input Specification of Pressure-Time Histories

The input specification of each waveform consists of the pressures acting at discrete times. The waveform is approximated in the analysis by a series of intersecting linear segments. Each waveform must be defined for a time interval which begins at $t = 0.0$ second and extends through the specified duration of the response. Intervals of zero pressure must be accounted for in the input. Figures 60 and 61 show the digitized pressure-time data that are entered in the input for the typical waveforms depicted in Figures 28 and 29, respectively. Note that the digitized data specification for each waveform includes the time interval during which the pressure is zero.

Each pressure waveform must be assigned an identification number. These numbers are used by DYNFA to match the pressure waveforms with the corresponding tributary areas.

Input Specification of Tributary Areas

The assignment of the tributary areas to the various mass points is described in Section 5.2. Each input card containing tributary areas must also contain the nodal point number of the mass point to which the areas are assigned. Two areas may be entered for each mass point. Each tributary area that is entered in the input must be accompanied by the appropriate pressure waveform identification number.

8.10 Specification of Dead and Live Loads

The static analysis routine in DYNFA is provided for the purpose of performing the dead and live load analyses of frames. Two types of static loadings can be specified in the input. The first consists of uniformly distributed loadings on the elements. The direction of these loads is established by specifying the axis of the global system $(X, -Y)$ in which they act. The second type consists of concentrated loads applied directly to nodal points. Concentrated nodal loads conform to the sign convention of the global coordinate system.

The dead load supported by a frame consists of the weight of all roof structure and some wall structure within its tributary strip of the building. The distribution of the dead load of the roof is dependent upon the positioning of the purlins. When the purlins are parallel to the frame, the dead loads of the roof are distributed in the following manner:
1. The weight of decking supported by the girder, plus its own weight, is applied as a uniformly distributed load to the elements representing the member.

2. The remainder of the roof dead load is applied a series of concentrated nodal loads at the girder/column intersections.

When the purlins are positioned normal to the frame, either of two procedures are utilized, depending upon the number of purlins supported within the span of a particular girder. In cases involving girders supporting three or less purlins, the following procedure should be utilized:

1. The weight of the girder is applied as a uniform load to the elements representing the member.

2. The weight of a purlin and the decking it supports is applied as a concentrated load to the nodal point corresponding to the purlin/girder connection.

3. The remaining dead load of the roof supported by the frame is applied as a series of concentrated loads at the girder/column intersections.

When more than three purlins are supported within the span of a girder, all weight supported by the member, plus its own weight, is applied as uniformly distributed loads to the elements representing the girder.

It is debatable as to what portion of the wall structure is supported by the frame. Certainly, the columns support themselves; hence, the weight of these members is applied as uniform loads to the elements representing them. In single-story buildings, the secondary structure of an exterior wall supports itself. However, it is conceivable that blast-induced failures in the siding or in the connections of the siding to its support could result in the redistribution of part or all of the dead load of the wall structure to the column. To account for this, one half of the weight of the secondary structure of the wall is applied as a concentrated nodal load at the exterior girder/column connection.
8.11 Computer Usage and Restrictions

The DYNFA program is written in FORTRAN IV for the CDC 6600 computer. The FORTRAN coding of the program is given in Appendix D.

The size restrictions imposed by the dimensional constraints of the program are summarized as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Maximum Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodal points</td>
<td>30</td>
</tr>
<tr>
<td>Number of nodal points with restraints</td>
<td>30</td>
</tr>
<tr>
<td>Number of mass points</td>
<td>30</td>
</tr>
<tr>
<td>Number of beam elements</td>
<td>30</td>
</tr>
<tr>
<td>Number of pressure waveforms</td>
<td>30</td>
</tr>
<tr>
<td>Number of discrete time stations</td>
<td>20</td>
</tr>
<tr>
<td>for each pressure waveform</td>
<td></td>
</tr>
<tr>
<td>Number of nodal points with</td>
<td>30</td>
</tr>
<tr>
<td>assigned tributary areas</td>
<td></td>
</tr>
<tr>
<td>Number of nodal points with</td>
<td>30</td>
</tr>
<tr>
<td>concentrated loads (static)</td>
<td></td>
</tr>
<tr>
<td>Number of integration time increments</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Number of output-time stations</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

8.12 Units

The program utilizes either the International System (SI) or the U.S. System of Units. The SI Units are contained in the program; whereas the U.S. Units must be requested by the user in the input. The units for the various input parameters are provided in Section 8.13. The units used in the output are specified in Table 9.
8.13 Formats of Input Data Cards

Introduction

This section presents the formats used for specifying the various input parameters.

There are 15 types of cards used to specify the input data for this program in addition to a terminator card required to signify the end of the data. Each type of card is described below in terms of data format, definition and field allocations. The numbers above the graphic representation of each card identify the last column in each data field of that card. The letters below designate the format for the data. In fields designated "I", the quantity entered must be right-adjusted to the last column in the field. A decimal point must not be used with "I" formatted input data. In the fields designated "F", a decimal point is required; however, the number can be located anywhere within the field. Fields designated "A" may contain alphanumeric data. A plus sign for a positive quantity must not be used as it will abort the execution of the program. Minus signs for negative quantities must be placed in the first blank column to the left of the number.

Structural Data Cards

Card Type 1: Structure Description Card (Required)

<table>
<thead>
<tr>
<th>STRUCTURE DESCRIPTION CARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>("A" FORMAT)</td>
</tr>
</tbody>
</table>

This card may contain alphanumeric information in Columns 1-80.
Card Type 2: Problem Specification Card (Required)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>NELM</td>
<td>NNODE</td>
<td>NNOR</td>
<td>NNOW</td>
<td>NNOF</td>
<td>IPP</td>
<td>IMPV</td>
<td>E</td>
</tr>
</tbody>
</table>

"I" FORMAT

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>78</td>
<td>80</td>
<td>NU</td>
<td></td>
</tr>
</tbody>
</table>

"I" FORMAT

NELM = Number of elements

NNODE = Number of nodal points

NNOR = Number of nodal points with restraints

NNOW = Number of nodal points with assigned masses (number of mass points)

NNOF = Number of nodal points subjected to blast loads (< NNOW)

IPP = 1 The program prints the nodal displacements and rotations at every output time station. If this parameter is omitted, the nodal displacement history will be excluded from the output.

IMPV = 1 The program prints the element end loads (axial load, shear and bending moment) at every output time station. If this parameter is omitted, the element end loads will be excluded from the printed output.

E = Modulus of elasticity (SI Units: kilopascal; U.S. Units: pounds per square inch).

YFACT = Fraction of elastic stiffness utilized after yielding (see Section 3.3). If this parameter is omitted, a value of 0.05 is used by the program.
NELAS = 0 Normal Option: The program performs an elastic-plastic analysis of structure.
 = 1 Inelastic behavior of elements will not be considered in the analysis.

NDEAD = 0 Normal Option: Program performs static analysis on structure prior to the start of dynamic analysis.
 = 1 Static analysis of structure is omitted.

NLNODE = Number of nodal points with static loads. If concentrated loads are applied to some of the nodal points, an entry must be made in the field.

This parameter is omitted if concentrated nodal loads are not utilized.

NJ = US: The program accepts the input in the U.S. System of Units. If no entry is made in the field, the input is assumed to be in SI Units.

Card Type 3: Nodal Coordinates Card (one card is required for each nodal point)

<table>
<thead>
<tr>
<th>Node No</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE NO</td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

Node No = The nodal point number

X, Y = Nodal coordinates in the global coordinate system (SI Units: meter; U.S. Units: inch)
Card Type 4: Nodal Restraint Card (Enter restraint cards only for support nodes - see Fig 57)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>r_X</th>
<th>r_Y</th>
<th>r_θ</th>
</tr>
</thead>
</table>

("I" FORMAT - ALL FIELDS)

NODE NO = The nodal point number

$r_X = 1$; component of the nodal displacement in the direction of the global X axis is restrained.

$r_Y = 1$; component of the nodal displacement in the direction of the global Y axis is restrained.

$r_\theta = 1$; rotation at nodal point is restrained.

$r_X = r_Y = r_\theta = 0$; no restraint applied.

Card Type 5: Nodal Mass Card (Enter cards for mass points only.)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>MX</th>
<th>MY</th>
</tr>
</thead>
</table>

("F" FORMAT)

NODE NO = The nodal point number of the mass point

MX = Nodal mass assigned to dynamic degree-of freedom in X-direction

MY = Nodal mass assigned to dynamic degree-of freedom in Y-direction
UNITS: SI System - kilogram

U.S. System - pound-force (conversion to units of mass done by program)

Card Type 6: Element Cards (one card required for each element)

<table>
<thead>
<tr>
<th>ELEM NO.</th>
<th>JA</th>
<th>JB</th>
<th>P_A</th>
<th>P_B</th>
<th>A</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

"I" FORMAT

<table>
<thead>
<tr>
<th>MmA</th>
<th>MmB</th>
<th>P_p</th>
<th>P_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

"F" FORMAT

ELEM NO = The element number

JA = Nodal point at end A of element (see Fig 58)

JB = Nodal point at end B of element

P_A = P: Local pin at end A of element (see Fig 59)

P_B = P: Local pin at end B of element (see Fig 59)

A = Cross-sectional area (SI Units: centimeter square; U.S. Units: inch square)

I = Moment of inertia (SI Units: centimeter fourth; U.S. Units: inch fourth)

MmA = Ultimate bending capacity of element at end A (SI Units: kilonewton-meter; U.S. Units: pound-inch)

MmB = Ultimate bending capacity of element at end B (Units: see above)
$P_0 =$ Ultimate dynamic load capacity in axial tension (SI Units: kilonewton; U.S. Units: pound)

$P_u =$ Ultimate dynamic load capacity in axial compression (Units: see above)

Card Type 7: Damping (Required)

DAMP = Percentage of damping expressed as a decimal

Card Type 8: Integration Time Card (Required)(Section 8.8)

NDT = Total number of time integration steps

DT = Integration time interval (Units: second)

NSKIP = Number of integration time steps to be skipped between printout of structure's response. For most applications, specify: $10 < \text{NSKIP} < 20$. An entry is required when the quantity one (1) is entered for the parameters IPP and IMPV on Card Type 2.

Loading Data Cards

Input Cards for Dynamic Loads

The input required for each pressure waveform consists of one Pressure Waveform Specification Card (Card Type 10) plus several P-T Cards (Card Type 11). One P-T card is required for each point in the waveform. All of the input cards for a waveform must be grouped together in the data deck.
Card Type 9: Loading Specification Card (Required)

<table>
<thead>
<tr>
<th>NWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
</tr>
</tbody>
</table>

NWF = Number of pressure waveforms

Card Type 10: Pressure Waveform Specification Card
(one card required for each waveform)

<table>
<thead>
<tr>
<th>WF NO</th>
<th>NPOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>(I)</td>
</tr>
</tbody>
</table>

WF NO = Pressure waveform identification number

NPOINT = Number of points (pressure versus time) in waveform

Card Type 11: P-T Card (one card required for each point in waveform) (see Fig 60 and 61)

<table>
<thead>
<tr>
<th>Pi</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F) FORMAT</td>
</tr>
</tbody>
</table>

"F" FORMAT

P_i = The pressure of point i (SI Units: kilopascal; U.S. Units: pound per square inch)

T_i = The time associated with point i
(Units: second)
Card Type 12: Tributary Area Card (enter cards only for mass points subjected to blast loads)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>AFX</th>
<th>INDXX</th>
<th>AFY</th>
<th>INDXY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>(F)</td>
<td>(I)</td>
<td>(F)</td>
<td>(I)</td>
</tr>
</tbody>
</table>

NODE NO = The nodal point number

AFX = The tributary area associated with dynamic degree-of-freedom in the X-direction (SI Units: meter square; U.S. Units: inch square)

INDXX = Identification number of pressure waveform associated with load in the X-direction

AFY = The tributary area associated with dynamic degree-of-freedom in the Y-direction (Units: see above)

INDXY = Identification number of pressure waveform associated with load in the Y-direction

NOTE: 1. The quantities AFX and AFY can be positive or negative depending on the direction of the applied force with respect to the global coordinate system.

Input Cards for Static Loads

Card Type 13: Element Uniform Loads Direction Indicator Card (Required)

<table>
<thead>
<tr>
<th>ADIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
</tr>
</tbody>
</table>

ADIR = The direction of the uniform loads specified in terms of the axis of the global coordinate system in the direction of the applied loads. If the
loads act in the negative direction of the axis, a minus sign must be included (i.e., -X, -Y). The entry must be right-adjusted in the field.

Card Type 14: Element Uniform Loads Card (one card is required for each element)

<table>
<thead>
<tr>
<th>ELEM NO</th>
<th>WUNIF</th>
</tr>
</thead>
</table>

(I) (F)

ELEM NO = The element number

WUNIF = The uniform load acting on the element (SI Units: kilogram per meter; U.S. Units: pound-force per inch)

Card Type 15: Nodal Load Cards (enter cards only for those nodes at which static loads are acting)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>FX</th>
<th>FY</th>
<th>MZ</th>
</tr>
</thead>
</table>

(I) "F" FORMAT

NODE NO = The nodal point number

FX = Static load in X-direction (SI Units: kilogram; U.S. Units: pound-force)

FY = Static load in Y-direction (Units: see above)

MZ = Static moment around Z-axis (SI Units: kilogram-meter; U.S. Units: pound-force-inch)

NOTE: The number of these cards (Card Type 15) entered must be specified by an entry for the parameter NLNODE on Card Type 2.
End of Data Indicator

The word "END" must be punched in card columns 1 through 3.

8.14 Arrangement of Input Data Deck

A graphical representation of a typical input data deck is provided in Figure 62. Note that the data cards containing each of the principal input quantities (nodal coordinates, masses, etc.) are entered in a separate block of cards.

8.15 Multiple Job Processing

Several problems can be processed in one computer run by simply stacking the input data decks for each problem one after the other. The end of data indicator is then placed after the last data deck.
SECTION 9

COMPUTER PROGRAM OUTPUT

9.1 Introduction

This section presents a description of the printed output of DYNFA. Included also is a discussion on the utilization of the output for the design of the frame members.

The printed output of the computer program consists of four parts:

1. A summary of the units (in either the SI or U.S. System of Measurement) for the input and output parameters.

2. A summary of the input data for the analysis.

3. The response of the structure to the applied loads.

4. A compilation of significant response parameters.

The first item requires no further explanation; the others are described in the remainder of this section. Samples of the printed output are provided in Appendix B.

9.2 Summary of the Input Data

The second part of the output consists of a printed summary of the input data entered on punched cards. The data printed includes the program control parameters; the nodal coordinates, restraints and masses; the element table containing the element nodal connectivities, cross-sectional properties and capacities; the pressure waveforms and tributary areas; and the dead and live loads in the form of uniform loads on the members and concentrated loads at the nodes. Presentation of the input in this form facilitates checking of these data.

9.3 Response of the Structure

The response of the structure to either static or dynamic loads can be expressed in terms of the following parameters:

1. The displacements of the nodal points.

2. The axial loads, shears and bending moments at the ends of the elements.
3. The elastic and plastic components of the rotations at the ends of the elements.

In the printed output of DYNFA, the structure's response to static loads is expressed in terms of the nodal displacements and element end loads (parameters 1 and 2 listed above); and its response to blast loads is expressed in terms of time histories of all three of the parameters listed above. The printing sequence consists of the structure's response to the static loads followed by its response to the blast loads.

The units utilized for the output of the response are given in Table 9.

The format of the printed output of the dynamic response consists of three tabulations of data, one for each of the parameters listed above. These data are printed out at every output time station (see Section 8.8). Each output time station is identified by its respective response time which is printed just prior to the three tabulations of response data. The first tabulation of response data contains the displacements of all of the nodal points in the model. Three components of displacement are printed for each nodal point. They are the translations in the X and Y directions of the global coordinate system and the rotation about the global Z axis.

Immediately following the displacements are the element axial loads, shears and bending moments. These quantities are referenced to the local coordinate systems of the respective elements as shown in Figure 63. The quantities printed and the symbols used to identify them in the output are listed as follows:

1. The element number (ELEM)
2. The axial load at end A (PA).
3. The ratio of the axial load at end A to the axial load capacity (PA/PC). The capacity used for the computation depends upon whether the load is tension or compression.
4. The shear at end A (VA).
5. The bending moment at end A (MA).
6. The ratio of the bending moment at end A to the bending moment capacity of the element at end A (MA/MMA).
7. The shear at end B (VB).

8. The bending moment at end B (MB).

9. The ratio of the bending moment at end B to the bending moment capacity of the element at end B (MB/MMB).

All of the ratios (Items 3, 6 and 9) are printed as the absolute value of the quantity.

The third tabulation of data consists of the elastic and plastic components of the element end rotations (see Section 6.2 and Fig 37 and 38). These quantities are not printed for the static load case. The rotations are computed and printed out at both ends of each element. When the end of the element is in the elastic condition, the elastic rotation varies with time, while the plastic component remains constant at a value of zero. In the plastic condition, the elastic component remains constant, while the plastic component varies. The plastic rotation increases in magnitude until a peak value is reached, at which time the program records the peak value and resets the plastic component to zero. Successive deformations are recorded as elastic rotations until the element, once again, attains the plastic condition.

In some cases, anomalies occur in the time histories of the element end rotations. The most common occurrence is a decrease in the moment while the element is in the plastic condition. This is caused by an increase in the axial load occurring simultaneously with the decrease in the bending moment. As discussed in Section 3.3, the time dependency of the bending moment is not related to that of the axial load. In addition, the rate of change of the axial load is much greater than that of the bending moment; therefore, it is conceivable, upon inspecting Equation (10) of Section 3.3, that the relative decrease in the moment could be offset by the relative increase in the axial load, thereby indicating that the element remains in the plastic condition while the moment is decreasing. The event described generally occurs after the peak plastic rotation has been achieved. It usually exists for a relatively short duration and therefore has a negligible impact on the overall results of the analysis.

Another anomaly that might be encountered is the apparent fluctuation of an element into and out of the plastic condition. This generally occurs in the early stages of plastic behavior. It is again caused by the differing time variations of the axial loads and bending moments. Generally these fluctuations are short.
in duration, and as such, they have a negligible impact on the results of the analysis and can be ignored.

9.4 Compilation of the Significant Response Parameters

A compilation of the significant response parameters is printed at the end of the output. The data printed consists of the maxima and minima of various response parameters together with the response times at which the maxima and minima are recorded.

Three tabulations of data are provided. The first two contain response data related to the elements. The data printed in the first tabulation, together with the symbols to identify each parameter in the output, are listed below:

1. The maximum and minimum axial load (MAXP) together with the corresponding bending moment (ASSOC.M) and shears (ASSOC.V).

2. The maximum and minimum bending moments (MAXM) together with the corresponding axial loads (ASSOC.P) and shears (ASSOC.V). Included also is the moment capacity of each element (printed under the column heading MM) and the ratios of the peak moments to the moment capacities (MAXM/MM).

The above quantities are printed for both ends of each element.

The second tabulation contains the maximum and minimum values of the elastic and plastic element end rotations, which are printed under the column headings ELAS and PLAS, respectively. These data are provided for both ends of each element. Provided also are the maximum and minimum ductility ratios computed using the tabulated maximum and minimum element end rotations. The ductility ratios are listed under the column heading D.R. Included with the ductility ratios are the axial load to tensile capacity ratios (printed under the column heading P/PP which occur when the maximum and/or minimum plastic rotations are achieved. An indicator is provided with these ratios which specifies whether the axial load used in the computation is either a tensile or compressive load. The indicators used are letters: "T" for tension and "C" for compression.

The third tabulation consists of the maximum and minimum values of the three components (translations in the X and Y axes and rotation about the Z axis) of the nodal displacements. Here, the column headings used are X and Y for the translations and R for the rotations.
9.5 Use of the Printed Output

General

The output of DYNFA is used for four primary purposes:

1. To detect errors in either the input data or the analysis.
2. To evaluate the response of the structure.
3. To determine the adequacy of the frame members on the basis of the frame design criteria given in Section 6.
4. To design the connections of the frame members.

The first two are explained in Problem A.5 of Appendix A. The third and fourth are discussed in the subsequent paragraphs.

In order to ascertain the adequacy of the frame members, three groups of response quantities must be extracted from the printed output and then compared to the design criteria specified in Section 6.

Sidesway Deflections

The first group consists of the sidesway deflections of each story of the frame. These quantities are determined by computing the maximum differential displacements between stories of the structure. Since all of the stories usually attain their peak sidesway deflection at or about the same time in the response, the maximum differential displacements generally can be computed using the tabulated maxima and minima of the nodal displacements printed at the end of the output. Limiting values of the sidesway deflection are given in Section 6.1.

Chordal Angles

The second group of response data consists of the maximum values of the chordal angle, θ, for all of the exterior members of the frames. The chordal angles are the end rotations of the individual members with respect to a chord joining the member ends, as illustrated in Figures 64 and 65. Limiting values for the chordal angles are specified in Section 6.1.

A chordal angle is determined by computing the differential displacement between a nodal point at the midspan of a member and
a chord joining the member ends. Dividing the differential displacement by one half the member length yields the tangent of the chordal angle.

The direction of the nodal displacements, utilized for the computation of the chordal angle, must be perpendicular to the initial position of the longitudinal axis of the member. Since most frame members are parallel to one of the global axes, only one component of the nodal displacement (either the \(X \) or \(Y \) component, as the case may be) is required for the computation. However, if the member is sloped, both translational components of the nodal displacement are used.

The computation of the maximum chordal angles for an exterior girder is relatively simple as the vertical deflections at the ends of the member are normally quite small. Consequently, the chord joining the ends of the member remains closely aligned with the original position of the longitudinal axis of the member. Therefore, the maximum differential displacement of the member with respect to the chord corresponds to the maximum vertical displacement of the nodal point at the midspan of the member. These quantities can be extracted directly from the tabulated maxima and minima of the nodal displacements printed at the end of the output. Figure 64 illustrates the measurement of the chordal angle for a girder.

The computation of the chordal angles for exterior columns and sloped roof girders is more involved as the deflections at the ends of these members are of the same order of magnitude as the midspan deflections; hence, the maximum differential displacement is usually less than the maximum absolute displacement of the nodal point at the midspan of the member. Here, the differential displacement at midspan is computed at several time stations in order to determine the maximum value. In most cases, the peak chordal rotation occurs during the time interval in which the member is subjected to the blast pressures. For a given member, the time interval to be investigated commences with the initial application of the loading on the member and extends to a few time increments beyond the time at which the member attains its peak plastic response. Figure 65 illustrates the measurement of the chordal angle for an exterior column.

Ductility Ratios

The ductility criteria given in Section 6 limits the magnitudes of the ductility ratios that can be realized in the response. The peak plastic and elastic rotations at the element ends are used to compute these quantities. Maximum ductility
ratios are computed and printed by DYNFA at both ends of every element. To use these data for investigating a member, extract from the output the ductility ratio and corresponding axial load ratio for all of the elements representing the member. Also, note from the output whether the axial loads are either in tension or compression. Compare the computed ductility ratios with the limits specified in Sections 6.3 and 6.4.

Establishing Adequacy of Frame

The members of the frame are considered adequate if all of the design criteria are satisfied. When one or more of the limiting values of the criteria are exceeded by more than 15 percent, the member or members in question must be increased in size and the analysis of the frame must be repeated. If a severe condition of overdesign is apparent, the overdesigned members should be decreased in size and the frame analysis repeated.

Appendix A provides two examples which demonstrate the use of the printed output in the design of frames.

Connection Design

The fourth group of data extracted from the output consists of the maximum values of the moments, shears and axial loads which act at the ends of the members. These quantities are used to design the connections in the frame. The connections considered are the corner frame connections, the girder-to-column connections and the column base connections. Since the maximum values of the moments, shears and axial loads do not occur simultaneously, at least three conditions must be considered in the design. Each condition considered consists of the peak value of one of these quantities together with the values of the other two which occur simultaneously. The maxima and minima of the axial loads and bending moments are tabulated at the end of the printed output. The peak shear (and corresponding axial loads and bending moments) can be extracted from the printed output of the response history.

The connections should be designed in accordance with the provisions in Chapter 6 of Reference 1. Procedures and equations for the design of various types of standard frame connections are contained in the many texts on the design of steel structures (see References 14 and 20). Examples of some of typical framing connections are provided in Appendix C of Reference 1.
SECTION 10
CONCLUSIONS AND RECOMMENDATIONS

The criteria and procedures presented in this report provide a rational basis for the analysis and design of the primary structural frames of steel buildings subjected to the blast environment generated by a high-explosive detonation. The primary emphasis is on structural steel applications for acceptor structures located in the low-to-intermediate pressure level range.

It is recommended that this material be implemented in the blast-resistant design of structures within facilities for the manufacture and storage of explosive materials.
REFERENCES

5. "Research and Developments in Cold-Formed Steel Design and Construction", Third International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, November 1975.

Table 1

Collapse mechanisms for rigid frames with fixed and pinned bases

<table>
<thead>
<tr>
<th>Collapse Mechanism</th>
<th>Plastic Moment M_p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pinned Bases</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{wl^2}{16}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{aw^2}{4(2C+1)}$</td>
</tr>
<tr>
<td>3a</td>
<td>$\frac{aw^2}{2} \cdot \frac{1}{2+2(n-1)C_i} (c_i \leq c_i) *$</td>
</tr>
<tr>
<td>3b</td>
<td>$\frac{aw^2}{4n} (c_i \leq c_i) *$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{aw^2}{8n} (aw^2+\frac{n}{2})^2$</td>
</tr>
<tr>
<td>5a</td>
<td>$\frac{aw^2}{3C} \cdot \frac{1}{2+\frac{nC}{2}(n-1)C_i} (c_i \leq c_i) *$</td>
</tr>
<tr>
<td>5b</td>
<td>$\frac{aw^2}{3C} \cdot \frac{1}{2+\frac{nC}{2}(n-1)C_i} (c_i \leq c_i) *$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{aw^2}{6} \left[3aw^2+(n-1)\frac{L^2}{2C+(2n-\frac{3}{2})} \right]$</td>
</tr>
</tbody>
</table>

*αW is the load on the girders and columns at interior joints. $C_i = 2$ hinges form in the girders and columns at interior joints.

$w =$ Uniform equivalent static load

$n =$ Number of bays $= 1, 2, 3, ...$
Table 2
Collapse mechanisms for rigid frames with supplementary bracing and pinned bases

<table>
<thead>
<tr>
<th>Collapse Mechanism</th>
<th>Plastic Moment M_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{wL^2}{16})</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{\alpha wH^2}{4(2C+1)})</td>
</tr>
<tr>
<td>3a</td>
<td>(\left(\frac{\alpha wH^2}{2} - \frac{mA_bF_{dy}H \cos \alpha}{2} \right) \cdot \frac{1}{2(n-1)C})</td>
</tr>
<tr>
<td>3b</td>
<td>(\frac{\alpha wH^2}{4n} - \frac{mA_bF_{dy}H \cos \alpha}{2n})</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{w(\alpha wH^2 + \frac{n}{2}L^2) - \frac{mA_bF_{dy}H \cos \alpha}{4n}}{8n})</td>
</tr>
<tr>
<td>5a</td>
<td>(\frac{3}{6} \cdot \frac{\alpha wH^2}{2} - \frac{mA_bF_{dy}H \cos \alpha}{C + \frac{1}{2} + \frac{1}{2}(n-1)})</td>
</tr>
<tr>
<td>5b</td>
<td>(\frac{\alpha wH^2}{2} - \frac{mA_bF_{dy}H \cos \alpha}{C + (n-\frac{1}{2})})</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{w}{6} \left[\frac{3\alpha wH^2 + (n-1)L}{2} \right] - \frac{mA_bF_{dy}H \cos \alpha}{C + (2n-\frac{3}{2})})</td>
</tr>
</tbody>
</table>

* For \(C = 2 \) hinges form in the girders and columns at interior joints.

* For \(n \) number of bays = 1, 2, 3...

* \(w \) = Uniform equivalent static load
Table 3
Collapse mechanisms for frames with supplementary bracing, non-rigid girder-to-column connections and pinned bases

<table>
<thead>
<tr>
<th>Collapse Mechanism</th>
<th>Resistance</th>
<th>Framing Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BEAM MECHANISM EXTERIOR GIRDER</td>
<td>$M_p = wL^2/6$ $M_p = wL^2/12$ $M_p = wL^2/16$</td>
<td>1 2 3</td>
</tr>
<tr>
<td>2 BEAM MECHANISM INTERIOR GIRDER</td>
<td>$M_p = wL^2/6$ $M_p = wL^2/16$</td>
<td>1 2 a 3</td>
</tr>
<tr>
<td>3 BEAM MECHANISM BASTARD COLUMN</td>
<td>$M_p = \frac{a \cdot wH^2}{6}$ $M_p = \frac{a \cdot wH^2}{4(2C+1)}$</td>
<td>1 a 2 3</td>
</tr>
<tr>
<td>4 PANEL MECHANISM</td>
<td>$A_b F_{dy} = \frac{a \cdot wH}{2\cdot m\cdot cos\alpha}$ $A_b F_{dy} = \frac{a \cdot wH}{2\cdot m\cdot cos\alpha} - \frac{2\cdot M_p}{mH\cdot cos\alpha}$</td>
<td>1 a 2 3</td>
</tr>
<tr>
<td>5 COMBINED MECHANISM</td>
<td>$A_b F_{dy} = \frac{3a \cdot wH}{4\cdot m\cdot cos\alpha} - \frac{(2C+1)M_p}{mH\cdot cos\alpha}$</td>
<td>3</td>
</tr>
</tbody>
</table>

GIRDER FRAMING TYPE:
1. GIRDER SIMPLY SUPPORTED BETWEEN COLUMNS
2. GIRDER CONTINUOUS OVER COLUMNS
3. GIRDER CONTINUOUS OVER COLUMNS AND RIGIDLY CONNECTED TO EXTERIOR COLUMNS ONLY
Table 4
Dynamic load factors (DLF) and equivalent static loads for preliminary design

<table>
<thead>
<tr>
<th>Collapse mechanism*</th>
<th>Structure</th>
<th>Reusable</th>
<th>Non-reusable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam mechanism 1</td>
<td>1.0</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Beam mechanism 2</td>
<td>R_α</td>
<td>0.80R_α</td>
<td></td>
</tr>
<tr>
<td>Panel or combined</td>
<td>0.5R_α</td>
<td>0.35R_α</td>
<td></td>
</tr>
</tbody>
</table>

where $R_\alpha = 1.0 - b_h \sin \alpha_f / 8S$

$= 1.0$ for normal shock wave

α_f = angle of incidence between shock front and blastward wall

S = the minimum of:

1. height of structure
2. distance from frame to leeward end of wall
3. sum of:
 a. distance from frame to blastward end of wall
 b. length of adjacent blastward wall

Equivalent static vertical load $= q_v \times DLF = w$

Equivalent static horizontal load $= q_h \times DLF = \alpha w$

*Refer to Tables 1 through 3 for definition of beam, panel and combined mechanisms.
Table 5

Limiting width-thickness ratios for the compression flanges of single-web members subjected to plastic bending

<table>
<thead>
<tr>
<th>F_Y(kPa)</th>
<th>F_Y(ksi)</th>
<th>$b_f/2t_f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>248184</td>
<td>36</td>
<td>8.5</td>
</tr>
<tr>
<td>289548</td>
<td>42</td>
<td>8.0</td>
</tr>
<tr>
<td>310230</td>
<td>45</td>
<td>7.4</td>
</tr>
<tr>
<td>344700</td>
<td>50</td>
<td>7.0</td>
</tr>
<tr>
<td>379170</td>
<td>55</td>
<td>6.6</td>
</tr>
<tr>
<td>413640</td>
<td>60</td>
<td>6.3</td>
</tr>
<tr>
<td>448110</td>
<td>65</td>
<td>6.0</td>
</tr>
</tbody>
</table>

where F_Y is the specified minimum static yield stress for the steel, b_f is the flange width and t_f is the flange thickness.
Table 6
Sample bi-axial bending moment capacities

<table>
<thead>
<tr>
<th>Column Node</th>
<th>DYNFA results for first group of analyses</th>
<th>Uni-axial capacities</th>
<th>Nodal reduction factors</th>
<th>Reduced capacities for second group of analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>M_x</td>
<td>$ (kN-m)</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>175</td>
<td>17</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>215</td>
<td>33</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>50</td>
<td>300</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: $(|M_x|/R_n)M_{mx} + (|M_y|/R_n)M_{my} = 1$; hence, $\overline{M}_{mx} \leq M_{mx}$ and $\overline{M}_{my} \leq M_{my}$.
Table 7
Values of constant "C" for Equation (35)

<table>
<thead>
<tr>
<th>Support conditions</th>
<th>Number of intermediate mass points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Simple</td>
<td>1.57</td>
</tr>
<tr>
<td>Fixed</td>
<td>3.56</td>
</tr>
<tr>
<td>Fixed-Hinged</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Note: The units to be utilized with these constants are:
- mass - kilogram
- length - meter
- modulus of elasticity - kilopascal
- moment of inertia - centimeter to the fourth power
- natural period - second
Table 8
Stiffness factors for single-story multi-bay frames subjected to uniform horizontal loading

STIFFNESS FACTOR \(K = \frac{EI_{ca}}{H^3} \cdot C_2 \cdot [1 + (0.7 - 0.1\beta)(n-1)] \)

\(n = \) Number of Bays

\(\beta = \) Base Fixity Factor \(^a\)

\(D = \frac{I_g/L}{I_{ca}(0.75 + 0.25\beta)/H} \)

\(I_{ca} = \) Average Column Moment of Inertia.
\[= \sum I_c / (n+1) \]

<table>
<thead>
<tr>
<th>D</th>
<th>(\beta = 1.0)</th>
<th>(\beta = 0.5)</th>
<th>(\beta = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>26.7</td>
<td>14.9</td>
<td>3.06</td>
</tr>
<tr>
<td>0.50</td>
<td>32.0</td>
<td>17.8</td>
<td>4.65</td>
</tr>
<tr>
<td>1.00</td>
<td>37.3</td>
<td>20.6</td>
<td>6.04</td>
</tr>
</tbody>
</table>

\(^a\) Values of \(C_2 \) are Approximate for this \(\beta \)
\(^b\) \(\beta = 1.0 \) For Fixed Base
\(\beta = 0.0 \) For Hinged Base
Table 9

Units for parameters in printed output of structural response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SI System</th>
<th>U.S. System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Second</td>
<td>Second</td>
</tr>
<tr>
<td>Displacements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation</td>
<td>Millimeter</td>
<td>Inch</td>
</tr>
<tr>
<td>Rotation</td>
<td>Degree</td>
<td>Degree</td>
</tr>
<tr>
<td>Element Loads:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial Load</td>
<td>Kilonewton</td>
<td>Pound</td>
</tr>
<tr>
<td>Shear</td>
<td>Kilonewton</td>
<td>Pound</td>
</tr>
<tr>
<td>Bending Moment</td>
<td>Kilonewton-meter</td>
<td>Pound-inch</td>
</tr>
</tbody>
</table>
Fig 1 Typical frame structures

- Multi-Bay Frame (Combined Rigid and Pinned Supports)
- Gable Frame (Pinned Support)
- Rectangular Frame (Rigid Support)
- Pinned Connected Frame
- Multi-Story and Multi-Bay Frame
a) ONE DIRECTIONAL RIGID FRAMING

b) TWO DIRECTIONAL RIGID FRAMING

Fig 2 Framing systems
Fig 4 Loading conditions for bi-axial bending
Fig 5 Locations for computing blast pressures for preliminary frame design
Fig 6 Supplementary data for shock-wave parameters for hemispherical TNT surface explosion at sea level
Fig 7 Lumped parameter representation of a typical frame
Fig 8 Elasto-plastic moment versus end rotation relationship for constant axial load
a) COMPOSITE MOMENT VERSUS ROTATION RELATIONSHIP OF COMPONENTS

b) INDIVIDUAL MOMENT VERSUS ROTATION RELATIONSHIP OF COMPONENTS

Fig 9 Behavior of component elements
a) **MOMENT RESPONSE HISTORY OF ELEMENT**

b) **AXIAL LOAD RESPONSE HISTORY OF ELEMENT**

Fig 10 Response history of element
Fig 11 Calculation of second order effects

\[V = \frac{PA}{L} \]
Fig 12 Model of frame including foundation and soil
Fig 13 Laterally supported frame
a) Placement of nodal points to develop sidesway mode of frame

b) Placement of nodal points to develop individual bending modes of exterior members

Fig 14 Locations of nodal points in model
Modeling of members with varying cross-sections

a) Gradually Tapered Member

b) Member with Abrupt Discontinuities

Fig 15 Modeling of members with varying cross-sections
Fig 16 Dynamic degrees of freedom for typical frames
<table>
<thead>
<tr>
<th>Framing plan</th>
<th>Reference figure</th>
<th>Mass assigned to horizontal dynamic DOFS on column</th>
<th>Mass assigned to vertical dynamic DOFS on column</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>at intermediate mass points ((M_{1H})_W)</td>
<td>at end points* ((M_{EH})_W)</td>
</tr>
<tr>
<td>1. Girder parallel to column</td>
<td>18a</td>
<td>(M'W/(N{DOFH} + 1))</td>
<td>((M_W - N_{DOFH \cdot 1})/2)</td>
</tr>
<tr>
<td>2. Girder normal to column</td>
<td></td>
<td></td>
<td>(M_W/2)</td>
</tr>
<tr>
<td>a. ng > 3 (N_{DOFH} \neq \text{ng})</td>
<td>18b</td>
<td>(M'W/(N{DOFH} + 1))</td>
<td>((M_{1H})_W/2)</td>
</tr>
<tr>
<td>b. ng \leq 3 (N_{DOFH} = \text{ng})</td>
<td></td>
<td>([M'W/(N{DOFH} + 1)] + m_g)</td>
<td>(M_W/[2(N_{DOFH} + 1)])</td>
</tr>
</tbody>
</table>

where \(M_W \) = for cases 1 and 2a: mass of all structure (siding, girder, column) within panel area \(W_T \times H \)

for case 2b only: mass of siding and column within panel area \(W_T \times H \)

\(M'_W \) = one-half the mass of siding within panel area \((W_1 + W_2) \times H \), plus mass of column

\(m_g \) = mass of one girder within panel

\(N_{DOFH} \) = number of horizontal dynamic degrees-of-freedom at intermediate mass points within panel

\(\text{ng} \) = number of girder within panel

* When intermediate mass points are not utilized on the member \((N_{DOFH} = 0) \), the expressions provided above for \(M_{EH} \) are not applicable. For this case, \((M_{EH})_W = (M_{EV})_W \).

Fig 17 Expressions for computing concentrated masses for exterior wall panels
<table>
<thead>
<tr>
<th>Framing plan</th>
<th>Reference</th>
<th>Mass assigned to horizontal dynamic DOFS on girder</th>
<th>Mass assigned to vertical dynamic DOFS on girder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>figure</td>
<td>(M_{EH}/R)</td>
<td>at intermediate mass points (M_{IV}/R)</td>
</tr>
<tr>
<td>1. Purlins/Joists parallel to girder</td>
<td>20a</td>
<td>$M_R/2$</td>
<td>$M_R/(N_{DOFV} + 1)$</td>
</tr>
<tr>
<td>2. Purlins/Joists normal to girder</td>
<td>20b</td>
<td>$M_R/2$</td>
<td>$M_R/(N_{DOFV} + 1)$</td>
</tr>
<tr>
<td>a. $n_p > 3$</td>
<td>(N_{DOFV} > n_p)</td>
<td>$M_R/2$</td>
<td>$M_R/(N_{DOFV} + 1)$</td>
</tr>
<tr>
<td>b. $n_p \leq 3$</td>
<td>(N_{DOFV} = n_p)</td>
<td>$(M_R + \sum m_p)/2$</td>
<td>$[(M_R/(N_{DOFV} + 1))] + m_p$</td>
</tr>
</tbody>
</table>

where
\(M_R\) = for cases 1 and 2a: mass of all structure (decking, purlin, girder) within panel area \(W_T \times L\)
\(=\) for case 2b only: mass of decking and girder within panel area \(W_T \times L\)
\(M_R\) = one-half the mass of decking within panel area \((W_1 + W_2) \times L\) plus mass of girder
\(m_p\) = mass of one purlin within panel
\(N_{DOFV}\) = number of vertical dynamic degrees-of-freedom at intermediate mass points within panel
\(n_p\) = number of purlins within panel

* When intermediate mass points are not utilized on the member \((N_{DOFV} = 0)\), the expressions provided above for \(M_{EV}\) are not applicable. For this case, use \((M_{EV})_R = (M_{EH})_R\).

Fig 19 Expressions for computing concentrated masses for roof and floor panels
Fig 20 Typical framing plans of roof and floor panels
Fig 21 Portion of sidewall mass lumped with end frame: sidewall with vertical girts
Fig 22 Distribution of sidewall mass on end frame: sidewall with horizontal girts

130
Typical Wall or Roof Panel

<table>
<thead>
<tr>
<th>Framing Plan</th>
<th>Tributary Area for Intermediate Mass Point</th>
<th>Tributary Areas for Mass Points at Ends of Member</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WHERE:
- \(W_p \) = Tributary width of building supported by frame
- \(N_w \) = \(N_{mwp} \) for a wall panel (Ref Fig. 17)
- \(N_{mwp} \) for a roof panel (Ref Fig. 19)

NOTE: When intermediate mass points are not utilized (i.e., \(N_{mwp} = 0 \) or \(N_{mwp} = 0 \)), assign \(1/2 \) of the total area \(W_p \times L \) to the mass point at each end of the member.

Fig 23 Dimensions of tributary areas for panel with secondary members parallel to frame.
<table>
<thead>
<tr>
<th>Framing Plan</th>
<th>Tributary Area for Intermediate Mass Point</th>
<th>Tributary Areas for Mass Points at Ends of Member</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical Wall or Roof Panel

Where:
- \(W_t \) = Tributary width of building supported by frame
- \(N_0 \) = \(N_{w,0} \) for a wall panel (Ref Fig. 17)
- \(N_0 \) = \(N_{r,0} \) for a roof panel (Ref Fig. 19)

Note: When intermediate mass points are not utilized (i.e., \(N_{w,0} = 0 \) or \(N_{r,0} = 0 \)), assign 1/2 of the total panel area (\(W_t \) x \(L \)) to the mass point at each end of the member.

Fig 24 Dimensions of tributary areas for panels with secondary members perpendicular to frame.
a) **LONG DURATION BLAST LOAD**

b) **SHORT DURATION BLAST LOAD**

Fig 26 Blastward wall reflected pressure waveforms
Fig 27 Pressure history for roof, side wall and leeward wall
Fig 28 Phased and modified pressure waveform with linear decay
Fig 29 Phased and modified reflected pressure waveform with bilinear decay
Fig 30 Example of values for a and D for tributary areas on blastward wall - normal shock wave
For $A_1: \quad D = 0 \quad a = W_1 \sin a$
For $A_2: \quad D = d_2 \sin a \quad a = w \sin a$

Fig 31 Examples of values of a and D for tributary areas on blastward wall - quartering shock wave
For A_1: $D=0;\ a=Z_1$
For A_2: $D=A_1;\ a=d_2$

$D = d\cos\alpha + \frac{1}{2}(W_w - w)\sin\alpha$
$a = w\sin\alpha + \frac{1}{2}\cos\alpha$

Partial Roof Plan

a) **Normal Shock Wave**
b) **Quartering Shock Wave**

Fig 32 Examples of values of a and D for tributary areas on roof
Fig 33 Examples of values of a and D for tributary areas on leeward wall with wall taken as extension of roof
For $A_1 : D = L + w_1 \quad a = W_T$
For $A_2 : D = L + w_1 + w_2 \quad a = W_3$

Fig 34 Examples of values of a and D for tributary areas on leeward wall with wall taken as extension of adjacent wall - normal shock wave

143
FOR A_1: $D = L \cos \alpha + w_1 (1.0 - \sin \alpha); \alpha = W_T$

FOR A_2: $D = L \cos \alpha + w_1 (1.0 - \sin \alpha) + w_2; \alpha = W_T$

Partial Roof Plan

Elevation of Leeward Wall

Fig 35 Examples of values of α and D for tributary areas on leeward wall with wall taken as extension of adjacent wall - quartering shock wave
Fig 36 Sidesway deflection and member end rotations for frame structures
Fig 37 Components of element end rotation in the elastic response range
Fig 38 Components of element end rotation in the inelastic response range.
Fig 39 Load deformation response for laterally loaded beam column
<table>
<thead>
<tr>
<th>MOMENT DIAGRAM</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 40 Index of figures for rotation capacity curves of beam columns subjected to end moments
Fig. 41 Rotation capacity curves for beam column bent to single reverse curvature by a moment applied at one end or bent to
Fig. 42 Rotation capacity curves for haem column bent to single curvature by equal and opposite end moments.
<table>
<thead>
<tr>
<th>LOADING AND CONDITION OF RESTRAINT AT ENDS</th>
<th>MOMENT DIAGRAM</th>
<th>DISTRIBUTION FACTOR AT RESTRAINED END</th>
<th>APPLICABLE FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ELASTIC RESTRAINT BOTH ENDS</td>
<td></td>
<td>0.0625</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1250</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2500</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5000</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7500</td>
<td>48</td>
</tr>
<tr>
<td>2. ELASTIC RESTRAINT ONE END</td>
<td></td>
<td>0.0625</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1250</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2500</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5000</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7500</td>
<td>53</td>
</tr>
</tbody>
</table>

Fig 43 Index of figures for rotation capacity curves of beam columns subjected to lateral loads
Fig 44 Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.0625
Fig 45 Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.125
Fig 46 Rotation capacity curves for laterally loaded beam column - elastic restraint both ends; distribution factor = 0.250
Fig 4/ Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.500
Fig 48 Rotation capacity curves for laterally loaded beam column - elastic restraint both ends: distribution factor = 0.750
Fig 50 Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned: distribution factor = 0.125
Fig 51 Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned: distribution factor = 0.250
Fig 52 Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned: distribution factor = 0.500
Fig 53 Rotation capacity curves for laterally loaded beam column - elastic restraint one end, other end pinned: distribution factor = 0.750
DISTRIBUTION FACTORS ROTATION CASE (DF) CAPACITY FROM CURVES

<table>
<thead>
<tr>
<th>CASE</th>
<th>DISTRIBUTION FACTORS (DF)</th>
<th>ROTATION CAPACITY FROM CURVES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>END A</td>
<td>END B</td>
</tr>
<tr>
<td>a. BOTH ENDS RESTRAINED</td>
<td>DF_{AB}</td>
<td>DF_{AB}</td>
</tr>
<tr>
<td>b. END A RESTRAINED; END B PINNED</td>
<td>DF_{AB}</td>
<td>1.0</td>
</tr>
</tbody>
</table>

TABULATION OF DATA

![Graph showing rotation capacity vs DF at end B for constant DF at end A](image)

Fig 54 Interpolation of rotation capacity data for member with unequal distribution factors at ends
Fig 55 Typical rectangular building rigidly framed in two directions
Fig 56 Identification numbers for the nodal points and elements of a typical model.
Fig 57 Specification of restraints for common types of support conditions
Fig 58 Local coordinate system for element
Fig 59 Specification of pin codes for common types of frame connections
a. TYPICAL PRESSURE WAVEFORM

b. DIGITIZED PRESSURE TIME DATA

<table>
<thead>
<tr>
<th>POINT</th>
<th>PRESSURE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>t_0</td>
</tr>
<tr>
<td>3</td>
<td>(P_{pk})_{AVG.}</td>
<td>t_{pk}</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>t_T</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>t_f</td>
</tr>
</tbody>
</table>

Fig 60 Digitized pressure-time data for pressure waveform with linear decay
4) TYPICAL PRESSURE WAVEFORM WITH BI-LINEAR DECAY

![Graph of a typical pressure waveform with bi-linear decay]

Point	Pressure	Time
1 | 0.0 | 0.0
2 | 0.0 | t_0
3 | $(P_{pk})_{AVG}$ | t_{pk}
4 | R | t_c
5 | 0.0 | t_T
6 | 0.0 | T_f

b) DIGITIZED PRESSURE TIME DATA

Fig 61 Digitized pressure-time data for reflected pressure waveform with bi-linear decay
Fig 62 Arrangement of input data deck
Fig 63 Positive directions of element axial loads, shears and bending moments in local coordinate system
a) DEFORMED CONFIGURATION OF STRUCTURE

\[\theta_1 = \theta_3 = \tan^{-1} \left(\frac{y_2}{L/2} \right) \]

\(y_1 \) AND \(y_3 \) ASSUMED NEGLIGIBLE

b) COMPUTATION OF CHORDAL ANGLES \(\theta_1 \) & \(\theta_3 \)

FOR GIRDER

Fig 64 Measurement of chordal angles for girder

173
a) DEFORMED CONFIGURATION OF STRUCTURE

\[\theta_1 = \theta_3 = \left(\frac{x_2 - x_3}{2} \right)_{\text{max}} \]

b) COMPUTATION OF CHORDAL ANGLES \(\theta_1 \) & \(\theta_3 \) FOR EXTERIOR COLUMN

Fig 65 Measurement of chordal angles for exterior column
APPENDIX A

ILLUSTRATIVE EXAMPLES

A.1 Introduction

This appendix presents detailed procedures and numerical examples on various topics related to the analysis and design of single-story rigid frame steel structures subjected to blast overpressures. The topics covered are:

1. Preliminary design of interior frames of buildings subjected to normal shock waves.

2. Preliminary design of primary structural frames of buildings subjected to quartering shock waves.

3. Formulation of analytical models for interior frames of buildings subjected to normal shock waves.

4. Formulation of analytical models for representative frames of buildings subjected to quartering shock waves.

5. Use of DYNFA to verify the blast resistance of interior frames of buildings subjected to normal shock waves.

6. Use of DYNFA to verify the blast resistance of primary framing systems of buildings subjected to quartering shock waves.

References are made to the appropriate parts in Sections 1 through 9 of this report and to charts, tables and equations from other design manuals and specifications.

The basic objective of the material presented herein is to illustrate the methods for selecting and verifying the member sizes for the primary framing system of a single-story steel building. As such, little attention was given in the examples to actual framing details since these considerations have little bearing on the manner in which the design procedures are used. In addition, to facilitate the computations, the sizes of the secondary members were standardized throughout the building (i.e., all girts were made the same, all purlins were made the same, etc.). Also, the sizes of the transverse girders that were used in Example A.3 were established on the basis of the design for the girder at the blastward wall, which involved bi-axial bending of the member.
A.2 Preliminary Design of Single-Story Frames

Problem A.1: Preliminary design of an unbraced, interior, rigid frame of a single-story steel building subjected to a normal shock wave.

Procedure:

Step 1. Establish the blast load parameters:

a. Location of charge

b. Charge weight, W

c. Safety factor, SF

d. Normal distance, R_A, between the center of the charge and the blastward wall of the building

Calculate the effective charge weight,

$$W_E = (1.0 + SF)W.$$

Step 2. Determine the peak pressures, p_v and p_h, for the preliminary design:

a. Calculate $Z = R_A/W_E^{1/3}$

b. Enter Figure 4-5 or 4-12 of Reference 3 or Figure 5 of the text with Z and read:

Peak positive incident pressure, P_{so}

Peak positive normal reflected pressure, P_r.

The data in Figure 6 of the text were derived from the test results reported in Reference 21.

c. For structures located in high pressure regions, determine q_0 for P_{so} from Figure 4-66 of Reference 3. Calculate $C_D q_0$ for the roof. Obtain C_D from paragraph 4-14c of Reference 3.

d. For all cases: $p_h = P_r$.

178
For cases involving low-to-intermediate pressure levels:

\[p_v = p_{so} \]

For cases involving high pressure levels:

\[p_v = p_{so} + C_{Dq_0} \]

Step 3. Establish the design parameters:

a. Geometry of the frame

b. Support conditions

c. Post-explosion condition of the frame (reusable or non-reusable)

d. Static tensile stress, \(F_y \)

e. Dynamic increase factor, \(c \)

f. Modulus of elasticity, \(E \)

Also calculate the dynamic tensile stress,

\[F_{dy} = cF_y \]

Step 4. Calculate the ratio of the total horizontal-to-vertical peak loadings, \(\alpha \), acting on the frame using Equation (1) of the text. Also determine the dynamic load factors (DLF's) for the beam and panel mechanisms (Table 4 of the text) and compute the corresponding equivalent static loads, \(w_b \) and \(w_p \); tabulate these loads (\(w_b \) and \(w_p \)) as shown in Table 1.

Step 5. Substitute the values (determined in Step 4) for \(\alpha \) and either \(w_b \) or \(w_p \) (depending upon the type of mechanism) into the appropriate equations of Table 1 of the text. Tabulate, as shown in Table 1 of this appendix, the resulting equations which express \(M_p \) in terms of \(C \) and/or \(C_1 \).

Step 6. By assuming several sets of values for constants \(C \) and \(C_1 \), and using the relationships for \(M_p \) determined in Step 5, calculate the values of
the plastic moments, \(M_p \), for the various mechanisms. Tabulate the results as shown in Table 1. For each set of values of \(C \) and \(C_1 \), the largest computed value of \(M_p \), from among those computed for all mechanisms, establishes the governing collapse mechanism. The selection of preliminary member sizes is based on several trials in which the values of \(C \) and \(C_1 \), and the corresponding maximum value of \(M_p \), are minimized such that an economical design is produced. Here, engineering judgement is required, as several sets of values of \(C \) and \(C_1 \) may yield similar values for the maximum \(M_p \).

Step 7. Using the moment capacities of each member (determined in Step 6) and Equation (4), calculate the plastic section modulus and select the member size.

Step 8. Establish the minimum thickness requirements for the frame members using Equation (8) and Table 5 of the text and determine whether the member sizes selected meet these requirements. Also, compute the slenderness ratio in the plane of bending for each member and compare this quantity with the limiting value given by Equation (4.1) of Reference 1.

Step 9. For each member selected, calculate the plastic moment capacity and effect the reduction in this moment capacity due to lateral torsional buckling using Equation (5). Check whether this reduced bending capacity, \(M_{mn} \), satisfies the uni-axial bending equation [Eq (7)].

Example A.1: Preliminary design of an unbraced, interior, rigid frame of a single-story steel building subjected to a normal shock wave.

Required: Design an interior frame of the building shown in Figure 1 for the blast loadings produced by a normal shock wave.

Step 1. Given:

a. Location of charge, surface burst
b. Charge weight, \(W = 1,140 \) kg (2,500 lb)
c. Safety factor SF = 20 percent
 (Section 1-5, Ref 3)

d. Normal distance from center of charge
to blastward wall:
 \(R_A = 132 \text{ m (433 ft)} \)
 Effective charge weight:
 \(l_E = (1.0 + SF)W = 1.2(1,140) \)
 \(= 1,360 \text{ kg (3,000 lb)} \)

Step 2. Determine \(p_v \) and \(p_h \) for the preliminary design:

a. \(Z = R_A / l_E^{1/3} = 433 / 3,000^{1/3} = 30 \text{ ft/1b}^{1/3} \)

 Note: Since Figure 4-12 (Ref 3) is expressed in U.S. units, \(Z \) is also calculated in U.S. units.

b. From Figure 4-12 of Reference 3:
 \(p_{so} = 1.65 \text{ psi or 11.4 kPa} \)
 \(p_r = 3.50 \text{ psi or 24.2 kPa} \)

c. Since the structure is located in a low pressure region, the drag pressure on the roof is neglected.

d. The peak pressures acting on the frame are:
 \(p_v = p_{so} = 11.4 \text{ kPa (1.65 psi)} \)
 \(p_h = p_r = 24.2 \text{ kPa (3.50 psi)} \)

Step 3. Given:

a. Frame geometry (Fig 1)

b. Pin-ended column supports

c. Reusable structure

d. \(f_y = 248(10)^3 \text{ kPa (36 ksi)} \)
e. \(c = 1.1 \) (Table 2.1, Ref. 1)

f. \(E = 207(10)^6 \) kPa \((30 \times 10^6 \) psi\)

\[F_{dy} = cF_y = 1.1 \times 248 \times 10^3 \]
\[= 273 \times 10^3 \) kPa \((39.6 \) ksi\)

Step 4. Calculate \(\alpha, w_b \) and \(w_p \):

From Figure 1:

\(b_v = b_h = 6.0 \) m

\(q_h = p_h b_h = 24.2 \times 6.0 = 145 \) kN/m

\(q_v = p_v b_v = 11.4 \times 6.0 = 68.4 \) kN/m

\(\alpha = q_h/q_v = 145/68.4 = 2.12 \) [Eq. (1)]

For normal shock wave, angle of incidence between shock front and blastward wall is zero; hence,

\(R_\alpha \) of Table 4 of text = 0.0, and

\(\text{DLF}_b \) (beam mechanism) = 1.0

\(\text{DLF}_p \) (panel mechanism) = 0.5

\(w_b = l.0q_v = 1.0(68.4) = 68.4 \) kN/m

\(w_p = 0.5q_v = .5(68.4) = 34.2 \) kN/m

Step 5. Substitute \(\alpha \) and either \(w_b \) or \(w_p \) into the equations of Table 1 of the text.

Substituting the values of \(\alpha \) and \(w_b \) or \(w_p \) into the appropriate equations (Table 1 of the text) for collapse mechanisms 1 and 5b, yields the following expressions for \(M_p \):

Collapse mechanism 1:

\[M_p = (w_b L^2)/16 = [68.4(6)^2]/16 = 154 \) kN-m

Collapse mechanism 5b:

\[M_p = (3/8)(\alpha w_p H^2) = (3/8)(2.12)(34.2)(5.0)^2 \]
\[C + (n - 1/2) \]
\[C + (2 - 1/2) \]
\[182 \]
Expressions of M_p for the remaining collapse mechanisms are tabulated in Table 1 of this appendix.

Step 6. Calculate M_p for several trial values of C and C_1. Trial calculations of M_p for collapse mechanisms 1 and 5b are shown below. The calculations are performed for three sets of trial values of C and C_1. Values of M_p for the remaining collapse mechanisms, which are computed with the same trial values of C and C_1, are tabulated in Table 1 of this appendix.

Collaps mechanism 1:
For all values of C and C_1, $M_p = 154$ kN-m

Collapse mechanism 5b:
For $C = 2$ and $C_1 = 2$, $M_p = 680/(2 + 3/2) = 194$ kN-m
For $C = 2.5$ and $C_1 = 2$, $M_p = 680/(2.5 + 3/2) = 170$ kN-m
For $C = 1.5$ and $C_1 = 2$, $M_p = 680/(1.5 + 3/2) = 227$ kN-m

Inspection of the results listed in Table 1 for the three trials investigated, reveals that a value of $M_p = 227$ kN-m (same in all three trials) is the minimum required plastic bending capacity for the girders. Also Trial 3 yields the lowest value of C, thereby minimizing the required capacities of the exterior columns.

Therefore, the required bending capacities are:
For the girder: $(M_p)_x = 227$ kN-m (167 kip-ft)

For the interior column:
$C_1(M_p)_x = 2.0(227) = 454$ kN-m (334 kip-ft)

183
For the exterior column:

\[C(M_p)_x = 1.5(227) = 341 \text{ kN\-m (251 kip\-ft)} \]

Step 7. Calculate plastic section moduli and select member sizes.

Girder: Use Equation (4) for computing plastic modulus, \(Z_x \)

\[Z_x = \frac{(M_p)_x}{F_{dy}} = \frac{227}{(273 \times 10^3)} \]

\[= 0.832 \times 10^{-3} \text{ m}^3 \text{ (50.5 in}^3) \]

Try W12 x 40:

\[Z_x = 57.5 \text{ in}^3 = 0.942 \times 10^{-3} \text{ m}^3 \]

(Ref 14)

The member sizes selected for the columns are listed in Table 2.

Step 8. Establish the minimum thickness requirements for the frame members.

The limiting depth-thickness ratio for the web of each frame member is:

\[d/t_w \leq \frac{29,060}{\sqrt{F_y}} \quad \text{[Eq (8)]} \]

\[F_y = 248 \times 10^3 \text{ kPa} \]

\[d/t_w \leq \frac{29,060}{\sqrt{248} \times 10^3} \leq 58.4 \]

The limiting width-thickness ratio for the flange of each frame member is:

\[b_f/2t_f \leq 8.5 \text{ (from Table 5 of text)} \]

Check \(d/t_w \) and \(b_f/2t_f \) for the girder.

From the "Properties for designing" tables in Reference 14, the ratios \(d/t_w \) and \(b_f/2t_f \) for a W12 x 40 member are:

\[d/t_w = 40.6 < 58.4 \]

\[b_f/2t_f = 7.75 < 8.5 \]

184
Compute the slenderness ratio for each member in its plane of bending and compare with the limiting \(\ell/r \) ratio given by Equation (4.1) of Reference 1.

\[
\ell/r \leq C_c = \frac{\sqrt{2\pi^2 E/F_{dy}}}{\pi} \quad [\text{Eq (4.1) of Ref 1}]
\]

\[
C_c = \sqrt{\frac{2\pi^2}{\pi^2}} \times 207 \times 10^6/273 \times 10^3 = 122
\]

For the girder: \(\ell = 236.2 \text{ in (6.0 m)}; \)

\[
r = 5.13 \text{ in (0.130 m)}
\]

\[
\ell/r = 6.0/0.130 = 46 < 122
\]

The values of \(d/t_w, b_f/2t_f \) and \(\ell/r \) for the other frame members are tabulated in Table 2.

Step 9. For each member selected, calculate the plastic moment capacity; reduce the plastic capacity for lateral torsional buckling.

Girder: \(W12 \times 40 \)

\[
Z_X = 57.5 \text{ in}^3 (0.942 \times 10^{-3} \text{ m}^3)
\]

\[
r_Y = 1.94 \text{ in (0.049 m)};
\]

here, \(\ell \) is measured between lateral bracing points, i.e., between purlins; hence \(\ell = 2 \text{ m} \).

\[
M_{px} = F_{dy}Z_X = (273 \times 10^3) \times 0.942 \times 10^{-3}
\]

\[
= 258 \text{ kN-m}
\]

\[
M_{mx} = [1.07 - (\ell/r_Y)^2F_{dy}/262,394]M_{px} \leq M_{px}
\]

[\text{Eq (5a)}]

\[
= [1.07 - (2/0.049)^2(273 \times 10^3)/262,394]258
\]

\[
= 254.4 \text{ kN-m}
\]

\[
(M_{px})/M_{mx} \leq 1.10 \quad [\text{Eq (7)}]
\]

\[
= 227/254.4 = 0.90
\]
Problem A.2: Preliminary design of the primary framing system of a single-story rigid frame steel building subjected to a quartering shock wave.

Procedure:

Step 1. Establish the blast load parameters:

a. Location of charge
b. Charge weight, W
c. Safety factor, SF
d. Radial distances between center of charge and the following locations:
 1. Nearest corner of building
 2. Farthest point on each blastward wall
e. Angle of incidence, α, between the shock front and each blastward wall, measured at the points listed above.

Calculate the effective charge weight.

\[W_E = (1.0 + SF)W. \]

Step 2. Compute the incident and drag pressures at each location specified in Step 1d:

a. Calculate \[Z = \frac{R}{W^{1/3}} \]
b. Enter Figure 4-5, 4-11 or 4-12 of Reference 3 or Figure 6 of the text with Z and read the peak positive incident pressure, \(P_{so} \).

c. For structures located in high pressure regions, determine the dynamic pressure, \(q_0 \), for \(P_{so} \) from Figure 4-66 of Reference 3.

Calculate \(Cp q_0 \) for the roof. Obtain \(Cd \) from paragraph 4-14c of Reference 3.

d. Tabulate all values as shown in Table 3.
Step 3. Determine the peak reflected pressures at the blastward and leeward ends of each blastward wall:

a. Enter Figure 4-6 with P_{so} and α_i (from Step 1c) at the point of interest on the wall; read the reflected pressure coefficient, C_{ra}.

b. Calculate $P_{ra} = C_{ra}P_{so}$

c. Tabulate all values as shown in Table 3.

Step 4. Using data listed below, make a comparison of the horizontal and vertical blast loads acting on all frames positioned normal to each blastward wall:

1. Peak pressures determined in Steps 2 and 3

2. Distances between adjacent frames

3. Secondary framing plan of roof and walls.

b. On the basis of the comparison of Step 4a, select several representative frames, spanning in each direction, for analysis with DYNFA.

c. If analyses of several interior frames, spanning in each direction, are required because of large pressure differentials between the ends of the building, compute the peak pressures at the locations on each frame as specified in Section 2.2.

Step 5. Establish the following design parameters:

a. Geometry of frames selected for analysis

b. Orientation of columns

c. Support conditions for each frame

d. Post explosion condition of structure (reusable or non-reusable)
e. Static tensile strength, \(F_y \)

f. Dynamic increase factor, \(c \)

g. Modulus of elasticity, \(E \)

Calculate the dynamic tensile stress,

\[
F_{dy} = cF_y.
\]

Step 6.

a. Establish the peak pressures, \(P_v \) and \(P_h \) for the preliminary design of each frame using the blast pressures determined in Step 2 (and Step 3 when large pressure differentials exist between ends of building).

b. Calculate the parameters, \(\alpha, w_b \) and \(w_p \) for each frame as described in Step 4 of Problem A.1. Tabulate \(w_b \) and \(w_p \) as shown in Tables 1 and 4.

Step 7.

Perform Step 5 of Problem A.1 for each frame and tabulate the results as shown in Tables 1 and 4.

Step 8.

a. Perform Step 6 of Problem A.1 for each frame and tabulate the results as shown in Tables 1 and 4.

b. Tabulate the required plastic bending capacities for all primary frame members. When preparing this tabulation, the required bending capacities for the members of one frame can be specified for the members of other frames that have identical configurations, and are subjected to similar loadings.

Step 9.

Calculate the plastic section moduli of the frame members using the plastic bending capacities determined in Step 8b and either Equation (3) (for members designed for bi-axial bending) or Equation (4) (for members designed for uni-axial bending). Select member sizes on the basis of these section moduli.

Step 10.

Establish the minimum thickness requirements for all members using Equation (8) and Table 5 of the text. Determine whether the member sizes
selected meet these requirements. Compute the slenderness ratio(s) in the plane(s) of bending for each member and compare with the limiting slenderness ratio given by Equation (4.1) of Reference 1.

Step II. Calculate the plastic bending capacities for the members selected. Effect the reduction in these plastic moment capacities due to lateral torsional buckling using Equations (5a) and/or (5b). Check whether the reduced bending capacities satisfy Equation (6) or (7), as the case may be.

Example A.2 Preliminary design of the primary framing system of a single-story rigid frame building subjected to a quartering shock wave.

Required: Design the primary structural frames, of the single-story building shown in Figure 1, for the blast loadings produced by a quartering shock wave.

Step 1. Given:

a. Location of charge, surface burst, from Figure 2: \(H_A = 114.3 \) m; \(H_B = 66.0 \) m

b. Charge weight, \(W = 1,140 \) kg (2,500 lb)

c. Safety factor, \(SF = 20\% \)

d. Radial distances between center of charge and the following locations (Fig 2):

1. Nearest corner of building:

\[
R_1 = \sqrt{(114.3)^2 + (66.0)^2} = 132 \) m (433 ft)

2. Furthest point on wall A:

\[
R_{II} = \sqrt{(114.3)^2 + [66.0 + 3(6.0)]^2} = 141.8 \) m (465.2 ft)

3. Furthest point on wall B:

\[
R_{III} = \sqrt{[(114.2 + 2(6.0))^2 + (65.0)^2} = 142.5 \) m (467.5 ft)
e. Angle of incidence between shock front and (Fig 2):

1. Wall A: \((\alpha_A)_I = 30^\circ\)
 \((\alpha_A)_II = 36.4^\circ\)

2. Wall B: \((\alpha_B)_I = 60^\circ\)
 \((\alpha_B)_III = 62.4^\circ\)

Effective charge weight, \(W_E = (1.0 + SF)W\)
 \(= 1.2(1140)\)
 \(= 1360 \text{ kg (3000 lb)}\)

Step 2. Determine \(P_{so}\) and \(C_Dq_o\) at points I, II and III (Fig 2):

For point I:

a. \(Z_I = \frac{R_I}{W_E^{1/3}} = \frac{433}{(3,000)^{1/3}} = 30.03 \text{ ft/1b}^{1/3}\)

b. Entering Figure 4-12 with \(Z_I = 30 \text{ ft/1b}^{1/3}\)
 \(P_{so} = 1.65 \text{ psi (11.4 kPa)}\)

c. Since the structure is located in a low pressure region, the drag pressure on the roof is neglected.

d. Steps 2a, 2b and 2c are repeated for points II and III. The results are tabulated in Table 3.

Step 3. Determine the peak reflected pressures at the blastward and leeward ends of each blastward wall.

For point I on wall A:

a. Enter Figure 4-6 of Reference 3 with \(P_{so} = 1.65 \text{ psi (from Step 2b) and } (\alpha_A)_I = 30^\circ\)
 (Step 1e).
Note: Lowest value of P_{so} for which data are provided is 3.71 psi; hence, read value of C_{ra} for $(a_A)_I = 30^\circ$ and $P_{so} = 3.71$ psi

$C_{ra} = 2.11$

b. $P_{ra} = C_{ra} P_{so}$

$= 2.11 \times 1.65 = 3.48$ psi (24.0 kPa)

c. Steps 3a and 3b are repeated for point II on wall A and points I and III on wall B. All values are tabulated in Table 3.

Step 4. a. Compare blast loads on frames positioned normal to wall A:

1. Peak pressures at points I and II from Table 3:

Reflected pressures: $(P_{ra})_I = 24.0$ kPa

$(P_{ra})_{II} = 22.1$ kPa

Incident pressures: $(P_{so})_I = 11.4$ kPa

$(P_{so})_{II} = 10.3$ kPa

Differences of 7.9% in reflected pressures, and 9.6% in incident pressures between points I and II are negligible.

2. Distances between adjacent frames - frames equally spaced at intervals of 6.0 meters.

3. Secondary framing plan of roof and walls - same for all bays.

4. Conclusions: negligible difference in loads acting on interior frames; negligible difference in loads acting on exterior frames; loads acting on exterior frames approximately one-half of loads acting on interior frames.
b. On the basis of the above conclusions, the frames on column lines 1 and 2 are selected for analysis with DYNFA.

Repeating Steps 4a and 4b for the frames positioned normal to wall B results in the selection of the frames on column lines A and B for analysis with DYNFA.

It should be noted that since the blast loading on each exterior frame (column lines A and 1) is approximately one half of that on the interior frame adjacent to it (column lines B and 2, respectively), the mechanism analyses of the exterior frames are not required for the preliminary design. The required bending capacities for the members of each such frame can be taken as one half of the bending capacities for the corresponding members of the adjacent interior frame.

Step 5. Given:

a. Geometry of frames on column lines 1, 2, A and B (Fig 1).

b. Orientation of columns (Fig 3). The double line around the periphery of the roof plan in Figure 3 is used to indicate that two members are provided along the edges of the roof. One member, with its web in the plane of the exterior wall, is integral with the frame, and designed for uni-axial bending. The other member, with its web in the plane of the roof, is positioned such that it acts independently of the frame. This member is provided to resist the horizontal blast loadings acting on the upper portion of the exterior wall.

c. Pinned end supports - all frames.

d. Reusable structure.

e. \(F_y = 8.8 \times 10^3 \) kPa (36 ksi)

f. \(c = 1.1 \) (Table 2.1, Ref 1)
Step 6. a. Establish the peak pressures acting on each frame using the pressures determined in Step 2 and tabulated in Table 3.

Pressures acting on all frames normal to wall A:

\[P_h = (P_{r\alpha})_I \text{ on wall A} = 3.47 \text{ psi (23.94 kPa)} \]

\[P_v = (P_{so})_I = 1.65 \text{ psi (11.38 kPa)} \]

Pressures acting on all frames normal to wall B:

\[P_h = (P_{r\alpha})_I \text{ on wall B} = 4.06 \text{ psi (28.01 kPa)} \]

\[P_v = (P_{so})_I = 1.65 \text{ psi (11.38 kPa)} \]

b. Calculate \(\alpha, w_b \) and \(w_p \) for each frame:

Frame on column line B:

From Figure 1:

\[b_v = 0 \text{ m; } b_h = 6.0 \text{ m} \]

\[q_h = p_h b_h = 28.01(6.0) = 168.1 \text{ kN/m} \]

\[q_v = p_v b_v = 11.38(2.0) = 22.8 \text{ kN/m} \]

\[\alpha = q_h/q_v = 168.1/22.8 = 7.37 \quad [\text{Eq (1)}] \]

The dynamic load factors from Table 4 of the text are:

\[\text{DLF}_b \text{ (beam mechanism 1)} = 1.0 \]

\[\text{DLF}_b \text{ (beam mechanism 2)} = R_\alpha \]
\[D_1 \Gamma_p \text{ (panel mechanism)} = 0.5R_u \]

\[R_u = 1.0 - \frac{R}{S} \sin \alpha_1/8S \]

\[S = 5.0 \text{ m} \]

\[\alpha_1 = \alpha_{B1} = 60^\circ \]

\[R_u = 1.0 - 6.0 \sin 60^\circ/8(5) = 0.87 \]

\[(w_b)_1 = 1.0q_v = 1.0(22.8) \]

\[= 22.8 \text{ kN/m (beam mechanism 1)} \]

\[(w_b)_2 = R_u q_v = 0.87(22.8) \]

\[= 19.8 \text{ kN/m (beam mechanism 2)} \]

\[w_p = 0.5R_u q_v = 0.5(0.87)(22.8) \]

\[= 9.9 \text{ kN/m (panel mechanism)} \]

Frame on column line 2:

The calculation of these values for the frame on column line 2 is illustrated in Step 4 of Example A.1. Similar calculations for \((\alpha_B)_1 = 30^\circ \) yield the following results:

\[(w_b)_1 = 68.7 \text{ kN/m (beam mechanism 1)} \]

\[(w_b)_2 = 63.3 \text{ kN/m (beam mechanism 2)} \]

\[w_p = 31.6 \text{ kN/m (panel mechanism)} \]

Step 7. Substitute the values of \(\alpha, w_b \) and \(w_p \) determined in Step 6b into the equations for the various collapse mechanisms in Table 1 of the text.

For the frame on column line B:

Collapse mechanism 1:

\[M_p = (w_b)_1 L^2/16 = [(22.8)(6.0)^2]/16 = 51.3 \text{ kN-m} \]
Collapse mechanism 5b:

\[M_p = \frac{(3/8)(aw_f)^2}{C + (n - 1/2)} = \frac{(3/8)(7.37)(9.9)(5.0)^2}{C + (3 - 1/2)} = 684/(C + 5/2) \]

Expressions for \(M_p \) for the remaining collapse mechanisms are given in Table 4.

For the frame on column line 2:

The calculation of the expressions for \(M_p \) for the frame on column line 2 is illustrated in Step 5 of Example A.1.

Step 8. a. For each frame, calculate \(M_p \) for several trial values of \(C \) and \(C_1 \).

For the frame on column line B:

Collapse mechanism 1:

For all values of \(C \) and \(C_1 \), \(M_p = 51 \text{ kN-m} \)

Collapse mechanism 5b:

For \(C = 3 \) and \(C_1 = 2 \), \(M_p = 684/(3 + 5/2) \)

\[= 124 \text{ kN-m} \]

For \(C = 2.5 \) and \(C_1 = 2 \), \(M_p = 684/(2.5 + 5/2) \)

\[= 137 \text{ kN-m} \]

Inspection of these results and those listed in Table 4, for the two trials investigated, reveals that value of \(M_p = 1.2 \text{ kN-m} \) (same in both trials) is the minimum required plastic bending capacity for the girders of this frame. Also, Trial 2 yields the lowest value of \(C \), thereby minimizing the required capacities of the exterior columns.

Therefore, the required bending capacities are:

For the girder, \((M_p)_x = 152 \text{ kN-m} \) (111 kip-ft)
For the interior column, \(C_1(M_p)_x = 2.0(152) \)
\[= 304 \text{ kN-m (222 kip-ft)} \]
For the exterior column, \(C(M_p)_x = 2.5(175) \)
\[= 380 \text{ kN-m (278 kip-ft)} \]

For the frame on line 2:

The calculation of \(M_p \) for the frame on column line 2 is illustrated in Step 6 of Example A.1.

The following results were obtained for this frame using the loads determined in Step 6b of this example:

For the girder: \((M_p)_x = 210 \text{ kN-m (155 kip-ft)} \)

For the interior column:

\[C_1(M_p)_x = 420 \text{ kN-m (309 kip-ft)} \]

For the exterior column:

\[C(M_p)_x = 315 \text{ kN-m (232 kip-ft)} \]

b. The required bending capacities for all members of the selected frames are listed in Table 5. The quantities in italics were computed from the mechanism analyses of the frames on column lines 2 and B. The remaining quantities were extrapolated from the results of these analyses as follows:

1. The required bending capacities for the members of the frames on column lines A and C are taken as one-half of those computed for the corresponding members of the frame on column line B. Based on this, the required x-axis bending capacities for members C4 and G2, and the required y-axis bending capacity for column C3 are taken as one-half of the bending capacities for members C2, G1 and C1, respectively.
2. The required bending capacities for the members of the frame on column line 3 are taken as equal to those for the corresponding members of the frame on column line 2.

3. The required bending capacities for the members of the frames on column lines 1 and 4 are taken as one-half of those computed for the corresponding members of the frame on column line 2. Therefore, the required x-axis bending capacity of girder G4 is taken as one-half of the that for girder G3. In addition, the required y-axis bending capacities for columns C2 and C4 are taken as one-half of the required x-axis bending capacity for columns C1 and C3, respectively.

Step 9. Calculate the plastic section moduli of the frame members and select member sizes.

Girder G1:

\[Z_n = \frac{(M_p)_n}{F_{dy}} \] \[\text{(Eq (4))} \]

Member bends about x-axis;

\[(M_p)_x = 152 \text{ kN-m (from Table 5)} \]

\[Z_x = \frac{152}{(273 \times 10^3)} = 0.557 \times 10^{-3} \text{ m}^3 \]

Try W12 x 27:

\[Z_x = 38.0 \text{ in}^3 = 0.622 \times 10^{-3} \text{ m}^3 \]

Column C1:

\[Z_x = \frac{(M_p)_x}{F_{dy}} \] \[\text{(Eq (3a))} \]

\[Z_y = \frac{(M_p)_y}{F_{dy}} \] \[\text{(Eq (3b))} \]

From Table 5:

\[(M_p)_x = 420 \text{ kN-m; } (M_p)_y = 304 \text{ kN-m} \]

\[Z_x = \frac{420}{(273 \times 10^3)} = 1.54 \times 10^{-3} \text{ m}^3 \]

\[(93.9 \text{ in}^3) \]
Try W14 x 111:

\[Z_x = 196 \text{ in}^3 = 3.22 \times 10^{-3} \text{ m}^3 > 1.54 \times 10^{-3} \text{ m}^3 \]

\[Z_y = 94 \text{ in}^3 = 1.54 \times 10^{-3} \text{ m}^3 > 1.11 \times 10^{-3} \text{ m}^3 \]

The member sizes for the other members are determined in a similar manner and listed in Table 5.

Step 10. Establish the minimum thickness requirements and compute the limiting slenderness ratio for all members.

The minimum thickness requirements and limiting slenderness ratio are the same as computed in Step 8 of Example A.1.

\[
d/t_w \leq 58.4 \quad [\text{Eq (8)}] \\
bf/2tf \leq 8.5 \quad (\text{Table 5}) \\
Z/r \leq C_C = 122 \quad [\text{Eq (4.1) of Ref 1}]
\]

For girder G1: W12 x 27

\[
d/t_w = 50.5 < 58.4 \\
bf/2tf = 8.12 < 8.5 \\
Z = 6.0 \text{ m} \\
r = 5.07 \text{ in} (0.129 \text{ m}) \\
Z/r = 6.0/0.129 = 46.5 < 122
\]

For column C1: W14 x 111

\[
d/t_w = 26.6 < 58.4 \\
bf/2tf = 8.37 < 8.5 \\
\text{For bending about the x-axis:} \\
r_x = 6.23 \text{ in} (0.158 \text{ m}) \\
Z = 5.0 \text{ m}
\]

198
For bending about the y-axis:

\[\frac{\ell}{r_y} = 5.0/0.0951 = 52.6 < 122 \]

The section dimensions used in the above calculations are obtained from the "Properties for designing" tables of Reference 14.

The values of \(d/t_w \), \(b_f/2t_f \) and \(\ell/r \) for the other frame members are listed in Table 6.

Step 11. Compute the plastic moment capacities of the frame members and reduce these moment capacities for lateral torsional buckling; check whether the reduced bending capacities satisfy Equation (6) or (7), as the case may be.

Girder G1: W12 x 27

\[M_{px} = (0.622 \times 10^{-3})(273 \times 10^3) = 169.9 \text{ kN-m} \]

Assuming the compression flange to be laterally braced by the decking:

\[M_{mx} = M_{px} = 169.9 \text{ kN-m} \]

\[\frac{(M_p)_n}{M_{mn}} = \frac{(M_p)_x}{M_{mx}} \quad \text{[Eq (7)]} \]

\[= 175/169.9 = 1.03 < 1.10 \]

Column C1: W14 x 111

\[M_{px} = (3.22 \times 10^{-3})(273 \times 10^3) = 876.1 \text{ kN-m} \]

\[M_{py} = (1.54 \times 10^{-3})(273 \times 10^3) = 420.4 \text{ kN-m} \]

\[r_x = 6.231 \text{ in (0.158 m)} \]

\[r_y = 3.73 \text{ in (0.095 m)} \]

\[\ell = 5.0 \text{ m} \]
\[M_{\text{mx}} = \left[1.07 - \frac{I}{r_y} \sqrt{\frac{F_y}{262,394}} \right] M_{\text{px}} \leq M_{\text{px}} \quad [\text{Eq (5a)}] \]

\[= \left[1.07 - \frac{5.0}{0.095} \sqrt{273 \times 10^3 / 262,394} \right] 876.1 \]

Using Equation (5b) of the text,

For \(I/r_x = 5.0/0.15 = 33.3 \):

\[M_{\text{my}} = M_{\text{px}} = 420.4 \text{ kN-m} \]

\[\frac{(M_p)_x}{M_{\text{mx}}} = \frac{420}{845} = 0.5 < 1.1 \quad [\text{Eq (6a)}] \]

\[\frac{(M_p)_y}{M_{\text{my}}} = \frac{304}{420} = 0.72 < 1.1 \quad [\text{Eq (6b)}] \]

Similar computations are performed for the other columns. The results of these computations are tabulated in Table 5.

A.3 Modeling of Frame Structures for the DYNFA Program

Problem A.3: Construct the analytical model of an unbraced, interior, rigid frame of a single-story steel building subjected to a normal shock wave; prepare the related input data for DYNFA.

Procedure:

Step 1. Establish the design parameters:

a. Geometry of frame

b. Sizes of primary frame members; secondary members, decking and siding

c. Support conditions of frame

d. Post-explosion condition of structure

e. Static tensile stress, \(F_y \)

f. Dynamic increase factor, \(c \)

g. Modulus of elasticity, \(E \)
Also calculate the dynamic tensile yield stress, \(F_{dy} = cF_y \).

These data are available from the preliminary design phase (Problem A.1).

Step 2. Establish the scope of the model on the basis of the guidelines given in Section 4.2. Sketch a line diagram of the frame to be analyzed; designate nodal points at the appropriate locations on the model (Section 4.2). Assign identification numbers to the nodal points and elements (Section 8.3). Specify which nodal points are designated as mass points.

Step 3. Assign dynamic degrees of freedom to the mass points of the model using the guidelines given in Section 4.3.

Step 4. Compute the masses of the individual panels of the walls and roof within the tributary strip supported by the frame (Fig. 17 and 19 of text). Also compute the masses of the interior columns and primary transverse members within the tributary strip.

Step 5. Using Figures 17 and 19 of the text (in conjunction with Figures 18 and 20, respectively), and the masses of the individual panels of the walls and roof, determined in Step 4, compute the concentrated masses assigned to the dynamic degrees of freedom on each panel. Tabulate these masses as shown in Table 7. Include the mass of the interior columns and transverse girders in this tabulation.

Step 6. Determine the cross-sectional properties and capacities of the frame members.

The cross-sectional properties required for the analysis are:

a. Area of cross-section, \(A \)

b. Moment of inertia about an axis normal to the plane of the frame, \(I_x \) or \(I_y \), as the case may be.
The cross-sectional properties required to compute the member capacities are:

a. Area of cross-section, A
b. Radii of gyration, r_x and r_y, about both principal axes of the cross-section
c. Plastic section modulus, Z_x or Z_y, about an axis normal to the plane of the frame.

The capacities required for the analysis are:

a. Ultimate dynamic load capacity in axial tension, P_p [Eq (13)]
b. Ultimate dynamic load capacity in axial compression, P_u [Eq (14)]
c. Ultimate bending capacity in the absence of axial load, M_{mx} or M_{my}, depending upon the axis of bending [Eq (5a) or 5b)]

Some of these data are available from the preliminary design phase.

Tabulate, as shown in Table 8, the nodal connections, cross-sectional properties and the axial load and bending capacities for all elements. Indicate the locations of local pins in this tabulation, if any are utilized in the analysis.

Step 7. Using the guidelines provided in Figures 23 and/or 24 of the text, establish the dimensions of the tributary loading areas that are assigned to the mass points on the exterior members of the frame. Compute the tributary areas and tabulate both the dimensions and the areas as shown in Table 9.

Combine adjacent coplanar areas assigned to the one mass point.

Step 8. Establish the following blast loading parameters:

a. Location of the charge
b. Charge weight, W
c. Safety factor, SF
d. Normal distance, \(R_A \), from the center of the charge to the blastward and leeward walls of the building

Calculate the effective charge weight,
\[W_E = (1.0 + SF)W. \]

Most of these data are available from the preliminary design.

Step 9.

a. Compute the scaled distances from the center of the charge to the blastward and leeward ends of the building, \(Z = \frac{R_A}{W_E^{1/3}} \).

b. Enter Figure 4-5, 4-11 or 4-12 of Reference 3 or Figure 6 of the text with each of the scaled distances determined above, and read from the appropriate curves:

- Peak positive incident pressure, \(P_{so} \)
- Scaled unit positive impulse, \(i_s/W^{1/3} \)
- Shock front velocity, \(U \)

c. Enter Figure 4-5 or 4-12 of Reference 3 or Figure 6 of the text with the scaled distance to the blastward wall and read from the appropriate curves:

- Peak positive normal reflected pressure, \(P_r \)
- Scaled unit positive normal reflected impulse, \(i_r/W^{1/3} \)

d. Tabulate all values as shown in Table 10.

Step 10.

Using the blast wave parameters determined in Steps 9b and 9c, construct the reflected pressure-time history on the blastward wall:

a. Calculate clearing time \(t_c \):

\[t_c = \frac{3S}{U} \]

where \(S \) = height of blastward wall or one half its width
b. Calculate fictitious positive phase duration, t_{of}:

$$t_{of} = \frac{2I_s}{P_{so}}$$

c. Determine peak dynamic pressure, q_0, from Figure 4-66 of Reference 3 for P_{so}.

d. Calculate $P_{so} + C_D q_0$. Obtain C_D from paragraph 4-14c of Reference 3.

e. Calculate fictitious reflected pressure duration, t_r:

$$t_r = \frac{2I_r}{P_r}$$

f. Construct the reflected pressure-time curves shown in either (a) or (b), Figure 26 of the text. The curve utilized for the analysis is the one which yields the smallest value of the impulse (area under curve).

g. Tabulate all values as shown in Table 10.

Step 11. Using the blast wave parameters determined in Step 9b, determine the combined incident/drag pressure-time histories at the blastward and leeward end of the roof as follows:

a. Calculate fictitious positive phase duration, t_{of}:

$$t_{of} = \frac{2I_s}{P_{so}}$$

b. Determine peak dynamic pressure q_0 from Figure 4-66 of Reference 3 for P_{so}.

c. Calculate $P_{so} + C_D q_0$. Obtain C_D from paragraph 4-14c of Reference 3.

d. Tabulate all values as shown in Table 10.

Step 12. a. Determine the pressure history at the location of each mass point on the roof by linearly interpolating for both the peak pressure and the duration, using the data computed in Step 11 and Equations (15) and (16).
b. Determine the pressure history for each mass point on the leeward wall using Equations (17) and (18) (where appropriate - see Section 5.3), and the data computed in Step 11.

c. In a similar manner, interpolate for the shock front velocities at the mass points on the roof, and extrapolate for these quantities at the mass points on the leeward wall.

Tabulate the peak pressures, durations and shock front velocities as shown in Table 11.

If large pressure differentials occur between the blastward and leeward ends of the roof, a more refined interpolation for the pressure-time histories may be required. Refer to Section 5.3 for guidance, if this is necessary.

Step 13. Determine the values of parameters a and D for each tributary area (Section 5.3). Refer to Figures 30, and 32 through 34 of the text for guidance when computing these quantities. Tabulate all values as shown in Table 11.

Step 14.

a. Using the pressure histories and shock front velocities determined in Steps 10 and 12, the values for a and D determined in Step 13, and the equations given in Section 5.3, compute the following blast loading parameters for each tributary area:

1. Travel time, t_a, computed using Equation (19).
2. Rise time, t_r, computed using Equation (20).
3. Average peak pressure, $(P_{pk})_{AVG}$, computed using Equation (21).
4. Time, t_{pk}, at which $(P_{pk})_{AVG}$ occurs, computed using Equation (23).
5. Duration of the pressure loading on the tributary area, t_{DI}, computed using Equation (25).
6. Time at which the pressure on the tributary area decays to zero, t_f, computed using
Equation (26). Tabulate these data as shown in Table 11.

b. Using the parameters determined above, generate the digitized data defining the pressure-time history input for DYNFA as described in Section 8.9 and illustrated in Figures 60 and 61 of the text. Assign an identification number to each pressure waveform entered in the DYNFA input.

Step 15. Compute the dead, and where appropriate, live loads acting on the frame. Distribute these quantities as uniform and concentrated loads as described in Section 8.10. Tabulate all values as shown in Tables 12 and 13.

Step 16. Compute the integration time interval on the basis of either Equation (34) or (35) (whichever governs). In addition, specify the desired duration of the response on the basis of the sidesway natural period of the frame as computed using the data in Table 8 of the text and either of Equations (36) or (37) (as the case may be).

Step 17. Locate the origin of the global system for the model; establish the direction of the global axes, (Section 8.4), and specify the nodal coordinates (Fig 4).

Step 18. Transfer the nodal coordinates, together with the tabulated data (as contained in Tables 7 through 13) to punched cards using the input formats for DYNFA, which are specified in Section 8.13.

Example A.3: Construct the analytical model of an unbraced, interior, rigid frame of a single-story steel building subjected to a normal shock wave, and prepare the related input data for DYNFA.

Required: The analytical model, and all related input data for DYNFA, for the rigid frame designed in Example A.1.

Step 1. From Example A.1, given:

a. Geometry of interior frame on column line 2 (Fig 1)
b. Sizes of primary frame members:
1. Roof girders: W12 x 40
2. Exterior columns: W14 x 53
3. Interior columns: W14 x 61

Sizes of secondary members, decking and siding shown in Figure 1.

Size of primary transverse girders: W12 x 36

c. Pin-ended column supports
d. Reusable structure
e. $F_y = 248(10)^3$ kPa (36 ksi)
f. $c = 1.1$
g. $E = 207(10)^6$ kPa (30 x 10^6 psi)
$F_{dy} = 273(10)^3$ kPa (39.6 ksi)

Step 2. The interior frame on column line 2 (Fig 1) is modeled for analysis with DYNFA. The model includes only the steel frame, as the foundation response is assumed to have a negligible impact on the frame's response ($M_{FNDN} > 2M_{STEEL}$). A line diagram of the frame is shown in Figure 4. The following locations on the frame are designated as nodal points:

a. All column base connections: nodes 1, 10 and 18
b. All column/girder connections: nodes 5, 9 and 14
c. Three intermediate locations within the span of each exterior member: nodes 2 through 4, 6 through 8, 11 through 13 and 15 through 17. In each group of three intermediate nodal points, two nodes are located at the connections of the secondary members (purlins and girts) to the frame proper. These nodes are
2, 4, 15 and 17 on the exterior columns; and 6, 8, 11 and 13 on the roof girders. The third node in each group is used for the purpose of computing the maximum chordal angle (Section 4.2) at the midspan of the member.

Nodal points at the following locations are designated at mass points (Fig 4).

a. All column/girder connections

b. All locations on exterior members corresponding to the connections of secondary members to the frame proper.

Step 3. Assign dynamic degrees of freedom to the mass points of the model.

Consistent with the guidelines given in Section 4.3, the dynamic degrees of freedom for the model are designated as shown in Figure 4b. Note that the mass points at the girder/column intersections (nodes 5, 9 and 14) are assigned two dynamic degrees of freedom (one in the horizontal direction and the other in the vertical direction), while all intermediate mass points (nodes 2, 4, 6, 8, 11, 13, 15 and 17) are assigned one dynamic degree of freedom which is directed normal to the longitudinal axis of the member.

Step 4. Compute the masses of the individual wall, roof and floor panels (if any) within the tributary strip supported by the frame. Also compute the masses of all interior columns and transverse girders within the strip.

Referring to Figure 1, the frames are equally spaced 6.0 meters apart; therefore, the tributary strip is 6.0 meters wide and includes:

a. Two exterior wall panels, each of which is 6.0 meters wide by 5.0 meters high. Since there are only two girts within each panel, the mass of these members will not be included as a part of the panel mass (see Fig 17 of text, case 2b). Hence, the mass of each wall panel is taken as the sum of the masses of the following structural components:
1. Siding: Type 2 - 20 x 20
 Weight = 4.2 psf (20.5 kg/m²)
 Mass = 20.5 x 6.0 x 5.0 = 615 kg

2. Exterior column: W14 x 53 (79.9 kg/m)
 Length = 5 meters
 Mass = 78.9 x 5.0
 = 394.5 kg

3. The mass of a wall panel, \(M_W \), is:
 \[M_W = 615 + 394.5 = 1,009.5 \text{ kg} \]

b. Two roof panels, each of which is 6.0 meters wide and 6.0 meters long. As was the case with the wall panels, the mass of the secondary framing of the roof is not included as part of the roof panel mass. Hence, the mass of each roof panel is taken as the sum of the masses of the following structural components (Fig 19 of text, case 2b):

1. Decking: Type 2 - 20 x 20
 Weight = 4.2 psf (20.5 kg/m²)
 Mass = 20.5 x 6.0 x 6.0 = 738 kg

2. Girder: W12 x 40 (59.4 kg/m)
 Length = 6.0 m
 Mass = 59.4 x 6.0 = 356.4 kg

3. The mass of a roof panel, \(M_R \), is:
 \[M_R = 738.0 + 356.4 = 1,094.4 \text{ kg} \]

c. Two girts on each exterior wall, each of which is a W14 x 26 (38.7 kg/m), 6 meters long.
 \[m_g = 38.7 \times 6.0 = 232.2 \text{ kg} \]
d. Two purlins on each roof panel, each of which is a W12 x 19 (28.2 kg/m), 6 meters long.

\[m_p = 28.2 \times 6.0 = 169.2 \text{ kg} \]

e. Interior column: W14 x 61 (90.8 kg/m)

Length = 5.0 m

Mass = 90.8 \times 5.0 = 453.8 \text{ kg}

f. Three transverse girders, each of which is a W12 x 36 (53.6 kg/m), 6 meters long.

Mass of one transverse girder = 53.6 \times 6.0 = 321.6 \text{ kg}

Step 5. Compute the concentrated masses assigned to the dynamic degrees of freedom in each panel.

Using Figure 17, case 2b, in conjunction with Figure 18, both of the text, the concentrated masses for an exterior wall panel are computed as follows:

\[M_W = 1009.5; \ m_g = 232.2 \text{ kg}; n_g = 2 \]

\[N_{DOFH} = 2 \text{ from Figure 4b} \]

Therefore:

\[(M_{IH})_W = \frac{M_W}{N_{DOFH} + 1} + m_g \]

\[= \frac{1009.5}{2 + 1} + 232.2 = 568.7 \text{ kg} \]

\[(M_{EH})_W = \frac{M_W}{2(N_{DOFH} + 1)} \]

\[= \frac{1009.5}{2(2 + 1)} = 168.3 \text{ kg} \]

\[(M_{EV})_W = \frac{n_g}{\sum m_{g_i}} \]

\[= \frac{232.2}{2} = 737 \text{ kg} \]
The mass distribution for the blastward column proceeds as follows: \((M_{IH})_W \) is assigned to the horizontal dynamic degrees of freedom at the intermediate mass points (nodes 2 and 4); and \((M_{EH})_W \) and \((M_{EV})_W \) are assigned to the horizontal and vertical dynamic degrees of freedom at the column/girder connection (node 5). Since the column/foundation connection (node 1) is a support point, the portion of the wall mass that would be concentrated there is discarded. The mass distribution on the leeward column is exactly the same as that on the blastward column.

Using Figure 19, case 2b, in conjunction with Figure 20 (both of the text), the concentrated masses for a roof panel are computed as follows:

\[
M_R = 1,094.4 \text{ kg; } m_p = 169.2 \text{ kg; } n_g = 2
\]

\[N_{DOFV} = 2 \text{ from Figure 4b}\]

Therefore:

\[
(M_{EH})_R = \frac{np}{1} \frac{M_R + \sum m_{p_i}}{2} = \frac{1,094.4 + 2(169.2)}{2} = 716.4 \text{ kg}
\]

\[
(M_{IV})_R = \frac{M_R}{N_{DOFV} + 1} + m_p = \frac{1,094.4}{2 + 1} + 169.2 = 534 \text{ kg}
\]

\[
(M_{EV})_R = \frac{M_R}{2(N_{DOFV} + 1)} = \frac{1,094.4}{2(2 + 1)} = 182.4 \text{ kg}
\]

The mass distribution for the blastward roof girder proceeds as follows: \((M_{IV})_R \) is assigned to the vertical dynamic degrees of freedom at the intermediate mass points (nodes 6 and 8); and \((M_{EH})_R \) and \((M_{EV})_R \) are assigned to the horizontal and vertical dynamic degrees of freedom at the girder/column connections (nodes 5 and 8). The mass distribution for the leeward girder is exactly the same as that for the blastward girder.
The concentrated masses for the wall and roof panels are tabulated in Table 7. The mass of the interior columns and transverse girders are included in this tabulation. Note that there are several contributory masses assigned to the mass points at the girder/column connections. Here, the total mass is the sum of all the contributory masses from several components (wall panels, roof panels, interior columns, transverse girders).

Step 6. Determine the cross-sectional properties and capacities of the frame members.

Girder: W12 x 40

From Step 1: \(F_{dy} = 273 \times 10^3 \) kPa

\(E = 207 \times 10^6 \) kPa

From Example A.1: \(M_{mx} = 254 \text{ kN-m} \)

\(C_C = 122 \)

The following cross-sectional properties of the member are obtained from the "Properties for designing" tables of Reference 14.

a. \(A = 11.9 \text{ in}^2 \) (76.1 cm²)

b. \(I_x = 310 \text{ in}^4 \) (12,834 cm⁴)

The following additional data is obtained from the same reference to compute \(P_U \):

\(r_x = 5.13 \text{ in} \) (0.130 m)

\(r_y = 1.94 \text{ in} \) (0.049 m)

Using Equation (13):

\[P_p = F_{dy}A = (273 \times 10^3)(76.1 \times 10^{-4}) \]

\[= 2,078 \text{ kN} \]

According to Equation (14) of the text:

\[P_U = 1.7F_aA \]

212
Here, F_a is computed using Equation (4.3) of Reference 1. To use this equation, compute the maximum of either $\frac{I}{ry}$ or $\frac{Kl}{rx}$ (Table 4.1, Ref 1).

For buckling about the weak axis, Z is measured between points of lateral bracing; i.e., purlin/girder connections:

$$\frac{I}{ry} = \frac{2.0}{(4.93 \times 10^{-2})} = 40.6$$

For buckling about the strong axis, Z is measured between the vertical support points, i.e., girder/column connections. Using a value of 0.75 for the effective length factor, K, as recommended in Section 4.4 of Reference 1:

$$\frac{Kl}{rx} = \frac{(0.75 \times 6)}{(13.03 \times 10^{-2})} = 34.6 < 40.6$$

Equation (4.3) of Reference 1:

$$F_a = \frac{[1 - (\frac{Kl}{r})^2]F_{dy}}{2C_c^2}$$

$$\frac{5 + 3(\frac{Kl}{r}) - (\frac{Kl}{r})^3}{3 \times 8 \times C_c^3}$$

$$Kl/r = 40.6$$

$$F_{dy} = 273 \times 10^3$$

$$C_c = 122$$

$$F_a = \frac{[1 - 40.6^2/(2 \times 122^2)](273 \times 10^3)}{5/3 + [3(40.6)/8(122)] - [40.6^3/8(122)^3]}$$

$$= 144.3 \times 10^3 \text{ kPa}$$

$$P_u = 1.7(144.3 \times 10^3)(76.1 \times 10^{-4})$$

$$= 1,867 \text{ kPa}$$

Values of P_p, P_u and M_{mx} for all members are tabulated in Table 8 together with the identification numbers and nodal connectivities for the elements representing them.
Step 7. Establish the dimensions of the tributary areas assigned to the mass points on the exterior members.

Since the secondary members are normal to the frame, the dimensions of the tributary areas for the roof and wall panels are established according to the data given in Figure 24 of the text.

For a roof panel:

From Figure 1: \(W_T = 6.0 \) m

\(W_1 = W_2 = 3.0 \) m

\(L = 6.0 \) m

From Figure 4b: \(N_M = 2 \)

For an intermediate mass point (nodes 6, 8, 11 and 13):

Width of tributary area = \(W_T = 6.0 \) m

Length of tributary area =

\[\frac{L}{(N_M + 1)} = \frac{6.0}{2 + 1} = 2.0 \] m

Area = \(6.0 \times 2.0 = 12.0 \) m\(^2\)

For a mass point at the end of the member (nodes 5, 9 and 14):

Width of tributary area = \(W_T = 6.0 \) m

Length of tributary area =

\[\frac{L}{2(N_M + 1)} = \frac{6}{2(2 + 1)} = 1.0 \] m

Area = \(6.0 \times 1.0 = 6.0 \) m\(^2\)

The dimensions of the tributary areas for the panels of the blastward and leeward walls are established in a similar manner. The dimensions of each tributary area is shown in Figure 5 and tabulated in Table 9. Note that the two contributory coplanar areas from the blastward and leeward roof panels are combined into one area which is assigned to node point 9.
Step 8. From the preliminary design Example A.1, Step 1:
 a. Location of charge, surface burst
 b. Charge weight: \(W = 1,140 \text{ kg (2,500 lb)} \)
 c. Safety factor: \(SF = 20 \text{ percent} \)
 d. Normal distance to blastward wall:
 \[433 \text{ ft (132 m)} \]
 e. Normal distance to leeward wall:
 \[433 + 39.4 = 472.4 \text{ ft (144 m)} \]
 f. Effective charge weight: \(WE = (1.0 + SF)W \)
 \[= 1.2(1,140) = 1,360 \text{ kg (3,000 lb)} \]

Step 9. \(WE = 3,000 \text{ lb; } W_{E}^{1/3} = 14.42 \text{ lb}^{1/3} \)

Point on blastward wall:
 a. \(R_A = 433 \text{ ft} \)
 \[Z = 433/14.42 = 30 \text{ ft/} lb^{1/3} \]
 b. Entering Figure 4-12 with \(Z = 30 \text{ ft/} lb^{1/3} \):
 \[P_{50} = 1.65 \text{ psi (11.4 kPa)} \]
 \[t_s/W^{1/3} = 3.4 \text{ psi-ms/} lb^{1/3} \]
 \[t_s = (3.4)(14.43) = 49.03 \text{ psi-ms} \]
 \[U = 1.16 \text{ ft/ms (353.6 m/sec)} \]

Steps 9a and 9b are repeated for the point on leeward wall.

 c. Entering Figure 4-12 with \(Z = 30 \text{ ft/} lb^{1/3} \):
 \[P_r = 3.51 \text{ psi (24.2 kPa)} \]
 \[t_r/W^{1/3} = 6.9 \text{ psi-ms/} lb^{1/3} \]
 \[t_r = (6.9)(14.42) = 99.5 \text{ psi-ms} \]
d. All values are tabulated in Table 10.

Step 10. Determine the reflected pressure-time history for the blastward wall:

a. \(t_c = \frac{3S}{U} \)

\(S = 5.0 \text{ m} < 12.0 \text{ m}/2 \) (From Fig 1)

\(U = 353.6 \text{ m/sec} \) (From Table 10)

\(t_c = \frac{3(5.0)}{353.6} = 0.042 \text{ sec} \)

b. \(t_{of} = \frac{2i_s}{P_{so}} \)

From Table 10: \(i_s = 49.03 \text{ psi-ms} \)

\(P_{so} = 165 \text{ psi} \)

\(t_{of} = \frac{2(49.03)}{1.65} = 59.4 \text{ ms} = 0.0594 \text{ sec} \)

c. \(q_0 = 0.066 \text{ psi (0.45 kPa)} \) for

\(P_{so} = 1.65 \text{ psi} \) by extrapolating the data in Figure 4-66 of Reference 3.

d. From paragraph 4-14b of Reference 3,

\(C_D = 1.0 \) for the blastward wall.

Therefore: \(P_{so} + C_D q_0 = 1.65 + 1.0(0.065) = 1.72 \text{ psi} \)

e. \(t_r = \frac{2i_r}{P_r} \)

\(i_r = 99.5 \text{ psi-ms} \)

\(P_r = 3.51 \text{ psi} \)

\(t_r = \frac{2(99.5)}{3.51} = 56.7 \text{ ms} \)

f. The reflected pressure-time histories shown in Figure 6a are constructed using these data.
Note that the curve shown as a dotted line, which was constructed using P_r and t_r, has a higher impulse than the other curve, which is the one used in the analysis.

g. All values are tabulated in Table 10.

Step 11. Determine the combined incident/drag pressure-time history at the blastward end of the roof:

a. $t_{so} = \frac{21_s}{P_{so}}$

 From Step 10b: $t_{of} = 0.0594$ sec

b. From Step 10c: $q_0 = 0.066$ psi (0.48 kPa)

c. From paragraph 4-14c of Reference 3:

 $C_D = -0.40$ for the roof and leeward wall.

 Therefore, $P_{so} + C_D q_0 = 1.65 - 0.40(0.065)$

 $= 1.62$ psi (11.1 kPa)

d. Steps 11a through 11c are repeated for the point at the leeward end of the building and all values are tabulated in Table 10.

Step 12. a. Determine the pressure-time histories at the locations of all mass points on the roof using Equations (15) and (16), and the data determined in Step 11.

At the blastward end of the frame:

$(P_{pk})_B = P_{so} + C_D q_0 = 11.1$ kPa

$(t_{dr})_B = t_{of} = 0.0594$ sec

At the leeward end of the frame:

$(P_{pk})_L = P_{so} + C_D q_0 = 9.9$ kPa

$(t_{dr})_L = t_{of} = 0.0624$ sec

$L_R = 12.0$ m (Fig 1)
For node point 9 on the roof (Fig 5a):

\[z_{9r} = 6.0 \text{ m} \]

Using Equations (15) and (16):

\[
(P_{pk})_9 = 11.1 - \frac{(11.1 - 9.9)(6.0)}{12.0} \quad \text{[Eq (15)]}
\]

\[= 10.5 \text{ kPa} \]

\[
(t_{dr})_9 = 0.0594 - \frac{(0.0594 - 0.0624)(6.0)}{12.0} \quad \text{[Eq (16)]}
\]

\[= 0.0609 \text{ sec} \]

b. Determine the pressure-time histories at the locations of all mass points on the leeward wall using Equations (17) and (18) and the data determined in Step 11.

For node point 17 on the leeward wall:

\[z_{17z} = 3.33 \text{ m (Fig 5)} \]

\[
(P_{pk})_{17} = 9.9 - \frac{(11.1 - 9.9)(3.33)}{12.0} \quad \text{[Eq (17)]}
\]

\[= 9.5 \text{ kPa} \]

\[
(t_{dr})_{17} = 0.0624 - \frac{(0.0594 - 0.0624)(3.33)}{12.0} \quad \text{[Eq (18)]}
\]

\[= 0.0632 \text{ sec} \]

The blast loading parameters defining the pressure waveforms \((P_{pk}, t_{dr})\) at all of the mass points are tabulated in Table 11.

c. The shock front velocity remains constant as the wave traverses the building; therefore, no interpolation or extrapolation for this quantity is required in this problem.

Step 13. Determine the values of \(a\) and \(D\) for the tributary areas.
Based on the dimensions of the tributary areas shown in Figure 5 and using Figure 32 for guidance, the following values of a and D for node 9 on the roof are determined:

\[D = d_2 \text{ and } a = z_2 \]

From Figure 5: \(d_2 = 5.0 \text{ m} \) and \(z_2 = 2.0 \text{ m} \)

Using Figure 33 for guidance, the following values of a and D are determined for node 17 on the leeward wall:

\[D = L + h_1 \text{ and } a = h_2 \]

From Figure 5:

\[L = 12.0 \text{ m} \]
\[h_1 = 2.5 \text{ m}; h_2 = 1.67 \text{ m} \]
\[D = 12.0 + 2.5 = 14.5 \text{ m} \]
\[a = 1.67 \text{ m} \]

Values of a and D for the other mass points on the model are tabulated in Table 11.

Step 14.

a. Compute the blast loading parameters for modifying the pressure-time histories at each mass point.

For node point 9:

From Step 12:

\[P_{pk} = 10.5 \text{ kPa}; t_{dr} = 0.0609 \text{ sec}; U = 353.6 \text{ m/sec} \]

From Step 13:

\[a = 2.0 \text{ m}; D = 5.0 \text{ m} \]

1. \(t_a = D/U_{AVG} = 5.0/353.6 = 0.0141 \text{ sec} \) [Eq (19)]
2. \(t_{rt} = a/U_g = 2.0 /353.6 = 0.0056 \text{ sec} \) [Eq (20)]
3. \((P_{pk})_{AVG} = P_{pk}[1 - (a/2U_{dr})] \) [Eq (21)]

219
\[
10.5 \times [1.0 - 2.0/(2.0)(353.6)(0.0609)] = 10.0 \text{ kPa}
\]

4. \[t_{pk} = t_a + t_{rt} \quad \text{[Eq (23)]}
\]
\[= 0.0141 + 0.0056 = 0.0197 \text{ sec} \]

5. \[t_{DI} = t_{rt}/2 + t_{dr} \quad \text{[Eq (25)]}
\]
\[= 0.0056/2 + 0.0609 = 0.0637 \text{ sec} \]

6. \[t_T = t_a + t_{DI} \quad \text{[Eq (26)]}
\]
\[= 0.0141 + 0.0637 = 0.0778 \text{ sec} \]

The values of these parameters for the other mass points are computed in a similar manner and all results are tabulated in Table 11.

b. Generate the digitized data defining the pressure-time history input for DYNFA as described in Section 8.9 and illustrated in Figures 60 and 61 of the text.

For node point 9:

<table>
<thead>
<tr>
<th>Point</th>
<th>Parameter</th>
<th>Value (kPa)</th>
<th>Parameter</th>
<th>Value (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>0.0</td>
<td>(t_a)</td>
<td>0.0141</td>
</tr>
<tr>
<td>3</td>
<td>((P_{pk})_{AVG})</td>
<td>10.0</td>
<td>(t_{pk})</td>
<td>0.0197</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>0.0</td>
<td>(t_T)</td>
<td>0.0778</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>0.0</td>
<td>(T_F)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Waveform identification number = 7 (from Table 11).

Number of points in waveform = 5 (from above).

220
The digitized data defining the pressure-time histories for the other mass points are given in Appendix B.

Step 15. Compute the dead loads acting on the frame and distribute these loads among the elements and nodal points of the model. In DYNFA, the dead loads are entered in mass units when SI units are utilized in the analysis and the conversion of mass to force is performed by the program. Therefore, in the computations that follow, the dead loads are given in kilograms.

a. Distribution of the weight of a roof panel:

1. The uniform load acting on the girder consists of its own weight:

 \[w = 59.4 \text{ kg/m (from Step 4).} \]

 This loading is applied to elements 5 through 8, and 10 through 13.

2. The concentrated loads acting along the girder consists of the reactions of the purlins. Each purlin supports its own weight as well as one third the weight of the decking within each roof panel.

 From Step 4:

 Weight of decking = 738 kg

 Weight of one purlin = 169.2 kg

 Concentrated load acting along girder (nodes 6, 8, 11 and 13) = \(\frac{1}{3} \times 738 + 169.2 \)

 \[= 415.2 \text{ kg} \]

 The remaining one third of the decking weight is supported by the transverse girders, and therefore is applied as a concentrated load at each girder/column connection.
b. Distribution of the weight of a wall panel:

1. The distributed load acting on the column is its own weight:

\[w = 78.9 \text{ kg/m} \]

This loading is applied to elements 1 through 4, and 14 through 17.

2. One half the weight of the wall (including girts) is applied as a concentrated load at the exterior column/girder connection.

From Step 4:

Weight of siding = 615 kg

Weight of 2 girts (232.2 kg/girt) = 464.4 kg

1,079.4 kg

Concentrated load acting at each exterior column/girder connection (nodes 5 and 14):

\[(1/2)(1,079.4) = 539.7 \text{ kg} \]

c. The weight of the transverse girders is applied directly to the girder/column connections (nodes 5, 9 and 14).

d. The weight of the interior column (90.8 kg/m - from Step 4) is applied as a uniformly distributed load to element no. 9.

The dead loads applied to the elements are tabulated in Table 12; concentrated loads applied to the appropriate nodal points are tabulated in Table 13.

Step 16. Compute the integration time interval and specify the duration of the response.

Integration time interval:

Check the extensional modes of the members:

222
\[T_a = \frac{2\pi \sqrt{M_e/AE}}{AE} \quad \text{[(Eq 34)]} \]

Exterior column: \(L = 5.0 \) m (Fig 1)

\[M_e = 1,241.0 \text{ kg (Table 7)} \]
\[= 1.241 \text{ kN-sec}^2/m \]
\[A = 101.0 \text{ cm}^2 \text{ (Table 8)} \]
\[E = 207 \times 10^6 \text{ kPa} \text{ (Step 1)} \]

\[T_a = \frac{2\pi \sqrt{1.241}/(101 \times 10^{-4})(207 \times 10^6)}{207 \times 10^6} \]
\[= 0.011 \text{ sec} \]

Interior column: \(L = 5.0 \) m (Fig 1)

\[M_e = 913.3 \text{ kg (Table 7)} \]
\[= 0.9133 \text{ kN-sec}^2/m \]
\[A = 115.0 \text{ cm}^2 \text{ (Table 8)} \]
\[E = 207 \times 10^6 \text{ kPa} \]

\[T_a = \frac{2\pi \sqrt{0.9133}/(115 \times 10^{-4})(207 \times 10^6)}{207 \times 10^6} \]
\[= 0.0087 \text{ sec} \]

Roof girder: \(L = 6.0 \) m (Fig 1)

\[M_e = 1,206.3 \text{ kg (Table 7)} \]
\[= 1.2063 \text{ kN-sec}^2/m \]
\[A = 76.1 \text{ cm}^2 \text{ (Table 8)} \]
\[E = 207 \times 10^6 \text{ kPa} \]

\[T_a = \frac{2\pi \sqrt{6.0(1.2063)/(76.1 \times 10^{-4})(207 \times 10^6)}}{207 \times 10^6} \]
\[= 0.0135 \text{ sec} \]

Check the second bending mode of vibration of the exterior column and the roof girder:

\[T_b = \frac{(1/C)\sqrt{M_iL^3/EI}}{EI} \quad \text{[Eq (75)]} \]
Exterior column: \(C = 7.95 \) (Table 7 of text)

\[
M_i = 2 \times 568.7
= 1,137.4 \text{ kg (Table 7)}
= 1.1374 \text{ kN-sec}^2/\text{m}
\]

\[I = 22,550 \text{ cm}^4 \text{ (Table 8)}\]

\[
T_b = \frac{\sqrt{(1.1374)(5.0)^3/(207 \times 10^6)(22,550 \times 10^{-8})}}{7.95}
= 0.0069 \text{ sec}
\]

Roof girder: \(C = 9.82 \) (Table 7 of text)

\[
M_i = 2 \times 534 = 1,068 \text{ kg (Table 7)}
= 1.068 \text{ kN-sec}^2/\text{m}
\]

\[I = 12,834 \text{ (Table 8)}\]

\[
T_b = \frac{\sqrt{(1.068)(6.0)^3/(207 \times 10^6)(12,834 \times 10^{-8})}}{9.82}
= 0.0095 \text{ sec}
\]

Inspection of these results indicates that the second bending mode of vibration of the exterior column has the shortest period (highest frequency); hence, the integration time increment used is 1/20 of this period:

\[
\Delta t = \frac{0.0069}{20} = 0.000345 \text{ sec}
\]

Use \(\Delta t = 0.00035 \) sec

Duration of response and number of integration time increments:

Compute sidesway natural period of frame:

\[
T_s = \frac{2\pi \sqrt{m_b/K_L}}{\text{[Eq (36)]}}
\]

Here, \(m_b \) is the total mass of the roof panels, purlins and transverse girders plus one third the mass of the wall panels, girts and interior columns:
From Step 4:

Mass of 2 roof panels (1,094.4 kg/panel) = 2,188.8 kg

Mass of 4 purlins (169.2 kg/purlin) = 676.8 kg

Mass of 3 transverse girders (321.6 kg/girder) = 964.8 kg

Total = 3,830.4 kg

Mass of 2 wall panels (1,009.5 kg/panel) = 2,019.0 kg

Mass of 4 girts (232.2 kg/girt) = 928.8 kg

Mass of interior column = 453.8 kg

Total = 3,401.6 kg

\[m_e = 3,830.4 + \frac{1}{3}(3,401.6) = 4,964.3 \text{ kg} \]

\[= 4.964 \text{ kN-sec}^2/\text{m} \]

\[K = \left(\frac{EI_{ca}C_2}{H^3} \right) \left[1 + (0.7 - 0.1\beta)(n - 1) \right] \]

(From Table 8 of text)

\[E = 207 \times 10^6 \text{ kPa} \]

\[I_{ca} = \Sigma I_c/(n + 1) \]

(From Table 8 of text)

From Table 8 of Appendix A:

\[I \text{ for exterior column} = 22,550 \text{ cm}^4 \]

\[I \text{ for interior column} = 26,670 \text{ cm}^4 \]

\[I_{ca} = \frac{2(22,550) + 26,670}{3} = 23,923 \text{ cm}^4 \]

\[H = 5.0 \text{ m (Fig 1)} \]

\[\beta = 0.0 \text{ (Table 8 of text)} \]

225
C_2 is a function of D and β:

$$D = \frac{(I_g/L)/[I_{ca}(0.75 + 0.25))/H]}{(23,923(0.75))/5.0}$$ (Table 8 of text)

From Table 8 of Appendix A: $I_g = 12,834 \text{ cm}^4$

$$D = \frac{12,834/6.0}{23,923(0.75)/5.0} = 0.6$$

For $D = 0.6$ and $\beta = 0.0$: $C_2 = 4.93$

therefore:

$$K = \frac{(207 \times 10^6)(23,923 \times 10^{-8})(4.93)[1 + 0.7(2 - 1)]}{53} = 3,320 \text{ kN/m}$$

$$K_L = 0.55(1 - 0.25\beta); \beta = 0$$

$$T_c = 2\pi\sqrt{4.964/[3,320(0.55)]} = 0.33 \text{ sec}$$

Here, the response will be computed for a duration, T_f, of $(1/2)T_s$; therefore, the number of integration time increments, NDT, is:

$$NDT = 1 + \frac{T_f}{\Delta t} \quad \text{[Eq (39)]}$$

$$T_f = (1/2)T_s = 0.165 \text{ sec}$$

$$\Delta t = 0.00035 \text{ sec}$$

$$NDT = 1 + 0.165/0.00035 = 471$$

Use 500 increments in the analysis.

Step 17. The origin of the global coordinate system is located at nodal point 1 (Fig 4), which is the lower left-hand support point of the model. The nodal coordinates are specified on the sketch of the model (Fig 4a).
Step 18. The nodal coordinates together with the data contained in Tables 7 through 13 are punched on input data cards according to the format specifications in Section 8.13. A listing of the input data deck for this problem is given in Appendix B. Note that the blast loads on the leeward walls and roof act in the negative directions of the global X and Y axes, respectively. Therefore, the tributary areas on these surfaces are entered as negative quantities in the input to DYNFA. In addition, the dead loads act in the negative direction of the global Y axis. Therefore, in the DYNFA input, -Y is entered as the direction of the element uniform loads and the concentrated nodal loads in Table 13 are entered as negative quantities.

Problem A.4: Construct the analytical models of several representative frames, spanning in each direction, of a single-story rigid frame steel building subjected to a quartering shock wave; prepare all related input data for DYNFA.

Procedure:

Step 1. Construct the analytical model of each frame (selected for analysis with DYNFA) as outlined in Steps 1 through 3 of Problem A.3. Compute the following data for each model as instructed in Steps 4 through 7 of the same problem:

a. Masses of the individual panels of the walls and roof supported by frame.

b. Concentrated masses assigned to the dynamic degrees of freedom.

c. Cross-sectional properties and capacities of frame members; prepare a tabulation containing the element nodal connectivities, and the cross-sectional properties and capacities.

d. Dimensions of tributary loading areas assigned to the mass points on the exterior members.

Step 8. Establish the following blast loading parameters:

a. Location of charge
b. Charge weight, W

c. Safety factor, SF; calculate effective charge weight, $W_E = (1.0 + SF)W$.

d. Angles of incidence, α_A and α_B, between the shock front and each blastward wall at location of frames.

e. Radial distances from the center of the charge to the blastward and leeward ends of each frame selected for analysis.

Some of these data are available from the preliminary design.

Step 9.

a. Compute the scaled distances from the center of the charge to the blastward and leeward ends of each frame, $Z = R/W^{1/3}$.

b. Enter Figure 4-5, 4-11 or 4-12 of Reference 3 or Figure 6 of the text, with each of the scaled distances determined above and read from the appropriate curves:

- Peak positive incident pressure, P_{so}
- Scaled unit positive impulse, $I_s/W^{1/3}$
- Shock front velocity, U

Step 10. Using the blast loading parameters determined in Steps 8 and 9, construct the reflected pressure-time histories at the location of each frame:

a. Read the reflected pressure coefficient, C_{ra}, from Figure 4-6 of Reference 3 for P_{so} determined in Step 9b and α determined in Step 8d.

b. Calculate $P_{ra} = C_{ra}P_{so}$.

c. Calculate clearing time t_c:

$$t_c = 3S/U$$

where S, in cases involving quartering loads, equals the minimum of:
1. Height of blastward wall

2. Horizontal distance from the frame to the leeward end of the wall

3. Sum of the horizontal distance from the frame to the blastward end of the wall, plus the length of the adjacent blastward wall.

d. Calculate fictitious positive phase duration, t_{of}:

$$t_{of} = 2\tau_{s}/P_{so}.$$

e. Determine peak dynamic pressure, q_0, from Figure 4-66 of Reference 3 for P_{so}. Calculate $P_{so} + C_D q_0$. Obtain C_D from paragraph 4-14b of Reference 3.

f. Enter Figure 4-5 or 4-12 of Reference 3 or Figure 6 of the text, and read $i_r/W^{1/3}$ for P_{ra} determined in 10b.

g. Calculate fictitious reflected pressure duration, t_r:

$$t_r = 2i_r/P_{ra}.$$

h. Construct the reflected pressure curves shown in either (a) or (b), Figure 26 of the text. The curve utilized for the analysis is the one which yields the smallest value of the impulse (area under curve).

i. Tabulate all values as shown in Table 17.

Step 11. Using the blast wave parameters determined in Step 9b, construct the combined incident/drag pressure-time histories at the blastward and leeward walls of each frame as instructed in Step 11 of Problem A.3. Tabulate all values as shown in Table 17.
Step 12. Determine the pressure-time histories and shock front velocities at all mass points on the roof and leeward walls of each frame as instructed in Step 12 of Problem A.3. Tabulate all values as shown in Tables 18 and 19.

Step 13. Determine the values of parameters a and D (Section 5.3) for the tributary areas assigned to the mass points of each model. Refer to Figures 31, 32, 33 and 35 of the text for guidance in accomplishing this task. Tabulate all values as shown in Tables 18 and 19.

Step 14. Modify the pressure-time histories determined in Steps 10 and 12, and prepare the digitized input of pressure versus time for DYNFA as instructed in Step 14 of Problem A.3. Tabulate the parameters t_a, t_{rt}, $(P_{pk})_{AVG}$, t_{pk}, P_s, t_c', t_{DI} and t_f for all loaded mass points of each frame as shown in Tables 18 and 19.

Step 15. Compute and distribute the dead and live loads (where appropriate) acting on each frame as instructed in Section 8.10. Tabulate as shown in Tables 12, 13, 20 and 21.

Step 16. Compute Δt, NDT and NSKIP (Section 8.8) for the DYNFA analysis of each frame as instructed in Step 16 of Problem A.3.

Step 17. For each model, locate the origin of the global coordinate system, establish the directions of the global axes and specify nodal coordinates.

Step 18. Prepare input data decks for each model as instructed in Step 18 of Problem A.3. Enter fictitiously high values for the bending capacities of elements representing members or portions of members designed for bi-axial bending (Section 7.3).

Example A.4: Construct the analytical models of several representative frames, spanning in each direction, of a single-story rigid frame steel building subjected to a quartering shock wave; prepare all related input data for DYNFA.
Required: The analytical models and all related input data for the frames on column lines 1, 2, A and B of the building shown in Figure 1.

Step 1. From Example A.2, given:

a. Geometry of frames on column lines 1, 2, A and B, Figure 1.

b. Sizes of primary frame members given in Table 5.

Sizes of secondary members, decking and siding shown in Figure 1.

c. Pin-ended column supports all frames.

d. Reusable structure

e. \(F_y = 248(10)^3 \text{ kPa (36 ksi)} \)

f. \(c = 1.1 \)

g. \(E = 207(10)^6 \text{ kPa (30 x 10^6) psi} \)

\(F_{dy} = 273(10)^3 \text{ kPa} \)

Step 2. The frames on column lines 1, 2, A and B are modeled for analysis with DYNFA. Each model includes the members of the steel frame only. The foundation is not included as its response is assumed to have a negligible impact on the frame response (MFNDN > 2MSTEEL). This presentation is directed towards illustrating the modeling process and data preparation for the frames on column lines B and 2. Construction of the models and preparation of the input data for the other two frames proceed in exactly the same manner and, therefore, their illustration here would be superfluous.

Model of frame on column line B:

A line diagram of the frame is shown in Figure 7. The following locations on the frame are designated as nodal points:
a. All column base connections: nodes 1, 10, 15 and 23

b. All column/girder connections: nodes 5, 9, 14 and 19

c. Three intermediate points within the span of each roof girder: nodes 6 through 8, 11 through 13 and 16 through 18. In each group of three intermediate nodal points, one node is located at the midspan of the member and each of the remaining two is located a distance L/4 from its end, where L is the length of the member.

d. Three intermediate points within the span of each exterior column: nodes 2 through 4 and 20 through 22. In each such group of three intermediate nodal points, one node is located at the midspan of the member (for the purpose of measuring the member's response at midspan) and the other two are located at the connections of the girts to the frame.

Nodal points at the following locations are designated as mass points:

a. All column/girder connections
b. All intermediate locations on roof girders
c. All connections of girts to exterior columns.

Model of frame on column line 2:

A line diagram of the frame is shown in Figure 4. The placement of nodal points and designation of mass points for this model is given in Step 2 of Example A.3.

Step 3. Assign dynamic degrees of freedom to the mass points of each model.

Model of frame on column line B:

The dynamic degrees of freedom for the model of the frame on column line B are shown in Figure 7b.

Model of frame on column line 2:

232
The dynamic degrees of freedom for the model of the frame on column line 2 are shown in Figure 4b.

Step 4. Compute the masses of the wall and roof panels, and interior columns within the tributary strip supported by each frame.

Model of frame on column line B:

a. External wall panel: 6.0 meters wide by 5.0 meters high; secondary framing corresponds to that shown in Figure 18b of the text, number of girts, ng = 2; therefore, the mass of the panel, MW, consists of the mass of the following (Fig 17 of text, case 2b):

1. Siding: Type 2 - 20 x 20 (Figure 1)

 Weight = 4.2 psf (20.5 kg/m²)

 Mass = 20.5 x 6.0 x 5.0 = 615.0 kg

2. Exterior column: W14 x 78 (116.1 kg/m) (Table 5)

 Length = 5 meters

 Mass = 116.1 x 5 = 580.5 kg

3. MW = 615.0 + 580.5 = 1,195.5 kg

b. Girts on exterior wall: W14 x 26 (38.7 kg/m)

 Length = 6.0 meters

 Mass, mg = 38.7 x 6.0

 = 232.2 kg

c. Roof panel: 6.0 meters wide by 6.0 meters long; secondary framing corresponds to that shown in Figure 20a of the text; therefore, the mass of the panel, MR, consists of the mass of the following (Fig 19 of text, case 1):
1. Decking: Type 2 - 20 x 20 (Fig 1)
 Weight = 4.2 psf (20.5 kg/m²)
 Mass = 20.5 x 6.0 x 6.0 = 738.0 kg

2. Girder: W12 x 27 (40.2 kg/m) (Table 5)
 Length = 6.0 meters
 Mass = 40.2 x 6.0 = 240.9 kg

3. Two purlins: W12 x 19 (28.3 kg/m) (Fig 1)
 Length = 6.0 meters
 Mass = 2 x 28.3 x 6.0 = 339.6 kg

4. \(M_R = 738.0 + 240.9 + 339.6 = 1,318.5 \) kg

d. Mass within panel area \((W_1 + W_2)xL\) on roof:
 \(W_1 = W_2 = 2.0 \) meters
 \(L = 6.0 \) meters
 Mass of girder = 240.9 kg (from above)
 One half mass of decking within \((W_1 + W_2)xL\) =
 \((1/2)(20.5 x 4.0 x 6.0) = 246.0 \) kg
 \(M_R' = 246.0 + 240.9 = 486.9 \) kg
 (Fig 19 of text, case 1)

e. Interior column: W14 x 111 (165.2 kg/m)
 (Table 5)
 Length = 5.0 meters
 Mass = 165.2 x 5.0 = 826.0 kg

f. Exterior transverse girders - wall B and opposite wall:
I. Frame girder - W12 x 22 (32.7 kg/m) (Table 5)
 Length = 6.0 meters
 Mass = 32.7 x 6.0 = 196.2 kg

2. Wall support - 48 x 10 (14.9 kg/m) (Fig 3)
 Length = 6.0 meters
 Mass = 14.9 x 6.0 = 89.4 kg
 Total = 196.2 + 89.4 = 285.6 kg

G. Interior transverse girder: W12 x 36 (53.6 kg/m)
 Length = 6.0 meters
 Mass = 53.6 x 6.0 = 321.6 kg

Model of frame on column line 2:
The mass of the wall and roof panels, girts, purlins, transverse girders and the interior column are computed as shown in Step 4 of Example A.3. It should be noted, however, that the mass quantities for this problem will be greater than those in Example A.3 because of the larger columns used.

Step 5. Compute the concentrated masses assigned to the dynamic degrees of freedom of the wall and roof panels of each model.

Frame on column line B:
a. Exterior wall panel: Figure 17 of text, case 2b
 \(M_W = 1,195.5 \text{ kg} \) \(\text{(Step 4a)} \)
 \(m_g = 232.2 \text{ kg} \) \(\text{(Step 4b)} \)
 \(n_g = 2 \) \(\text{(Fig 1)} \)
 \(N_{DOFH} = 2 \) \(\text{(Fig 7b)} \)
 \((M_{IH})_W = \frac{M_W}{N_{DOFH} + 1} + m_g \)
 \[= \frac{1,195.5}{2 + 1} + 232.2 = 630.7 \text{ kg} \]
\[(M_{EH})_W = \frac{M_W}{2(N_{DOFH} + 1)} = \frac{1,195.5}{2(2 + 1)} = 199.3 \text{ kg}\]

\[(M_{EV})_W = \frac{(M_W + \sum m_g)/2}{1} = \frac{[1,195.5 + 2(232.2)]/2}{1} = 830.0 \text{ kg}\]

b. Roof panel: Figure 19 of text, case 1
\[M_R = 1,318.5 \text{ kg} \quad \text{(Step 4c)}\]
\[M_R^A = 486.9 \text{ kg} \quad \text{(Step 4d)}\]
\[N_{DOF^V} = 3 \quad \text{(Fig 7b)}\]
\[(M_{EH})_R = \frac{M_R}{2} = \frac{1,318.5}{2} = 659.3 \text{ kg}\]
\[(M_{IV})_R = \frac{M_R^A}{(N_{DOF^V} + 1)} = \frac{486.9}{3 + 1} = 121.7 \text{ kg}\]
\[(M_{EV})_R = \frac{(M_R - N_{DOF^V} M_{IV})}{2} = \frac{[1,318.2 - 3(121.7)]}{2} = 476.6 \text{ kg}\]

All concentrated masses for the model are tabulated in Table 14.

Frame on column line 2:
The concentrated masses assigned to the dynamic degrees of freedom on the wall and roof panels are computed as shown in Step 5 of Example A.3. A tabulation of all masses for the model is prepared as shown in Table 7.

Step 6. Determine the cross-sectional properties and capacities of the members of each frame.

Frame on column line B:
From Step 1:
\[F_{dy} = 273 \times 10^3 \text{ kPa} \]
\[E = 207 \times 10^6 \text{ kPa} \]

a. Girder G1: W12 x 27 (Table 5)

From Example A.2

\[M_{mx} = 170.0 \text{ kN-m (Table 5)} \]
\[C_C = 122 \text{ (Step 11)} \]

From "Properties for designing" tables, Reference 14:

1. \(A = 7.95 \text{ in}^2 \left(51.2 \text{ cm}^2 \right) \)
2. \(I_x = 204.0 \text{ in}^4 \left(8,491 \text{ cm}^4 \right) \)
3. \(r_x = 5.07 \text{ in} \left(0.129 \text{ in} \right) \)
4. \(r_y = 1.52 \text{ in} \left(0.039 \text{ m} \right) \)

\[P_p = F_{dy}A = (273 \times 10^3)(51.2 \times 10^{-4}) \quad [\text{Eq (13)}] \]
\[= 1,398.0 \text{ kN} \]

\[P_u = 1.7 F_{a}A \quad [\text{Eq (14)}] \]

\[F_a = \frac{[1 - (KZ/r)^2]F_{dy}}{2C_C} \quad [\text{Eq (4.3), Ref 1}] \]

\[\frac{5 + 3(KZ/r)^2}{8C_C} - \frac{(KZ/r)^3}{6C_C^3} \]

The member is considered to be braced against buckling around the weak axis; hence, \(F_a \) is computed for buckling about the strong axis only.

\[L = 6.0 \text{ meters (Fig 1)} \]
\[r_x = 0.129 \text{ meter (from above)} \]
\[K = 0.75 \text{ (Section 4.4, Ref 1)} \]
\[C_C = 122 \text{ (from Step 1)} \]

237
\[\frac{KZ}{r_x} = 0.75 \times 6.0 / 0.129 = 34.9 \]

\[F_a = \frac{[1.0 - (34.9)^2/(2 \times 122^2)](273 \times 10^3)}{5 + [3(34.9)^3/8(122)] - [(34.9)^3/8(122)^3]} \]
\[= 147.8 \times 10^3 \text{ kPa} \]
\[P_u = 1.7(147.8 \times 10^3)(51.2 \times 10^{-4}) \]
\[= 1,286.5 \text{ kN} \]

b. Column C1: W14 x 111 (Table 5)

From Example A.2:
\[M_{my} = 421.9 \text{ kN-m (Note member bends about y-axis, Fig 3)} \]
\[C_c = 122 \]

From "Properties for designing" tables, Reference 14:
1. \(A = 32.7 \text{ in}^2 (211.0 \text{ cm}^2) \)
2. \(I_y = 455.0 \text{ in}^4 (18,938.0 \text{ cm}^4) \)
3. \(r_x = 6.23 \text{ in (0.158 m)} \)
4. \(r_y = 3.73 \text{ in (0.095 m)} \)
\[P_p = F_{dy}A = (273 \times 10^3)(211.0 \times 10^{-4}) \ [\text{Eq (13)}] \]
\[= 5,760 \text{ kN} \]
\[P_u = 1.7 F_aA \ [\text{Eq (14)}] \]

According to Section 4.3 of Reference 1, \(F_a \) is computed for the maximum of \(KZ/r_x \) or \(KZ/r_y \).

Use: \(K = 1.5 \) (from Section 4.4, Ref 1)
\[z = 5.0 \text{ m (from Fig 1)} \]

By inspection, \(KZ/r_y \) will be the larger of the two ratios:
\[\frac{KZ}{r_y} = \frac{(1.5 \times 5.0)}{0.095} = 78.9 \]
\[F_a = \frac{[1.0 - (78.9)^2/(2 \times 122^2)](273 \times 10^3)}{5 + [3(78.9)/8(122)] - [(78.9)^3/8(122)^3]} \]

\[= 115.1 \times 10^3 \text{ kPa} \]

\[P_u = 1.7(115.1 \times 10^3)(211.0 \times 10^{-4}) \]

\[= 4,128.6 \text{ kN} \]

The values of \(P_n, P_u \) and \(M_m \) for all members of the frame on column line B are listed in Table 15 together with the identification numbers and nodal connectivities for the elements representing them.

Frame on column line 2:

The element properties and capacities for this frame are computed and tabulated in a similar manner. The tabulation is not shown for brevity.

Step 7. Establish the dimensions of the tributary areas assigned to the mass points on the exterior members.

Frame on column line B:

Roof Panel: Use Figure 23 of the text to determine dimensions of tributary areas.

From Figure 1:

\[W_T = 6.0 \text{ meters} \]

\[W_1 = W_2 = 3.0 \text{ meters} \]

\[W_1^* = W_2^* = 2.0 \text{ meters} \]

\[L = 6.0 \text{ meters} \]

From Figure 7b: \(N_M = 3 \)

Dimensions of areas for intermediate mass points (nodes 6 through 8, 11 through 13 and 16 through 18) on panel.

From Figure 23 of text:
Width of tributary area = \((W_1' + W_2')/2\)

\[= (2.0 + 2.0)/2 = 2.0 \text{ m}\]

Length of tributary area = \(L/(N_M + 1)\)

\[= 6.0/(3 + 1) = 1.5 \text{ m}\]

Area = 2.0 x 1.5 = 3.0 \(\text{m}^2\)

The dimensions of the areas for mass points at the ends of the panel are determined as shown in Figure 8.

From Figure 8: Area = \((6.0 \times 3.0) - (2.0 \times 2.25)\)

\[= 13.5 \text{ m}^2\]

The dimensions of the tributary areas for all mass points on the blastward wall and roof are shown in Figure 9. The dimensions of the tributary areas on the leeward walls are the same as those on the blastward wall. All dimensions and areas are tabulated in Table 16.

Frame on column line 2:

The tributary areas for the mass points are shown in Figure 5 and tabulated in Table 9.

Step 8. From Example A.2:

a. Location of charge: surface burst; from Figure 2:

\(H_A = 114.3 \text{ m}\)

\(H_B = 66.0 \text{ m}\)

b. Charge weight: \(W = 1,140 \text{ kg (2,500 lb)}\)

c. Safety factor: 20%

d. Angle of incidence between shock front (Fig 2) and:
1. Wall A: \((\alpha_A)_2 = \tan^{-1}[(66.0 + 6.0)/114.3]\)
 \[= 32.2^\circ\]

2. Wall B: \((\alpha_B)_B = \tan^{-1}[(114.3 + 6.0)/66.0]\)
 \[= 61.2^\circ\]

Effective charge weight: \(W_E = (1.0 + SF)W\)
 \[= 1.2(1,140)\]
 \[= 1,350 \text{ kg (3,000 lb)}\]

e. Referring to Figure 2, radial distances from center of charge to:

1. Blastward end of column line B:
 \[R = \sqrt{(114.3 + 6.0)^2 + (66.0)^2}\]
 \[= 137.2 \text{ m (450.1 ft)}\]

2. Leeward end of column line B:
 \[R = \sqrt{(114.3 + 6.0)^2 + [66.0 + 3(6.0)]^2}\]
 \[= 146.7 \text{ m (481.0 ft)}\]

3. Blastward end of column line 2:
 \[R = \sqrt{(114.3)^2 + (66.0 + 6.0)^2}\]
 \[= 135.1 \text{ m (443.2 ft)}\]

4. Leeward end of column line 2:
 \[R = \sqrt{[114.3 + 2(6.0)]^2 + (66.0 + 6.0)^2}\]
 \[= 145.4 \text{ m (477 ft)}\]

Step 9. Compute \(Z, P_{SO}, i_s\) and \(U\) at the blastward and leeward ends of each frame.

Point at blastward end of column line B:
a. Compute Z.

\[R = 450.1 \text{ ft (Step 8e)} \]

\[Z = \frac{R}{W_1^{1/3}} = \frac{450.1}{(3,000)^{1/3}} = 31.2 \text{ ft/} \text{lb}^{1/3} \]

b. Entering Figure 4-12 of Reference 3 with
\[Z = 31.2 \text{ ft/} \text{lb}^{1/3} \]

\[P_{so} = 1.56 \text{ psi (10.75 kPa)} \]

\[i_s/W_1^{1/3} = 3.25 \text{ psi-ms/} \text{lb}^{1/3} \]

\[i_s = (3.25)(3,000)^{1/3} = 46.9 \text{ psi-ms} \]

\[U = 1.16 \text{ ft/ms} = 353.6 \text{ m/sec} \]

Repeat steps a and b above for point at leeward end of column line B and tabulate all values in Table 17.

Point at blastward end of column line 2:

a. Compute Z.

\[R = 443.2 \text{ ft (Step 8e)} \]

\[Z = \frac{R}{W_1^{1/3}} = \frac{443.2}{(3,000)^{1/3}} = 30.7 \text{ ft/} \text{lb}^{1/3} \]

b. Entering Figure 4-12 of Reference 3 with
\[Z = 30.7 \text{ ft/} \text{lb}^{1/3} \]

\[P_{so} = 1.60 \text{ psi (11.0 kPa)} \]

\[i_s/W_1^{1/3} = 3.3 \text{ psi-ms/} \text{lb}^{1/3} \]

\[i_s = (3.3)(3,000)^{1/3} = 47.6 \text{ psi-ms} \]

\[U = 1.16 \text{ ft/ms} = 353.6 \text{ m/sec} \]

Repeat steps a and b above for point at leeward end of column line 2 and tabulate all values in Table 17.

Step 10. Construct the reflected pressure-time histories at the location of each frame.

Frame on column line B:
a. Enter Figure 4-6 of Reference 3 with $P_{so} = 1.56$ psi and $(\alpha_B)_B = 61.2^\circ$.

Note: Lowest value of P_{so} for which data are provided is 3.71 psi; hence, read value of C_{ra} for $(\alpha_B)_B = 61.2^\circ$ and $P_{so} = 3.71$ psi.

\[C_{ra} = 2.40 \]

b. $P_{ra} = C_{ra}P_{so} = 2.40 (1.56) = 3.74$ psi (25.8 kPa)

c. Calculate t_c:

\[t_c = \frac{3S}{U} \]

where S is the minimum of:

1. Height of building: 5.0 meters
2. Distance to leeward end of wall B: 6.0 meters
3. Distance to blastward end of wall B plus length of blastward wall A:

\[6.0 \text{ m} + 18.0 \text{ m} = 24.0 \text{ meters} \]

\[S = 5.0 \text{ meters} \]

\[t_c = \frac{3(5.0)}{353.6} = 0.0424 \text{ second} \]

d. Calculate t_{of}:

\[t_{of} = 2i_s/P_{so} = \frac{2(46.9)}{1.56} \]

\[= 60.1 \text{ ms} = 0.0601 \text{ second} \]

e. Determine q_0 from Figure 4-66 of Reference 3 for $P_{so} = 1.56$ psi (extrapolate data in figure):

\[q_0 = 0.056 \text{ psi (0.39 kPa)} \]

\[C_D = 1.0 \text{ (from paragraph 4-14b, Ref 3)} \]

\[P_{so} + C_Dq_0 = 10.75 + 0.39 = 11.14 \text{ kPa} \]
f. Read $i_r/k^{1/3}$ in Figure 4-12 of Reference 3 for $P_{ra} = 3.74$ psi:

$$i_r/k^{1/3} = 7.2 \text{ psi-ms/}1b^{1/3}$$

$$i_r = 7.2(3,000)^{1/3} = 103.8 \text{ psi-ms}$$

g. Calculate t_r:

$$t_r = 2i_r/P_{ra} = 2(103.9)/3.74$$

$$= 55.5 \text{ ms} = 0.0555 \text{ sec}$$

h. The reflected pressure-time histories shown in Figure 10a are constructed using this data. The dotted pressure-time history, constructed using P_{ra} and t_r, has a higher impulse than the other curve, which is the one used for the analysis.

i. Tabulate all values in Table 17.

Repeat Steps 10a through 10h to obtain the reflected pressure-time histories shown in Figure 11a. Tabulate all values in Table 17.

Step 11. By following the instructions in Step 11 of Problem A.3, the combined incident/drag pressure histories shown in (b) and (c), Figure 10, are computed for the frame on column line B and those shown in (b) and (c), Figure 11, are computed for the frame on column line 2. All values are tabulated in Table 17.

Step 12. a. Determine the pressure-time histories and shock front velocities at all mass points on the roof using the roof loading parameters listed in Table 17.

Frame on column line B:

Blastward end:

$$\left(P_{pk}\right)_B = P_{so} + C_p q_o = 10.6 \text{ kPa}$$

$$\left(t_{dr}\right)_B = t_{of} = 0.0601 \text{ second}$$
Leeward end:

\[(P_{pk})_L = P_{so} + C_{Dq_o} = 9.66 \text{ kPa}\]

\[(t_{dr})_L = t_{of} = 0.0629 \text{ second}\]

\[L_R = 18.0 \text{ meters}\]

For node point 11 on the roof (Fig 7a):

\[z_{11r} = 7.5 \text{ meters}\]

Using Equation (15):

\[(P_{pk})_{11} = 10.60 - \frac{(10.60 - 9.66)(7.5)}{18.0}\]

\[= 10.21 \text{ kPa}\]

Using Equation (16):

\[(t_{dr})_{11} = \frac{0.0601 - (0.0601 - 0.0629)(7.5)}{18.0}\]

\[= 0.0613 \text{ second}\]

The shock front velocity, U, is constant across the roof; therefore:

\[U_{11} = 353.6 \text{ m/sec}\]

All values are tabulated in Table 18.

b. Determine the pressure-time history at all mass points on the leeward wall:

Based on the measurements shown in Figure 12, the spillover from the roof engulfs the leeward wall area in about the same time as the spillover from wall A. Hence, the leeward wall will be taken as an extension of the roof.

For node point 22 on the leeward column (Fig 7a):

\[z_{22L} = 3.75 \text{ meters}\]
\[
(P_{pk})_{22} = \frac{9.66 - (10.6 - 9.66)(3.75)}{18.0} \quad [\text{Eq (17)}]
\]
\[
= 9.46 \text{ kPa}
\]
\[
(t_{dr})_{22} = \frac{0.0629 - (0.0601 - 0.0629)(3.75)}{18.0} \quad [\text{Eq (18)}]
\]
\[
= 0.0635 \text{ sec}
\]

The shock front velocity is constant across the area; therefore:

\[
U_{22} = 353.6 \text{ m/sec}
\]

All values are tabulated in Table 18.

Frame on column line 2:

a. The pressure-time histories and shock front velocities at all mass points on the roof are determined as illustrated in Step 12a of Example A.3. All values are tabulated in Table 19.

b. Based on the measurements shown in Figure 12, the spillover from roof produces the more rapid loading on the leeward column; hence, the pressure-history and shock front velocity for all mass points on the leeward wall are computed as illustrated in Step 12 of Example A.3. All values are tabulated in Table 19.

Step 13. Determine the values of \(a\) and \(D\) for the tributary areas assigned to mass points of each model.

Frame on column line B:

Blastward wall, values of \(a\) and \(D\) for all mass points from Figure 31 of text:

\[
D = 0.0
\]

\[
a = W \cdot \sin \alpha
\]

From Figure 9: \(W_T = 6.0\) meters
From Figure 2: \((a_B)_1 = 60^\circ\)

\[a = 6.0 \sin 60^\circ = 5.2 \text{ meters}\]

Roof: node 9

From Figure 32b of text:

\[D = a \cos \alpha + (1/2)(W_T - w) \sin \alpha\]

\[a = w \sin \alpha + z \cos \alpha\]

From Figure 9:

\[d = 3.0 \text{ meters}\]

\[w = 6.0 \text{ meters}\]

\[W_T = 6.0 \text{ meters}\]

\[z = 6.0 \text{ meters}\]

\[D_9 = 3.0 \cos 60^\circ + (1/2)(6.0 - 6.0) \sin 60^\circ\]

\[= 1.5 \text{ meters}\]

\[a_9 = 6.0 \sin 60^\circ + 6.0 \cos 60^\circ\]

\[= 8.2 \text{ meters}\]

Roof: node 13

From Figure 9:

\[d = 9.75 \text{ meters}\]

\[w = 2.0 \text{ meters}\]

\[z = 1.5 \text{ meters}\]

\[D_{13} = 9.75 \cos 60^\circ + (1/2)(6.0 - 2.0) \sin 60^\circ\]

\[= 6.61 \text{ meters}\]

\[a_{13} = 2.0 \sin 60^\circ + 1.5 \cos 60^\circ\]

\[= 2.48 \text{ meters}\]
Leeward wall: node 22

From Figure 33b of text:

\[D = (L + h_I) \cos \alpha + \frac{1}{2}(W_T - w) \sin \alpha \]
\[a = h_2 \cos \alpha + w \sin \alpha \]

From Figure 9:

\[L = 18.0 \text{ meters} \]
\[h_I = 2.5 \text{ meters} \]
\[h_2 = 1.67 \text{ meters} \]
\[w = 6.0 \text{ meters} \]

\[D_{22} = (18.0 + 2.50) \cos 60^\circ + \frac{1}{2}(6.0 - 6.0) \sin 60^\circ \]
\[= 10.25 \text{ meters} \]
\[a_{22} = 1.67 \cos 60^\circ + 6.0 \sin 60^\circ \]
\[= 5.03 \text{ meters} \]

The measurement of these values of \(\alpha \) and \(D \) is shown in Figure 13. All values of \(\alpha \) and \(D \) are tabulated in Table 18.

Frame on column line 2:

Blastward wall, values of \(\alpha \) and \(D \) for all mass points; from Figure 31 of text:

\[D = 0.0 \]
\[a = W_T \sin \alpha \]

From Figure 5: \(W_T = 6.0 \text{ meters} \)

From Figure 2: \(\alpha_A I = 30^\circ \)

\[a = 6.0 \sin 30^\circ = 3.0 \text{ meters} \]

Roof: node 9

From Figure 32b of text:
\[D = d \cos \alpha + \frac{1}{2} (W_T - w) \sin \alpha \]
\[a = w \sin \alpha + \frac{1}{2} \cos \alpha \]

From Figure 5:
\[d = 5.0 \text{ meters} \]
\[w = 6.0 \text{ meters} \]
\[W_T = 6.0 \text{ meters} \]
\[\ell = 2.0 \text{ meters} \]
\[D_g = 5.0 \cos 30^\circ + \frac{1}{2}(6.0 - 6.0) \sin 30^\circ \]
\[= 4.33 \text{ meters} \]
\[a_g = 6.0 \sin 30^\circ + 2.0 \cos 30^\circ \]
\[= 4.73 \text{ meters} \]

Leeward wall: node 17

From Figure 33b of text:
\[D = (L + h_1) \cos \alpha + \frac{1}{2}(W_T - w) \sin \alpha \]
\[a = h_2 \cos \alpha + w \sin \alpha \]

From Figure 5:
\[L = 12.0 \text{ meters} \]
\[h_1 = 2.50 \text{ meters} \]
\[h_2 = 1.67 \text{ meters} \]
\[w = 6.0 \text{ meters} \]
\[D_{17} = (12.0 + 2.5)\cos 30^\circ + \frac{1}{2}(6.0 - 6.0) \sin 30^\circ \]
\[= 12.56 \text{ meters} \]
\[a_{17} = 1.67 \cos 30^\circ + 6.0 \sin 30^\circ = 4.45 \text{ meters} \]

All values of \(a \) and \(D \) for the model of the frame on column line 2 are tabulated in Table 19.
Step 14. a. Compute the blast loading parameters for modifying the pressure-time histories at each mass point:

Frame on column line B:

Blastward wall, all mass points:

From Step 10a:

\[P_{pk} = \gamma_{r\alpha} = 25.8 \text{ kPa} \]
\[t_{dr} = t_{of} = 0.0601 \text{ sec} \]
\[t_{c} = 0.0424 \text{ second} \]
\[U = 353.6 \text{ m/sec (Step 9)} \]
\[P_{s} = 3.28 \text{ kPa (Fig 10a)} \]

From Step 13:

\[D = 0.0 \]
\[a = 5.2 \text{ meters} \]

1. \[t_{a} = D/U_{AVG} = 0.0/353.6 = 0.0 \quad [\text{Eq (19)}] \]

2. \[t_{rt} = a/U = 5.2/353.6 = 0.015 \text{ sec} \quad [\text{Eq (20)}] \]

3. \[t_{R} = t_{c}/(1 - P_{s}/P_{r}) \quad [\text{Eq (22)}] \]
\[= 0.0424/(1 - 3.28/25.8) \]
\[= 0.0486 \text{ second} \]

4. \[(P_{pk})_{AVG} = P_{pk}[1 - (a/2Ut_{dr})] \quad [\text{Eq (21)}] \]

Here \[t_{dr} = t_{R} = 0.0486 \text{ second} \]
\[= 25.8[1 -[5.2/2(353.6)(0.0486)]) \]
\[= 21.90 \text{ kPa} \]

5. \[t_{pk} = t_{a} + t_{rt} = 0.0 + 0.015 \text{ sec} \quad [\text{Eq (23)}] \]
\[= 0.015 \text{ second} \]
6. \[t_{c'} = t_a + \frac{t_c}{2} + t_c \] \hspace{1cm} \text{[Eq (24)]}

\[= 0.0 + 0.015/2 + 0.0424 \]

\[= 0.0499 \text{ sec} \]

7. \[t_{DI} = t_c/2 + t_{dr} \] \hspace{1cm} \text{[Eq (25)]}

Here \(t_{dr} = t_{of} = 0.0601 \text{ sec} \)

\[t_{DI} = 0.015/2 + 0.0601 = 0.0676 \text{ sec} \]

8. \[t_T = t_a + t_{DI} \] \hspace{1cm} \text{[Eq (26)]}

\[= 0.0 + 0.0676 \text{ sec} = 0.0676 \text{ sec} \]

The values of these parameters for the other mass points are computed in a similar manner and tabulated in Table 18.

b. Generate the digitized data defining the pressure-time history input for DYNFA as described in Section 8.9 and illustrated in Figures 60 and 61 of the text.

For mass points on blastward column of frame on column line B:

<table>
<thead>
<tr>
<th>Point</th>
<th>Parameter</th>
<th>Value (kPa)</th>
<th>Parameter</th>
<th>Value (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>-</td>
<td>0.00</td>
<td>(t_a)</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>((P_{pk})_{AVG})</td>
<td>21.90</td>
<td>(t_{pk})</td>
<td>0.0150</td>
</tr>
<tr>
<td>3</td>
<td>(P_s)</td>
<td>3.28</td>
<td>(t_{c'})</td>
<td>0.0499</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>0.00</td>
<td>(t_T)</td>
<td>0.0676</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>0.00</td>
<td>(T_F)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*Note: Point 1 corresponds to \(t_a \) since \(t_a = 0.0 \) second in this example.
Frame on column line 2:

Repeat Steps 14a and 14b for the frame on column line 2. The blast loading parameters \([t_a, t_c', (P_{pk})_{AVG}, etc.}\) are tabulated in Table 19.

Step 15. Compute and distribute the dead loads acting on each frame according to the method prescribed in Section 3.10.

Frame on column line B:

a. Distribution of weight of roof panel:

1. Uniform load acting on girder:

 From Step 4c:

 \[
 \begin{align*}
 \text{Weight of girder} & = 240.9 \text{ kg} \\
 \text{Weight of decking supported by girder} & = 246.0 \text{ kg} \\
 \text{Total} & = 486.9 \text{ kg}
 \end{align*}
 \]

 Length of girder = 6.0 meters

 \[w = \frac{486.9}{6.0} = 81.2 \text{ kg/m}\]

 Apply to elements 5 through 8, 10 through 13 and 15 through 18.

2. Concentrated loads applied to intermediate node points: none.

3. Remainder of weight applied as concentrated loads at girder/column intersections:

 \[
 \begin{align*}
 \text{Weight of roof panel} & = 1,318.5 \text{ kg} \\
 \text{Weight supported by girder} & = 486.9 \text{ kg} \\
 \text{Remainder} & = 831.6 \text{ kg}
 \end{align*}
 \]

 Apply: \((1/2)(831.6) = 415.8 \text{ kg at each girder/column intersection (nodes 5, 9, 14 and 19).}\)
b. Distribution of weight of wall panel:

1. Uniform load acting on column:

 Weight of column from Step 4a = 116.1 kg/m

 Apply to elements 1 through 4 and 19 through 22.

2. Concentrated loads applied to intermediate node points: none.

3. On half of weight of siding and girts applied as concentrated load at exterior column/girder connection:

 From Step 4a:

 Weight of siding = 615.0 kg

 From Step 4b:

 Weight of girt = 232.2 kg

 Total = 615.0 + 2(232.2) = 1,079.4 kg

 Apply: (1/2)(1,079.4) = 539.7 kg at each exterior column/girder intersection (nodes 5 and 19).

c. Weight of transverse girders applied directly to girder/column connections.

d. Weight of interior column applied as uniform load to elements 9 and 14.

 The element uniform loads are tabulated in Table 20; the concentrated nodal point loads are tabulated in Table 21.

Frame on column line 2:

The distribution of the dead loads is illustrated in Step 15 of Example A.3. The element and nodal point loads are tabulated as shown in Tables 12 and 13. Note the corresponding loads for this problem will be somewhat greater than those computed for Example A.3 since heavier columns are required for the bi-axial bending design.
Step 16. Compute Δt, NDT and NSKIP for each frame.

By following the instructions in Problem A.3 and the computations in Step 16 of Example A.3, the following quantities are computed for the frame on column line B:

Periods of extensional modes of frame members:

$$T_a = \frac{2\pi \sqrt{M_e/L}}{AE} \quad \text{[Eq (34)]}$$

<table>
<thead>
<tr>
<th>Member</th>
<th>Period (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior column</td>
<td>0.0101</td>
</tr>
<tr>
<td>Interior column</td>
<td>0.0087</td>
</tr>
<tr>
<td>Roof girder</td>
<td>0.0160</td>
</tr>
</tbody>
</table>

Period of highest bending modes of each exterior member:

$$T_b = \frac{(1/C)\sqrt{M_1L^3/EI}}{\text{[Eq (35)]}}$$

<table>
<thead>
<tr>
<th>Member</th>
<th>Highest mode</th>
<th>Period (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior</td>
<td>2</td>
<td>0.0058</td>
</tr>
<tr>
<td>column</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girder</td>
<td>3</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

Minimum period = 0.0035 sec for third mode of girder

$\Delta t = 0.0035/20 = 0.00017$ sec

Use $\Delta t = 0.00020$ sec.

Duration of response:

The period of the sidesway mode of the frame is computed using Equation (36) together with the data in Table 8 of the text. The computed values of T_S is 0.350 second and the response will be computed for one-half this period:
\[T_f = (1/2)T_s = 0.175 \text{ sec} \]

\[\text{NDT} = 1 + \frac{T_f}{\Delta t} = 1 + \frac{0.175}{0.0002} = 876 \quad \text{[Eq (39)]} \]

Use 875 increments in the analysis.

Step 17. Establish the global coordinate system for each model.

Model of frame on column line 8.

The origin of the global coordinate system is located at nodal point 1, as shown in Figure 7. The nodal coordinates are specified on the sketch of the model (Fig 7a).

Model of frame on column line 2:

The global coordinate system is established in a similar manner for this model, as shown in (a) and (b) Figure 4.

Step 18. The input data decks for the frames on column lines 1, 2, A and B are prepared utilizing the input data formats specified in Section 8. For the first analysis of each frame, fictitiously high values are entered for the bending capacities of all members designed for bi-axial bending (Section 7.3).

A.4 Utilization of the DYNFA Output in the Design of Frame Structures

Problem A.5: Using DYNFA, compute the blast-induced response of an unbraced, interior, rigid frame of a single-story steel building subjected to a normal shock wave. Determine the adequacy of all frame members by comparing the frame response computed by DYNFA with the frame design criteria of Section 6.

Procedure:

Step 1. With member sizes for the frame established on the basis of the preliminary design (Problem A.1),
and input data deck for the model of the frame prepared as described in Problem A.3, run the analysis of the structure using the DYNFA program on the CDC 6600 computer. For analyzing frames modeled with 15 to 20 elements, specify a running time of at least 10 minutes on the Job Control Card. For models with more than 20 elements, add 1-1/2 minutes of running time for each additional element.

Step 2. Inspect the appropriate portions of the printed output of DYNFA to determine whether the following have occurred:

a. A successful numerical integration. An unsuccessful integration is generally characterized by extreme fluctuations in the axial load-time histories of some elements accompanied by excessively large axial loads and moments. As a result, excessive deflections at some or all of the nodes occur and the execution of the program may be aborted. Such results are usually caused by an integration-time interval which is too large. Therefore, first check the calculation of the integration-time interval (Section 8.8); recompute the quantity, if necessary, and rerun the job. If the integration-time interval is correct, then check the input data for errors. The absence of grossly distorted results indicates that a successful integration has been achieved.

b. A reasonable approximation of the structure's response. There are no exact methods for measuring the accuracy of the structure's response as computed by DYNFA. In general, the deflected shape of a single-story rigid frame subjected to high intensity, short duration blast loadings should resemble that produced by static loads similar to the blast loads. Review the time histories of the nodal displacements to determine the deflected shape of the structure. The occurrence of unexpected or distorted structural behavior may indicate that errors exist in the input data deck. When such behavior occurs, check the input data. Generally, such input errors will affect the entire response history but will not cause a premature termination of the analysis.
c. The peak sidesway response of the frame. Inspect the tabulation of the maximum and minimum nodal displacements that is printed at the end of the output. If each roof node achieves its first peak horizontal displacement at the last integration-time station, T_f, then the frame has not achieved its peak sidesway response. If this occurs, specify a 50 percent increase in the number of integration-time stations, NDT, and rerun the job. Before rerunning the job, however, the member sizes should be verified, as described herein, to whatever extent possible using the results available from the unsuccessful run.

On the other hand, if the peak horizontal displacements on the roof occur prior to the last integration-time station, the frame has achieved its peak sidesway response.

Step 3. Extract the following data from the printed tabulation of the maxima and minima of the nodal displacements:

a. The maximum horizontal displacements of all nodal points on the roof girders. Inspect these values. If they are roughly equal, the largest of these values is designated as the peak sidesway deflection of the frame, δ. Compare δ with the sidesway criteria of Section 6.1. When significant differences occur between the horizontal displacements of the roof nodes (25 percent of the maximum), the results of the analysis are not considered acceptable and the job must be rerun with the appropriate revision in the input data to eliminate these distortions. Such distortions in the analysis are produced by spurious extensional vibrations of the girder in the inelastic response range in which the axial stiffness of the member is only 5 percent of its elastic axial stiffness. Although these vibrations always occur (see Fig 10 of text), they rarely distort the response of the frame. However, in cases involving girders with unusually long spans, these vibrations may produce large axial deformations of the member which could distort the overall
sidesway response of the frame. To eliminate these distortions, increase the inelastic stiffness of each element (see Section 3.3) to approximately 7.5 to 10 percent of its elastic stiffness. This is accomplished by entering a value of between 0.075 and 0.10 for the parameter YFACT on the Problem Specification Card (Card Type 2 of the input data deck, see Section 8.13).

b. The maximum vertical displacement of the nodal point at the midspan of each roof girder. Using these values, compute the maximum chordal angle, \(\theta \), for each girder as illustrated in Figure 64 of the text. Tabulate these values for all girders, together with the appropriate chordal angle criteria (Section 6.1), as shown in Table 22.

Step 4. Using the printed output of the nodal displacement-time histories (Section 9.5), determine the maximum differential displacement at the midspan of each exterior column (Fig 65 of text). Using these values, compute the maximum chordal angle, \(\theta \), for each exterior column as illustrated in Figure 65 of the text. Tabulate these values for both exterior columns as shown in Table 22.

Step 5. Prepare a tabulation of the maximum ductility ratios occurring at all nodal points on each frame member. Include the following data in this tabulation:

a. The response time at which each maximum occurs.

b. The applied axial load to tensile capacity ratio, \(P/P_u \), which occurs when each maximum is achieved. Include also the nature of the applied axial load (either tension or compression).

The above data are contained in the printed tabulation of the element end rotations. Tabulate these values for all frame members as shown in Table 23.

Step 6. Select the appropriate ductility ratio criteria for each frame member. As discussed in Section 6, the selection of the criteria is based on the nature of the axial load on the member when each maximum
ductility ratio is achieved. If several maximum ductility ratios are computed at various locations on a member, the member's response in the inelastic response range is limited by the appropriate ductility ratio criteria for each maximum ductility ratio computed.

The ductility ratio criteria for members subjected to tensile loads is given in Section 6.3. The ductility ratio criteria for members subjected to compressive loads is determined from the rotation capacity data given in Figures 41, 42 and 44 through 53 of the text. Consult Section 6.4 ("Use of the Rotation Capacity Curves") for guidance on using these figures.

Step 7. Extract from the printed output of the element load-time histories (axial load, shear and bending moment) the maximum shear, \(V_{\text{max}} \), acting on each frame member and compare this value with the shear yield capacity of the member given by Equation (3.11) of Reference 1.

Step 8.

a. If each of the response quantities determined in Steps 3, 4 and 5 is within the limits specified in Section 6, the member sizes are considered acceptable. If one or more of the limiting values are exceeded by more than a few percent, revise the member sizes as required and rerun the analysis with DYNFA.

b. If the maximum shear on a member exceeds its shear yield capacity, increase the size of the member as required to provide the needed shear yield capacity.

Step 9. From the printed output of the element load-time histories, determine the design loads for the connections (Section 9.5). Design the connections according to the provisions given in Chapter 6 of Reference 1.

Example A.5 Using DYNFA, compute the blast-induced response of an unbraced, interior, rigid frame of a single-story steel building subjected to a normal shock wave. Determine the adequacy of the frame members by comparing the frame response computed by DYNFA with the design criteria given in Section 6.
Required: Verification of the blast resistance of the unbraced, interior, rigid frame designed in Example A.1.

Step 1. Given:

a. Member sizes for the frame, determined in Example A.1.

b. Input data deck for the model of the frame, prepared in Example A.3.

The frame is analyzed with DYNFA on the CDC 6600 computer. Extracts from the printed output are presented in Appendix B.

Step 2. Inspection of the printed output of the response history indicates that a successful integration has been achieved. There are no gross distortions in the results. In addition, the results depict the expected behavior of the structure.

Inspection of the printed tabulation of the maximum and minimum nodal displacements (Ref Appendix B) reveals that all of the nodal points on the roof girder (nodes 5 through 9 and 11 through 14) achieve their maximum positive horizontal displacements during the time interval beginning at .08015 second and ending at .08890 second. Referring to Step 16 of Example A.3, \(\Delta t = 0.00035 \) second and NDT = 500 integration time stations. The last integration time station, \(T_f \), is:

\[
T_f = NDT \times \Delta t = 500(0.00035) = 0.175 \text{ second}
\]

Therefore, the frame has attained its peak sidesway response.

Step 3. Determine the maximum sidesway deflection of the frame and the maximum chordal angles for the roof girders using the printed tabulation of the maximum and minimum nodal displacements.

The following data are extracted from the printed output of the maximum and minimum nodal displacements:

a. The maximum horizontal \([X+]\) displacement of all nodal points on the roof girders:
<table>
<thead>
<tr>
<th>Node</th>
<th>Displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>80.8</td>
</tr>
<tr>
<td>6</td>
<td>80.3</td>
</tr>
<tr>
<td>7</td>
<td>80.3</td>
</tr>
<tr>
<td>8</td>
<td>80.3</td>
</tr>
<tr>
<td>9</td>
<td>78.7</td>
</tr>
<tr>
<td>10</td>
<td>80.3</td>
</tr>
<tr>
<td>11</td>
<td>80.3</td>
</tr>
<tr>
<td>12</td>
<td>80.4</td>
</tr>
<tr>
<td>13</td>
<td>80.4</td>
</tr>
<tr>
<td>14</td>
<td>73.5</td>
</tr>
</tbody>
</table>

The difference between the maximum at node 13 and the minimum at node 14 is 9 percent of the displacement at node 13.

Therefore: \[\delta = 80.4 \text{ mm} \]

\[H = 5.0 \text{ m (Fig 1)} \]

\[\frac{\delta}{H} = \frac{(80.4 \times 10^{-3})}{5} = 1/62 \]

From Section 6.1 for a reusable structure:

maximum \(\frac{\delta}{H} \leq 1/50 > 1/62 \)

b. The maximum vertical \([Y(-)]\) displacement at the midspan of each roof girder:

<table>
<thead>
<tr>
<th>Node</th>
<th>Displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-12.7</td>
</tr>
<tr>
<td>12</td>
<td>-18.5</td>
</tr>
</tbody>
</table>
The maximum chordal angle for the girder at the leeward end of the roof is computed as follows (see Fig 64 of text):

\[L = 6.0 \text{ m (from Fig 1)} \]
\[y_{12} = -18.5 \text{ mm (from above)} \]
\[\theta = \tan^{-1}\left(\frac{18.5 \times 10^{-3}}{6.0/2}\right) \]
\[= 0.353^\circ \]

From Section 5.1, \(\theta_{\text{max}} = 1.0^\circ > 0.353^\circ \)

The maximum chordal angle for the girder at the blastward end of the roof is computed in a similar manner and tabulated in Table 22.

Step 4. Using the output of the nodal displacement-time histories, determine the maximum chordal angles for the exterior columns.

From the printed output of the nodal displacement-time histories, the maximum differential displacement at the midspan of the blastward column occurs at a response time of 0.0175 second. The following horizontal displacements of nodes 3 and 5 are read from the output at this time station:

\[x_3 = 29.34 \text{ mm} \]
\[x_5 = 9.94 \text{ mm} \]

Referring to Figure 65 of the text, the maximum differential displacement at the midspan of the column is:

\[x_3 - x_5/2 = 29.34 - 9.94 = 24.37 \text{ mm} \]
\[H/2 = 5.0/2 = 2.5 \text{ m} \]

and the maximum chordal angle is:

\[= \tan^{-1}\left(\frac{24.37 \times 10^{-3}}{2.5}\right) \]
\[= 0.50^\circ = 1.0^\circ \ (a_{\text{max}} \text{ from Section 6.1}) \]
The maximum chordal angle for the leeward column is computed in a similar manner and tabulated in Table 22.

Step 5. Tabulate the maximum ductility ratios and related data at all nodal points on each frame member.

The maximum ductility ratios (and related data) for the frame members are tabulated in Table 23. The data tabulated are extracted from the printed output of the maxima and minima of the element end rotations (Appendix B). A ductility ratio of 1.0 indicates that the member remained elastic at the location of the nodal point.

Step 6. Select the appropriate ductility ratio criteria for each frame member.

Here, most members yield when subjected to compressive axial loads. Therefore, the rotation capacity data given in Figures 41, 42 and 44 through 53 of the text are used to determine most of the ductility ratio criteria.

Referring to Section 6.4, the first step in using these data consists of sketching the bending moment diagrams for the frame members at the instant that the maximum ductility ratios occur. The moments at the nodal points on the frame members are extracted from the printed output of the element load-time histories. Plots of the moment diagrams are presented in Figure 14 for the blastward column at a response time of 0.020 second; in Figure 15 for the girder at the blastward end of the roof at a response time of 0.014; and in Figure 16 for the girder at the leeward end of the roof at response times of 0.055 and 0.070 second.

Since the blastward column is pin-ended and the moment diagram plotted in Figure 14 is similar to that shown for case 2 in Figure 43 of the text, the ductility ratio criteria for the member is determined from the rotation capacity curves in Figures 49 through 53 of the text. Three parameters are required to enter these curves. They are:
a. The applied axial load to tensile capacity ratio which occurs when the maximum ductility is achieved:

\[\frac{P}{P_p} = 0.064 \text{ (from Table 23)} \]

b. The slenderness ratio:

\[\frac{l}{r_x} = 33 \text{ (from Table 2)} \]

c. The distribution factor for the column at the column/girder connection which is computed as follows:

\[DF_{AB} = \frac{K_{AB}}{\Sigma K} \quad [\text{Eq (31) of text}] \]

For the column: \(K_c = \frac{3}{4}I/L \)

\[I = 22,550 \text{ cm}^4 \text{ (from Table 8)} \]
\[L = 5.0 \text{ m} \text{ (from Fig 1)} \]

The factor \(\frac{3}{4} \) is applied because the member is pin-ended.

\[K_c = \frac{3}{4}\left[\frac{(22,550 \times 10^{-8})}{5}\right] = 3.38 \times 10^{-5} \]

For the girder: \(K_g = \frac{I}{L} \)

\[I = 12,834 \text{ cm}^4 \text{ (from Table 8)} \]
\[L = 6.0 \text{ m} \text{ (from Fig 1)} \]

\[K_g = \frac{(12,834 \times 10^{-8})}{6} = 2.14 \times 10^{-5} \]

Substituting into Equation (31) of the text:

\[K_{AB} = K_c = 3.38 \times 10^{-5} \]
\[\Sigma K = K_c + K_g = (3.38 + 2.14) \times 10^{-5} = 5.52 \times 10^{-5} \]

\[DF_{AB} = \frac{3.38}{5.52} = 0.61 \]
Interpolation is required for ℓ/r_x and DF_{AB}. For the values of P/P_p, ℓ/r_x and DF_{AB} in this example, an adequate interpolation can be accomplished using a portion of the applicable rotation capacity data; namely, the curves provided for distribution factors of 0.25, 0.50 and 0.75 (Fig 51, 52 and 53 of text, respectively).

Entering Figures 51 through 53 of the text with $P/P_p = 0.064$, the values of R_c are read from the curves for slenderness ratios of 20, 40 and 60. These values are tabulated in Table 24 and plotted in Figure 17a as curves of R_c versus ℓ/r_x for constant values of DF_{AB}.

Entering the curves of Figure 17a with $\ell/r_x = 33$, values of R_c are read for values of $DF_{AB} = 0.25$, 0.50 and 0.75. These latter values of R_c are then plotted versus DF_{AB} as shown in Figure 17b, and a value of $R_c = 2.60$ for the member is read off this curve for a corresponding value of $DF_{AB} = 0.61$. The ductility criteria for the member is then computed as shown below:

$$\mu_{\text{max}} = 1.0 + R_c/4 \quad \text{(from Section 6.5 for reusable structure)}$$

$$R_c = 2.6 \quad \text{(from Fig 17b), therefore:}$$

$$\mu_{\text{max}} = 1.65 < 2.567 \quad \text{(maximum μ computed at node 2 on element, from Table 23)}$$

The moment diagram plotted for the blastward girder (Fig 15) is a combination of the moment diagram for case 2 in Figure 40 of the text with that of case 1 in Figure 43 of the text. Although the major portion of each peak ductility at the member’s end appears to be caused by applied end moments (Case 2, Fig 40 of text), the rotation capacity data for the lateral load case (Fig 43 of text, Case 1) will be used for the design verification as these data represent a lower bound on the ductility criteria for the member. Interpolation of the data in Figures 44 through 48 of the text using the guidelines provided in Section 6.4 yields the following rotation capacities for the blastward girder:
at $t = 0.014$ sec: $P/P_p = 0.143$

$R_c = 6.8$

$\mu_{\text{max}} = 1 + R_c/4 = 1 + 5.8/4 = 2.7$

At $t = 0.055$ second, the moment diagram (Fig 16) for the leeward girder is a combination of the moment diagram for case 2, Figure 40, with that of case 1, Figure 43 (both of text). Hence, the ductility criteria for the member are extracted from Figures 44 through 48 of the text.

At $t = 0.070$ second, the moment diagram for the member corresponds to that for case 2, Figure 40 of the text. Therefore, the ductility criteria are extracted from Figure 41 of the text.

Summarizing the ductility criteria for the girder:

$\gamma/r_x = 46.1$

For $t = 0.055$ second: $P/P_p = 0.022$

$R_c = 7.5$ by inspection of Figure 47 of text

$\mu_{\text{max}} = 1.0 + 7.5/4 = 2.88$

For $t = 0.070$ second: $P/P_p = 0.114$

$R_c > 15$ by inspection of Figure 41 of text

Therefore: $\mu_{\text{max}} = 3.0$

Values of μ_{max} for all frame members are tabulated in Table 23.

Step 7. Extract from the printed output of the element load-time histories, the maximum shear for each member and compare this value with the shear yield capacity of the member.

For the leeward girder:

$V_{\text{max}} = 193 \text{ kN}$ at the leeward girder/column connection (element 13, node 14) at $t = 0.0511$ sec.
Using Equation (3.11) of Reference 1, the shear yield capacity of the member is computed as shown below:

\[V_p = F_{dv} A_w \]

\[F_{dv} = 0.55F_{dy} \quad \text{[Eq (2.3) of Ref 1]} \]

\[F_{dy} = 273 \times 10^3 \text{ kPa} \quad \text{(Step 3, Example A.1)} \]

\[F_{dv} = (0.55)(273 \times 10^3) = 150 \times 10^3 \text{ kPa} \]

\[A_w = t_w (d - 2t_f) \quad \text{(Section 3.3.3 of Ref 1)} \]

From the "Properties for designing" tables of Reference 14 for a W12 x 40:

\[d = 11.940 \text{ in (303.3 mm)} \]

\[t_w = 0.294 \text{ in (7.46 mm)} \]

\[t_f = 0.516 \text{ in (13.11 mm)} \]

\[A_w = 7.46 [303.3 - (2 \times 13.11)] = 2,067 \text{ mm}^2 \]

\[V_p = (150 \times 10^3)(2,067 \times 10^{-6}) \]

\[= 310.1 \text{ kN} > 193 \text{ kN} \]

A tabulation of the maximum applied shear and the shear yield capacity is provided in Table 25 for each frame member.

Step 8. A comparison of each of the response quantities determined in Steps 3, 4 and 5 with the limits specified in Section 6, indicates that the blastward column, with a ductility ratio of 2.57 at node point 2 of element 1, should be increased in size and the remaining numbers should remain the same since the frame response approaches the limiting sidesway deflection of \(\delta/H = 1/50 \).

Step 9. Once the final member sizes are established and verified, determine the connection design loads from the printed output as described in Section 9.5, and design the connections in accordance with the provisions given in Chapter 6 of Reference 1.
Problem A.6: Using DYNFA, compute the blast-induced responses of several representative frames spanning in each direction of a single-story rigid frame steel building subjected to a quartering shock wave. Determine the adequacy of all frame members by comparing the frame responses computed by DYNFA with the frame design criteria of Section 6.

Procedure:

Step 1. Compute the response of each frame by running DYNFA on the CDC 6600 computer. Refer to Step 1 of Problem A.5 for guidance in specifying running times for this computer.

Step 2. Inspect the results of each analysis as instructed in Step 2 of Problem A.5.

Step 3. Compute the following quantities as instructed in Step 3 of Problem A.5:
 a. Peak sidesway deflection of each frame.
 b. Maximum chordal angle for each girder.

Step 4. Compute the maximum chordal angle for each exterior column as instructed in Step 4 of Problem A.5.

Step 5. Tabulate the maximum ductility ratios for each girder and determine the appropriate ductility criteria as instructed in Steps 5 and 6 of Problem A.5.

Step 6. If each of the response quantities determined in Steps 3, 4 and 5 is within 90 percent of the limit specified for it in Section 6, proceed with the next stage of the design. If one of these response quantities exceeds 90 percent of the limit specified for it, increase the sizes of the appropriate members and rerun the analysis of the frame.

Step 7. a. Extract from printed tabulations of the maximum and minimum element end loads, the peak bending moments at all nodal points on each column analyzed.
b. Prepare a tabulation of the maximum moments about both axes of bending at all nodal points of each column (Section 7.3).

c. Using the ultimate bending capacities determined in Step 11 of Problem A.2 and the tabulated moments from above, compute the nodal reduction factors and reduced bending capacities for each column using Equations (32) and (33). Tabulate all values as shown in Table 26.

Step 8. Rerun all analyses with DYNFA using the reduced bending capacities for the columns that were determined in Step 7.

Step 9. a. Review the results of the second group of analyses as instructed in Steps 2 through 5.

b. Tabulate the maximum ductility ratios for each column.

c. Determine the appropriate ductility criteria for each column as instructed in Step 6 of Problem A.5.

Step 10. Step 7 of Problem A.5.

Step 11. a. Step 8a of Problem A.5.

b. Step 8b of Problem A.5.

Example A.6: Using DYNFA, compute the blast-induced responses of several representative frames spanning in each direction of a single-story rigid frame steel building subjected to a quartering shock wave. Determine the adequacy of all frame members by comparing the frame responses computed by DYNFA with the frame design criteria of Section 6.

Required: Verification of the blast resistance of the primary structural framing system designed in Example A.2.
Step 1. Given:

a. Member sizes for the frames on column lines A, B, 1 and 2, determined in Example A.2.

b. Input data decks for these frames, prepared as illustrated in Example A.4.

Each frame is analyzed with SYNF on the CDC 6600 computer.

Step 2. Inspection of the printed output for each frame indicates that a successful integration has been achieved in each analysis and each frame has achieved a peak sidesway response prior to the final integration time step.

Step 3. a. The peak sidesway deflections for each frame are listed below:

<table>
<thead>
<tr>
<th>Frame</th>
<th>Peak sidesway deflection (mm)</th>
<th>δ/H ≤ 1/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column line A</td>
<td>47</td>
<td>1/106</td>
</tr>
<tr>
<td>Column line B</td>
<td>63</td>
<td>1/79</td>
</tr>
<tr>
<td>Column line 1</td>
<td>40</td>
<td>1/125</td>
</tr>
<tr>
<td>Column line 2</td>
<td>49</td>
<td>1/102</td>
</tr>
</tbody>
</table>

b. The maximum chordal angles for each girder are:

<table>
<thead>
<tr>
<th>Girder</th>
<th>θmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>0.20°</td>
</tr>
<tr>
<td>G2</td>
<td>0.17°</td>
</tr>
<tr>
<td>G3</td>
<td>0.31°</td>
</tr>
<tr>
<td>G4</td>
<td>0.32°</td>
</tr>
</tbody>
</table>
Step 4. The maximum chordal angles for the exterior columns are:

<table>
<thead>
<tr>
<th>Frame</th>
<th>Column</th>
<th>θ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column line A</td>
<td>blastward</td>
<td>0.15°</td>
</tr>
<tr>
<td>Column line B</td>
<td>blastward</td>
<td>0.33°</td>
</tr>
<tr>
<td>Column line 1</td>
<td>blastward</td>
<td>0.51°</td>
</tr>
<tr>
<td>Column line 2</td>
<td>blastward</td>
<td>0.40°</td>
</tr>
</tbody>
</table>

Step 5. The maximum ductility ratios and the corresponding ductility criteria for the girders are:

<table>
<thead>
<tr>
<th>Frame</th>
<th>Girder</th>
<th>Maximum computed ductility ratio, μ</th>
<th>Ductility criteria, ν_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column line A</td>
<td>all</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>Column line B</td>
<td>blastward</td>
<td>1.03</td>
<td>2.2</td>
</tr>
<tr>
<td>Column line B</td>
<td>middle</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>Column line B</td>
<td>leeward</td>
<td>1.33</td>
<td>3.0</td>
</tr>
<tr>
<td>Column line 1</td>
<td>blastward</td>
<td>2.69</td>
<td>3.0</td>
</tr>
<tr>
<td>Column line 1</td>
<td>leeward</td>
<td>1.20</td>
<td>3.0</td>
</tr>
<tr>
<td>Column line 2</td>
<td>blastward</td>
<td>1.70</td>
<td>2.0</td>
</tr>
<tr>
<td>Column line 2</td>
<td>leeward</td>
<td>1.71</td>
<td>1.75</td>
</tr>
</tbody>
</table>

The ductility criteria listed above were determined using the data provided in Figures 41, 42 and 44 through 53 of the text.

Step 6. Comparisons of each of the response quantities, determined in Steps 3, 4 and 5 with the limits specified for them in Section 6, indicate that the responses of the four frames are within acceptable limits.
Step 7. A tabulation of the bending moments at all nodal points on column B-1 is shown in Table 26. Inspection of the computed nodal reduction factors listed in the table, reveals that the member is overdesigned; hence, the member is decreased in size from a W14 x 78 to a W14 x 61. The computation of the nodal reduction factors for a new member is shown in Table 27.

Similar calculations for columns A-1 and A-4 produce maximum nodal reduction factors of 1.44 and 1.28, respectively. Hence, these members remain the same. The maximum nodal reductions for columns B-2 and B-3 are 1.0 and 1.08, respectively. The next smallest size that meets all of the minimum thickness criteria of Section 2.4 is a W14 x 84, which does not have adequate strength. Hence, columns B-2 and B-3 also remain the same.

Calculation of nodal reduction factors for columns A-2, A-3, C-2 and C-3 reveals these members to be overdesigned; therefore, they are reduced to W14 x 61. Reduced bending capacities for these members are computed in the manner illustrated in Table 27.

Step 8. All frames are re-analyzed using the reduced bending capacities for the columns determined in Step 7.

Step 9. a. 1. Inspection of the printed output for the second group of analyses indicates that each of these runs was successful and each frame attains a peak sidesway response prior to the final integration time step.

2. The results of the second group of analyses are listed as follows:
Maximum sidesway deflections of frames

<table>
<thead>
<tr>
<th>Frame</th>
<th>Peak sidesway deflection (mm)</th>
<th>(\delta/H \leq 1/50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column line A</td>
<td>52</td>
<td>1/96</td>
</tr>
<tr>
<td>Column line B</td>
<td>65</td>
<td>1/77</td>
</tr>
<tr>
<td>Column line 1</td>
<td>43</td>
<td>1/116</td>
</tr>
<tr>
<td>Column line 2</td>
<td>53</td>
<td>1/94</td>
</tr>
</tbody>
</table>

Maximum chordal angles for girders

<table>
<thead>
<tr>
<th>Girder</th>
<th>(\theta_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>0.21°</td>
</tr>
<tr>
<td>G2</td>
<td>0.18°</td>
</tr>
<tr>
<td>G3</td>
<td>0.32°</td>
</tr>
<tr>
<td>G4</td>
<td>0.33°</td>
</tr>
</tbody>
</table>

Maximum chordal angles for exterior columns

<table>
<thead>
<tr>
<th>Frame</th>
<th>Column</th>
<th>(\theta_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column line A</td>
<td>blastward</td>
<td>0.31°</td>
</tr>
<tr>
<td>Column line B</td>
<td>blastward</td>
<td>0.45°</td>
</tr>
<tr>
<td>Column line 1</td>
<td>blastward</td>
<td>0.88°</td>
</tr>
<tr>
<td>Column line 2</td>
<td>blastward</td>
<td>0.54°</td>
</tr>
</tbody>
</table>
Maximum ductility ratios
and corresponding ductility criteria for girders

<table>
<thead>
<tr>
<th>Frame</th>
<th>Girder</th>
<th>Maximum computed ductility ratio, μ</th>
<th>Ductility criteria μmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column line A</td>
<td>all</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>Column line B</td>
<td>blastward</td>
<td>1.30</td>
<td>2.0</td>
</tr>
<tr>
<td>Column line B</td>
<td>middle</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>Column line B</td>
<td>leeward</td>
<td>1.03</td>
<td>3.0</td>
</tr>
<tr>
<td>Column line 1</td>
<td>blastward</td>
<td>2.73</td>
<td>3.0</td>
</tr>
<tr>
<td>Column line 1</td>
<td>leeward</td>
<td>1.10</td>
<td>3.0</td>
</tr>
<tr>
<td>Column line 2</td>
<td>blastward</td>
<td>1.54</td>
<td>3.0</td>
</tr>
<tr>
<td>Column line 2</td>
<td>leeward</td>
<td>1.44</td>
<td>1.65</td>
</tr>
</tbody>
</table>

The ductility criteria listed above were determined using the data provided in Figures 41, 42 and 44 through 53 of the text.
b. The maximum ductility ratios for each column are listed below:

<table>
<thead>
<tr>
<th>Frame</th>
<th>Column</th>
<th>Maximum computed ductility ratio, μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column line A blastward</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Column line A leeward</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Column line B blastward</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Column line B leeward</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Column line 1 blastward</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Column line 1 leeward</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Column line 2 blastward</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Column line 2 leeward</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

c. The corresponding ductility criteria for the above ductility ratios are listed below:

<table>
<thead>
<tr>
<th>Frame</th>
<th>Column</th>
<th>Ductility criteria μ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column line A blastward</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Column line A leeward</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Column line B blastward</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Column line B leeward</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Column line 1 blastward</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Column line 1 leeward</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Column line 2 blastward</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Column line 2 leeward</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>
The ductility criteria listed above were determined using the data in Figures 41, 42 and 44 through 53 of the text.

Step 10. The maximum member shears are extracted from the printed output and the shear capacity of each member is computed as described in Section 3.3.3 of Reference 1. All members have adequate shear capacity. The computations are omitted for brevity.

Step 11. All response quantities computed in Step 9 are within the frame design criteria specified in Section 6. Hence, the member sizes selected are acceptable.

Step 12. Step 9 of Example A.5.
<table>
<thead>
<tr>
<th>Collapse mechanism</th>
<th>(V) (kN/m)</th>
<th>(M_p) (kN-m)</th>
<th>(M_p) (kN-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Trial 1 (C_1 = 2, C = 2)</td>
<td>Trial 2 (C_1 = 2, C = 2.5)</td>
</tr>
<tr>
<td>1</td>
<td>68.4</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2</td>
<td>68.4</td>
<td>(906/(2C+1))</td>
<td>181</td>
</tr>
<tr>
<td>3a</td>
<td>34.2</td>
<td>(906/(2+C_1)) (C_1 \leq 2)</td>
<td>227</td>
</tr>
<tr>
<td>3b</td>
<td>34.2</td>
<td>(227) (C_1 \geq 2)</td>
<td>227</td>
</tr>
<tr>
<td>4</td>
<td>34.2</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>5a</td>
<td>34.2</td>
<td>(680/(C + 1/2 + C_1/2)) (C_1 \leq 2)</td>
<td>194</td>
</tr>
<tr>
<td>5b</td>
<td>34.2</td>
<td>(680/(C + 3/2)) (C_1 \geq 2)</td>
<td>194</td>
</tr>
<tr>
<td>6</td>
<td>34.2</td>
<td>834/(C + 5/2)</td>
<td>185</td>
</tr>
</tbody>
</table>
Table 2
Member sizes and capacities for frame on column line 2, Example A.1

<table>
<thead>
<tr>
<th>Member</th>
<th>Tabulation of moments (kN-m)</th>
<th>(M_p)_x</th>
<th>M_px</th>
<th>M_mx</th>
<th>(M_p)_x/M_mx</th>
<th>d^* ≤ 58.4</th>
<th>b_f^* ≤ 8.5</th>
<th>l ≤ 122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girder W12 x 40</td>
<td>(M_p)_x</td>
<td>227</td>
<td>258</td>
<td>254</td>
<td>0.90</td>
<td>40.6</td>
<td>7.75</td>
<td>46</td>
</tr>
<tr>
<td>Interior column</td>
<td>W14 x 61</td>
<td>454</td>
<td>457</td>
<td>415</td>
<td>1.09</td>
<td>36.8</td>
<td>7.78</td>
<td>33</td>
</tr>
<tr>
<td>Exterior column</td>
<td>W14 x 53</td>
<td>341</td>
<td>390</td>
<td>390</td>
<td>0.87</td>
<td>37.7</td>
<td>6.13</td>
<td>33</td>
</tr>
</tbody>
</table>

* d/t_w and b_f/2t_f ratios for these members given in "Properties for designing" tables of Reference 14.
Table 3
Tabulation of peak pressures for preliminary design, Example A.2

<table>
<thead>
<tr>
<th>Wall</th>
<th>Point</th>
<th>R (ft)</th>
<th>Z (ft/ln1/3)</th>
<th>P_{so} (psi)</th>
<th>P_{so} (kPa)</th>
<th>α_1 (deg)</th>
<th>$C_{r\alpha}$</th>
<th>$P_{r\alpha}=C_{r\alpha}P_{so}$ (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>I</td>
<td>433</td>
<td>30.0</td>
<td>1.65</td>
<td>11.4</td>
<td>30</td>
<td>2.11</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>465</td>
<td>32.3</td>
<td>1.50</td>
<td>10.3</td>
<td>36.3</td>
<td>2.15</td>
<td>22.1</td>
</tr>
<tr>
<td>B</td>
<td>I</td>
<td>433</td>
<td>30.0</td>
<td>1.65</td>
<td>11.4</td>
<td>60</td>
<td>2.46</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>467</td>
<td>32.4</td>
<td>1.50</td>
<td>10.3</td>
<td>62.4</td>
<td>2.35</td>
<td>24.2</td>
</tr>
</tbody>
</table>
Table 4

Trial selections of C, C_1 and M_p for frame or column line B, Example A.2

<table>
<thead>
<tr>
<th>Collapse mechanism</th>
<th>w (kN-m)</th>
<th>$\frac{M_p}{(kN-m)}$</th>
<th>M_p (kN-m)</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$C_1 = 2.0$, $C = 3.0$</td>
<td>$C_1 = 2.0$, $C = 2.5$</td>
</tr>
<tr>
<td>1</td>
<td>22.8</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>19.8</td>
<td>$\frac{912}{(2C + 1)}$</td>
<td>130</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>3a</td>
<td>9.9</td>
<td>$\frac{456}{(1 + C_1)}$</td>
<td>$C_1 \leq 2$</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>3b</td>
<td>9.9</td>
<td>152</td>
<td>$C_1 \geq 2$</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>4</td>
<td>9.9</td>
<td>98</td>
<td></td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>5a</td>
<td>9.9</td>
<td>$\frac{684}{(C + 1/2 + C_1)}$</td>
<td>$C_1 \leq 2$</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>5b</td>
<td>9.9</td>
<td>$\frac{684}{(C + 5/2)}$</td>
<td>$C_1 \geq 2$</td>
<td>124</td>
<td>137</td>
</tr>
<tr>
<td>6</td>
<td>9.9</td>
<td>$\frac{733}{(C + 9/2)}$</td>
<td></td>
<td>103</td>
<td>110</td>
</tr>
</tbody>
</table>
Table 5

Required bending capacities for frame members, Example A.2

<table>
<thead>
<tr>
<th>Member</th>
<th>M_p (kn-M)</th>
<th>Size</th>
<th>M_{px} (kN-m)</th>
<th>M_{mx} (kN-m)</th>
<th>M_{py} (kN-m)</th>
<th>M_{my} (kN-m)</th>
<th>$\frac{M_p}{M_{mx}}$</th>
<th>$\frac{M_p}{M_{my}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>152</td>
<td>W12 x 27</td>
<td>170.0</td>
<td>170.0</td>
<td>-</td>
<td>-</td>
<td>0.89</td>
<td>-</td>
</tr>
<tr>
<td>G2</td>
<td>76</td>
<td>W12 x 16.5</td>
<td>92.2</td>
<td>92.2</td>
<td>-</td>
<td>-</td>
<td>0.82</td>
<td>-</td>
</tr>
<tr>
<td>G3</td>
<td>210</td>
<td>W12 x 36</td>
<td>231.0</td>
<td>223.4</td>
<td>-</td>
<td>-</td>
<td>0.94</td>
<td>-</td>
</tr>
<tr>
<td>G4</td>
<td>105</td>
<td>W12 x 22</td>
<td>131.5</td>
<td>116.4</td>
<td>-</td>
<td>-</td>
<td>0.90</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>420</td>
<td>W14 x 111</td>
<td>876.8</td>
<td>845.6</td>
<td>421.9</td>
<td>421.9</td>
<td>0.50</td>
<td>0.72</td>
</tr>
<tr>
<td>C2</td>
<td>380</td>
<td>W14 x 78</td>
<td>599.5</td>
<td>599.5</td>
<td>234.4</td>
<td>234.4</td>
<td>0.63</td>
<td>0.90</td>
</tr>
<tr>
<td>C3</td>
<td>315</td>
<td>W14 x 68</td>
<td>514.5</td>
<td>514.5</td>
<td>164.6</td>
<td>164.6</td>
<td>0.61</td>
<td>0.92</td>
</tr>
<tr>
<td>C4</td>
<td>190</td>
<td>W14 x 68</td>
<td>514.5</td>
<td>514.5</td>
<td>164.6</td>
<td>164.6</td>
<td>0.37</td>
<td>0.96</td>
</tr>
</tbody>
</table>

DESIGNATION OF AXES OF BENDING
Table 6
Tabulation of d/t_w, $b/2t_f$ and slenderness ratios for frame members, Example A.2

<table>
<thead>
<tr>
<th>Member</th>
<th>Size</th>
<th>$d/t^*_w \leq 58.4$</th>
<th>$b_f/2t^*_f \leq 8.5$</th>
<th>z/r_x</th>
<th>z/r_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>W12 x 27</td>
<td>50.5</td>
<td>8.12</td>
<td>46.6</td>
<td>-</td>
</tr>
<tr>
<td>G2</td>
<td>W12 x 16.5</td>
<td>52.2</td>
<td>7.43</td>
<td>50.8</td>
<td>-</td>
</tr>
<tr>
<td>G3</td>
<td>W12 x 36</td>
<td>40.1</td>
<td>6.08</td>
<td>45.9</td>
<td>-</td>
</tr>
<tr>
<td>G4</td>
<td>W12 x 22</td>
<td>47.3</td>
<td>4.75</td>
<td>48.1</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>W14 x 111</td>
<td>26.6</td>
<td>8.37</td>
<td>31.6</td>
<td>52.6</td>
</tr>
<tr>
<td>C2</td>
<td>W14 x 78</td>
<td>32.9</td>
<td>8.36</td>
<td>32.3</td>
<td>21.9</td>
</tr>
<tr>
<td>C3</td>
<td>W14 x 68</td>
<td>33.6</td>
<td>6.99</td>
<td>32.7</td>
<td>26.7</td>
</tr>
<tr>
<td>C4</td>
<td>W14 x 68</td>
<td>36.8</td>
<td>6.99</td>
<td>10.9</td>
<td>26.7</td>
</tr>
</tbody>
</table>

*d/t_w and b_f/2t_f for these members given in "Properties for designing tables of Reference 14."
Table 7
Tabulation of concentrated masses at mass points of model of frame on column line 2, Example A.3

<table>
<thead>
<tr>
<th>Node number of mass point</th>
<th>Horizontal dynamic degrees of freedom</th>
<th>Vertical dynamic degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Item</td>
<td>Mass (kg)</td>
</tr>
<tr>
<td>2, 4, 15, 17</td>
<td>Exterior wall panel (M_{EHW})</td>
<td>568.7</td>
</tr>
<tr>
<td></td>
<td>Roof panel (M_{EH}^R)</td>
<td>716.4</td>
</tr>
<tr>
<td></td>
<td>Transverse girder</td>
<td>321.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,206.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6, 8, 11, 13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Roof panel (M_{EH}^R)</td>
<td>716.4</td>
</tr>
<tr>
<td></td>
<td>(\mu) of panel (M_{EH}^R)</td>
<td>716.4</td>
</tr>
<tr>
<td></td>
<td>1/2 Interior column</td>
<td>226.9</td>
</tr>
<tr>
<td></td>
<td>Transverse girder</td>
<td>321.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,981.3</td>
</tr>
</tbody>
</table>
Table 8
Input data for elements of model of frame on column line 2, Example A.3

<table>
<thead>
<tr>
<th>Member</th>
<th>Size</th>
<th>I.D. No.</th>
<th>End A</th>
<th>End B</th>
<th>End A</th>
<th>End B</th>
<th>A (cm²)</th>
<th>I (cm⁴)</th>
<th>Mₘ (kN·m)</th>
<th>Pₚ (kN)</th>
<th>Pᵤ (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior column - blastward</td>
<td>W14x53</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>none</td>
<td>none</td>
<td>101.0</td>
<td>22,550</td>
<td>390</td>
<td>2,750</td>
<td>2,370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>none</td>
<td>none</td>
<td>101.0</td>
<td>22,550</td>
<td>390</td>
<td>2,750</td>
<td>2,370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>none</td>
<td>none</td>
<td>101.0</td>
<td>22,550</td>
<td>390</td>
<td>2,750</td>
<td>2,370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>none</td>
<td>none</td>
<td>101.0</td>
<td>22,550</td>
<td>390</td>
<td>2,750</td>
<td>2,370</td>
</tr>
<tr>
<td>Roof girder - blastward end</td>
<td>W12x40</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>none</td>
<td>none</td>
<td>76.1</td>
<td>12,834</td>
<td>254</td>
<td>2,078</td>
<td>1,867</td>
</tr>
<tr>
<td>of roof</td>
<td></td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>none</td>
<td>none</td>
<td>76.1</td>
<td>12,834</td>
<td>254</td>
<td>2,078</td>
<td>1,867</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>none</td>
<td>none</td>
<td>76.1</td>
<td>12,834</td>
<td>254</td>
<td>2,078</td>
<td>1,867</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>none</td>
<td>none</td>
<td>76.1</td>
<td>12,834</td>
<td>254</td>
<td>2,078</td>
<td>1,867</td>
</tr>
<tr>
<td>Interior column</td>
<td>W14x61</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>none</td>
<td>none</td>
<td>115.0</td>
<td>26,670</td>
<td>415</td>
<td>3,155</td>
<td>2,222</td>
</tr>
<tr>
<td>Roof girder - leeward end</td>
<td>W12x40</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>none</td>
<td>none</td>
<td>76.1</td>
<td>12,834</td>
<td>254</td>
<td>2,078</td>
<td>1,867</td>
</tr>
<tr>
<td>of roof</td>
<td></td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>none</td>
<td>none</td>
<td>76.1</td>
<td>12,834</td>
<td>254</td>
<td>2,078</td>
<td>1,867</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>none</td>
<td>none</td>
<td>76.1</td>
<td>12,834</td>
<td>254</td>
<td>2,078</td>
<td>1,867</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>none</td>
<td>none</td>
<td>76.1</td>
<td>12,834</td>
<td>254</td>
<td>2,078</td>
<td>1,867</td>
</tr>
<tr>
<td>Exterior column - leeward</td>
<td>W14x53</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>none</td>
<td>none</td>
<td>101.0</td>
<td>22,550</td>
<td>390</td>
<td>2,750</td>
<td>2,370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>none</td>
<td>none</td>
<td>101.0</td>
<td>22,550</td>
<td>390</td>
<td>2,750</td>
<td>2,370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>none</td>
<td>none</td>
<td>101.0</td>
<td>22,550</td>
<td>390</td>
<td>2,750</td>
<td>2,370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>18</td>
<td>17</td>
<td>none</td>
<td>none</td>
<td>101.0</td>
<td>22,550</td>
<td>390</td>
<td>2,750</td>
<td>2,370</td>
</tr>
</tbody>
</table>

*Mₘ determined in preliminary design of frame, Example A.1.
Table 9
Tributary areas for mass points of model of frame on column line 2, Example A.3

<table>
<thead>
<tr>
<th>Node no. of mass point</th>
<th>Loaded surface</th>
<th>Dimensions of area (m)</th>
<th>Area (m²)</th>
<th>Loaded surface</th>
<th>Dimensions of area (m)</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4</td>
<td>Blastward wall</td>
<td>6.0 x 1.670</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Blastward wall</td>
<td>6.0 x 0.835</td>
<td>5.0</td>
<td>Roof</td>
<td>6.0 x 1.0</td>
<td>6.0</td>
</tr>
<tr>
<td>6, 8, 11, 13</td>
<td></td>
<td></td>
<td></td>
<td>Roof</td>
<td>6.0 x 2.0</td>
<td>12.0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>Roof: blastward panel</td>
<td>5.0 x 1.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roof: leeward panel</td>
<td>6.0 x 1.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Totals</td>
<td>6.0 x 2.0</td>
<td>12.0</td>
</tr>
<tr>
<td>14</td>
<td>Leeward wall</td>
<td>6.0 x 0.835</td>
<td>5.0</td>
<td>Roof: leeward panel</td>
<td>6.0 x 1.0</td>
<td>6.0</td>
</tr>
<tr>
<td>15, 17</td>
<td>Leeward wall</td>
<td>6.0 x 1.670</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference: Figure 5
Table 10

<table>
<thead>
<tr>
<th>Location</th>
<th>(P_{10}) (psi)</th>
<th>(Z) (ft)</th>
<th>(t_{1/2}) (sec)</th>
<th>(t_{1/4}) (sec)</th>
<th>(t_{1/2}) (sec)</th>
<th>(P_{1/2}) (psi)</th>
<th>(P_{1/2}) (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blastboard wall</td>
<td>433.0</td>
<td>30.00</td>
<td>1.65</td>
<td>3.40</td>
<td>49.03</td>
<td>1.16</td>
<td>24.2</td>
</tr>
<tr>
<td>Roof-bleachard</td>
<td>433.0</td>
<td>30.00</td>
<td>1.65</td>
<td>3.40</td>
<td>49.03</td>
<td>1.16</td>
<td>24.2</td>
</tr>
<tr>
<td>Roof-leeward</td>
<td>472.4</td>
<td>32.75</td>
<td>1.46</td>
<td>3.16</td>
<td>45.55</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Blastboard wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof-bleachard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof-leeward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>(S_{o}) (sec)</td>
<td>(S_{p}) (sec)</td>
<td>(P_{o}) (psi)</td>
<td>(P_{p}) (psi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blastboard wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof-bleachard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof-leeward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

286
Table 11

Blast loading data for DYNFA analysis of frame on column line 2, Example A.3

<table>
<thead>
<tr>
<th>Node no. of mass point</th>
<th>Direction of load</th>
<th>Blast loading parameters at mass points</th>
<th>Parameters a and D for tributary areas</th>
<th>Parameters used for modifying pressure waveforms</th>
<th>Waveform I.D. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p_{ak} (kPa)</td>
<td>t_{ad} (sec)</td>
<td>p_{as} (kPa)</td>
<td>t_{as} (sec)</td>
</tr>
<tr>
<td>2</td>
<td>Horizontal</td>
<td>24.2</td>
<td>0.0594</td>
<td>3.5</td>
<td>0.042</td>
</tr>
<tr>
<td>4</td>
<td>Horizontal</td>
<td>24.2</td>
<td>0.0594</td>
<td>3.5</td>
<td>0.042</td>
</tr>
<tr>
<td>5</td>
<td>Horizontal</td>
<td>24.2</td>
<td>0.0594</td>
<td>3.5</td>
<td>0.042</td>
</tr>
</tbody>
</table>
| 5 | Vertical | 11.1 | 0.0594 | - | - | 353.6 | 1.00 | 0.00 | 0.0000 | 0.0028 | 10.60 | 0.0028 | 0.0608 | 0.0608 | 1
| 6 | Vertical | 10.9 | 0.0599 | - | - | 353.6 | 2.00 | 1.00 | 0.0023 | 0.0056 | 10.40 | 0.0084 | 0.0627 | 0.0655 | 3
| 8 | Vertical | 10.7 | 0.0604 | - | - | 353.6 | 2.00 | 3.00 | 0.0085 | 0.0056 | 10.20 | 0.0141 | 0.0632 | 0.0771 | 4
| 9 | Vertical | 10.5 | 0.0609 | - | - | 353.6 | 2.00 | 5.00 | 0.0141 | 0.0056 | 10.00 | 0.0197 | 0.0637 | 0.0778 | 5
| 11 | Vertical | 10.3 | 0.0614 | - | - | 353.6 | 2.00 | 7.00 | 0.0197 | 0.0056 | 9.83 | 0.0253 | 0.0642 | 0.0839 | 6
| 13 | Vertical | 10.1 | 0.0619 | - | - | 353.6 | 2.00 | 9.00 | 0.0254 | 0.0056 | 9.64 | 0.0310 | 0.0647 | 0.0901 | 7
| 14 | Vertical | 9.9 | 0.0624 | - | - | 353.6 | 1.00 | 11.00 | 0.0311 | 0.0020 | 9.67 | 0.0319 | 0.0638 | 0.0949 | 8
| 14 | Horizontal | 9.9 | 0.0624 | - | - | 353.6 | 0.83 | 12.00 | 0.0339 | 0.0023 | 9.71 | 0.0362 | 0.0636 | 0.0975 | 9
| 15 | Horizontal | 9.7 | 0.0628 | - | - | 353.6 | 1.67 | 12.83 | 0.0363 | 0.0047 | 9.34 | 0.0410 | 0.0652 | 0.1015 | 10
| 17 | Horizontal | 9.5 | 0.0632 | - | - | 353.6 | 1.67 | 14.50 | 0.0410 | 0.0047 | 9.15 | 0.0457 | 0.0656 | 0.1066 | 11

aParameters used to generate pressure-time input for horizontal loading applied to mass points on blastward wall (nodes 2, 4 and 5).

bParameters used to generate pressure-time input for loading applied to mass points on roof and leeward walls.
Table 12
Dead loads applied to elements of model
of frame on column line 2 Example A.3

<table>
<thead>
<tr>
<th>Element number</th>
<th>Uniform load (kg/m)</th>
<th>Element number</th>
<th>Uniform load (kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78.9</td>
<td>10</td>
<td>59.4</td>
</tr>
<tr>
<td>2</td>
<td>78.9</td>
<td>11</td>
<td>59.4</td>
</tr>
<tr>
<td>3</td>
<td>78.9</td>
<td>12</td>
<td>59.4</td>
</tr>
<tr>
<td>4</td>
<td>78.9</td>
<td>13</td>
<td>59.4</td>
</tr>
<tr>
<td>5</td>
<td>59.4</td>
<td>14</td>
<td>78.9</td>
</tr>
<tr>
<td>6</td>
<td>59.4</td>
<td>15</td>
<td>78.9</td>
</tr>
<tr>
<td>7</td>
<td>59.4</td>
<td>16</td>
<td>78.9</td>
</tr>
<tr>
<td>8</td>
<td>59.4</td>
<td>17</td>
<td>78.9</td>
</tr>
<tr>
<td>9</td>
<td>90.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13

Dead loads applied at nodal points of model
of frame on column line 2, Example A.3

<table>
<thead>
<tr>
<th>Nodal point</th>
<th>Item</th>
<th>Load (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 14</td>
<td>Roof decking</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>Wall panel</td>
<td>539.7</td>
</tr>
<tr>
<td></td>
<td>Transverse girder</td>
<td>321.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>984.3</td>
</tr>
<tr>
<td>6, 8, 11, 12</td>
<td>Roof panel - purlin load</td>
<td>415.2</td>
</tr>
<tr>
<td>9</td>
<td>Roof decking:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>blastward</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>leeward</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>Transverse girder</td>
<td>321.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>567.6</td>
</tr>
</tbody>
</table>
Table 14
Tabulation of concentrated masses at mass points of model of frame on column line B, Example A.4

<table>
<thead>
<tr>
<th>Node number of mass point</th>
<th>Horizontal dynamic degrees of freedom</th>
<th>Vertical dynamic degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Item</td>
<td>Mass (kg)</td>
</tr>
<tr>
<td>2, 4, 20, 22</td>
<td>Exterior wall panel ((M_{EH})_W)</td>
<td>630.7</td>
</tr>
<tr>
<td>5, 19</td>
<td>Exterior wall panel ((M_{EH})_W)</td>
<td>199.3</td>
</tr>
<tr>
<td></td>
<td>Roof panel ((M_{EH})_R)</td>
<td>659.3</td>
</tr>
<tr>
<td></td>
<td>Transverse girder</td>
<td>285.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,144.2</td>
</tr>
<tr>
<td>6, 7, 8, 11, 12, 13, 16, 17, 18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9, 14</td>
<td>Roof panel ((M_{EH})_R)</td>
<td>659.3</td>
</tr>
<tr>
<td></td>
<td>Roof panel ((M_{EH})_R)</td>
<td>650.3</td>
</tr>
<tr>
<td></td>
<td>1/2 interior column</td>
<td>413.0</td>
</tr>
<tr>
<td></td>
<td>Transverse girder</td>
<td>321.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2,053.2</td>
</tr>
</tbody>
</table>
Table 15
Input data for elements of model of frame on column line B, Example A.4

<table>
<thead>
<tr>
<th>Member</th>
<th>Size</th>
<th>I.D. No.</th>
<th>End A</th>
<th>End B</th>
<th>PA</th>
<th>PB</th>
<th>A (cm²)</th>
<th>I (cm⁴)</th>
<th>Mₘ (kN-m)</th>
<th>Pₚ (kN)</th>
<th>Pᵤ (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior column - blastward</td>
<td>W14x78</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>147.7</td>
<td>35,421</td>
<td>1.0x10⁶</td>
<td>4,033</td>
<td>3,654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>147.7</td>
<td>35,421</td>
<td>1.0x10⁶</td>
<td>4,033</td>
<td>3,654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147.7</td>
<td>35,421</td>
<td>1.0x10⁶</td>
<td>4,033</td>
<td>3,654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>147.7</td>
<td>35,421</td>
<td>1.0x10⁶</td>
<td>4,033</td>
<td>3,654</td>
</tr>
<tr>
<td>Roof girder - blastward end of frame</td>
<td>W12x27</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td>Interior column</td>
<td>W14x111</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>211.0</td>
<td>18,938</td>
<td>1.0x10⁶</td>
<td>5,760</td>
<td>4,123</td>
</tr>
<tr>
<td>Roof girder - center span</td>
<td>W12x27</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td>Roof girder - leeward end of frame</td>
<td>W12x27</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>51.2</td>
<td>8,491</td>
<td>170.0</td>
<td>1,398</td>
<td>1,287</td>
</tr>
<tr>
<td>Exterior column - leeward</td>
<td>W14x78</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>147.7</td>
<td>35,421</td>
<td>1.0x10⁶</td>
<td>4,033</td>
<td>3,654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>21</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>147.7</td>
<td>35,421</td>
<td>1.0x10⁶</td>
<td>4,033</td>
<td>3,654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>147.7</td>
<td>35,421</td>
<td>1.0x10⁶</td>
<td>4,033</td>
<td>3,654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>147.7</td>
<td>35,421</td>
<td>1.0x10⁶</td>
<td>4,033</td>
<td>3,654</td>
</tr>
</tbody>
</table>
Table 16

Tributary areas for mass points of model of frame on column line B, Example A.4

<table>
<thead>
<tr>
<th>Node no. of mass point</th>
<th>Tributary areas<sup>a</sup></th>
<th>For horizontal loads</th>
<th>For vertical loads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loaded surface</td>
<td>Dimensions of area (m)</td>
<td>Area (m<sup>2</sup>)</td>
</tr>
<tr>
<td>2, 4</td>
<td>Blastward wall</td>
<td>6.0 x 1.670</td>
<td>10.0</td>
</tr>
<tr>
<td>5</td>
<td>Blastward wall</td>
<td>6.0 x 0.835</td>
<td>5.0</td>
</tr>
<tr>
<td>6, 7, 8, 11, 12, 13, 16, 17, 18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9, 14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Leeward wall</td>
<td>6.0 x 0.835</td>
<td>5.0</td>
</tr>
<tr>
<td>20, 23</td>
<td>Leeward wall</td>
<td>6.0 x 1.670</td>
<td>10.0</td>
</tr>
</tbody>
</table>

^aReference Figure 9
^bReference Figure 8
Table 17

Blast loading parameters for Example A.4

<table>
<thead>
<tr>
<th>Column line</th>
<th>Location</th>
<th>R (ft)</th>
<th>Z (ft/lb$^{1/3}$)</th>
<th>P_{so} (psi)</th>
<th>$I_{s}/W^{1/3}$ (psi-ms/lb$^{1/3}$)</th>
<th>I_{s} (ft/ms)</th>
<th>U (ft/ms)</th>
<th>α (deg)</th>
<th>C_{pa}</th>
<th>P_{pa} (psi)</th>
<th>P_{pa} (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Blastward wall</td>
<td>430.1</td>
<td>31.2</td>
<td>1.56</td>
<td>3.25</td>
<td>46.9</td>
<td>1.16</td>
<td>61.2</td>
<td>2.40</td>
<td>3.74</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>Roof:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blastward end</td>
<td>450.1</td>
<td>31.2</td>
<td>1.56</td>
<td>3.25</td>
<td>46.9</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leeward end</td>
<td>481.4</td>
<td>33.4</td>
<td>1.42</td>
<td>3.10</td>
<td>44.7</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Blastward wall</td>
<td>443.2</td>
<td>30.7</td>
<td>1.60</td>
<td>3.30</td>
<td>47.6</td>
<td>1.16</td>
<td>32.2</td>
<td>2.11</td>
<td>3.38</td>
<td>28.3</td>
</tr>
<tr>
<td></td>
<td>Roof:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blastward end</td>
<td>443.2</td>
<td>30.7</td>
<td>1.60</td>
<td>3.30</td>
<td>47.6</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leeward end</td>
<td>477.0</td>
<td>33.1</td>
<td>1.44</td>
<td>3.10</td>
<td>44.7</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$I_{r}/W^{1/3}$ (psi-ms/lb$^{1/3}$)</th>
<th>I_{r} (psi-ms)</th>
<th>t_{c} (sec)</th>
<th>t_{off} (sec)</th>
<th>t_{r} (sec)</th>
<th>q_{0} (psi)</th>
<th>C_{p}</th>
<th>$P_{so} + C_{p}q_{0}$ (psi)</th>
<th>$P_{so} + C_{p}q_{0}$ (kPa)</th>
<th>Location</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>103.8</td>
<td>0.0424</td>
<td>0.0601</td>
<td>0.0555</td>
<td>0.056</td>
<td>1.0</td>
<td>1.62</td>
<td>11.14</td>
<td>Blastward wall</td>
<td>B</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0601</td>
<td>-</td>
<td>0.056</td>
<td>-0.4</td>
<td>1.54</td>
<td>10.60</td>
<td>Roof:</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0629</td>
<td>-</td>
<td>0.046</td>
<td>-0.4</td>
<td>1.40</td>
<td>9.86</td>
<td>Blastward end</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>95.2</td>
<td>0.0424</td>
<td>0.0595</td>
<td>0.0560</td>
<td>0.060</td>
<td>1.0</td>
<td>1.65</td>
<td>11.44</td>
<td>Blastward wall</td>
<td>2</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0595</td>
<td>-</td>
<td>0.060</td>
<td>-0.4</td>
<td>1.58</td>
<td>10.86</td>
<td>Roof:</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0621</td>
<td>-</td>
<td>0.046</td>
<td>-0.4</td>
<td>1.42</td>
<td>9.82</td>
<td>Blastward end</td>
<td></td>
</tr>
</tbody>
</table>
Table 18

Blast loading data for DYNFA analysis of frame on column line B, Example A.4

<table>
<thead>
<tr>
<th>Node no. of mass point</th>
<th>Direction of Load</th>
<th>Blast loading parameters at mass points</th>
<th>Parameters a and D for tributary areas</th>
<th>Parameters used for modifying pressure waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P<sub>pk</sub> (kPa)</td>
<td>t<sub>dr</sub> (sec)</td>
<td>P<sub>s</sub> (kPa)</td>
</tr>
<tr>
<td>2</td>
<td>Horizontal</td>
<td>25.8</td>
<td>0.0601</td>
<td>3.28</td>
</tr>
<tr>
<td>4</td>
<td>Horizontal</td>
<td>25.8</td>
<td>0.0601</td>
<td>3.28</td>
</tr>
<tr>
<td>5</td>
<td>Horizontal</td>
<td>25.8</td>
<td>0.0601</td>
<td>3.28</td>
</tr>
<tr>
<td>5</td>
<td>Vertical</td>
<td>10.6</td>
<td>0.0601</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Vertical</td>
<td>10.5</td>
<td>0.0603</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Vertical</td>
<td>10.4</td>
<td>0.0606</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Vertical</td>
<td>10.4</td>
<td>0.0608</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Vertical</td>
<td>10.3</td>
<td>0.0610</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Vertical</td>
<td>10.2</td>
<td>0.0613</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Vertical</td>
<td>10.1</td>
<td>0.0615</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Vertical</td>
<td>10.1</td>
<td>0.0617</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Vertical</td>
<td>10.0</td>
<td>0.0620</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Vertical</td>
<td>9.9</td>
<td>0.0622</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>Vertical</td>
<td>9.8</td>
<td>0.0624</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Vertical</td>
<td>9.7</td>
<td>0.0627</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Vertical</td>
<td>9.7</td>
<td>0.0629</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Horizontal</td>
<td>9.7</td>
<td>0.0629</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>Horizontal</td>
<td>9.6</td>
<td>0.0631</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>Horizontal</td>
<td>9.5</td>
<td>0.0635</td>
<td>-</td>
</tr>
</tbody>
</table>

*Parameters used to generate pressure-time input for loading mass points.
Table 19
Blast loading data for DYNFA analysis of frame on column line 2, Example A.4

<table>
<thead>
<tr>
<th>Node no. of mass point</th>
<th>Direction of load</th>
<th>P_{pk} (kPa)</th>
<th>t_{dr} (sec)</th>
<th>P_s (kPa)</th>
<th>t_c (sec)</th>
<th>U (m/sec)</th>
<th>a (m)</th>
<th>D (m)</th>
<th>t^*_{rt} (sec)</th>
<th>$(P_{pk})^{*}$ AVG (kPa)</th>
<th>t^*_{pk} (sec)</th>
<th>P^*_S (kPa)</th>
<th>t^*_C (sec)</th>
<th>t^*_D (sec)</th>
<th>t^*_T (sec)</th>
<th>Waveform</th>
<th>I.D. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Horizontal</td>
<td>23.3</td>
<td>0.0595</td>
<td>3.29</td>
<td>0.0424</td>
<td>353.6</td>
<td>3.00</td>
<td>0.00</td>
<td>0.0000</td>
<td>0.0085</td>
<td>21.30</td>
<td>0.0085</td>
<td>3.29</td>
<td>0.0467</td>
<td>0.0638</td>
<td>0.0680</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Horizontal</td>
<td>23.3</td>
<td>0.0595</td>
<td>3.29</td>
<td>0.0424</td>
<td>353.6</td>
<td>3.00</td>
<td>0.00</td>
<td>0.0000</td>
<td>0.0085</td>
<td>21.30</td>
<td>0.0085</td>
<td>3.29</td>
<td>0.0467</td>
<td>0.0638</td>
<td>0.0680</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Horizontal</td>
<td>23.3</td>
<td>0.0595</td>
<td>3.29</td>
<td>0.0424</td>
<td>353.6</td>
<td>3.00</td>
<td>0.00</td>
<td>0.0000</td>
<td>0.0085</td>
<td>21.30</td>
<td>0.0085</td>
<td>3.29</td>
<td>0.0467</td>
<td>0.0638</td>
<td>0.0680</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Vertical</td>
<td>10.9</td>
<td>0.0595</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>3.87</td>
<td>0.00</td>
<td>0.0000</td>
<td>0.0109</td>
<td>9.87</td>
<td>0.0109</td>
<td>-</td>
<td>0.0650</td>
<td>0.0650</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Vertical</td>
<td>10.7</td>
<td>0.0599</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>4.73</td>
<td>0.87</td>
<td>0.0025</td>
<td>0.0134</td>
<td>9.49</td>
<td>0.0159</td>
<td>-</td>
<td>0.0666</td>
<td>0.0691</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Vertical</td>
<td>10.5</td>
<td>0.0604</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>4.73</td>
<td>2.60</td>
<td>0.0074</td>
<td>0.0134</td>
<td>9.34</td>
<td>0.0208</td>
<td>-</td>
<td>0.0671</td>
<td>0.0745</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vertical</td>
<td>10.3</td>
<td>0.0608</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>4.73</td>
<td>4.33</td>
<td>0.0122</td>
<td>0.0134</td>
<td>9.19</td>
<td>0.0256</td>
<td>-</td>
<td>0.0675</td>
<td>0.0797</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Vertical</td>
<td>10.2</td>
<td>0.0612</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>4.73</td>
<td>6.06</td>
<td>0.0171</td>
<td>0.0134</td>
<td>9.04</td>
<td>0.0305</td>
<td>-</td>
<td>0.0679</td>
<td>0.0850</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Vertical</td>
<td>10.0</td>
<td>0.0617</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>4.73</td>
<td>7.79</td>
<td>0.0220</td>
<td>0.0134</td>
<td>8.90</td>
<td>0.0354</td>
<td>-</td>
<td>0.0684</td>
<td>0.0904</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Vertical</td>
<td>9.8</td>
<td>0.0621</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>4.73</td>
<td>9.53</td>
<td>0.0270</td>
<td>0.0134</td>
<td>8.74</td>
<td>0.0404</td>
<td>-</td>
<td>0.0688</td>
<td>0.0958</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Horizontal</td>
<td>9.8</td>
<td>0.0621</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>3.72</td>
<td>10.36</td>
<td>0.0292</td>
<td>0.0105</td>
<td>8.97</td>
<td>0.0397</td>
<td>-</td>
<td>0.0674</td>
<td>0.0966</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Horizontal</td>
<td>9.7</td>
<td>0.0625</td>
<td>-</td>
<td>-</td>
<td>352.6</td>
<td>4.45</td>
<td>11.11</td>
<td>0.0314</td>
<td>0.0126</td>
<td>8.68</td>
<td>0.0440</td>
<td>-</td>
<td>0.0688</td>
<td>0.1002</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Horizontal</td>
<td>9.5</td>
<td>0.0628</td>
<td>-</td>
<td>-</td>
<td>353.6</td>
<td>4.45</td>
<td>12.56</td>
<td>0.0355</td>
<td>0.0126</td>
<td>8.56</td>
<td>0.0481</td>
<td>-</td>
<td>0.0691</td>
<td>0.1046</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

*Parameters used to generate pressure-time input for loading mass points.
Table 20

Dead loads applied to elements of model of frame on column line B, Example A.4

<table>
<thead>
<tr>
<th>Element number</th>
<th>Uniform load (kg/m)</th>
<th>Element number</th>
<th>Uniform load (kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.1</td>
<td>12</td>
<td>81.2</td>
</tr>
<tr>
<td>2</td>
<td>116.1</td>
<td>13</td>
<td>81.2</td>
</tr>
<tr>
<td>3</td>
<td>116.1</td>
<td>14</td>
<td>165.2</td>
</tr>
<tr>
<td>4</td>
<td>116.1</td>
<td>15</td>
<td>81.2</td>
</tr>
<tr>
<td>5</td>
<td>81.2</td>
<td>16</td>
<td>81.2</td>
</tr>
<tr>
<td>6</td>
<td>81.2</td>
<td>17</td>
<td>81.2</td>
</tr>
<tr>
<td>7</td>
<td>81.2</td>
<td>18</td>
<td>81.2</td>
</tr>
<tr>
<td>8</td>
<td>81.2</td>
<td>19</td>
<td>116.1</td>
</tr>
<tr>
<td>9</td>
<td>165.2</td>
<td>20</td>
<td>116.1</td>
</tr>
<tr>
<td>10</td>
<td>81.2</td>
<td>21</td>
<td>116.1</td>
</tr>
<tr>
<td>11</td>
<td>81.2</td>
<td>22</td>
<td>116.1</td>
</tr>
</tbody>
</table>
Table 21
Dead loads applied at nodal points of model of frame on column line B, Example A.4

<table>
<thead>
<tr>
<th>Modal point</th>
<th>Item</th>
<th>Load (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 19</td>
<td>Roof decking</td>
<td>415.8</td>
</tr>
<tr>
<td></td>
<td>Wall panel</td>
<td>539.7</td>
</tr>
<tr>
<td></td>
<td>Transverse girder</td>
<td>285.9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,241.4</td>
</tr>
<tr>
<td>9, 14</td>
<td>Roof decking:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 panels</td>
<td>831.6</td>
</tr>
<tr>
<td></td>
<td>Transfer girder</td>
<td>321.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,153.2</td>
</tr>
</tbody>
</table>
Table 22

Tabulation of maximum chordal angles for exterior members, Example A.5

<table>
<thead>
<tr>
<th>Member</th>
<th>Maximum differential displacement at midspan (mm)</th>
<th>Length of member (m)</th>
<th>Maximum chordal angle (deg)</th>
<th>Chordal angle criteria θ_{max} (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blastward column</td>
<td>24.37</td>
<td>5.0</td>
<td>0.560</td>
<td>1.0</td>
</tr>
<tr>
<td>Blastward end roof girder</td>
<td>12.70</td>
<td>6.0</td>
<td>0.243</td>
<td>1.0</td>
</tr>
<tr>
<td>Leeward end roof girder</td>
<td>18.50</td>
<td>6.0</td>
<td>0.359</td>
<td>1.0</td>
</tr>
<tr>
<td>Leeward column</td>
<td>11.70</td>
<td>5.0</td>
<td>0.268</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 23

Tabulation of maximum ductility ratios for members of frame on column line 2, Example A.5

<table>
<thead>
<tr>
<th>Member</th>
<th>Node</th>
<th>Element</th>
<th>(\mu_{\text{max}})</th>
<th>(\frac{P}{P_t})</th>
<th>Nature of applied axial load</th>
<th>Response time (sec)</th>
<th>Ductility criteria ((\mu_{\text{max}}))</th>
<th>Applicable figure of text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blastward column</td>
<td>1</td>
<td>1</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2.567</td>
<td>0.064</td>
<td>compression</td>
<td>0.020</td>
<td>1.65</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>2.080</td>
<td>0.064</td>
<td>compression</td>
<td>0.020</td>
<td>1.65</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3 or 4</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Girder at blastward and of frame</td>
<td>5</td>
<td>5</td>
<td>1.559</td>
<td>0.143</td>
<td>compression</td>
<td>0.014</td>
<td>2.70</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5 or 6</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6 or 7</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7 or 8</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8</td>
<td>1.558</td>
<td>0.011</td>
<td>tension</td>
<td>0.046</td>
<td>3.00</td>
<td>-</td>
</tr>
<tr>
<td>Interior column</td>
<td>9</td>
<td>9</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Girder at leeward and of frame</td>
<td>11</td>
<td>10 or 11</td>
<td>1.493</td>
<td>0.114</td>
<td>compression</td>
<td>0.070</td>
<td>3.00</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11 or 12</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>12 or 13</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>13</td>
<td>2.212</td>
<td>0.022</td>
<td>compression</td>
<td>0.055</td>
<td>2.00</td>
<td>43</td>
</tr>
<tr>
<td>Leeward column</td>
<td>14</td>
<td>14</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14 or 15</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>15 or 16</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>16 or 17</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>17</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* \(\mu_{\text{max}}\) for this case given in Section 6.3.
Table 24

Tabulation of R_c for $\frac{P}{P_d} = 0.064$ and several values of DF_{AB} and z/r_x for blastward column, Example A.5

<table>
<thead>
<tr>
<th>Figure</th>
<th>Distribution factor, DF_{AB}</th>
<th>Rotation capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$z/r_x = 20$</td>
</tr>
<tr>
<td>51</td>
<td>0.25</td>
<td>15.0</td>
</tr>
<tr>
<td>52</td>
<td>0.50</td>
<td>6.7</td>
</tr>
<tr>
<td>53</td>
<td>0.75</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Table 25

Tabulation of maximum applied shears and shear yield capacities for frame members, Example A.5

<table>
<thead>
<tr>
<th>Member</th>
<th>Section dimensions*</th>
<th>d (mm)</th>
<th>t_p (mm)</th>
<th>t_w (mm)</th>
<th>Web area, A_p (mm²)</th>
<th>V_p (kN)</th>
<th>V_w (kN)</th>
<th>Element Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blastward column</td>
<td>M14 x 53</td>
<td>354.1</td>
<td>9.4</td>
<td>7.5</td>
<td>2,067</td>
<td>310.1</td>
<td>310.1</td>
<td>4</td>
</tr>
<tr>
<td>Blastward end girder</td>
<td>M12 x 40</td>
<td>303.3</td>
<td>13.1</td>
<td>7.5</td>
<td>2,067</td>
<td>310.1</td>
<td>310.1</td>
<td>8</td>
</tr>
<tr>
<td>Leeward end girder</td>
<td>M12 x 40</td>
<td>303.3</td>
<td>13.1</td>
<td>7.5</td>
<td>2,067</td>
<td>310.1</td>
<td>310.1</td>
<td>9</td>
</tr>
<tr>
<td>Interior column</td>
<td>M14 x 61</td>
<td>353.3</td>
<td>9.6</td>
<td>9.6</td>
<td>3,079</td>
<td>461.9</td>
<td>461.9</td>
<td>10</td>
</tr>
</tbody>
</table>

* d, t_p and t_w for frame members given in "Properties for designing" tables of Reference 14.
Table 26
Tabulation of bi-axial bending moments and calculation of nodal reduction factors for column B-1, Example A.6

| Frame | Element | Node | $|M_x|_r$ | M_{mx} | $|M_x|/M_{mx}$ |
|---------|---------|------|---------|----------|---------------|
| Column line B | 1 | 2 | 351.8 | 599.5 | 0.59 |
| | 2 | 3 | 319.9 | 599.5 | 0.53 |
| | 3 | 4 | 288.1 | 599.5 | 0.48 |
| | 4 | 5 | 159.4 | 599.5 | 0.27 |

| Frame | Element | Node | $|M_y|_g$ | M_{my} | $|M_y|/M_{my}$ | R_{f} |
|---------|---------|------|---------|----------|---------------|---------|
| Column line 1 | 9 | - | 1/3$|M_y|_g$ | 234.4 | 0.17 | 0.76 |
| | - | 1/2$|M_y|_g$ | 234.4 | 0.26 | 0.79 |
| | - | 2/3$|M_y|_g$ | 234.4 | 0.34 | 0.82 |
| | 9 | 120.3 | 234.4 | 0.51 | 0.78 |
Table 27
Calculation of nodal reduction factors and reduced bi-axial bending capacities for column B-1: W14x61

| Frame | Element | Node | $|M_x|$ | M_{mx} | $|M_x|/M_{mx}$ |
|--------|---------|------|--------|--------|--------------|
| Column | 1 | 2 | 351.8 | 456.3 | 0.77 |
| line B | 2 | 3 | 319.9 | 456.3 | 0.70 |
| | 3 | 4 | 288.1 | 456.3 | 0.63 |
| | 4 | 5 | 159.4 | 456.3 | 0.35 |

| Frame | Element | Node | $|M_y|$ | M_{my} | $|M_y|/M_{my}$ |
|--------|---------|------|--------|--------|--------------|
| Column | 9 | - | $1/3|M_y|$ | 146.3 | 0.27 |
| line 1 | - | - | $1/2|M_y|$ | 146.3 | 0.41 |
| | - | - | $2/3|M_y|$ | 146.3 | 0.55 |
| | 9 | 120.3| 146.3 | | 1.04 |

<table>
<thead>
<tr>
<th>Frame</th>
<th>Element</th>
<th>Node</th>
<th>R_n</th>
<th>K_{mx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>1</td>
<td>1</td>
<td>1.04</td>
<td>338.3</td>
</tr>
<tr>
<td>line B</td>
<td>2</td>
<td>2</td>
<td>1.04</td>
<td>338.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>1.11</td>
<td>288.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>1.18</td>
<td>244.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>1.17</td>
<td>136.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame</th>
<th>Element</th>
<th>Node</th>
<th>R_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>9</td>
<td>10</td>
<td>1.17</td>
</tr>
<tr>
<td>line 1</td>
<td>9</td>
<td>9</td>
<td>1.17</td>
</tr>
</tbody>
</table>
Fig 1 Building designed in Examples A.1 through A.6
Fig 2 Location of charge: quartering load, Example A.2
Fig 3 Primary framing plan of building
Fig 4 Analytical model of frame on column line 2
Fig 5 Tributary areas for model of frame on column line 2
a) **BLASTWARD WALL**

\[P_0 + C_D q_0 = 11.1 \]
\[t_f = 0.042 \]
\[t_o = 0.0569 \]
\[t_f = 0.0594 \]

\[P_0 = 3.5 \]

![Graph showing pressure-time history with curves labeled as 'U: L - ANALYSIS' and 'END OF ROOF'].

b) **BLASTWARD END OF ROOF**

given pressure and time values for same.

c) **LEEWARD END OF ROOF**

given pressure and time values for same.

Fig 6 Blastward wall and roof pressure-time histories, Examples A.3
Fig 7 Analytical model of frame on column line B
Fig B Subdivision of area of roof panel for model of frame on column line B
Fig 9 Tributary areas for model of frame on column line B
Fig 10 Blastward wall and roof pressure-time histories for model of frame on column line B. Example A.4.
Fig 11 Blastward wall and roof pressure-time histories for model of frame on column line 2, Example A.4
Fig 12 Measurement of distances to leeward walls traveled by quartering blast wave, Example A.4
Fig 13 Measurement of parameters a and D for selected mass points on model of frame on column line B, Example A.4
Fig 14 Bending moment diagram for exterior blastward column at $t = 0.0175$ second, Example A.5
Fig 15 Bending moment diagram for blastward girder at $t = 0.0140$ second, Example A.5
Fig 16 Bending moment diagrams for leeward girder, Example A.5

322
Fig 17 Interpolation for R_c for exterior blastward column,
Example A.5
APPENDIX B

SAMPLES OF INPUT AND OUTPUT OF DYNFA
APPENDIX B
SAMPLES OF INPUT AND OUTPUT OF DYNFA

8.1 Introduction

This appendix contains samples of the input and output of DYNFA. The input is presented in terms of a listing of the input data deck for Example A.5 of Appendix A. The listing includes subtitles designating the various input cards as well as the various input parameters. Following this are extracts from the printed output of DYNFA for the same problem.
B.2 Listing of Input Data Deck for Example A.5

Card Type 1: Structure Description Card (One Card Required)

```
COLUMN 1 10 20 30 40 50 60 70 80
```

Example A.5: Two-Story Rigid Frame Subject to Blast Load

Card Type 2: Problem Specification Card (One Card Required)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>ID</th>
<th>NODE M.</th>
<th>NODE N.</th>
<th>NODE P.</th>
<th>NODE Q.</th>
<th>NODE R.</th>
<th>CARD TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Card Type 3: Nodal Coordinates Card (One Card Required For Each Node)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>X COORD</th>
<th>Y COORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>1.667</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>4.5</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>5.5</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>6.0</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>6.5</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>7.0</td>
</tr>
<tr>
<td>14</td>
<td>0.0</td>
<td>7.5</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>8.0</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>8.5</td>
</tr>
<tr>
<td>17</td>
<td>0.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Card Type 4: Nodal Restraint Card (Enter Restraint Cards Only For Support Nodes)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>RX</th>
<th>RY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Card Type 5: Nodal Mass Card (Enter Cards For Mass Points Only)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>ME</th>
<th>MY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>586.7</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>584.7</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>1206.3</td>
<td>1/4</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>1/4</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>1/4</td>
</tr>
<tr>
<td>9</td>
<td>1907.3</td>
<td>1/4</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>1/4</td>
</tr>
<tr>
<td>13</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>14</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>15</td>
<td>586.7</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>588.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

328
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
</table>
| CARD TYPE 4 ELEMENT CARD (CONF CARD REQUIRED FOR EACH TMA)
| ELL | JA | JP | PIN | I | TMA | TMA | | | |
| 11 | 1 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 22 | 2 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 33 | 3 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 44 | 4 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 55 | 5 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 66 | 6 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 77 | 7 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 88 | 8 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 99 | 9 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 110 | 110 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 1212 | 1212 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 1313 | 1313 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 1414 | 1414 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 1515 | 1515 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 1616 | 1616 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |
| 1717 | 1717 | 1 | 4 | UO | 311.0 | 2255.0 | 390.0 | 2750.0 | 2370.0 |

CARD TYPE 7 DAMPING (REQUIRED)

CARD TYPE 9 INTEGRATION TIME CARD (REQUIRED)

CARD TYPE 9 LOADING SPECIFICATION CARD

CARD TYPE 10 WAVEFORM SPECIFICATION CARD AND

CARD TYPE 11 P-T CARD

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
</table>

329
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.4</td>
<td>0.0084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>0.0141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>0.0167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0776</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.83</td>
<td>0.0253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0859</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.64</td>
<td>0.0310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0901</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.87</td>
<td>0.0339</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0339</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.71</td>
<td>0.0362</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.0410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.1013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

330
COLUM 1 10 20 30 40 50 60 70 80

<table>
<thead>
<tr>
<th>Card Type 12</th>
<th>Triangulate Area Card (Element Cards Only for Mass Points Subjected to Blast Loads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node No</td>
<td>AFX</td>
</tr>
<tr>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>4</td>
<td>10.0</td>
</tr>
<tr>
<td>5</td>
<td>10.0</td>
</tr>
<tr>
<td>6</td>
<td>10.0</td>
</tr>
<tr>
<td>8</td>
<td>10.0</td>
</tr>
<tr>
<td>9</td>
<td>10.0</td>
</tr>
<tr>
<td>11</td>
<td>10.0</td>
</tr>
<tr>
<td>13</td>
<td>10.0</td>
</tr>
<tr>
<td>14</td>
<td>10.0</td>
</tr>
<tr>
<td>15</td>
<td>10.0</td>
</tr>
<tr>
<td>17</td>
<td>10.0</td>
</tr>
</tbody>
</table>

COLUM 1 10 20 30 40 50 60 70 80

CARD TYPE 14 | ELEMENT UNIFORM STATIC LOAD CARD (ONE CARD REQUIRED FOR EACH ELEMENT) |

<table>
<thead>
<tr>
<th>ELEM No</th>
<th>WUNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.9</td>
</tr>
<tr>
<td>2</td>
<td>76.9</td>
</tr>
<tr>
<td>3</td>
<td>76.9</td>
</tr>
<tr>
<td>4</td>
<td>76.9</td>
</tr>
<tr>
<td>5</td>
<td>76.9</td>
</tr>
<tr>
<td>6</td>
<td>76.9</td>
</tr>
<tr>
<td>7</td>
<td>76.9</td>
</tr>
<tr>
<td>8</td>
<td>76.9</td>
</tr>
<tr>
<td>9</td>
<td>76.9</td>
</tr>
<tr>
<td>10</td>
<td>76.9</td>
</tr>
<tr>
<td>11</td>
<td>76.9</td>
</tr>
<tr>
<td>12</td>
<td>76.9</td>
</tr>
<tr>
<td>13</td>
<td>76.9</td>
</tr>
<tr>
<td>14</td>
<td>76.9</td>
</tr>
<tr>
<td>15</td>
<td>76.9</td>
</tr>
<tr>
<td>16</td>
<td>76.9</td>
</tr>
<tr>
<td>17</td>
<td>76.9</td>
</tr>
</tbody>
</table>

331
<table>
<thead>
<tr>
<th>COLUMN 1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
</table>

CARD TYPE 15: STATIC NODAL LOADS CARD (CENTER CARDS ONLY FOR THOSE NODES AT WHICH LOADS ARE ACTING)

<table>
<thead>
<tr>
<th>NODE NO</th>
<th>FX</th>
<th>FY</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0</td>
<td>494.3</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>415.2</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>415.2</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>367.4</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>415.2</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>0.0</td>
<td>494.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

END OF DATA INDICATOR

END
B.3 Portions of Printed Output for Example A.5

EXAMPLE A.5 TWO-BAY RIGID FRAME SUBJECTED TO BLAST LOAD

UNITS-METRIC

BASIC UNITS

LENGTH - METER (m)

FORCE - KILONewton (kN)

TIME - SECOND (s)

UNITs FOR ELEMENT PROPERTIES, CAPACITIES AND LOADS

AREA - SQUARE CENTIMETERS (cm²)

MOMENT OF INERTIA - CENTIMETERS TO THE FOURTH POWER (cm⁴)

AXIAL LOADS AND SHEAR - KILOGRAMS (kg)

BENDING MOMENT - KILOGram-meter (kg-m)

APPLIED LOADS

PRESSURE - KILOPASCAL (kPa)

TENSILE STRETCH - SQUARE METERS (m²)

STATIC LOADS AT NODES - KILOGRAms (kg)

STATIC MOMENTS AT NODES - KILOGram-meter (kg-m)

CONSTANTS

ACCELERATION OF GRAVITY - 9.8 METERS PER SECOND SQUARED (m/s²)

MODULUS OF ELASTICITY - KILOPASCAL (kPa)

NOTE: ALL STATIC LOADS IN KILOGRAMS

REFLECTIONS

MODE DISPLACEMENTS - MILLIMETERS (mm)

ANGULAR AND ELEMENT END ROTATIONS - DEGREES (°)

Example 4.5: Two-Dimensional Frame Subjected to Blast Load

Number of Elements: 17
Number of Nodes: 19
Number of Modes with Restraint: 3
Number of Modes with Loads: 11
Number of Modes with Forces: 11
Deformations printing index: 1
Nonlinear SMA printing index: 1
Modulus of Elasticity: 207 GPa
Percent of elastic stiffness after yield: 1.0

Modal Coordinate Table

<table>
<thead>
<tr>
<th>Node</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>7.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>8.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>10.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>11.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>13.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>14.0</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>16.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Modal Restraint Table

<table>
<thead>
<tr>
<th>Node</th>
<th>X</th>
<th>Y</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Input Normal Mass Table

<table>
<thead>
<tr>
<th>Node</th>
<th>MX</th>
<th>MY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kg)</td>
<td>(kg)</td>
</tr>
</tbody>
</table>
Element Table

<table>
<thead>
<tr>
<th>ELEM</th>
<th>JA</th>
<th>JB</th>
<th>PIN CODE</th>
<th>AREA (cm²)</th>
<th>I (cm⁴)</th>
<th>MBD (cm⁴)</th>
<th>MP (cm⁻⁴)</th>
<th>PP (cm⁻⁴)</th>
<th>P1 (cm⁻⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>G</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>G</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>G</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>G</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>G</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>G</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>G</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>G</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>C</td>
<td>11.18</td>
<td>22975.48</td>
<td>396.04</td>
<td>396.04</td>
<td>2796.67</td>
<td>2796.67</td>
</tr>
</tbody>
</table>

Damping Factor
0.00000

Integration Time Interval
0.00250 sec

Print Time Interval
0.00000 sec

Number of Increments
900

Dynamic Load Table

<table>
<thead>
<tr>
<th>PRESSURE WAVEFORM 1</th>
<th>NO. OF POINTS</th>
<th>P</th>
<th>T</th>
<th>KPA</th>
<th>SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE WAVEFORM 2</th>
<th>NO. OF POINTS</th>
<th>P</th>
<th>T</th>
<th>KPA</th>
<th>SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE WAVEFORM 3</th>
<th>NO. OF POINTS</th>
<th>P</th>
<th>T</th>
<th>KPA</th>
<th>SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>P (kPa)</td>
<td>T (sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.62</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.64</td>
<td>.89968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.47</td>
<td>.69448</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.86</td>
<td>.29550</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.71</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.86</td>
<td>0.00000</td>
</tr>
<tr>
<td>8.46</td>
<td>.85180</td>
</tr>
<tr>
<td>10.25</td>
<td>.64378</td>
</tr>
<tr>
<td>5.46</td>
<td>.27170</td>
</tr>
<tr>
<td>2.48</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.47</td>
<td>0.00000</td>
</tr>
<tr>
<td>9.54</td>
<td>.81569</td>
</tr>
<tr>
<td>16.56</td>
<td>.64204</td>
</tr>
<tr>
<td>4.08</td>
<td>.28736</td>
</tr>
<tr>
<td>2.40</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.86</td>
<td>0.00000</td>
</tr>
<tr>
<td>8.46</td>
<td>.85180</td>
</tr>
<tr>
<td>10.25</td>
<td>.64378</td>
</tr>
<tr>
<td>5.46</td>
<td>.27170</td>
</tr>
<tr>
<td>2.48</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.47</td>
<td>0.00000</td>
</tr>
<tr>
<td>9.54</td>
<td>.81569</td>
</tr>
<tr>
<td>16.56</td>
<td>.64204</td>
</tr>
<tr>
<td>4.08</td>
<td>.28736</td>
</tr>
<tr>
<td>2.40</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.86</td>
<td>0.00000</td>
</tr>
<tr>
<td>8.46</td>
<td>.85180</td>
</tr>
<tr>
<td>10.25</td>
<td>.64378</td>
</tr>
<tr>
<td>5.46</td>
<td>.27170</td>
</tr>
<tr>
<td>2.48</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.47</td>
<td>0.00000</td>
</tr>
<tr>
<td>9.54</td>
<td>.81569</td>
</tr>
<tr>
<td>16.56</td>
<td>.64204</td>
</tr>
<tr>
<td>4.08</td>
<td>.28736</td>
</tr>
<tr>
<td>2.40</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>T (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.86</td>
<td>0.00000</td>
</tr>
<tr>
<td>8.46</td>
<td>.85180</td>
</tr>
<tr>
<td>10.25</td>
<td>.64378</td>
</tr>
<tr>
<td>5.46</td>
<td>.27170</td>
</tr>
<tr>
<td>2.48</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
Example A-8 Two-Bay Rigid Frame Subjected to Blast Load

Dead and Live Load Displacements and Member Loads

<table>
<thead>
<tr>
<th>VORF</th>
<th>X-Displ (in)</th>
<th>Y-Displ (in)</th>
<th>Rotation (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>P(b) (kips)</th>
<th>VA (kips)</th>
<th>MA (kips-ft)</th>
<th>P(b) (kips)</th>
<th>VA (kips)</th>
<th>MA (kips-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>2</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>3</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>4</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>5</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>6</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>7</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>8</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>9</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>10</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>11</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>12</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>13</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>14</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>15</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>16</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
<tr>
<td>17</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
<td>-0.1156e-04</td>
</tr>
</tbody>
</table>
Example 4.5 Two-Way Rigid Frame Subjected to Blast Load

<table>
<thead>
<tr>
<th>TIME (SEC)</th>
<th>X-DISPL (MM)</th>
<th>Y-DISPL (MM)</th>
<th>ROTATION (DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.33E-02</td>
<td>-1.76E-03</td>
<td>-2.97E-03</td>
</tr>
<tr>
<td>3</td>
<td>-1.13E-02</td>
<td>-6.69E-03</td>
<td>-3.15E-03</td>
</tr>
<tr>
<td>4</td>
<td>-1.64E-02</td>
<td>-1.86E-03</td>
<td>-4.29E-03</td>
</tr>
<tr>
<td>5</td>
<td>-2.39E-02</td>
<td>-3.04E-03</td>
<td>-2.95E-03</td>
</tr>
<tr>
<td>6</td>
<td>5.08E-03</td>
<td>0.95E-02</td>
<td>-1.29E-03</td>
</tr>
<tr>
<td>7</td>
<td>-1.33E-02</td>
<td>-1.33E-03</td>
<td>-9.73E-03</td>
</tr>
<tr>
<td>8</td>
<td>-1.94E-02</td>
<td>-2.87E-03</td>
<td>-1.14E-03</td>
</tr>
<tr>
<td>9</td>
<td>-1.94E-02</td>
<td>-3.56E-03</td>
<td>-1.87E-03</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>-3.34E-01</td>
<td>-3.34E-01</td>
<td>-5.16E-02</td>
</tr>
<tr>
<td>12</td>
<td>-9.46E-01</td>
<td>-1.97E-01</td>
<td>-2.71E-01</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>-3.26E-01</td>
<td>-2.12E-01</td>
<td>-1.82E-01</td>
</tr>
<tr>
<td>15</td>
<td>-3.34E-01</td>
<td>-3.34E-01</td>
<td>-5.16E-02</td>
</tr>
<tr>
<td>16</td>
<td>-4.87E-01</td>
<td>-3.54E-01</td>
<td>-1.97E-01</td>
</tr>
<tr>
<td>17</td>
<td>-1.29E-01</td>
<td>-1.29E-01</td>
<td>-1.14E-01</td>
</tr>
<tr>
<td>18</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Elements End Rotations in Degrees

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ELASTIC</th>
<th>PLASTIC</th>
<th>ELASTIC</th>
<th>PLASTIC</th>
<th>P/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.22E-00</td>
<td>0.0</td>
<td>-1.44E-00</td>
<td>0.0</td>
<td>0.76E-00</td>
</tr>
<tr>
<td>2</td>
<td>-7.48E-02</td>
<td>0.0</td>
<td>-1.69E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>3</td>
<td>-1.77E-01</td>
<td>0.0</td>
<td>-1.70E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>4</td>
<td>-2.02E-01</td>
<td>0.0</td>
<td>-1.59E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>5</td>
<td>-1.08E-01</td>
<td>0.0</td>
<td>-1.34E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>6</td>
<td>-1.56E-01</td>
<td>0.0</td>
<td>-1.15E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>7</td>
<td>5.22E-01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>8</td>
<td>-3.09E-01</td>
<td>0.0</td>
<td>-1.34E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>9</td>
<td>-2.13E-01</td>
<td>0.0</td>
<td>-1.65E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>10</td>
<td>-3.34E-01</td>
<td>0.0</td>
<td>-2.17E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>11</td>
<td>-3.90E-01</td>
<td>0.0</td>
<td>-2.34E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>12</td>
<td>4.32E-01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>13</td>
<td>-1.65E-01</td>
<td>0.0</td>
<td>-2.17E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>14</td>
<td>-6.74E-01</td>
<td>0.0</td>
<td>-2.34E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>15</td>
<td>-8.06E-01</td>
<td>0.0</td>
<td>-2.34E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>16</td>
<td>-1.29E-01</td>
<td>0.0</td>
<td>-1.29E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
<tr>
<td>17</td>
<td>-1.29E-01</td>
<td>0.0</td>
<td>-1.29E-00</td>
<td>0.0</td>
<td>0.03E-00</td>
</tr>
</tbody>
</table>
Example 4.5 Two-Bay Rigid Frame Subjected to Blast Load

Time: 2.1802=11 sec

<table>
<thead>
<tr>
<th>TIME</th>
<th>X-DISP</th>
<th>Y-DISP</th>
<th>ROTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>7</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Element End Rotations in Degrees

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>END A</th>
<th>END B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>2</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>3</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>4</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>5</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>6</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>7</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>8</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>9</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>10</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>11</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>12</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>13</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>14</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
<tr>
<td>15</td>
<td>-2.22°</td>
<td>-1.22°</td>
</tr>
</tbody>
</table>

Note: The table provides data for the displacement (X-DISP, Y-DISP) and rotation of the two-bay rigid frame over time. The element end rotations in degrees are also listed for the ends A and B of the elements.
Example A.8 Two-Story Rigid Frame Subjected to Blast Load

Table 1

<table>
<thead>
<tr>
<th>ELEM</th>
<th>R/A</th>
<th>B/P</th>
<th>R/A</th>
<th>WA/MBS</th>
<th>WR</th>
<th>H/S/MBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56.37E-02</td>
<td>4.47E-01</td>
<td>4.35E-02</td>
<td>4.06E-01</td>
<td>1.13E-01</td>
<td>9.08E-02</td>
</tr>
<tr>
<td>2</td>
<td>6.36E-02</td>
<td>5.23E-01</td>
<td>5.14E-02</td>
<td>4.86E-01</td>
<td>1.21E-01</td>
<td>9.95E-02</td>
</tr>
<tr>
<td>3</td>
<td>8.09E-02</td>
<td>6.07E-01</td>
<td>6.02E-02</td>
<td>5.78E-01</td>
<td>1.45E-01</td>
<td>1.10E-02</td>
</tr>
<tr>
<td>4</td>
<td>1.23E-02</td>
<td>1.06E-01</td>
<td>1.05E-02</td>
<td>9.80E-01</td>
<td>1.83E-01</td>
<td>1.25E-02</td>
</tr>
<tr>
<td>5</td>
<td>1.65E-02</td>
<td>1.41E-01</td>
<td>1.42E-02</td>
<td>1.35E-01</td>
<td>2.43E-01</td>
<td>1.54E-02</td>
</tr>
<tr>
<td>6</td>
<td>2.07E-02</td>
<td>1.74E-01</td>
<td>1.75E-02</td>
<td>1.67E-01</td>
<td>3.03E-01</td>
<td>1.63E-02</td>
</tr>
<tr>
<td>7</td>
<td>2.49E-02</td>
<td>2.08E-01</td>
<td>2.09E-02</td>
<td>2.00E-01</td>
<td>3.63E-01</td>
<td>1.72E-02</td>
</tr>
<tr>
<td>8</td>
<td>2.92E-02</td>
<td>2.42E-01</td>
<td>2.43E-02</td>
<td>2.33E-01</td>
<td>4.23E-01</td>
<td>1.81E-02</td>
</tr>
<tr>
<td>9</td>
<td>3.35E-02</td>
<td>2.76E-01</td>
<td>2.77E-02</td>
<td>2.66E-01</td>
<td>4.83E-01</td>
<td>1.90E-02</td>
</tr>
<tr>
<td>10</td>
<td>3.78E-02</td>
<td>3.10E-01</td>
<td>3.12E-02</td>
<td>2.99E-01</td>
<td>5.43E-01</td>
<td>2.00E-02</td>
</tr>
<tr>
<td>11</td>
<td>4.21E-02</td>
<td>3.44E-01</td>
<td>3.46E-02</td>
<td>3.32E-01</td>
<td>6.03E-01</td>
<td>2.10E-02</td>
</tr>
<tr>
<td>12</td>
<td>4.64E-02</td>
<td>3.78E-01</td>
<td>3.81E-02</td>
<td>3.65E-01</td>
<td>6.63E-01</td>
<td>2.21E-02</td>
</tr>
<tr>
<td>13</td>
<td>5.07E-02</td>
<td>4.12E-01</td>
<td>4.18E-02</td>
<td>3.98E-01</td>
<td>7.23E-01</td>
<td>2.31E-02</td>
</tr>
<tr>
<td>14</td>
<td>5.50E-02</td>
<td>4.46E-01</td>
<td>4.54E-02</td>
<td>4.31E-01</td>
<td>7.83E-01</td>
<td>2.42E-02</td>
</tr>
<tr>
<td>15</td>
<td>5.93E-02</td>
<td>4.80E-01</td>
<td>4.91E-02</td>
<td>4.65E-01</td>
<td>8.43E-01</td>
<td>2.52E-02</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>ELEM</th>
<th>ELASTIC</th>
<th>PLASTIC</th>
<th>PLASTIC</th>
<th>P/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.4E-02</td>
<td>6.4E-02</td>
<td>6.4E-02</td>
<td>6.4E-02</td>
</tr>
<tr>
<td>2</td>
<td>9.9E-02</td>
<td>9.9E-02</td>
<td>9.9E-02</td>
<td>9.9E-02</td>
</tr>
<tr>
<td>3</td>
<td>1.3E-01</td>
<td>1.3E-01</td>
<td>1.3E-01</td>
<td>1.3E-01</td>
</tr>
<tr>
<td>4</td>
<td>1.6E-01</td>
<td>1.6E-01</td>
<td>1.6E-01</td>
<td>1.6E-01</td>
</tr>
<tr>
<td>5</td>
<td>1.9E-01</td>
<td>1.9E-01</td>
<td>1.9E-01</td>
<td>1.9E-01</td>
</tr>
<tr>
<td>6</td>
<td>2.2E-01</td>
<td>2.2E-01</td>
<td>2.2E-01</td>
<td>2.2E-01</td>
</tr>
<tr>
<td>7</td>
<td>2.5E-01</td>
<td>2.5E-01</td>
<td>2.5E-01</td>
<td>2.5E-01</td>
</tr>
<tr>
<td>8</td>
<td>2.8E-01</td>
<td>2.8E-01</td>
<td>2.8E-01</td>
<td>2.8E-01</td>
</tr>
<tr>
<td>9</td>
<td>3.1E-01</td>
<td>3.1E-01</td>
<td>3.1E-01</td>
<td>3.1E-01</td>
</tr>
<tr>
<td>10</td>
<td>3.4E-01</td>
<td>3.4E-01</td>
<td>3.4E-01</td>
<td>3.4E-01</td>
</tr>
<tr>
<td>11</td>
<td>3.7E-01</td>
<td>3.7E-01</td>
<td>3.7E-01</td>
<td>3.7E-01</td>
</tr>
<tr>
<td>12</td>
<td>4.0E-01</td>
<td>4.0E-01</td>
<td>4.0E-01</td>
<td>4.0E-01</td>
</tr>
<tr>
<td>13</td>
<td>4.3E-01</td>
<td>4.3E-01</td>
<td>4.3E-01</td>
<td>4.3E-01</td>
</tr>
<tr>
<td>14</td>
<td>4.6E-01</td>
<td>4.6E-01</td>
<td>4.6E-01</td>
<td>4.6E-01</td>
</tr>
<tr>
<td>15</td>
<td>4.9E-01</td>
<td>4.9E-01</td>
<td>4.9E-01</td>
<td>4.9E-01</td>
</tr>
<tr>
<td>16</td>
<td>5.2E-01</td>
<td>5.2E-01</td>
<td>5.2E-01</td>
<td>5.2E-01</td>
</tr>
<tr>
<td>17</td>
<td>5.5E-01</td>
<td>5.5E-01</td>
<td>5.5E-01</td>
<td>5.5E-01</td>
</tr>
</tbody>
</table>

Example A.5: Two-Ray Geoid Frame Subjected to Blast Load

<table>
<thead>
<tr>
<th>LOWER_MODE</th>
<th>MAXP (KN)</th>
<th>ASSOC.M (KN)</th>
<th>ASSOC.Y (KN)</th>
<th>TIME (SEC)</th>
<th>MN (KN)</th>
<th>MAX Y (KN)</th>
<th>ASSOC.P (KN)</th>
<th>ASSOC.Y (KN)</th>
<th>TIME (SEC)</th>
<th>G/MW/MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>-33262.92</td>
<td>-6424.11</td>
<td>-16247.03</td>
<td>2755.59</td>
<td>3959.86</td>
<td>-2943.88</td>
<td>1633.34</td>
<td>-175.23</td>
<td>1.2378</td>
<td>-238.96</td>
</tr>
<tr>
<td>1 2</td>
<td>-34596.27</td>
<td>-7996.12</td>
<td>-18575.92</td>
<td>2715.70</td>
<td>4041.56</td>
<td>-3179.72</td>
<td>1766.80</td>
<td>-189.38</td>
<td>1.2378</td>
<td>-238.96</td>
</tr>
<tr>
<td>2 2</td>
<td>-33176.33</td>
<td>-1751.03</td>
<td>-24676.82</td>
<td>2755.59</td>
<td>3384.03</td>
<td>-1676.63</td>
<td>1661.04</td>
<td>-195.26</td>
<td>1.2378</td>
<td>-238.96</td>
</tr>
<tr>
<td>2 3</td>
<td>-34596.27</td>
<td>-2972.04</td>
<td>-18575.92</td>
<td>2715.70</td>
<td>4041.56</td>
<td>-3179.72</td>
<td>1766.80</td>
<td>-189.38</td>
<td>1.2378</td>
<td>-238.96</td>
</tr>
<tr>
<td>3 3</td>
<td>-33176.33</td>
<td>-14356.33</td>
<td>-24676.82</td>
<td>2755.59</td>
<td>3384.03</td>
<td>-1676.63</td>
<td>1661.04</td>
<td>-195.26</td>
<td>1.2378</td>
<td>-238.96</td>
</tr>
</tbody>
</table>

A plus sign (+) for MAXP indicates compression, and a minus sign (-) for MAXP indicates tension.
Example A.5

Two-Day Riggo Frame Subjected to Blast Load

Table of Maximum and Minimum Element End Loads

<table>
<thead>
<tr>
<th>Element Node</th>
<th>Mmax (Gsi)</th>
<th>Mmin (Gsi)</th>
<th>Time</th>
<th>Mmax (kN-m)</th>
<th>Mmin (kN-m)</th>
<th>Time</th>
<th>Mmax (kN-m)</th>
<th>Mmin (kN-m)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 10</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 11</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 12</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 13</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 14</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 15</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 16</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 17</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 18</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
<tr>
<td>11 19</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
<td>-1.02e+03</td>
<td>-3.23e+03</td>
<td>0.40</td>
</tr>
</tbody>
</table>

A plus sign (+) for Mmax indicates compression and a minus sign (−) for Mmin indicates tension.
Example 4.5 Two-Ray Rigid Plane Subjected to Blast Load

<table>
<thead>
<tr>
<th>ELEM</th>
<th>MODE</th>
<th>NODE 1</th>
<th>NODE 2</th>
<th>NODE 3</th>
<th>NODE 4</th>
<th>NODE 5</th>
<th>NODE 6</th>
<th>NODE 7</th>
<th>NODE 8</th>
<th>NODE 9</th>
<th>NODE 10</th>
<th>NODE 11</th>
<th>NODE 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>.0406</td>
<td>.123</td>
<td>.0906</td>
<td>.0766</td>
<td>.004</td>
<td>.000</td>
<td>.0104</td>
<td>.105</td>
<td>.0706</td>
<td>.0006</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.0944</td>
<td>.028</td>
<td>.0013</td>
<td>.0016</td>
<td>.0019</td>
<td>.0019</td>
<td>.0019</td>
<td>.0019</td>
<td>.0019</td>
<td>.0019</td>
<td>.0019</td>
<td>.0019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.0036</td>
<td>.0056</td>
<td>.0036</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.000</td>
</tr>
</tbody>
</table>

Note: The letter C indicates compression and the letter T indicates tension.
Example A.5 Two-Bay Rigid Frame Subjected to Blast Load

Maximum Element End Rotations

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>MODE</th>
<th>ALAE</th>
<th>TIME</th>
<th>PLAS</th>
<th>TIME</th>
<th>P/PPOT</th>
<th>DEFLECTIVITY RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE081</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE082</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE083</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE084</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE085</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE086</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE087</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Minimum Element End Rotations

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>MODE</th>
<th>ALAE</th>
<th>TIME</th>
<th>PLAS</th>
<th>TIME</th>
<th>P/PPOT</th>
<th>DEFLECTIVITY RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE081</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE082</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE083</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE084</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE085</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE086</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>ELE087</td>
<td>0</td>
<td>0.185</td>
<td>0.820</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Note: The letter C indicates compression and the letter T indicates tension.
Example A-5: Two-Way Rigid Frame Subjected to Blast Load

Maximum Inclined Displacement Table

<table>
<thead>
<tr>
<th>NODE</th>
<th>(x_i) (in)</th>
<th>TIME (msec)</th>
<th>(y_i) (in)</th>
<th>TIME (msec)</th>
<th>(x_i) (in)</th>
<th>TIME (msec)</th>
<th>(y_i) (in)</th>
<th>TIME (msec)</th>
<th>(x_i) (in)</th>
<th>TIME (msec)</th>
<th>(y_i) (in)</th>
<th>TIME (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>7</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>12</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>13</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>14</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>15</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>16</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
APPENDIX C

METHOD OF INELASTIC DYNAMIC ANALYSIS
C.1 Introduction

The theory forming the basis for the inelastic dynamic analysis of frame structures was presented in Section 3 of this report. This appendix presents the mathematical techniques utilized to implement this theory in DYNFA.

C.2 Solution of General Equations of Motion

The general equations of motion for the system are presented in Section 3.4 [Eq (11)]. Separating the independent (dynamic) from the dependent degrees-of-freedom and taking the damping matrix, \([C.0]\), as being proportional to the mass matrix, \([M]\), Equation (11) can be rewritten in partitioned form as follows:

\[
\begin{bmatrix}
 M_i & 0 \\ 0 & 0
\end{bmatrix}
\begin{bmatrix}
 \dot{u}_i \\ \dot{u}_d
\end{bmatrix}
+ a_0
\begin{bmatrix}
 M_i & 0 \\ 0 & 0
\end{bmatrix}
\begin{bmatrix}
 \dot{u}_i \\ \dot{u}_d
\end{bmatrix}
+ \begin{bmatrix}
 K_{aa} & K_{aB} \\ K_{Ba} & K_{BB}
\end{bmatrix}
\begin{bmatrix}
 u_k \\ u_d
\end{bmatrix}
= \begin{bmatrix}
 F_i(t) \\ F_d(t)
\end{bmatrix}
\] (1)

In the above equation, the subscript "i" refers to the independent (or dynamic) degrees-of-freedom; whereas the subscript "d" refers to the dependent degrees-of-freedom. The parameter "a_0" is the constant of proportionality between the damping matrix and the mass matrix. The stiffness matrix, \([K]\), is written in a partitioned format.

In a non-linear system, the elastic properties of the structure will vary over the duration of the response as the individual members undergo yielding. However, it can be assumed that the structure will respond linearly in a relatively short time interval. Therefore, the non-linear response of a system may be obtained by sequencing a series of short duration linear responses in which the elastic properties of the structure are varied from one-time interval to the next.

Based on this assumption, Equation (1) can be rewritten as follows:

\[
\begin{bmatrix}
 M_i & 0 \\ 0 & 0
\end{bmatrix}
\begin{bmatrix}
 \ddot{u}_i \\ \ddot{u}_d
\end{bmatrix}
+ a_0
\begin{bmatrix}
 M_i & 0 \\ 0 & 0
\end{bmatrix}
\begin{bmatrix}
 \dot{u}_i \\ \dot{u}_d
\end{bmatrix}
+ \sum_{i=0}^{T} \begin{bmatrix}
 K_{aa} & K_{aB} \\ K_{Ba} & K_{BB}
\end{bmatrix}
\begin{bmatrix}
 \Delta u_i \\ \Delta u_d
\end{bmatrix}
= \begin{bmatrix}
 F_i \\ F_d
\end{bmatrix}
\] (2)
In this equation, the resistance term, \([K] \{u\}\), at time \(\tau\), is expressed as the summation of the incremental resistance forces computed in successive time intervals, \(\Delta t\), from time 0 to time \(\tau\). Hence:

\[
\begin{bmatrix}
K_{aa} & K_{aB} \\
K_{Ba} & K_{BB}
\end{bmatrix}_{t} = \text{the partitioned system stiffness matrix over a given time interval, } \Delta t
\]

\[
\begin{bmatrix}
\Delta u_i \\
\Delta u_d
\end{bmatrix} = \text{the corresponding incremental displacement vector over the given time interval } \Delta t.
\]

The resistance term of Equation (2) can be rewritten as follows:

\[
\begin{bmatrix}
K_{aa} & K_{aB} \\
K_{Ba} & K_{BB}
\end{bmatrix}_{t} \begin{bmatrix}
u_i \\
u_d
\end{bmatrix} = \begin{bmatrix}R_i \\ R_d \end{bmatrix}, \quad \begin{bmatrix}K_{aa} & K_{aB} \\
K_{Ba} & K_{BB}\end{bmatrix}_{t} \begin{bmatrix} \Delta u_i \\
\Delta u_d \end{bmatrix}
\]

where

\[
\begin{bmatrix} \Delta u_i \\
\Delta u_d \end{bmatrix} = \sum_{t=0}^{\tau} \begin{bmatrix} [K_{aa}] \{ \Delta u_i \} + [K_{aB}] \{ \Delta u_d \} \\
\end{bmatrix}
\]

and

\[
\begin{bmatrix} \Delta u_i \\
\Delta u_d \end{bmatrix} = \sum_{t=0}^{\tau} \begin{bmatrix} [K_{aa}] \{ \Delta u_i \} + [K_{aB}] \{ \Delta u_d \} \\
\end{bmatrix}
\]

Substituting Expression (3) into Equation (2) and rearranging terms, we obtain the following relationship at time \(\tau\):

\[
[M_i]{\ddot{u}_i} + \sum [M_i]{\ddot{u}_i} + [K_{eq}]{\Delta u_i} =
\]

\[
\begin{bmatrix}
\{F_i\} - \{R_i\} - [K_{eq}](F_d - R_d)
\end{bmatrix}_{\tau}
\]

where

\[
[K_{eq}] = [K_{aa}] - [K_{aB}] [K_{BB}]^{-1} [K_{B}]
\]

and

\[
[K_{C}] = [K_{aB}] [K_{BB}]^{-1}
\]

Equation (4) can then be integrated over time interval \(\Delta t\) to obtain the acceleration vector \(\{\ddot{u}\}\) at time \(\tau\). The integration is accomplished using the linear acceleration method of numerical integration which is based on the assumption that the acceleration of a given degree-of-freedom varies linearly over the time interval \(\Delta t\). Applying this principle yields the following expressions for the velocities and incremental displacements at time \(\tau\):
\[
\begin{align*}
{\ddot{u}_1}_\tau &= (\Delta t/2)[(\dot{u}_1)_\tau - (A)_\tau] + (B)_{\tau} \quad (5a) \\
{\Delta u}_1\tau &= (\Delta t^2/6)[(\dot{u}_1)_\tau - (A)]
\end{align*}
\]

where \((A)_\tau = (-6/\Delta t)(\dot{u}_1)_{\tau-\Delta t} - 2(\ddot{u}_1)_{\tau-\Delta t} \)

and \((B)_\tau = - \{\ddot{u}\}_{\tau-\Delta t} - (\Delta t/2)\{\ddot{u}_1\}_{\tau-\Delta t} \)

Substituting Equations (5a) and (5b) into Equation (4) yields the following simplified equation:

\[
[M^*]_{\tau} = (F^*)_\tau \tag{6}
\]

where \([M^*]_{\tau} = [M_1] + (a_0\Delta t/2)[M_1] + (\Delta t^2/6)[K_{eq}] \)

and \([F^*]_{\tau} = [F_1(\tau)] - \{R\} - [K_c][F_d - R_d] - a_0[M_1](B) + (a_0\Delta t/2)[M_1][A] + (\Delta t^2/6)[K_{eq}][A] \)

Equation (6) is solved for the unknown accelerations as shown below:

\[
\{\ddot{u}_1\}_\tau = [M^*]^{-1}_{\tau}(F^*)_\tau \tag{7}
\]

where \([M^*]^{-1}_{\tau} = \) the inverse of matrix \([M^*]_{\tau}\).

With the accelerations thus obtained, the velocities, \((\dot{u})_\tau\), and the incremental displacements, \(\{\Delta u\}_\tau\), can be obtained using Equations (5a) and (5b).

The solutions of Equation (7) is obtained with a step-by-step procedure, starting at zero time when the displacement and velocity are presumably known. Hence, the initial acceleration \(\{\ddot{u}_1\}_0\) can be obtained from the following expression:

\[
\{\ddot{u}_1\}_0 = [M_1]^{-1}\left\{ F_1(0) - [K_{eq}](u_1)_0 - [K_c][F_d(0)] \right\} - a_0\{\ddot{u}_1\}_0 \tag{8}
\]

The time scale is divided into discrete intervals, \(\Delta t\), and one progresses by successively extrapolating the accelerations from one time station to the next.
C.3 Composition of Applied Loads Matrix

The applied loads matrix, \(\{F(t)\} \), is composed of the following quantities:

1. The time dependent blast loads, \(P(t) \), applied to the independent degrees-of-freedom.

2. The unbalanced shears produced by the second order effects (\(P-\Delta \), beam column) which occurs as the structure responds to the blast.

In a partitioned format, the matrix of the applied loads is written as follows:

\[
\begin{bmatrix}
F_i(t) \\
F_d(t)
\end{bmatrix} = \begin{bmatrix}
P(t) \\
0
\end{bmatrix} + \begin{bmatrix}
V_i \\
V_d
\end{bmatrix}
\]

(9)

The blast loads, \(P(t) \), are computed by the analyst; whereas the unbalanced shears, \(V \), are computed on the basis of the deflected position of the elements at the end of each time interval.

Consider the element shown in Figure 1. By the end of the \((i-1)\)th time increment, the element has deflected to the position shown in Figure 1a, and the unbalanced moment at this time is:

\[
(M_u)_{i-1} = P(Y_B - Y_A)
\]

(10)

Over the next increment, the element deflects to the position shown in Figure 1b and the axial load increases by an amount \(\Delta P \). Therefore, at the end of the \(i \)th time increment, the unbalanced moment is:

\[
(M_u)_i = (P + \Delta P)[Y_B + \Delta Y_B] - (Y_A + \Delta Y_A)
\]

(11)

The change in the unbalanced moment over the \((i)\)th increment is determined by subtracting Equation (11) from Equation (10), thereby obtaining:

\[
\Delta M_u = P(\Delta Y_B - \Delta Y_A) + \Delta P[(Y_B + \Delta Y_B) - (Y_A + \Delta Y_A)]
\]

(12)

The incremental unbalanced moment, \(\Delta M_u \), is applied to the element in terms of an unbalanced shear, \(\Delta V_u \), which is obtained as follows:
\[\Delta V = \frac{\Delta M_u}{L} \] \hspace{1cm} (13)

where \(L \) is the length of the element. These unbalanced shears are applied at the ends of the element as shown in Figure lc.

The total unbalanced shear at a given time increment is then the sum of the previously computed incremental shears.

\[
\begin{bmatrix}
V_i \\
V_d
\end{bmatrix}
= \sum_{t=0}^{t=T} \begin{bmatrix}
V_i \\
V_d
\end{bmatrix}
\] \hspace{1cm} (14)

The computation of these unbalanced shears, and their inclusion in the applied loads vector are performed internally by DYNFA.

C.4 Element Stiffness Matrix

In the analysis, the element stiffness matrices may vary from one time increment to the next due to the occurrence of non-linear behavior. During a given time increment, however, the elements are assumed to behave linearly. Thus, the force-displacement relationship for an element is expressed on an incremental basis, as follows:

\[
\{\Delta f\} = [k]{\Delta u}
\] \hspace{1cm} (15)

where

\(\{\Delta f\} = \) the change in the element axial loads, shears and bending moments over a given time increment

\([k] = \) the element stiffness matrix for the time increment

As discussed in Section 3, the total stiffness of an element is assumed to consist of an elasto-plastic component acting in parallel with an infinitely elastic component. Hence, the total stiffness of an element can be expressed as follows:

\[
[k] = (p + q)[k]
\] \hspace{1cm} (16)

where

\(p[k] = \) the stiffness of the infinitely elastic component \(k_{ie} \) in Fig 9b of text

\(q[k] = \) the stiffness of the elasto-plastic component \(k_{ep} \) in Fig 9b of text

\(p + q = 1 \)
In most cases, the following quantities are utilized for the parameters p and q:

\[p = 0.05 \]
\[q = 0.95 \]

In expanded form, Equation (15) is rewritten as follows:

\[
\begin{bmatrix}
\Delta P_A \\
\Delta V_A \\
\Delta M_A \\
\Delta P_B \\
\Delta V_B \\
\Delta M_B
\end{bmatrix} =
\begin{bmatrix}
k_1 & 0 & 0 & -k_1 & 0 & 0 \\
0 & k_3 & k_2 & 0 & -k_3 & k_5 \\
0 & k_2 & k_4 & 0 & -k_2 & k_6 \\
-k_1 & 0 & 0 & k_1 & 0 & 0 \\
0 & -k_3 & -k_2 & 0 & k_3 & -k_5 \\
0 & k_5 & k_6 & 0 & -k_5 & k_7
\end{bmatrix}
\begin{bmatrix}
\Delta x_A \\
\Delta y_A \\
\Delta \theta_A \\
\Delta x_B \\
\Delta y_B \\
\Delta \theta_B
\end{bmatrix}
\]

(17)

In the above equation, the incremental element loads vector, \(\Delta f \), is expressed in terms of the incremental axial load, \(\Delta P \), incremental shear, \(\Delta V \), and incremental bonding moment, \(\Delta M \); likewise, the incremental displacement vector, \(\Delta u \), is expressed in terms of the components of the incremental deformations in the local coordinate system for the element. The subscripts A and B refer to the ends of the element.

The stiffness coefficients, \(k_i \), vary depending upon the yield and restraint conditions at the ends of the element. Expressions for computing these coefficients are provided in Table 1 for the various combinations of end conditions.

C.5 Computation of Plastic Component of Element End Rotations

The incremental plastic components of the relative element end rotations are computed as follows for the ten cases of end conditions specified in Table 1:

Cases 1, 2 and 3 - Elastic restraints at ends A and/or B and vice-versa:

\[\Delta \theta_A = \Delta \theta_B = 0 \]
Case 4 - Yield at (A); elastic restraint at (B):

\[\Delta \theta_A = (\Delta \gamma_A - \Delta \alpha) + (1/2)(\Delta \gamma_B - \Delta \alpha) \]

\[\Delta \theta_B = 0 \]

Case 5 - Yield at (A); pin at (B):

\[\Delta \theta_A = \Delta \gamma_A - \Delta \alpha \]

\[\Delta \theta_B = 0 \]

Case 6 - Elastic restraint at (A); yield at (B):

\[\Delta \theta_A = 0 \]

\[\Delta \theta_B = (\Delta \gamma_B - \Delta \alpha) + (1/2)(\Delta \gamma_A - \Delta \alpha) \]

Case 7 - Pin at (A); yield at (B):

\[\Delta \theta_A = 0 \]

\[\Delta \theta_B = \Delta \gamma_B - \Delta \alpha \]

Cases 8 and 9 - Pin at (A) and (B), elastic and plastic conditions:

\[\Delta \theta_A = \Delta \theta_B = 0 \]

Case 10 - Yield at (A) and (B):

\[\Delta \theta_A = \Delta \gamma_B - \Delta \alpha \]

\[\Delta \theta_B = \Delta \gamma_B - \Delta \alpha \]

Each of the ten conditions listed above is illustrated in Figures 2, 3 and 4.

C.6 Summary of Analysis Procedure

A summary of the overall analysis procedure is presented in terms of a logic flow diagram in Figure 5. The sequence of operations depicted is followed by program DYNFA.
C.7 Evaluation of Analysis Method

The validity of the analysis method and of program DYNFA was verified on the basis of a comparison with the known solutions for the response of the portal frame shown in Figure 6.

The comparison was made on the basis of the following:

1. An elastic analysis with MRI STARDYNE computer program (22).

2. An elasto-plastic analysis with INELAS 2D computer program (10).

3. An inelastic analysis with the DYNFA computer program.

The results of each of these analyses are presented in terms of a plot of the horizontal displacement history of the frame (Fig 7). Inspection of the plotted displacement histories reveals the occurrence of inelastic action in the structure commencing at time 0.20 second and continuing throughout the remainder of the response. Note that there is good correlation between the DYNFA response and the INELAS 2D response, which is purported to be an exact solution for the problem. By virtue of this comparison, it can be concluded that the method of inelastic dynamic analysis implemented in DYNFA will produce a reasonably good prediction of the inelastic dynamic response of a frame structure.
<table>
<thead>
<tr>
<th>Case No.</th>
<th>Member end conditions</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>k_5</th>
<th>k_6</th>
<th>k_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elastic restraint, (A) and (B)</td>
<td>e</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>Elastic restraint at (A), pin at (B)</td>
<td>e</td>
<td>g</td>
<td>h</td>
<td>f</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Pin at (A), elastic restraint at (B)</td>
<td>e</td>
<td>0</td>
<td>h</td>
<td>0</td>
<td>g</td>
<td>0</td>
<td>f</td>
</tr>
<tr>
<td>4</td>
<td>Yield at (A), elastic restraint at (B)</td>
<td>e</td>
<td>p_e</td>
<td>p_c</td>
<td>$p_d + q_h$</td>
<td>p_a</td>
<td>$p_c + q_g$</td>
<td>p_b</td>
</tr>
<tr>
<td>5</td>
<td>Yield at (A), pin at (B)</td>
<td>e</td>
<td>p_e</td>
<td>p_g</td>
<td>p_h</td>
<td>p_f</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Elastic restraint at (A), yield at (B)</td>
<td>e</td>
<td>p_e</td>
<td>$p_c + q_g$</td>
<td>$p_d + q_h$</td>
<td>$p_a + q_f$</td>
<td>p_c</td>
<td>p_b</td>
</tr>
<tr>
<td>7</td>
<td>Pin at (A), yield at (B)</td>
<td>e</td>
<td>0</td>
<td>p_h</td>
<td>0</td>
<td>p_g</td>
<td>0</td>
<td>p_f</td>
</tr>
<tr>
<td>8</td>
<td>Pin at (A) and (B), elastic condition</td>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Pin at (A) and (B), plastic condition</td>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Yield at (A) and (B)</td>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

where $a = 4EI/L$; $b = 2EI/L$; $c = 6EI/L^2$; $d = 12EI/L^3$;
$e = AE/L$; $f = 3EI/L$; $g = 3EI/L^2$; $h = 3EI/L$
Fig 1 Calculation of second order effects
Fig 2 Components of differential element end rotation: yield cases 1, 2 and 3
Fig 3 Components of differential element end rotation: yield cases 4, 5, 6.
Fig 4 Components of differential element end rotation: yield cases 7, 8, 9 and 10
Fig 5 Summary of analysis procedure
Fig 6 Portal frame analyzed with DYNFA, INELAS 2D and STARDYNE

\[P = 89\text{KN} \]
\[M_{2x} = 11363\text{kg} \]
\[M_{3x} = 11363\text{kg} \]
LEGEND:

- ELASTIC RESPONSE (STARDYNE)
- ELASTO-PLASTIC RESPONSE (INELAS 2D)
- INELASTIC RESPONSE (DYNFA)

Fig 7 Comparison of DYNFA with INELAS 2D and STARDYNE
APPENDIX D

FORTRAN LISTING OF COMPUTER PROGRAM DYNFA
APPENDIX D

FORTRAN LISTING OF COMPUTER PROGRAM DYNFA

D.1 General

This appendix contains the FORTRAN listing of computer program DYNFA. Preceding the listing are summaries of the functions performed by the mainline and all of the subroutines of the program.

D.2 Structure of Program

The computer program is written in FORTRAN IV for execution on the CDC 6600 computer using the Extended (FTN) FORTRAN compiler. A central memory field length of 170,000 words (octal) is required for execution of the program on this computer.

The program consists of a main routine and eleven subroutines. The operations performed by each are summarized below:

Main Routine DYNFA - The main routine initiates the execution and directs the overall sequence of operations performed in the frame analysis. To perform the required operations, the main routine calls the following subroutines:

1. Subroutine READ
2. Subroutine ZERO
3. Subroutine STIF
4. Subroutine PLOAD
5. Subroutine DYDIS
6. Subroutine ELEFD
7. Subroutine PRINT

Subroutine READ - This subroutine reads in and prints out the input data. In addition, the subroutine counts the total number of degrees-of-freedom as well as the number of dynamic degrees-of-freedom in the model. This subroutine also determines the line count parameter which establishes the amount of data printed on every page of the output.
Subroutine ZERO - This subroutine assigns a value of zero to all of the variables in the dimensioned storage arrays.

Subroutine STIF - Subroutine STIF generates the element and system stiffness matrices. The subroutine partitions the system stiffness stiffness matrix into the various submatrices utilized in the numerical integration routine. In addition, this subroutine forms the condensed stiffness matrix (see Ref 11) of the system. In performing these operations, the subroutine calls the two utility subroutines listed below:

1. Subroutine TRANS - Subroutine TRANS generates a transformation matrix for each element which orientates the local element coordinate system with respect to the global coordinate system.

2. Subroutine MINV - This subroutine performs a matrix inversion on a symmetric, non-singular matrix.

Subroutine PLOAD - This subroutine performs the dead and live load analysis of the frame. The subroutine utilizes subroutines MINV and TRANS in the computation. The results of the analysis are printed in the format shown in Appendix B.

Subroutine DYDIS - Subroutine DYDIS performs the numerical integration of the equations of motion of the system using the integration method outlined in Appendix C. The results of this integration consist of the accelerations of the dynamic degrees-of-freedom of the model. The displacements are computed as described in Appendix C. Subroutine DYDIS also records the maxima and minima of the nodal displacements. The time histories of the nodal displacements are also printed by this subroutine.

Subroutine ELEFD - This subroutine computes the element end loads using subroutine TRANS, and determines, using subroutine YIELD, whether the elements are in either the elastic or plastic condition. The subroutine also computes the element end rotations. The time histories of the element end loads and rotations are printed out by this subroutine. The peaks (maxima and minima) of these response quantities are extracted from the time histories.

Subroutine ELEFD also performs the P-Δ and beam column approximations by computing equivalent element shears using subroutine PDEL.
Summaries of the tasks performed by subroutines YIELD and PDEL are provided below:

1. Subroutine YIELD - This subroutine utilizes the interaction equations given in Section 3.3 to determine whether the element is in the elastic or plastic condition.

2. Subroutine PDEL - Subroutine PDEL computes the equivalent element shears using the method outlined in Appendix C.

Subroutine PRINT - This subroutine computes the ductility ratios for the elements of the model and prints out the tabulations of the significant response parameters described in Section 9.4.

The following pages contain the FORTRAN IV listing of program DYNFA.
C

PROGRAM DYNFA(INPUT,OUTPUT,TAPE2=INPUT,TAPE5=OUTPUT)
C
NON-LINEAR DYNAMIC FRAME ANALYSIS
C
DIMENSION UMAX(30,3),UMIN(30,3),TMAX(30,3),TMIN(30,3)
C
DIMENSION R(60,60),ROR(60),RDR(60),IIO(L)(30,2)
C
DIMENSION SAB(60,60),SAA(60,60),SBB(60,60)
C
DIMENSION CMMP(30,2),CMNP(30,2),CMPP(30,2),CLPV(30,2),CLNM(30,2),
C
CLNP(30,2),CLNL(30,2),CLNN(30,2)
C
DIMENSION CMHP(30,2),CMHN(30,2),CLOAD(30,2),THOMP(30,2),
C
TTHOMN(30,2),TIME(30,2)
C
DIMENSION PY(30),PRY(30)
C
DIMENSION YM(30,2),YJ(30,2),CN(30,2),SN(30,2),AI(30,2),MP(30,2),MPB(30,2),
C
HDF(60,2) ,ACEL(60,2),VELS(60,2),SEQ(60,2),DISP(60,2),U(30,2)
C
4OUT(60,2),ODISP(60,2),SBB(60,60),SBA(60,60),OLTD(60,2),OOLD(60,2),
C
5SEL(30,2),ELMF(30,2),ELMYA(30,2),ELMYB(30,2)
C
6TBA(30,2),IMYBT(30,2),NWK(30,2),NSDF(30,2),NRX1(30,2),NRX2(30,2),
C
NRX3(30,2)
C
DIMENSION AK(30,2),AKT(30,2),MTX1(90,2),MTX2(90,2),PP(30,2),TTT(30,2)
C
DIMENSION SSY(90,90)
C
DIMENSION ILASTA(30),ILASTB(30)
C
DIMENSION TEBB(30),TEBA(30)
C
DIMENSION RMAX(30,4),RMIN(30,4),TM(30,4),TMM(30,4)
C
DIMENSION TITLE(20)
C
DIMENSION PYMAX(30,2),PYMIN(30,2)
C
COMMON NUNIT,PYMAX,PYMIN
C
COMMON ICOUN,NCOUN,TITLE
C
COMMON RMX,RMIN,TM,TMM,TEBA,TEBB
C
COMMON ILASTA,ILASTB,HELAS
C
COMMON UMAX,UMIN,TMAX,TMIN
C
COMMON NSKIP,INDEXW
C
COMMON SAB,SAA,SBB
C
COMMON R,RO,ROR,IIOLD
C
COMMON PY,IPRO,IPRMP
C
COMMON NDT,LL,NME,YMY
C
COMMON CLOAD,CMMP,CMHP,CMHN,THOMP,THOMN,
C
TIME,CMNP,CMPP,CLPV,CLNM,CLNN
C
COMMON NODE(30),JA,J3,VL,CSN,AI,E,MP,MPB,MPF,NDOF,
C
1NINT,NDETL,DET,FAREA,MAS,IMYAT,IMYBT,PPP,TTT,NWF,
C
2DO,ACE,VELS,DAMP,SEQ,DISP,U,
C
DU,DDISP,SR,SB,A,
C
3OLTD,OOLD,SEL,ELMF,IMYAT,IMYBT,TBA
C
COMMON YFACT,PP,SSY,NWF,AK,MTX1,MTX2
C
COMMON WUNIF,NFSV,AK,TMK1,TMK2
C
COMMON WUNIF,NFSV,AK,TMK1,TMK2
C
DIMENSION AK(30,2),AKT(30,2),MTX1(90,2),MTX2(90,2),PP(30,2),TTT(30,2)
C
COMMON NCOL(90)
C
C **************************** DEFLINE READ TO READ INPUT FROM CARDS
C ****************************
C
1 CALL READ
C
C **************************** DEFLINE ZERO TO INITIALIZE VARIABLES FOR STATIC ANALYSIS
C ****************************
C
2 CALL ZERO(NSIG)
C
C IF(NDEAD)2,3
C
2 LL=0
C
C **************************** DEFLINE STIF TO FORMULATE STIFFNESS MATRIX FOR STATIC
C
C ANALYSIS

C
376
CALL STIF

CALL SUBROUTINE PLOAD TO PERFORM STATIC ANALYSIS

CALL PLOAD, NSDF, NSFD, SN, CN, VL, NDIF, HNIF, NMEM, JA, JB, ELMF,
1 NNODE, GUC, U, SEL, AK, MATX1, MATX2, MPA, MPB, NLMODE, TITLE, NCOUNT, TEBB,
1 TEBA, IGOUN, HUNIT

CALL SUBROUTINE ZERO TO INITIALIZE VARIABLES AFTER STATIC ANALYSIS

CALL ZERO(NSIG)
3 DO 4 J=1,NMEM
4 NSDF(J) = 0
DO 45 J=1,NNODE
IF(NRX1(J) + NRX2(J))>15,15,5
5 IF(NRX3(J))10,10,43
10 NCON=0
DO 22 K=1,NMEM
IF(J=JA(K))15,12,15
12 NEND=1
13 NCON=NGON+1
MATX1(NCON)=K
MATX2(NCON)=NEND
GO TO 20
15 IF(J=JB(K))20,14,20
14 NEND=2
GO TO 13
20 CONTINUE
IF(NCON=1)25,25,30
25 K=MATX1(NCON)
N=MATX2(NCON)
NSDF(K)=n
GO TO 45
30 NJ=0
DO 35 L=1,NCON
K=MATX1(L)
NSFD(L)=MATX2(L)
GO TO (31,32),NPIN
31 IF(MPA(K)-1)<135,33,35
32 IF(MPB(K)-1)<135,33,35
33 NJ=NJ+1
35 CONTINUE
IF(NCON-NJ)45,45,45
39 DO 41 L=1,NCON
K=MATX1(L)
NP=MATX2(L)
GO TO (42,43),NPIN
42 IF(MPA(K)-1)<144,41,44
43 IF(MPB(K)-1)<144,41,44
44 NSDF(K)=NP
GO TO 45
41 CONTINUE
45 CONTINUE
INDEXM=Q
 WRITE=NSKIP
 DO 200 LL=1,NOT
 IF(LL-NWRITE)40,50,50
 50 INDEXM=I
 WRITE=WRITE+NSKIP
 GO TO 300
 40 INDEXM=Q
 300 IF(IILL-11350,350,325
 325 DO 100 K=1,NMEM
 NLASA=IMYAT(K)-ILASTA(K)
 NLASB=IMYBT(K)-ILASTB(K)
 IF(NLASA)350,80,350
 80 IF(NLASB)350,100,350
 100 CONTINUE
 GO TO 400
 C CALL SUBROUTINE STIF TO FORMULATE STIFFNESS MATRIX FOR DYNAMIC
 C ANALYSIS
 C **
 C 350 CALL STIF
 C CALL SUBROUTINE OYDIS TO SOLVE EQUATIONS OF MOTION
 C **
 C 400 CALL OYDIS
 C **
 C CALL SUBROUTINE ELEFO TO COMPUTE ELEMENT LOADS AND END ROTATIONS
 C (ELASTIC AND PLASTIC)
 C **
 C CALL ELEFO
 200 CONTINUE
 C CALL SUBROUTINE PRINT TO PRINT TABULATIONS OF MAXIMA AND MINIMA OF
 C ELEMENT LOADS, ELEMENT END ROTATIONS AND NODAL DISPLACEMENTS
 C **
 C CALL PRINT
 500 CONTINUE
 CALL EXIT
 END
SUBROUTINE READ
READ AND PRINT SUBROUTINE
DIMENSION UMAX(30,3), UNIN(30,3), TMAX(30,3), TMIN(30,3)
DIMENSION R(30), RD(60), RDR(60), II(0)(0,2)
DIMENSION SAB(60,60), SAA(60,60), SBB(60,60)
DIMENSION CHP(30,2), CHNV(30,2), CMPP(30,2), CMPV(30,2), CLPH(30,2),
CLPV(30,2), CLNM(30,2), CLNV(30,2)
DIMENSION CHMP(30,2), CMCHN(30,2), CLOAD(30,2), TMOMP(30,2)
DIMENSION TMNM(30,2), TIMEL(30,2)
DIMENSION PHY(30), PCRY(30), TMY(30,2)
DIMENSION X(30), Y(30), MXI(30), RMX(30), TMAX(30), TMIN(30)
DIMENSION SAL(30), SAA(30), SBB(30), SSB(30)
DIMENSION CNNP(30,2), CMNIN(30,2), CMPP, CNPV, CLNP, CLNV, CLNM, CMNPP
DIMENSION CNNP(30,2), CMNMN(30,2), CMNPP, CNPV, CLNP, CLNV, CLNM, CMNPP
COMMON ICOUNT, NCOUNT, TITLE
COMMON RMAX, RMIN, TMAX, TMIN
COMMON NSkip, INDEX
COMMON SAB, SAA, SBB, SSB
COMMON R, RD, RDR, II(0)
COMMON PV, IPDV, IPMP
COMMON NDT, LL, NHE, TMY, CLOAD, CMOMP, CMHM, TMOMP, TMNM
TIMEL, CMPH, CMNV, CMPV, CLPH, CLPV, CLNM, CLNY
COMMON NMODE, JA, JB, VL, C, SN, AI, E, MP, MPB, NINDF, NODEF,
1MTAIL, NDELT, IDAF, FARE, WMAS, IMAT, INYB, TTT, NWK,
2DT, ADEL, VELS, OAMP, SE, DISP, U,
DU, ODISP, SBB, SBA
3DT, ODLT, SEL, ELMF, IMY, INYB, TBA, TBB
COMMON YFACT, PCRY, SDR, NFSDF, AK, MATIX1, MATIX2
COMMON WUNIF, NDF, NDOR, NRX1, NRX2, NRX3, LDL, NDEAD
DATA SIGNAL/4HEHD/
DATA SIGNAL/IN, 1M-
DATA IXOR/INX, 1MY-
DATA GM/200.0, 200.0/
DATA LUNIT/2HUS/
DATA EMOD/4HP, KPA, 4HP, PSI/
DATA UNIT/4H (M), 4H(IN)/
DATA UNWG/4H(KG), (HLB)/
DATA BUNIT/7HCM**, 7H(IN**, 7H(IN**, 7H(IN**, 1BH (K=M, 1H (LB=IN), 1H(KNS), 1H(LBS)/
DATA AUNIT/7H(IN**, 7H(IN**, DATA UNFUN/8H (KGS/M), 8H(LBS/IN)/
UNIT=1
379
READ

495 FORMATA1
C
READ STRUCTURE DESCRIPTION CARD - CARD TYPE 1 - CHECK FOR END OF
DATA INDICATOR
C
**
READ(5,495) TITLE
C
WRITE(5,495) TITLE

500 FORMAT(20A4)
C
**
READ PROBLEM SPECIFICATION CARD - CARD TYPE 2
C
**
READ(12,501) NMEN, NNODE, NNOR, NNOD, IPRO, IPRMP, E, YFACT, NELAS
1 NDE, NLMODE, NU
505 FORMAT(175,2F10.0,315,9X,A2)
IF(NJ,EQ.UUNITIUNIT=2)
IF(NUNIT,EQ.2) GO TO 1001
WRITE(5,1001)
WRITE(5,1003)
WRITE(5,1004)
GO TO 1002
1001 WRITE(5,1003)
WRITE(5,1005)
WRITE(5,1007)
1000 FORMAT(175,2F10.0,315,9X,A2)
C
**
1 37X,12H: "TS-METRIC,,",37X,12H---------,
2 35X,17H: "METRE(M),",37X,17H---------,
3 37X,19H: "KILogram(KG),",37X,19H---------,
4 37X,18H: "SECOND(SEG),",37X,18H---------,
5 37X,32H: "AREA - SQUARE CENTIMETERS (CM**2),",37X,32H---------,
6 24H: "MOMENT OF INERTIA - CENTIMETERS TO THE FOURTH POWER (CM**4),",37X,24H---------,
7 27H: "BENDING MOMENT - KILOGRAM-METER(KMN),",37X,27H---------,
8 25H: "AXIAL LOAD AND SHEAR - KILONEWTONS(KNS),",37X,25H---------,
9 21H: "APPLIED LOADS,",37X,21H---------,
1006 FORMAT(175,2F10.0,315,9X,A2)
C
**
1 39X,26H: "Kilonewton-KN),",37X,26H---------,
2 37X,36H: "BASIC UNITS,",37X,36H---------,
3 39X,38H: "LENGTH - METRES(M),",37X,38H---------,
4 39X,39H: "ENERGY - KILOGRAMS(KG),",37X,39H---------,
5 39X,37H: "FORCE - KILOGRAMS(KG),",37X,37H---------,
6 39X,37H: "MONENT OF INERTIA - INCHES TO THE FOURTH POWER (IN**4),",37X,37H---------,
7 21H: "ACCELERATION OF GRAVITY - 9.8 METRES PER SECOND SQUARE (M/SEC**2),",37X,21H---------,
8 20H: "MOODULUS OF ELASTICITY - KILOGRAMS(KPA),",37X,20H---------,
9 9N**E: "APPLIED STATIC LOADS IN DRAUS UNITS),",37X,9N**E---------,
1004 FORMAT(175,2F10.0,315,9X,A2)
C
**
1 22H: "MAND DISPLACEMENTS - MILLIMETRES/MM),",10H,37X,22H---------,
2 46H: "NODAL END ROTATIONS - DEGREES(DEG)),",10H,37X,46H---------,
103 FORMAT(175,2F10.0,315,9X,A2)
C
**
1 37X,8H: "PRESSURE - KILOGRAMS(KPA),",37X,8H---------,
2 37X,11H: "AREA - SQUARE METRES(M**2),",37X,11H---------,
3 37X,12H: "WEIGHT - POUNDS(LBS),",37X,12H---------,
4 37X,18H: "SECOND(SEG),",37X,18H---------,
5 37X,32H: "AREA - SQUARE CENTIMETERS (CM**2),",37X,32H---------,
6 37X,27H: "LENGTH - INCHES(IN),",37X,27H---------,
7 2H: "MONENT OF INERTIA - INCHES TO THE FOURTH POWER (IN**4),",37X,2H---------,
READ

8**4,1/2X,34AXIAL LOAD AND SHEAR - POUNDS(LBS)/,
9 2X,36BENDING MOMENT - POUND-INCH(LB-IN))
1067 FORMAT(//, 36X,13APPLIED LOADS/,//
 1 3X,36PRESSURE - POUNDS PER SQUARE INCH(PSI),
 2/ 27X,37SUBSTRIBUTARY AREA - SQUARE INCHES(IN**2)
 3 21X,46MEMBER UNIFORM LOADS - POUNDS PER INCH(LBS/IN),/
 4 20X,35STATIC LOADS AT NODES - POUNDS(LBS)/,
 5 18X,45MOMENTS AT NODES - POUND-INCH(LB-IN)),/
 6 39X,44CONSTANTS)/
 7 16X,57ACCELERATION OF GRAVITY - 386.4 INCHES PER SECOND SQUA
8RD/, 21X,51MODULUS OF ELASTICITY - POUNDS PER SQUARE INCH(PSI)
1005 FORMAT//, 110DEFLECTIONS/,//
 1 22X, 32HODAL DISPLACEMENTS - INCHES(IN),//, 16X,
 2 46HODAL AND ELEMENT END ROTATIONS - DEGREES(DEG)
1002 WRITE(5,49)
WRITE(5,500)TITLE
C***
C IPRD=1 PRINT DISPL, IPRP=1 PRINT M-V-P
C***
 1 WRITE(5,510)NMEM
510 FORMAT(//5X,34HNUMBER OF ELEMENTS = , I2)
WRITE(5,512)NNODE
512 FORMAT(//5X,34HNUMBER OF NODES = , I2)
WRITE(5,514)NNOR
514 FORMAT(//5X,34HNUMBER OF NODES WITH RESTRAINTS = , I2)
WRITE(5,516)NNOW
516 FORMAT(//5X,34HNUMBER OF NODES WITH MASSES = , I2)
WRITE(5,518)NNOF
518 FORMAT(//5X,34HNUMBER OF NODES WITH FORCES = , I2)
WRITE(5,519)IPROD
519 FORMAT(//5X,34HODISPLACEMENTS PRINTING INDEX = , I2)
WRITE(5,517)IPRP
517 FORMAT(//5X,34HODAL AXIAL, SHEAR PRINTING INDEX = , I2)
WRITE(5,520)EMOD(NUNIT)
520 FORMAT(//5X,34HMODULUS OF ELASTICITY = ,F12.6,1X,A4)
IF(YFACT=5,5.6)
5 YFACT=0.5
6 WRITE(5,521)YFACT
521 FORMAT(//5X,46PERCENTAGE OF ELASTIC STIFFNESS AFTER YIELD = ,F6.3)
DO 10 I=1,NNODE
C***
C READ NODAL COORDINATES CARDS - CARD TYPE 3
C***
READ(2,525)INT,XT,YT
X(INT)=XT
Y(INT)=YT
10 CONTINUE
WRITE(5,530)
530 FORMAT(1MO,6,X,31H *** NODAL COORDINATE TABLE ***)
WRITE(5,532)UNIT(NUNIT),UNIT(NUNIT)
532 FORMAT(1HO,3X,4HNODE,13X,1HX,14X,1HY,/, 19X,A4,1'X',A4/)
600 FORMAT(1H)
WRITE(5,534)I=1,NNODE
534 FORMAT(1H,'4X,I3,F15.2)
DO 13 I=1,NNODE
NRX(I)=0
381
READ

NRX2(I) = 0
NRX3(I) = 0
15 CONTINUE
DO 20 K = 1, MNOR

C **
C READ NODAL RESTRANTS CARDS - CARD TYPE 4
C **
READ(2,535)NT, NT1, NT2, NT3
NRX1(NT) = NT1
NRX2(NT) = NT2
NRX3(NT) = NT3
20 CONTINUE

525 FORMAT(I10,2F10.6)
535 FORMAT(4I10)
WRITE(5,540)
540 FORMAT(1HO,10X,27H***NODAL RESTRANT TABLE***)
WRITE(5,545)
545 FORMAT(1HO,3X,4HNODE,7X,1HXX,9X,1MY,4X,8HROATION)
WRITE(5,550)(I,NRX1(I),NRX2(I),NRX3(I),I=1,NNODE)
WRITE(5,560)
550 FORMAT(3X,I4,5X,I4,6X,I4,6X,I4)
IF(INUM+EQ.2)GO TO 551
WRITE(5,555)
GO TO 557
556 FORMAT(1HO,10X,30H***INPUT NODAL MASS TABLE***)
551 WRITE(5,555)
557 WRITE(5,560)(NUNG(NUNIT),UNMG(NUNIT))
560 FORMAT(1HO,3X,4HNODE,13X,2MMX,13X,2MMY,/,20X,A4,11X,A4/)
555 FORMAT(1HO,10X,30H***INPUT NODAL WEIGHT TABLE***)
DO 25 K = 1, NNODE
WM(X) = 0.0
25 CONTINUE
25 CONTINUE
DO 30 K = 1, MNEM

C **
C READ NODAL MASS CARDS - CARD TYPE 5
C **
READ(2,525)NT, T1, T2
WM(NT) = T1
WM(NT) = T2
WRITE(5,565)(NT, T1, T2)
30 CONTINUE

565 FORMAT(4X,13,3X,2F15.2)
WRITE(5,570)
570 FORMAT(1HO,9X,19H***ELEMENT TABLE***)
WRITE(5,575)(BUNIT(NUNIT,4), BUNIT(NUNIT,3), BUNIT(NUNIT,4),

1 BUNIT(NUNIT,4))
575 FORMAT(1HO,3X,4HELEM,4X,2HJA,4X,2HJB,2X,8HPI CE,9X,4WAREA,11X,
12H I,15X,3HMM,12X,3HME3,13X,2HPP,12X,2HPU,/,2
30X,A5,10X,A5)
WRITE(5,560)
DO 35 K = 1, MNEM
C **
C READ ELEMENT CARDS - CARD TYPE 6
C **
READ
READ(2,590)IBT,JAT,JBT,MPAT,MPBT,AT,THYA,TMYB,TPY,TPCR
JA(IBT)=JAT
JB(IBT)=JBT
MPA(IBT)=MPAT
MPB(IBT)=MPBT
34 A(IBT)=AT
AI(IBT)=TI
MY(IBT,1)=THYA
MY(IBT,2)=TMYB
IF(TMYB.EQ.0.0)MY(IBT,2)=THYA
PY(IBT)=TPY
PCR(IBT)=TPCR
35 CONTINUE
580 FORMAT(I5,3X,2I1,6F10.6)
1 (MY(M,J),J=1,2),PY(M),PC(Y(M),M=1,NMEM)
585 FORMAT(5X,3X,3X,I3,3X,I3,3X,I3,3X,I3,4X,I1,6F15.2)
C FORMATION OF STIFFNESS FACTORS

DO 40 M=1,NMEM
IF(MUNIT.EQ.21)GO TO 39
A(M)=0.0001*A(M)
AI(M)=1.0E-08*AI(M)
39 MA=JA(M)
MB=JB(M)
XX=X(MB)-X(MA)
YY=Y(MB)-Y(MA)
SPAN=SQRT(XX**2+YY**2)
SN(M)=YY/SPAN
CN(M)=XX/SPAN
VL(M)=SPAN
40 CONTINUE

C READ DAMPING CARD - CARD TYPE 7

READ(2,590)DAMP
590 FORMAT(F10.0)
WRITE(5,595)DAMP
595 FORMAT(I4,15X,15HDAMPING FACTOR=F10.5)

C READ INTEGRATION TIME CARD - CARD TYPE 8

READ(2,605)NDT,DT,NSKIP
605 FORMAT(5X,15X,F10.0,10X)
DT=NSKIP*DT
WRITE(6,606)DT,NDT

C READ LOADING SPECIFICATION CARD - CARD TYPE 9

READ(2,610)NWF
610 FORMAT(2I10)
WRITE(5,612)
612 FORMAT(I4,10X,21H**DYNAMIC LOAD TABLE**)

383
DO 86 I=1,NWF
*
C READ WAVEFORM SPECIFICATION CARD - CARD TYPE 10
*
C
READ(2,01)NWFT,NPTT
WRITE(5,615)NWFT,NPTT
615 FORMAT(LHC,2X,3X,3H1PRESSURE WAVEFORM, 11,5X,13HNO. OF POINTS=,13'1
WRITE(5,620)MOD(NUNIT)
620 FORMAT(LHC,2X,1HM,13X,1HT/., 23X,A4,11X,3HSEC/)
DO 86 J=1,NPT.
*
C READ P-T CARDS - CARD TYPE 11
*
C
READ(2,625)PTEM,ITEM
PPPI(I,J)=PTEM
TTTT(I,J)=ITEM
50 CONTINUE
WRITE(5,630)(PPPI(I,M),TTTT(I,M),M=1,NPTT)
56 CONTINUE
625 FORMAT(2F14.0)
630 FORMAT(1LX,F15.2,F15.6)
WRITE(5,635)
635 FORMAT(1HC,1LX,21H** TRIBUTARY AREAS **)
WRITE(5,640)NUNIT(NUNIT),AUNIT(AUNIT)
640 FORMAT(1HC,3X,4HNODE,12X,2HMAX,5X,2MID, 12X,2HAY,6X,2DI0,12X,2AT,2X,A7)
WRITE(5,650)
N3=3*NNODE
DO 75 K=1,N3
FAREA(K)=.0
75 CONTINUE
DO 75 K=1,NNDF
C READ TRIBUTARY AREAS CARDS - CARD TYPE 12
C
C
READ(2,660)ITEM,FXT,IDX,FYT,IDX
WRITE(5,665)ITEM,FXT,IDX,FYT,IDX
NXT=3*ITEM-2
NYT=3*ITEM-1
FAREA(NXT)=FXT
FAREA(NYT)=FYT
IF(NXT)=IDX
IDF(NXT)=IDX
75 CONTINUE
650 FORMAT(11C,10.0,11C,F10.6,11C)
655 FORMAT(5X,13,F15.2,17,F15.2,17)
IF(N0CADDR)=76,76,77
76 WRITE(5,701)UNFUN(NUNIT)
C READ ELEMENT UNIFORM LOADS DIRECTION INDICATOR CARD - CARD TYPE 13
C
C
READ(2,581)ISIGN,IDIR
581 FORMAT(2A1)
IF(ISIGN.NE,NSIGN(1))GO TO 71
NMULT=1
GO TO 72
71 IF(ISIGN.NE.NSIGN(2)) CALL EXIT
 NMULT=1
72 IF(I1)4.NE.IXORY(I)) GO TO 73
 ND1=NMULT
 GO TO 74
73 IF(I1)4.NE.IXORY(2)) CALL EXIT
 ND1=2*NMULT
74 AD1=ADIR
 AD1=ADIR*ABS(ADIR)
 DO 76: I=1,NMEM
 **
C READ ELEMENT UNIFORM STATIC LOADS CARDS - CARD TYPE 14
C **
 REAL(2,8.C1N,8GT
 NH4IF(IN)=ADIR*8GT
 IF(INJNT.EQ.1) WUNIF(N)=.CO98*WUNIF(N)
76: WRITE(5,659)N,8GT
7C1 FORMAT(1/I3,2x,LOAD PLUS LIVE LOAD/,,5x,4x,COM2D,5x,12x,UNIFORM
1 LOAD: /,16x,A8/)
C FORMULATION OF DOF
C **
77 DO 80 I=1,NNODE
 N=3*I
 NOR(IN-2)=NX1(I)
 NOR(IN-1)=NX2(I)
 NOR(IN)=NX3(I)
80 CONTINUE
 NFS=O
 NBO=O
 NOTOT=3*NNODE
 DO 85 L=1,NOTOT
 ND=NOl(L)
 IF(IND-1) 90,83,8J
85 NFS=NFS+1
 NFSDF(NFS)=L
 GO TO 85
83 NUD=NUO+1
 NUDF(NUO)=L
85 CONTINUE
C TOTAL NUMBERS OF FINAL STATIC DOF (NFSTL), BOUNDARY DOF(NB OTL)
C **
 N30TL=NUO
 NFSTL=NFS
C FORMULATE DYNAMIC DOF
C **
 DO 95 I=1,NNODE
 N=3*I
 WIN-2=WX(I)
 WIN-1=VI(I)
 WIN=0.0
95 CONTINUE
 NIN=O
 NDE=O
READ

DO 100 M=1,NFSOF(M)
 MTEMP=NFSOF(M)
 WWT=MTEMP/(G(NUNIT))
 IF(WWT.0.0.0,0.1,125,103,113)
109 NOE=NOE+1
 NOEJF(NOE)=NFSOF(M)
 GO TO 100
116 NIN=IN+1
 NINF(NIN)=NFSOF(M)
 WMAS(NIN)=WWT
100 CONTINUE
 NDETL=NOE
 NINITL=NIN

C TOTAL NUMBERS OF IND-DYNAMIC DOF(NINTL), DEPT-DYNAMIC DOF(NDETL)
C
C DETERMINE PAGE SKIP PARAMETER
C
 NN=IPRO + IPRHP
 IF(NN.226,226,225)
205 GO TO (206,212),NN
206 IF(IPRO-1).0.0.0,0.0,207
207 ICOJN=60/(NNODE+3)
 GO TO 215
208 IF(NELAS).0.0.0,209,210
210 ICOJN=60/(NME4+3)
 GO TO 215
212 IF(NELAS).0.0.0,213,214
213 ICOJN=60/(NNODE+2*NME4+7)
 GO TO 215
214 ICOJN=60/(NNODE+NME4+4)
215 IF(ICOJN).0.0.0,216,217
217 ICOJN=1
218 IF(NOEDT).0.0.0,219,220
219 WRITE(59230) TITLE
220 FORMAT(1H1,Z9X,18A4.,10X,16HRESPONSE HISTORY/)
220 RETURN
END

BEST_AVAILABLE COPY
SUBROUTINE ZERON(SIG)

INITIAL CONDITIONS

DIMENSION UMAX(3,3), UMIN(3,3), TMAX(30,3), TMIN(30,3)
DIMENSION R16(3), R0(64), R1(64), IIOI(30,3)
DIMENSION SABT(3,60), SAA(0,60), SBD(0,60)
DIMENSION CMNP(3,3), CMNV(3,3), CMPP(3,3), CMPV(3,3), CLPM(3,3),
1 CLPV(30,2), CLMV(30,2), CLNW(30,2)
DIMENSION GCMNP(3,2), GCMNV(3,2), GCMPP(3,2), GCMPV(3,2),
1 GMON(3,2), GLOAD(3,2), TGMNP(3,2),
1 TMONN(3,2), TIME(30,2)
DIMENSION FMY(3,3), CMY(3,3)
DIMENSION D1I(3), D1I(6), D81I(6), D1I(3), D1I(6), D81I(6), D1I(3)
1 AC(11), FARE(96), WES(64), PEP(3,2), TIT(3,2),
2 IMY(3,3), IMY(3,3), IMY(3,3), IMY(3,3), IMY(3,3),
3 EMF(3,3), DDISP(60)
DIMENSION JAY(3,3), JAY(3,3), JAY(3,3), JAY(3,3), JAY(3,3),
1 HP(3,3), MPB(3,3), NODEF(6,2), SEQ(6,2), SBA(6,6), SBA(6,6)
2 SNA(5,6), OLT(6,6), OLT(6,6), OLT(6,6), SEL(6,6,6,6)
3 NY(3,3), NY(3,3)
DIMENSION AK(8,3), JAX(96), JAY(96)
DIMENSION ILASTA(30), ILASTA(30)
DIMENSION TEBA(3,3), TEBA(3,3)
DIMENSION TITLE(3,3), NRX1(3,3), NRX2(3,3), NRX3(3,3)
DIMENSION RM(3,3), RM(3,3), RM(3,3), RM(3,3), RM(3,3),
1 DIMENSION PMMAX(30,3), PMMIN(30,3),
2 COMMON UMIN, UMAX, TMAX, TMIN
COMMON NSIG, INDEX
COMMON SAB, SAA, SBA
COMMON 4, ROR, ROR, IIOLO
COMMON PY, IPAC, IPAMP
COMMON NDT, LL, NMEM, NY, NLOAD, CMNP, CMNV, CMPP, CMPV, CLPM, CLPV, CLNW
COMMON NNODE, JA, JL, VEL, CL, CTY, AI, E, EPA, MPA, MPA, NINDF, NINDF
NINIT, NOEFL, IDF, FARE, WES, IMY, IMY, IMY, IMY, IMY, IMY,
2 TIT, AC, VEL, CMV, CMV, CMV, CMV, CMV,
3 SNA, OLT, OLT, OLT, OLT, OLT, OLT, OLT,
4 COMMON YFACT, PCC, SY, NSFL, AK, MATX1, MATX1, MATX2,
5 COMMON WNINF, NFS, NOIR, NRX1, NRX2, NRX3
N3 = NNODE
DO 10 N = 1, N3
10 TOL = 99, NSIG
GO TO 20, 99, NSIG
99 UMIN = 0.3
100 DO(N) = N, C
105 DO 200 N = 1, NI
200 WELS(N) = C
106 KK = NINDF(N)
GO TO 111, 111, NSIG
111 DISPM(N) = C
GO TO 120
111 DISPM(N) = U(KK)
120 K = IF(N)
IF(N) 20, 210, 220
ZERO

211 PDIF=0.0
 GO TO 225
220 PDIF=PPP(K,1)
225 ACFL(N) = AREA(KK)*PDIF/WMAS(N)
260 CONTINUE
 DO 300 N=1,NOEKL
 GO TO (250,275),NSIG
250 QQISP(N)=0.0
 GO TO 310
275 KK=KEDF(N)
 QQISP(N)=U(KK)
310 CONTINUE
 DO +30 N=1,NMEM

C INITI ALIZE PLASTIC ROTATION

IMY(A(N))=0
IMY(B(N))=0
TBA(N)=J,0
TBB(N)=J,0
IMYAT(N)=0
IMYBT(N)=0
ILASTA(N)=0
ILASTB(N)=0

C INITI ALIZE MAX MONAXIAL LOAD PLASTIC ROTATION

DO 15 I=1,2
CMY(M,N,I)=0.0
CMY(N,M,I)=0.0
CLOAD(N,M,I)=0.0
CMMP(N,M,I)=0.0
CMMN(N,M,I)=0.0
TIMEL(N,M,I)=0.0
CMNP(4,I)=0.3
CMNV(4,I)=0.0
CMVP(4,I)=0.0
CMVP(4,I)=0.0
CMVP(4,I)=0.0
CLPM(N,M,I)=-1.0
CLPV(N,M,I)=0.0
CLNM(N,M,I)=0.0
CLNV(N,M,I)=0.0
PXM(N,M,I)=0.0
PYM(N,M,I)=0.0
15 CONTINUE
 DO 16 I=1,6
 DO 16 IK=1,6
16 SEL(N,I,KK)=0.0

C TOTAL ELEMENT FORCES IN LOCAL CORD. ELMF

GO TO (399,401),NSIG
399 DO 305 NK=1,6
305 ELMF(N,NK)=0.0
 DO 306 NK=1,4
 RMAX(N,NK)=3.0

388
ZERO

RMIN(N,NK) = 0.0
TIM(N,NK) = 0.0
306 TMIN(N,NK) = 0.0
TC31A(N) = 0.0
T31B(M) = 0.0
400 CONTINUE
 DO 523 N = 1, NINTL
 R(3,N) = 0.0
523 R(N) = 0.0
 DO 527 N = 1, NDEL
527 R(N) = 0.0
 DO 800 N = 1, NMEM
 DO 623 I = 1, 2
800 IIOLJ(N,I) = 0
 DO 810 I = 1, NNODE
 DO 810 NN = 1, 3
 UMAX(N,N) = 0.0
 UMIN(N,N) = 0.0
 TMAX(N,NN) = 0.0
 TMIN(N,NN) = 0.0
810 CONTINUE
 RETURN
END
SUBROUTINE STIF

FORMULATION OF MEMBER STIFFNESS

DIMENSION UMAX(30,3),UMIN(30,3),UX(30,3),UY(30,3)
DIMENSION R(160),RD(160),IIOL(160,2)
DIMENSION SB(60,60)
DIMENSION CMNP(30,2),CNPV(30,2),CMPP(30,2),CMPV(30,2),GLPH(30,2),
GLPV(30,2),CLNM(30,2),CLNY(30,2)
DIMENSION CMOMP(30,2),CMONN(30,2),CLOAD(30,2),TMOMP(30,2),
TMOMN(30,2),TIMEL(30,2)
DIMENSION PY(30),PGXY(30)
DIMENSION SEL(30,6,6),SSY(90,90),.deleted(6),VL(30),CN(30),SN(30),
IA(30),AI(30),HAP(30),HPB(30),TT(6,6),ELM(6,6),CD(6,6),TT(6,6),
FS(6,6),
JJ(30),JB(30),SA(60,60),NDF(30),NDF(30),SBA(60,60),
4SBA(60,60),
SEQ(60,60),SAB(60,60),MCA(30),MCB(30)
DIMENSION IF(90),FAE(90),HMA(60),
AC(60),VEL(60),DISP(60),UT(90),PP(30,20),TTT(33,20),
SU(90),GDISP(30),DLT(60,1),DLT(60,1),ELM(60,60),YMY(33,2),
TBA(30),TB(30)
DIMENSION AK(60),MATX1(90),MATX2(90)
DIMENSION WUNI(30),WSDF(90),NRX1(30),NRX2(30),NRX3(30)
DIMENSION ILASTA(30),ILASTB(30)
DIMENSION TEBB(30),TEBA(30)
DIMENSION RMAX(30,4),RMIN(30,4),TIM(3,4),TMH(3,4)
DIMENSION TITLE(20)
DIMENSION PYMAX(30,2),PYMIN(30,2)
COMMON UMAX,UMIN,UX,UY
COMMON ICOUNT,NCOUNT,TITLE
COMMON RMAX,RMIN,TIM,TMH,TEB,TEBA
COMMON ILASTA,ILASTB,HILAS
COMMON UMAX,UMIN,UX,UY,TIM
COMMON NSkip,INDEX
COMMON SBA,SAB,SBB
COMMON R,RD,RDR,IOLO
COMMON PY,PY,PY,IPRMP
COMMON NOT,LL,HMEM,MY,
COMMON CLOAD,CMOMP,CMONN,TMOMP,TMOMN
COMMON CMNP,CNPV,CMPP,CMPV,CLPH,CLPV,CLNM,CLNY
COMMON NHODES,
COMMON J,JB,VL,CN,SN,A,AA,E,MPA,MBP,NIDF,NODEF,
COMMON NINTL,ND expectations, FAREA,WMA,MYAT,IMYB,PP,TIT,NIF,
COMMON 20T,AC(60),VEL(60),DISP(60),UT(90),PP(30,20),TTT(33,20),
COMMON J,JB,VL,CN,SN,A,AA,E,MPA,MBP,NIDF,NODEF,
COMMON NFMP,HSDF,AK,MATX1,MATX2
COMMON WUNI,WSDF,NOIR,NRX1,NRX2,NRX3,NLNODE
COMMON JJ,IF(L-1),5,5,27
COMMON 10,25 I=1,NMEN
COMMON MCA(30),MPA(30)
COMMON MCA(30),MPA(30)
COMMON MCA(30),MPA(30)
COMMON 125 MCA(30),MPA(30)
COMM
DO 30 I=1,NMEM
SNA=SN(I)
CNA=CN(I)
IF(IILL(I))=400,40,410
410 IF(ILASTA(I)-IMyat(I))=9,9
6 IF(ILASTB(I)-IMyBT(I))=9,6,15,9
9 DO 10 J=1,6
DO 10 K=1,6
10 SEL(I,J,K)=.0,.0

C FORMULATE ELEMENT STIFFNESS MATRIX

--
--
--
IMyat(I)=IMynt(I)
IMybt(I)=IMybt(I)
IF(MPA(I)-1)=430,43,43
435 MCA(I)=1
GO TO 450
450 MCA(I)=IMYAI(I)
440 IF(MPB(I)-1)=445,45,450
450 MCB(I)=1
GO TO 460
460 MCB(I)=IMYBT(I)
460 SPAN=VI3(I)
AREA=A(I)
VI3=A(I)
EE=AREA*E/SPAN
EIL=E*VI3/SPAN
AA=.400*EIL
BB=.200*EIL
CC=.600*EIL/SPAN
DD=.200*CC/SPAN
FF=3.00*EIL
GG=CC/2.0
HH=DD/4.0

IF(MCA(I)-1)=35,40,40
35 IF(MCB(I)-1)=45,50,50
45 S1=EE
S2=CC
S3=DD
S4=AA
S5=CC
S6=BB
S7=AA
GO TO 70
50 IF(MPB(I)-1)=51,52,51
52 CP=0.0
CQ=1.0
CAL=1.0
GO TO 94
51 CP=YFACT
CQ=1.0-YFACT
CAL=YFACT
94 S1=CAL*EE
S2=CP*CC+CQ*GG
S3=CP*DD+CQ*HH
S4=CP*AA+CQ*FF

391
STIF

S5=GP*CC
S6=GP*BB
S7=GP*AA
GO TO 70
45 IF(MPB(I)=1) 55,60,60
55 IF(MPA(I)=1) 56,57,56
57 CP=0.0
CQ=1.0
CAL=1.0
GO TO 58
58 CP*YFACT
CQ*1.0=YFACT
CAL=YFACT
50 S1=CAL*EE
S2=CP*CC
S3=CP*DD+CQ*HH
S4=CP*AA
S5=CP*CC+CQ*GG
S6=CP*BB
S7=CP*AA+CQ*FF
GO TO 70
60 IF(MPA(I)=1) 61,62,61
62 IF(MPB(I)=1) 65,63,65
63 CP=0.0
CQ=0.0
CAL=1.0
GO TO 64
64 IF(MPB(I)=1) 69,68,68
68 CP=0.0
CQ=YFACT
CAL=YFACT
GO TO 58
69 CP=YFACT
CQ=1.0=YFACT
CAL=YFACT
GO TO 64
65 CP=0.0
CQ=YFACT
CAL=YFACT
GO TO 58
64 S1=CAL*EE
S2=CP*CC
S3=CP*DD
S4=CP*AA
S5=CP*CC
S6=CP*BB
S7=CP*AA
70 SEL(I,1)=S1
SEL(I,1,1)=S1
SEL(I,1,2)=S3
SEL(I,2,1)=S2
SEL(I,2,2)=S3
SEL(I,2,3)=S5
SEL(I,3,1)=S2
SEL(I,3,2)=S5
SEL(I,3,3)=S4

392
STIF

```
SEL(I,3,5)=-.2
SEL(I,3,6)=.3
SEL(I,4,1)=-51
SEL(I,4,4)=.51
SEL(I,5,2)=-53
SEL(I,5,3)=-52
SEL(I,5,6)=-53
SEL(I,6,2)=55
SEL(I,6,3)=56
SEL(I,6,5)=55
SEL(I,6,6)=57
```

C

```
*******************************************************************************
C FORMULATE TRANSFORMATION MATRIX TO ORIENTATE ELEMENT STIFFNESS
C WITH RESPECT TO GLOBAL COORDINATE SYSTEM
***********************************************************************
```

```
615 CALL TRANS(CNA,SNA,T)
DO 80 K=1,6
DO 80 L=1,6
80 TT(K,L) = T(L,K)
DO 90 K=1,6
DO 90 L=1,6
90 ELM(K,L) = SEL(I,K,L)
DO 550 K=1,6
DO 550 L=1,6
C(K,L) = 0.0
DO 555 M=1,6
550 C(K,L) = C(K,L) + TT(K,M) * ELM(M,L)
DO 560 K=1,6
DO 560 L=1,6
FES(K,L) = C(K,L)
560 CONTINUE
```

```
C
C PARITION SYSTEM STIFFNESS MATRIX
C
```
115 DO 110 K=1,NINTL
 NN=NEDOF(K)
 DO 120 L=1,NINTL
 MM=NEDOF(L)
120 SAA(K,L)=SSY(INN,MM)
 DO 125 L=1,NDETL
 MM=NEDOF(L)
125 SBA(K,L)=SSY(INN,MM)
 CONTINUE
 DO 130 K=1,NDETL
 NN=NEDOF(K)
 DO 135 L=1,NINTL
 MM=NEDOF(L)
135 SBB(K,L)=SSY(INN,MM)
 CONTINUE
140 SBB0(K,L)=SBB(K,L)
130 CONTINUE
135 CONS=SBB(I,1)
 DO 145 I=1,NDETL
 K=NDETL*(I-1)+1
 L=NDETL*I
 M=0
 DO 146 J=K,L
 M=M+1
145 AK(I,J)=SBB(I,M)/CONS
 CALL SUBROUTINE MINV TO INVERT MATRIX SBB
 CALL MINV(AK,NDETL,DET, MATX1, MATX2)
 DO 146 I=1,NDETL
 K=NDETL*(I-1)+1
 L=I*NDETL
 M=0
 DO 146 J=K,L
 M=M+1
146 SBA(I,M)=AK(I,M)/CONS
 HERE SBA IS INVERSE OF ORIGINAL SBB
 DO 500 K=1,NINTL
 DO 500 L=1,NDETL
 SEQ(K,L)=0.0
 DO 500 LK=1,NDETL
 500 SEQ(K,L)=SEQ(K,L)+SBA(K,LK)*SBB(LK,L)
 DO 503 K=1,NINTL
 DO 503 L=1,NINTL
 SYY(K,L)=0.0
 503 SYY(K,L)=SYY(K,L)+SEQ(K,LK)*SBA(LK,L)
 DO 510 K=1,NINTL
 DO 510 L=1,NINTL
 510 SEQ(K,L)=SAA(K,L)-SYY(K,L)
 HERE SEQ=(SAA)-(SBA)*(INV SBB)*(SBA)

394
STIF

C

555 RETURN
END
STATIC ANALYSIS ROUTINE

DIMENSION TITLE(ZC)
DIMENSION SSt'(_90_9y)t
DIMENSION NSD(90_9y)*CN(_3G_*VL(_33)*
DIMENSION AK(90),MATX(90),MATX2(90)
DIMENSION MPA(30),MPB(30),TEBA(30)
DIMENSION UNIT(2,2),XLUNIT(2),FMUNIT(2,2)

DATA XLUNIT/B(MM),H(IN)/
DATA SNUNIT/S(15),SN(15),6H (KN-M),6H (LR-IN)/
DATA FMUNIT/KG,6H(LBS),6H (KN-M),6H (LR-IN)/

CONJU FIXED ENDED REACTIONS FOR UNIFORM LOADS ON ELEMENTS

DO 500 I=1,NMEM
IF(JUNIF(I))=6,4,6
DO 5 K=1,6
ELMF(I,K)=0.0
GO TO 32
6 DO (10,20) ,LDIR
10 PX= CN(I)*WUNIF(I)
RXW=WUNIF(I)*SN(I)
GO TO 36
20 PX= SN(I)*WUNIF(I)
RXW=WUNIF(I)*CN(I)
30 PY=SRT((WUNIF(I)2-((PX**2))**2)**
XX=SN(I)
YY=CN(I)
RXY=CN(I)
RXY=SN(I)
RXW=RXY

ELMF(I,K) = -5*PX*VL(I)
ELMF(I,K) = -5*PY*VL(I)
IFRX £LEMKH>15.13,15
13 DO 1 K=2,3
ELMF(I,K)=0.0
14 ELMF(I,K+3)=0.0
GO TO 32

AV=ABS(RXYDRXW)
DIR=RXYURXW/AV
KK=MPA(I) +MPB(I)
IF(KK) £LEMKH>31.26
26 DO (21,31),KK

24 ELMF(I,2) = (3.0*PY*VL(I)2)*AV/8.0**
ELMF(I,3) = 0.0
ELMF(I,6) = (5.0*PY*VL(I)2)*AV/8.0**

GO TO 32
25 ELMF(I,2) = -3.0*PY*VL(I)*DIR/8.0
 ELMF(I,3) = -1.5*DIR*PY*(VL(I)**2)/8.0
 ELMF(I,3) = -3.0*PY*VL(I)*DIR/8.0
 ELMF(I,6) = 0.0
 GO TO 32
31 ELMF(I,2) = -5.0*PY*VL(I)*DIR
 ELMF(I,3) = -5.0*PY*VL(I)*DIR
 IF (KK) 33, 33, 34
33 ELMF(I,6) = DIR*PY*(VL(I)**2)/12.0
 ELMF(I,6) = DIR*PY*(VL(I)**2)/12.0
 GO TO 32
34 ELMF(I,3) = C.0
 ELMF(I,6) = C.0
32 CNA = CN(I)
 SNA = SN(I)

 CALL SUBROUTINE TRANS TO TRANSFORM FIXED END ELEMENT REACTIONS
C TO GLOBAL SYSTEM

 CALL TRANS(CNA, SNA, T)
 DO 23 J = 1,6
 DO 28 K = 1,6
23 T(J,K) = T(K,J)
 DO 23 J = 1,6
 P(J) = C.0
 DO 29 K = 1,6
29 P(J) = P(J) + T(J,K) * ELMF(I, K)
 DO 120 K = 1,3
 ND0F = 3*JA(I) - 3 + K
 DO 32 J = 1, NFS
 IF (ND0F - NSDOF(J)) 150, 35, 50
35 U(J) = U(J) - P(K)
 GO TO 100
50 CONTINUE
100 CONTINUE
 DO 230 K = 1,6
 ND0F = 3*JB(I) - 6 + K
 DO 130 J = 1, NFS
 IF (ND0F - NSDOF(J)) 150, 35, 150
135 U(J) = U(J) - P(K)
 GO TO 200
150 CONTINUE
200 CONTINUE
500 CONTINUE
 IF (NLNODE) 260, 250, 210
710 WRITE(5, 99999) FUNIT(NUNIT, 1), (FUNIT(NUNIT, J), J = 1, 2)
 DO 750 I = 1, NLNODE
 ###
 CALL READ NOGAL POINTS STATIC LOADS CARDS - CARD TYPE 15
 ###
 READ(2, 1000) JT, (DEL(J), J = 1, 3)
 WRITE(5, 10001) JT, (DEL(J), J = 1, 3)
 IF (NUNIT.EQ.2) GO TO 714
 DO 713 J = 1, 3
713 DEL(J) = 0.008*DEL(J)
 ###
COMPLETE ASSEMBLY OF STATIC FORCE MATRIX

714 DO 725 J=1,J,3
 NODE=3*J*J-1)+J
 DO 722 K=1,NFS
 1F(NODE-NFSDF(K))-723,715,720
 715 U(KI)=U(K)+DEL(J)
 GO TO 725
720 CONTINUE
725 CONTINUE
750 CONTINUE

9999 FORMAT(1H ,23X,24HSTATIC LOADS-JOINT LOADS,//3X,4HNODE,17X,2HFX,18
1X,24FY,18X,2HMX,77X,23X,A5,:5Y,A5,13X,A8/I)
1000 FORMAT(11,3F12.3)
1001 FORMAT(1X,12,1X,9,1E13.3,10X,210)/
760 DO 1001 I=1,NFS
 KK=NSDFD(I)
 K=NFS*(K-1)+1
 L=I*NFS
 M=0
 DO 1031 J=K,L
1031 AK(IJ) =SY(KL)
 CONS=AK(I)
 M=M+1
 LL=NSDFD(M)
1031 AK(IJ) =SY(KL)
 CONS=AK(I)
 M=M+2
 DO 1002 I=1,MM
1002 AK(I)=AK(I)/CONS

C **CALL SUBROUTINE MINV TO INVERT SYSTEM STIFFNESS MATRIX**
C
 CALL MINV(AK,NFS,DETR,MAT1,MAT2)
 DO 1033 I=1,NFS
 K=NFS*(K-1)+1
 L=I*NFS
 M=0
 DO 1033 J=K,L
1033 UYY(I,M)=AK(IJ)/CONS

C **COMPUTE NODAL DISPLACEMENTS**
C
 DO 2000 I=1,NFS
 DEL(I)=0.0
 DO 2000 J=1,NFS
2000 DEL(I)=DEL(I)+SY(I,J)*U(J)
 NODE=3*MNOD
 DO 2100 I=1,NODE
2100 UN(I)=5.0
 DO 2200 I=1,NFS
 K=NSDFD(I)
2200 U(K)=DEL(I)

C **COMPUTE ELEMENT END LOADS AND ROTATIONS**
C
 DO 1000 I=1,NMEM
CALL SUBROUTINE TRANS TO TRANSFORM ELEMENT LOADS TO LOCAL SYSTEM

CALL TRANS(CNA, SNA, T)

DO 2300 K=1,3

2300 NSFJF(K)=3*JA(I)-3*K

DO 2400 K=4,6

2400 NSFJF(K)=3*JV(I)-6*K

DO 2500 K=1,6

N=NSFJF(K)

2500 P(K)=U(N)

DO 2600 J=1,6

2600 AK(J)=AK(J)*SEL(I+K)*AK(J)

IF(AK(3)) 2701, 2702, 2705

2701 TE3(I)=((AK(3))-((AK(5)-AK(2))/VL(I)))*57.29577951

2702 IF(AK(6)) 2705

2703 TE3(I)=((AK(5)-AK(2))/VL(I)))*57.29577951

2705 CONTINUE

PRINT NODAL DISPLACEMENTS AND ELEMENT END LOADS

WRITE (5,999) TITLE

999 FORMAT (1H1, 20X, 20A4)

WRITE(5,5000) NUNIT

5000 FORMAT (1H1, 20X, 9HDIAGONAL AND LIVE LOAD DISPLACEMENTS AND MEMBER LOAD)

WRITE(5,5615) XUNIT(NUNIT), XLUNIT(NUNIT)

DO 4000 J=1,NNODE

4000 FORMAT (1H1, 20X, 3X, 9HMEM

WRITE(5,5950) 1, 2, 3 X,E12.4)

WRITE(5,5615) FMUNIT(NUNIT, 1), FMUNIT(NUNIT, J), J=1,2

WRITE(5,5950) 1, 2, 3 X,E12.4)

WRITE(5,5615) FMUNIT(NUNIT, J), J=1,2

WRITE(5,5950) 1, 2, 3 X,E12.4)
8000 FORMAT(1X,10E12.4)
8000 FORMAT(10I8)
IF(NCOUN-NCOUN)9001,8999,8999
8999 WRITE(5,4999).TITLE
NCOUN=0
9001 WRITE(5,9050)
9050 FORMAT(/1X,16HRESPONSE HISTORY/)
 RETURN
 END
SUBROUTINE JYDIS
DIMENSION UMAX(30,3),UMIN(30,3),TMX(30,3),TMN(30,3)
DIMENSION R(60),RD(60),RQ(60),IIOLOD(30,2)
DIMENSION SAS(60,60),SABA(60,60),SABJ(60,60)
DIMENSION CMPP(3C,2),CMNV(3C,2),CMPV(3C,2),CLPM(3C,2),
CLPV(3C,2),CLNM(3C,2),CLNV(3C,2)
DIMENSION CHMPP(3C,2),CHMNM(30,2),CMOAO(3C,2),CMOMP(3C,2),
CMOMP(3C,2),CMOMP(3C,2),TOMP(3C,2),
TOMP(3C,2),TOMP(3C,2),TOMP(3C,2)
DIMENSION PY(3C),PYR(3C),
DIMENSION AA(60),BB(60),PEF(60,1),NINDF(60),IDF(90),
FAR(50),WMA(60),SEQ(60,60),ACEL(60),
VELS(60),CJ(9C),PPP(3C,2),TTT(3C,2C),
SOLT(60,1),SAN(60,60),SBA(66,69),DISP(60),
DIMENSION JAN(3C),JBN(3C),VN(3C),SN(3C),A1(3C),AI(3C),
LPMP(3C),LMPB(3C),IMMY(3C),IMY(3C),SEL(3C,6,1),
2LYM(30,6),VYM(30,2),IMYM(3C),IMY(3C),TBA(3C),TBB(3C),
NSDF(90)
DIMENSION AK(81C),MAT(3C,9C),MATXX(90)
DIMENSION ILASTA(30),ILASTB(30)
DIMENSION TEBBA(3C),TEBA(3C)
DIMENSION TITLE(20),PP(3C),NSTA(3C)
DIMENSION RMX(3C,4),RMN(3C,4),TMX(3C,4),TMN(3C,4),UU(3)
DIMENSION DUNIT(2)
COMMON UUNIT,PMAX,PYMIN
COMMON ICOUN,NCOUN,TITLE
COMMON RMX,MIN,TMN,TMX,TEBA,TEBB
COMMON ILASTA,ILASTB,NELAS
COMMON UMAX,UMIN,TMX,TMN
COMMON NSKIP,INDEX
COMMON SAB,SAA,SBA
COMMON P,Y,P,C,K,M
COMMON NUT,LL,LN,MHE,YMY,
COMMON CD3D,CMOMP,CMNOMP,THOMP,THOMP,
COMMON LMIL,CMNP,CMNP,CMNP,CMNP,CMNP,CMNP,CMNP
COMMON NNODE,JA,JV,LCN,SVX,AS,AE,MAP,MAPF,NNDF,NOEDF,
COMMON NMD,NUMTL,ID,JF,FAR,WMAS,IMYAT,IMYBT,TTT,NMF,
COMMON 2OT,ACEL,VELS,DAMP,SEQ,DISP,UV,DU,DISP,SV,BA,
COMMON SOLT,SOLTO,SEL,ELMF,IMYA,IMYB,TBA,TBB
COMMON YFACT,PCRY,CI
NSDF(=AK,MATXX)
DATA DUNIT(=HMF),MHS(=1)/
**
INITIALIZATION
**
IF(LL1=1)90,99,99
90 DO 95 N=1,NMF
95 NSTA(N)=1
99 TIME=LL*DT
C2=3JT/2.0
C3=.5/OT
C4=3/OT
C5=C3/DT
C6=4.0/OT
DO 230 N=1,MINTL
AA(N)=OT*VELS(N)+(OT**2.0)*ACEL(N)/3.0
BB(N)=VELS(N)*C2*ACEL(N)

401
DO 205 N=1,NINTL
PEF(N,1)+PEF(N,1)-SEQ(N,J)*AA(J)
205 CONTINUE

CALCULATION OF EFFECTIVE INCREMENTAL LOAD

DO 100 N=1,NINTL
L=N+1
DOT=TTT(N,L)-TTT(N,L-1)
DOP=PPP(N,L)-PPP(N,L-1)
IF(DOT)110,110,120
110 SLOPE=DOP/DOT
120 CONTINUE

CONTINUE

C CONTINUE

CALL INTV(NINTL)

CALCULATION OF EFFECTIVE INCREMENTAL STIFFNESS

DO 370 NN=1,NINTL
C(N,NN)=0.0
370 CONTINUE

CONTINUE

CALL INCREMNTAL DISPLACEMENT

CONT=+(,11,1)
DO 376 I=1,NINTL
K=NINTL*(I-1)+1
L=I+NINTL
I=0
376 CONTINUE

CALC INCREMNTAL STIFFNESS MATRIX

CALL MINV(AK,NINTL,DETR,MA, MATK2)
DO 377 I=1,NINTL
DO 460 N=1,NINTL
 MN=NI0DF(N)
 UM(N)=DISP(N)
460 DO 470 N=1,NOETL
 MN=NE0DF(N)
 UM(N)=DISP(N)
470 CONTINUE

DO 800 N=1,NNGDE
 N1=3*N-2
 N2=3*N-1
 N3=3*N
 UU(1)=U(N1)
 UU(2)=U(N2)
 UU(3)=U(N3)
 DO 850 N=1,3
 UMAX(N,N)=uumax(N,N)
 UMIN(N,N)=umin(N,N)
 UU=UU(NN)
810 IF(UU-UMAX(N,N)) GT 0.00
820 IF(UU-UMIN(N,N)) LT 0.00
830 CONTINUE

CONTINUE
800 IF(IPRO=1)600,610
810 IF(NINDEX=1)660,612
820 IF(NCOUN=ICOUNT)614,613
830 WRITE(5,90)TITLE
90 FORMAT(1H1,20X,20A4)
 NCOUN=0
914 WRITE(5,620) TIME
 NCOU=NCOU + 1
620 FORMAT(1H1,SHTIME=*E12.4,4H SEC)
 WRITE(5,615)UNTIT(UNIT),UNIT(UNIT)
615 FORMAT(1H1,5X,4MNODE,9X,7H=DISPL,8X,7H=DISPL,7X,6HRotation,
 1 15X,A4,11X,A4,10X,S5(0DEG)),

PRINT NODAL DISPLACEMENTS

DO 830 N=1,NNGDE

404
N1=3*N-2
N2=3*N-1
N3=3*N
ROT=57.29577951*U(N3)
UO1=U(N1)
UO2=U(N2)
IF(NUNIT.EQ.2)GO TO 630
UO1=1000.0*UO1
UO2=0.0*UO2
630 WRITE(6,6)U(N),UO1,UO2,ROT
640 FORMAT(8x,12,3f13x,E12.4)
650 RETURN
END
SUBROUTINE ELEFD
CALCULATION OF ELEMENT FORCES AND DEFORMATIONS

DIMENSION UMAX(30,3), UMIN(30,3), TMX(30,3), TMIN(30,3)
DIMENSION R(6,1), RO(6,1), RD(6,1), IIOLO(32,2)
DIMENSION SAB(60,60), SAA(60,60), SBB(60,60)
DIMENSION CMP(30,2), CNV(30,2), CMPP(30,2), CLPM(30,2),
CLPV(30,2), CLNM(30,2), CLNV(30,2)
DIMENSION CHOMP(30,2), CMNN(30,2), CLOAD(30,2), TMOMP(30,2),
TMN(30,2), TMEL(30,2)
DIMENSION PY(30), P(30)
DIMENSION JA(3), JB(3), NDNL(6), UI(9C), OUT(90), ELMU(6,1), ELMO(6,1), SEL(30,6),
2 ELMO(6,5), TELMO(6,1), C(6,1), ELMF(6,1), ELMF(30,3), YMY(30,2),
3 JIMAT(33), JMB(30), VL(30),
4 JMYA(30), JIMYB(30), TBA(30), TBB(30)
DIMENSION AAI(30), AII(30), NGM(60), NDIF(60), ID(90),
1 FAKEA(90), WMAS(60), PPP(30,20), TTT(30,20)
DIMENSION AC(60), VEL(61), SE(60,60), OS(60),
1 ODIS(60), SAB(60,60), SAA(60,60), DLTN(60,1), DOLTN(60,1)
DIMENSION FAT(90,90), NSDF(90)
DIMENSION ILAST(30), ILASTB(30)
DIMENSION TEBB(30), TBA(30), SUMA(30), SUMB(30)
DIMENSION TITLE(20)
DIMENSION RMAX(6,4), RMIN(6,4), TIM(30,4), TMN(30,4)
DIMENSION PYMAX(33,2), PYMIN(33,2)
DIMENSION FUNT(2,2)
COMMON NUNIT, PYMAX, PYMIN
COMMON ICOUN, NCOUN, TITLE
COMMON RMAX, RMIN, TIM, TMN, TEBB, TBE
COMMON ILAST, ILASTB, NELS
COMMON UMAX, UMIN, TMX, TMIN
COMMON NSKIP, INDEX
COMMON SAB, SAAS, SBB0
COMMON R, RO, RD, IIOLO
COMMON PY, IPDP, IPRM
COMMON NOT, LL, NMEM, YMY,
1 COMMON CJAD, COMP, CMNN, TMOMP, TMNN,
1 TIMEL, CMP, CNV, CMP, CMPP, CLPM, CLPV, CLNM, CLNV
COMMON NNODE, JA, JB, VL, CH, SQ, A11, E, MPA, MB, NGM, NDIF, ID,
1 INTL, NDNL, IDF, FAREA, WMAS, IMMAT, IMYB, PPP, TTT, NWF,
2 DT, AC(6,1), VEL, DAMP, SEQ, DQSP, U,
3 DU, ODISP, SAB, SBA,
4 DOL, DOLTN, SEL, ELMF, CMNY, IMYB, TBA, TBB
COMMON AFAT, GRY, FAT, NSDF
DATA FUNT/5H(KNS), 5H(LOB), 8H(KN-N), 8H(L9-IN)/
TIME=LL*DT

C COMPUTE ELEMENT FORCES IN LOCAL COORDINATE

DO 900 M=1, NMEM
NA=JA(M)
NB=JB(M)
NDNL(1)=3*NA-2
NDNL(2)=3*NA-1
NDNL(3)=3*NA
NDNL(4)=3*NB-2
NDNL(5)=3*NB-1
NDNL(6)=3*NB
DO 10 K=1, 6
CALL SUBROUTINE TRANS TO COMPUTE ELEMENT END LOADS IN ELEMENT COORDINATE SYSTEM

CALL TRANS(CNA,SNAT)
DO 20 K=1,6
DO 20 KK=1,6
20 ELMF(K,KK)=SEL(M,K,KK)
DO 550 I=1,6
TELMO(I,1)=0.0
DO 550 J=1,6
550 TELMO(I,1)=TELMO(I,1)+T(I,J)*ELMU(J,1)
DO 560 I=1,6
C(I,1)=0.0
DO 560 J=1,6
560 C(I,1)=C(I,1)+T(I,J)*ELMU(J,1)
DO 570 I=1,6
ELMOF(I,1)=0.0
DO 570 J=1,6
570 ELMOF(I,1)=ELMOF(I,1)+ELMT(I,J)*C(J,1)

CALL SUBROUTINE POEL TO COMPUTE EQUIVALENT SHEARS FOR THE P-DELTA AND BEAM COLUMN EFFECTS

CALL POEL(TELMF,ELMFO,EMF0,EMF,VL,2,ROR,NINTL,NOEL,NDF,NDOF,1,TEMF1,TEMF3,TEMF4,TEMF6)
DO 30 K=1,6
30 ELMF(M,K)=ELMF(M,K)+ELMOF(K,1)
IF(NELAS).GT.31.31.350
31 YM=YM+YMY(M,1)
YP=YP+PY(M)
EM=ELMF(M,3)
EP=ELMF(M,1)
IOLD=IOLD(M,1)
PQR=PQR(M)

CALL SUBROUTINE YIELD TO DETERMINE WHETHER ELEMENT IS IN ELASTIC OR PLASTIC CONDITIONS

CALL YIELD(EM,EP,YM,YP,IX,TP,IOLD,TEMF1,TEMF3,PQR,SUM1,SUMM)
SUMP(M)=SUM1
SUMA(M)=SUMM
IOLDIN(1)=IOLD
ILASTA(M)=IYAT(M)
IYMAT(M)=IX
EM=ELMF(M,6)
IOLD=IOLD(M,2)
ELEFD

YM=YM(Y,M,2)
EP=E=ELM(F,4)
CALL YELD(TEM,EP,YM,YP,IX,TM,TP,ILOD,TEMF4,TEMF6,ECR,SUM1,SUMM)
SUMB(Y)=SUMM
IIOI3(6)=IIOO
LASTB(M)=IYBT(M)
IMYBT(M)=IX

C COMPUTE ELASTIC AND/OR PLASTIC ELEMENT END ROTATIONS

SKA=1.0*AI(3)/VLM(M)
SKB=SKA/2.0
DALPH=(C15+11-C12+11)/VLM(M)
TEM1=C16+11-DALPH
TEM2=C13+11-DALPH
TEM1=TEM1*57.29577951
TEM2=TEM2*57.29577951
IF(MYB(M)-1)60,65,65
60 IF(IMP(M)-1)70,75,75
70 DBA =4.0
DBB =J.C
IF(IBA(M),NE,0.0)IBA(4)=C.0
IF(IBB(M),NE,0.0)IBB(M)=0.0
45 TBA(M)=TBA(M)+TEM2
50 TBB(M)=TBB(M)+TEM1
GO TO 100
75 DBA =0.0
IF(IBA(M),NE,0.0)IBA(M)=0.3
IF(MPA(M)-1)80,85,85
80 DBB =TEM1
GO TO 100
81 IF(MSDF(M)-1)81,85,81
81 IF(TBA(M)=184,86,84
83 DBB=TEM2*SKA/SKA
GO TO 86
84 DBB =TEM1*TEM2*SKA/SKA
86 IF(C13+11)=82,100,82
82 TBA(M)=TBA(M)+TEM2
GO TO 100
65 IF(IMYB(M)=1)90,95,95
90 DBB =TEM1
DBB =TEM2
GO TC 100
93 IF(IMP(M)-1)97,98,98
98 DBB =3.0
DBB =TEM2
GO TO 10C
99 IF(INSDF(M)=2)199,98,99
100 DBB =4.0
IF(IBB(M),NE,0.3)IBB(M)=C.0
IF(TBA(M)=103,162,103
102 DBA=TEM1*SKA/SKA
GO TO 104
103 DBB =TEM2*TEM1*SKB/SKA
104 IF(C15+11)=101,100,101
111 TBB(M)=TBB(M)*TEM1

408
ELEFD

100 TBA(M)=TBA(M)+DBA

TBA(M)=TBA(M)+D8B

**

RECORD MAXIMA AND MINIMA OF ELEMENT END ROTATIONS

**

399 IF(RMAX(M,1)=TEBA(M))=230,210,210

200 IF(RMAX(M,2).GT.0.0)GO TO 210

RMAX(M,2)=TEBA(M)

TIME(M,1)=TIME

210 IF(RMAX(M,2)=TBA(M))=220,230,230

220 RMAX(M,2)=TBA(M)

TIME(M,1)=TIME

RMAX(M,1)=TEBA(M)

TIME(M,1)=TIME

PYMAX(M,1)=ELMF(M,1)/PY(M)

230 IF(RMAX(M,3)=TEBB(M))=240,250,250

240 IF(RMAX(M,4).GT.0.0)GO TO 250

RMAX(M,3)=TEBB(M)

TIME(M,3)=TIME

250 IF(RMAX(M,4)=TBA(M))=260,270,270

360 RMAX(M,4)=TBA(M)

TIME(M,4)=TIME

RMAX(M,3)=TEBB(M)

TIME(M,3)=TIME

PYMAX(M,2)=ELMF(M,2)/PY(M)

270 IF(RMIN(M,1)=TEBA(M))=280,290,290

280 IF(RMIN(M,1).LT.0.0)GO TO 290

RMIN(M,1)=TEBA(M)

TIME(M,1)=TIME

290 IF(RMIN(M,2)=TBA(M))=300,310,310

300 RMIN(M,2)=TBA(M)

TH=M(2)=TIME

RMIN(M,1)=TEBA(M)

TIME(M,1)=TIME

PYMIN(M,1)=ELMF(M,1)/PY(M)

310 IF(RMIN(M,3)=TEBB(M))=320,330,330

320 IF(RMIN(M,3).LT.0.0)GO TO 330

RMIN(M,3)=TEBB(M)

TIME(M,3)=TIME

330 IF(RMIN(M,1)=TBA(M))=340,350,350

340 RMIN(M,4)=TBB(M)

TIME(M,4)=TIME

RMIN(M,3)=TEBB(M)

TIME(M,3)=TIME

PYMIN(M,2)=ELMF(M,2)/PY(M)

C

**

RECORD MAXIMA AND MINIMA OF ELEMENT END LOADS

**

310 IF(ELMF(M,3).LT.0.0)GO TO 410

410 IF(ELMF(M,3)=CMON(M,1))=410,425,425
ELEFO

425 CMOMP(M,1) = ELMF(M,3)
 CHPP(M,1) = ELMF(M,1)
 CHPV(M,1) = ELMF(M,2)
 TMOMP(M,1) = TIME
415 IF(ELMF(M,6)) 430, 435, 435
420 IF(ELMF(M,6) = CMOMP(M,2)) 450, 455, 455
430 CMOMP(M,2) = ELMF(M,1)
 CHPV(K,2) = ELMF(M,3)
 TMQNM(M,2) = TIME
440 GO TO 455
435 IF(ELMF(M,6) = CMOMP(M,2)) 455, 455, 460
440 CLPP(M,2) = ELMF(M,6)
 CMPP(M,2) = ELMF(M,5)
 TMOMP(M,2) = TIME
450 IF(ELMF(M,1)) 470, 475, 475
445 IF(ELMF(M,1) = CLPP(M,2)) 480, 490, 490
455 CLPP(M,1) = ELMF(M,1)
 CMPP(M,1) = ELMF(M,3)
 CHPV(K,1) = ELMF(M,6)
 CLPV(K,1) = ELMF(M,5)
 TMQNM(M,1) = TIME
460 GO TO 490
450 CLPP(M,1) = ELMF(M,1)
 CMPP(M,1) = ELMF(M,3)
 CHPV(K,1) = ELMF(M,6)
 CLPV(K,1) = ELMF(M,5)
 TMQNM(M,1) = TIME
490 CONTINUE
460 IF(IPRTPM) 1, 603, 610
470 IF(INDEXW=1) 660, 603, 603
480 IF(IPRTPD=1) 1, 604, 604
490 IF(INCOU=604) 607, 607, 607
500 WRITE(5, 1001) TITLE
1001 FORMAT(1H1, 20.X, 20.A4)
 NCOUN = 0
503 WRITE(5, 630) FUNIT(NUNIT + 1), (FUNIT(NUNIT + K), K = 1, 2), (FUNIT(NUNIT + K),
1 K = 1, 2)
615 FORMAT(5X, 4H4, H, ELEM, 9X, 2HHPA, 8X, 5HPA, PG, 13X, 2HVA, 12X, 2HMA, 10X,
16HMA/MAA, 10X, 2HVP, 17X, 2HMB, 10X, 6HMB/HKB, 17X, A5, 23X, A5, 8X, A8, 21X,
2 A5, 8X, A8)
700 **
705 PRINT ELEMENT LOADS AND ROTATIONS
710 **
715 DO 630 N = 1, NMEM
620 WRITE(5, 640) ELMF(N, 1), SUM(N), (ELMF(N, M), M = 2, 3), SUMA(N),
1 ELMF(N, M), M = 5, 6), SUMB(N)
630 FORMAT(8X, 12, 8(1X, E11.4))
800 CONTINUE
810 IF(NELAS) 1002, 1002, 600
1002 .TE(5, 1000)

410
ELEFO

1060 FORMAT(/25X,32HELEMENT END ROTATIONS IN DEGREES, /,24X,5HEND A,
123X,54END B, /, /,6X,4HELEM, 5X, 7HELASTIC, 7X, 7H
2PLASTIC, 7X, 7HELASTIC, 7X, 7H)
DO 635 N=1,NMEM
RAT=ABS(ELMF(N,1)/PY(N))
WRITE(5,640) N, TEB(N), TBA(N), TEBB(N), TBB(N), RAT
635 CONTINUE
600 RETURN
END
SUBROUTINE PRINT

DIMENSION UMAX(30,3),UMIN(30,3),TMAX(30,3),THMIN(30,3)
DIMENSION R(30,3),RD(30,3),RDIOLD(30,2)
DIMENSION S(60),SAA(60,60),SBBD(60,60)
DIMENSION CMPV(30,2),CNPV(30,2),CMPV(30,2),CLPM(30,2),
1CLPM(30,2),CLNM(30,2),CLNV(30,2),PY(30),JA(30),JB(30)
DIMENSION CHOMP(30,2),CMOMN(30,2),CLOAD(30,2),THOMP(30,2),
1TMOM(30,2),TIME(30,2),YM(30,2),JOINT(3)
DIMENSION ILASTA(30),ILASTB(30)
DIMENSION TEB(30),TEB(30),OUTR(30,4)
DIMENSION TITLE(30)

COMMON ICOUN,NICOUN,TITLE
COMMON RMAX,RMIN,TIM,TMN,TEBA,TEBB
COMMON ILASTA,ILASTB,NELAS
COMMON UMAX,UMIN,TMAX,THMIN
COMMON NSKIP,INDEXW
COMMON SAB,SAASB80
COMMON RN,RD,RDR,1IOLD
COMMON PY,IPRD,IPRM
COMMON NUNIT
COMMON NMEM,YMY,
COMMON LOAD,CHOMP,CMOMN,THOMP,TMOMN,
1TIMEL,CMPV,CNV,CNPV,CLPM,CLNV,CNMV,CMV,CMV,CMV,
1COMMON VL,CN,3N,AAIE
DATA FUNIT/5MCKNS)#5H(LI3S),8I4
data XLUNIT/4HM(MMP94H(IN)/
data ISENSE/IHC91HT91H/
WRITE(15,20)FUNIT(NUNIT)

170 WRITE(5,20)FUNIT(NUNIT,J),J=1,2,FUNI(NUNIT,1),FUNI(NUNIT,2)
1,FUNI(NUNIT,2),FUNI(NUNIT,1),FUNI(NUNIT,1)
NCOJN=3
ICOUN=57

C**

C COMPUTE DUCTILITY RATIOS

C**

DO 500 M=1,NMEM
DO 3 J=1,4
3 DUTJ(M,J)=1.0
IF(AI(M))1,119
1 AI(M)=1.0
19 IF(RDIOLD(J))6,6,9
6 IF(RMAX(J))14,15,14
14 DUTR(M,J)=1.0+ABS(RMAX(M,J)/RMAX(J))
15 IF(RMIN(J))16,5,16
16 DUTR(M,J)=1.0+ABS(RMIN(M,J)/RMIN(J))
5 IF(RMAX(M,J))21,22,21
21 DUTR(M,J)=1.0+ABS(RMAX(M,J)/RMIN(M,J))
22 IF(RMIN(M,J))23,9,23
23 DUTR(M,J)=1.0+ABS(RMIN(M,J)/RMIN(M,J))
9 JOINT(J)=FA(M)
10 JOINT(J)=JB(M)

C**

C PRINT TABULATION OF MAXIMA AND MINIMA OF ELEMENT END LOADS

C

C

C

C

C

C
C

DO 12 K=1,2
 R(IO)=CMPO(K,K)/VMY(K,K)
 RATOJ=CMPO(K,K)/VMY(K,K)

WRITE(5,100)I,J,CMLOAD(M,I),CMN(I,J),CMV(K,K),CMN(I,J),CMV(K,K),CMN(I,J),CMV(K,K)

WRITE(5,110)I,J,CMLOAD(M,I),CMN(I,J),CMV(K,K),CMN(I,J),CMV(K,K),CMN(I,J),CMV(K,K)

11 WRITE(5,110)I,J,CMLOAD(M,I),CMN(I,J),CMV(K,K),CMN(I,J),CMV(K,K),CMN(I,J),CMV(K,K)

10 WRITE(5,100)I,J,CMLOAD(M,I),CMN(I,J),CMV(K,K),CMN(I,J),CMV(K,K),CMN(I,J),CMV(K,K)

IF(NMEM.EQ.15489500.500.

NCOM=NCOUN+6

WRITE(5,170)TITLE

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

50 CONTINUE

DO 430 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)

IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
PFM(I,J)=A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

DO 440 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)
 IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
 IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
 PYNAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

C

PRINT

C

DO 130 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)

IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
PFM(I,J)=A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

DO 440 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)
 IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
 IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
 PYNAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

C

PRINT

C

DO 130 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)

IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
PFM(I,J)=A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

DO 440 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)
 IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
 IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
 PYNAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

C

PRINT

C

DO 130 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)

IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
PFM(I,J)=A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

DO 440 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)
 IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
 IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
 PYNAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

C

PRINT

C

DO 130 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)

IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
PFM(I,J)=A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

CONTINUE

DO 440 I=1,NMEM
 IS=ISENSE(I)
 J=ISENSE(I)
 IF(PYMAX(I,J).EQ.0.0)J=ISENSE(I)
 IF(PYMIN(I,J).EQ.0.0)J=ISENSE(I)
 PYNAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)

WRITE(5,150)I,J,A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J),A(I),RAX(I,J)
PRINT
1 (RMIN(I,J),THM(I,J),J=1,2),PYMN,IS1,DUTR(I,2)
IS=ISENSE(1)
IS=ISENSE(1)
IF(PYM(I,2).LT.0.0)IS=ISENSE(2)
IF(PYM(I,2).EQ.0.0)IS=ISENSE(3)
IF(PYM(I,2).LT.0.0)IS=ISENSE(2)
IF(PYM(I,2).EQ.0.0)IS=ISENSE(3)
PYMX=ABS(PYM(I,2))
PYMN=ABS(PYM(I,2))
WRITE(5,1600)J8(I),RMAX(I,J),THM(I,J),J=3,4),PYMN,IS1,DUTR(I,4)
NOUN=NOUN+5
IF(NOUN-ICOUN).GE.400,398,398
398 NOUN=6
399 WRITE(5,14000)
WRITE(5,17000)TITLE
1800 FORMAT(1X,6H*NOTE - THE LETTER C INDICATES COMPRESSION AND T/
9X,30X THE LETTER T INDICATES TENSION)
WRITE(5,14000)
400 CONTINUE
WRITE(5,14000)
500 FORMAT(1X,4HELEM,1X,1X=NHNODE,1X,2I3X,F7.4,2X,F5.3),2X,F5.3,
1 A1,6X,F7.3,4X,
2 2I3X,F7.4,2X,F5.3),2X,F5.3,4X,
600 FORMAT(8X,4HELEM,1X,2I3X,F7.4,2X,F5.3),2X,F5.3,
1 A1,6X,F7.3,4X,
2 2I3X,F7.4,2X,F5.3),2X,F5.3,4X,
401 WRITE(5,17000)TITLE
WRITE(5,3000)
WRITE(5,3100)XUNIT(NUNIT),XUNIT(NUNIT),XUNIT(NUNIT),XUNIT(NUNIT)
NOUN=NOUN+5
ICOUN=60
C
C: PRINT TABULATION OF MAXIMA AND MINIMA OF NODAL DISPLACEMENTS
C
DO 350 N=1,NNODE
IF(INUNIT.EQ.23GO TO 347
DO 346 K=1,2
346 UMAX(N,K)=1000.0*UMAX(N,K)
347 UMAX(N,K)=1000.0*UMAX(N,K)
347 UMIX(N,K)=57,299,7951*UMAX(N,K)
348 UMIN(N,K)=57,299,7951*UMIN(N,K)
WRITE(5,3200)U(N,N),UMIX(N,K),UMAN(N,K),UMIN(N,K),TMIX(N,K),TMAN(N,K),K=1,3
NOUN=NOUN+2
IF(NOUN-ICOUN).GE.350,348,348
348 IF(N=NNODE)349,350,350
349 NOUN=5
WRITE(5,17000)TITLE
WRITE(5,3000)
WRITE(5,3100)XUNIT(NUNIT),XUNIT(NUNIT),XUNIT(NUNIT),XUNIT(NUNIT)
CONTINUE
350 FORMAT(1X,4I4,12(1X,F9.5))
RETURN
SUBROUTINE TRANS(CNA,SNA,T)

**

ROTATIONAL TRANSFORMATION MATRIX T
**

DIMENSION T(6,6)
DO 75 K=1,6
DO 75 L=1,6
75 T(K,L)=J.C
T(1,1)=CNA
T(2,2)=CNA
T(4,4)=CNA
T(5,5)=CNA
T(1,2)=SNA
T(2,1)=SNA
T(4,5)=SNA
T(5,4)=SNA
T(3,3)=1.0
T(6,6)=1.0
RETURN
END
SUBROUTINE MINV(A,N,M,L,M)

COMPUTE INVERSE OF A MATRIX

DIMENSION A(N,L),L(M,N)

C SEARCH FOR LARGEST ELEMENT

DO 10 K=1,N
 N=N+K*N
 L(IK)=K
 M(K)=K
 K=K+N
 BIGA=A(1,K)
 DO 20 J=K,N
 IZ=N*(J-1)
 DO 20 1=K,N
 20 IF(ABS(BIGA)-ABS(A(1J))) 15,20,20
 15 BIGA=A(1J)
 L(KI)=I
 M(KI)=J
 20 CONTINUE

C INTERCHANGE ROWS

J=L(K)
 IF(J=K) 35,35,25
 K=K+N
 DO 30 I=1,N
 30 IF(K=K) 35,35,25
 K=K-N
 HOLD=A(KI)
 J=K+J
 A(KI)=A(JI)
 A(JI)=HOLD

C INTERCHANGE COLUMNS

I=M(K)
 IF(I=K) 45,45,38
 JP=M*KI+1
 DO 40 J=1,N
 40 IF(J=K) 45,45,38
 J=J+P
 HOLD=A(JK)
 A(JK)=A(JI)

C DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS

CONTAINED IN BIGA)

IF(ABS(BIGA)-1.E-20) 46,46,46
 46 D=0.0
 RETURN
 40 DO 50 I=1,N
 50 IF(I=K) 50,55,50
 I=K+I
 A(KI)=A(KI)/HOLD
 CONTINUE

C REDUCE MATRIX

DO 65 1=1,N
 65 I=K+I
 HOLD=A(KI)

RETURN

END
I,J=1-N
D=65 J=1,N
I,J=1,N
IF(I-K) 66,68,69
68 IF(J-K) 62,65,62
62 K=J+I=K
A(IJ)=HOLD*A(KJ)+A(IJ)
65 CONTINUE
C
DIVIDE ROW BY PIVOT
K=K+1
D=75 J=1,N
K=K+1
IF(J-K) 70,73,79
78 A(KJ)=A(KJ)/BIGA
75 CONTINUE
C
PRODUCT OF PIVOTS
D=D*BIGA
C
REPLACE PIVOT BY RECIPROCAL
A(KK)=1.0/BIGA
70 CONTINUE
C
FINAL ROW AND COLUMN INTERCHANGE
K=N
100 K=K-1
1.9 I=L(K)
1.9 IF(I-K) 120,120,120
108 JG=H*(I-1)
JR=H*(I-1)
DO 110 J=1,N
JG=JG-J
HOLD=A(JK)
JI=JR+J
A(JK)=A(JK)
110 A(JK)=HOLD
128 JK=K1
125 IF(J-K) 100,100,125
125 K=K-N
DO 130 I=1,N
K=K-N
HOLD=A(KI)
JI=KI-KJ
A(KI)=A(JI)
130 A(JI)=HOLD
GO TO 100
150 RETURN
END
SUBROUTINE YIELD(Eh,Ep,Ym,Yp,Ix,Tm,Tp,Iold,Xm,Pc,Sump,Summ)

C
MONITOR ELEMENT END LOADS TO DETERMINE WHETHER ELEMENT IS IN
EITHER THE ELASTIC OR PLASTIC CONDITIONS

C

IF(EP)<75.75,50
56 P=PC
XMY=Ym
C
XMY=(1.0-ABS(EP)/P)*YM
GO TO 90
75 P=xp
XMY=Ym

90 IF(XMY.NE.0)GO TO 95
AB1=0.0
GO TO 96
95 AB1=ABS(Ym)/XMY
96 AB2=ABS(EP)/P
SUMP=AB2
SUMM=AB1
SUM1*AB1*AB2
IF(Iold-1)112,20C,100
200 DM=EX=Xm
DP=EP-XP
AB2=ABS(2m)
AB2=ABS(XP)
IF(XMY.NE.1.0)GO TO 225
RM=0.0
GO TO 230
225 RM=XMy*DM/(AB2*XMY)
230 RP=xp*DP/(AB2*P)
SUMM=RM+RP
IF(SJN)<300,352,350
350 IF(SJN-1.032<600,600
600 IX=1
TM=EM
TP=EP
RETURN
300 IX=0
TM=EM
TP=EP
RETURN
100 IF(SUM1-1.010<300,400,400
400 IOLD=1
IX=1
TM=EM
TP=EP
RETURN
END
SUBROUTINE POEL(TELM,TELME,ELMDF,VL,RO,ROD,NOEL,NOF,NOEF,T,NMEM,NOEL,FAT)

*****COMPUTE EQUIVALENT SHEARS FOR THE P-Delta AND BEAM COLUMN EFFECTS*****

DIMENSION TELMD(6,1),C(6,1),ELMF(38,6),ELMDF(6,1),TELME(6,1),VL(30),ROD(60),ROD(60),NOEF(60),NOEL(60),T(6,6),TT(6,6),F(6),

DO 5 I=1,6
TELMD(I,1)=TELME(I,1)-C(I,1)
DELV=ELMF(NMEM,1)*((C(I,1)-C(5,1)) + ELMDF(I,1)*((TELMD(I,1) +
1 C(5,1)) - (TELMD(5,1) + C(5,1))))
DELV=DELV/VL(NMEM)
DO 10 I=1,6
DO 10 J=1,6
TT(J,I)=T(I,J)
DO 20 I=1,6
20 F(I)=(TT(I,2)-TT(I,5))*DELV
DO 75 I=1,6
DO 50 J=1,6,NOEL+1,
IF(NOEL(I)=NOEF(J))50,25,50
25 RO(J)=RO(J)+F(I)
GO TO 75
50 CONTINUE
DO 60 J=1,NOEL
IF(NOEL(I)=NOEF(J))60,56,60
56 DO 58 K=1,NOEL
58 ROR(K)=ROR(K)+FAT(K,J)*F(I)
GO TO 75
60 CONTINUE
75 CONTINUE
100 FORMAT(10E12.5)
RETURN
END
APPENDIX E

LIST OF SYMBOLS
APPENDIX E

LIST OF SYMBOLS USED IN TEXT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area of cross-section (cm²)</td>
</tr>
<tr>
<td>A_b</td>
<td>Cross-sectional area of bracing member (cm²)</td>
</tr>
<tr>
<td>A_1, A_2</td>
<td>Tributary areas assigned to mass points on blastward wall (Fig 31), roof (Fig 32a) and leeward wall (Fig 34 and 35) (m²)</td>
</tr>
<tr>
<td>a</td>
<td>Maximum dimension of tributary area measured parallel to direction of propagation of shock front (m)</td>
</tr>
<tr>
<td>b_f</td>
<td>Flange width (mm)</td>
</tr>
<tr>
<td>b_h</td>
<td>Tributary width for horizontal loading on exterior column of blastward wall (m)</td>
</tr>
<tr>
<td>b_v</td>
<td>Tributary width for vertical loading on roof girder (m)</td>
</tr>
<tr>
<td>C</td>
<td>Coefficient for computing natural period of bending mode of vibration of beam (Eq (35))</td>
</tr>
<tr>
<td>C</td>
<td>Ratio of exterior column-to-girder moment capacities (Table 1 through 3)</td>
</tr>
<tr>
<td>C_C</td>
<td>Limiting slenderness ratio for frame member (Eq (4.1), Ref 1)</td>
</tr>
<tr>
<td>C_D</td>
<td>Drag coefficient (Ref 3)</td>
</tr>
<tr>
<td>C_rα</td>
<td>Peak-reflected pressure coefficient at angle of incidence α_i</td>
</tr>
<tr>
<td>C_1</td>
<td>Ratio of interior column-to-girder moment capacities (Tables 1 through 3)</td>
</tr>
<tr>
<td>C_2</td>
<td>Frame stiffness factor constant (Table 8)</td>
</tr>
<tr>
<td>[C]</td>
<td>Damping matrix of system (kN-sec/m)</td>
</tr>
</tbody>
</table>
Dynamic increase factor

Distance from the blastward surface of the frame to the leading edge of the tributary area measured parallel to the direction of the blastwave (m)

Girder-to-column stiffness coefficient (Table 8)

Distribution factor

Dynamic load factor for preliminary design

Degree of freedom

Horizontal translation of nodal point (m)

Vertical translation of nodal point (m)

Web depth (mm)

Horizontal distance from blastward wall to leading edge of tributary area on roof (Fig 32b) (m)

Horizontal distance from edge of tributary width supported by frame to edge of tributary area on blastward column (Fig 31) (m)

Distance from blastward wall to leading edge of tributary area on roof (Fig 32a) (m)

Young's modulus of elasticity (kPa)

Maximum compressive stress permitted in the absence of bending moment (kPa)

Dynamic yield stress (kPa)

Specified minimum static yield stress (kPa)

Matrix of applied transient loads (kN)

Equivalent force matrix (Eq (6), Appendix C) (KN)

Acceleration due to gravity (9.8 m/sec^2)
H Story height (m)
H Height of wall panel (m)
h₁ Vertical distance from roof to upper boundary of tributary area on leeward wall (Fig 33) (m)
h₂ Height of tributary area (Fig 33) (m)
I Moment of inertia (cm⁴)
I_x, I_y Moments of inertia about the x- and y-axes, respectively (cm⁴)
i_r Unit positive normal reflected impulse (psi)
i_s Unit positive incident impulse (psi)
K Stiffness factor for single-story, multi-bay rigid frame subjected to uniform horizontal loads (Table 8) (kN/m)
K Relative rotational stiffness of frame member (Eq (31)) (kN/m)
K_L Load factor that modifies stiffness factor, K, for single-story, multi-bay rigid frame
K_b Stiffness of horizontal bracing system of a braced frame (kN/m)
[K] Stiffness matrix of system (kN/m)
K_c Total stiffness of element (kN/m)
L_{ir} Horizontal distance from blastward end of roof to mass point on roof (Eq (17) and (18)) (m)
L_{iz} Vertical distance from roof to mass point i on leeward wall (Eq (19) and (20)) (m)
L₁ Horizontal distance from blastward wall to leading edge of tributary area on roof (Fig 32a) (m)
L₂ Length of tributary area (Fig 32a) (m)
\(z/r \)
Slenderness ratio in the plane of bending

\(M_A, M_B \)
Bending moments at ends A and B of element (kN-m) (Fig 63)

\(M_R \)
Mass of roof panel (kg)

\(M'_R \)
One-half the mass of decking within roof panel area \((W'_1 + W'_2) \times L\) plus mass of girder (Fig 19) (kg)

\(M_W \)
Mass of wall panel (kg)

\(M'_W \)
One-half of mass of siding within wall panel area \((W'_1 + W'_2) \times H\) plus mass of column (Fig 17) (kg)

\(M_e \)
Concentrated mass at end of a member (kg)

\(M_i \)
Summation of the masses at all intermediate mass points on a member (kg)

\(M_{mn} \)
Moment about one n-axis that can be resisted in the absence of axial load (kN-m)

\(M_{mx}, M_{my} \)
Moments about the x- and y-axes that can be resisted in the absence of axial load (kN-m)

\(\bar{M}_{mx}, \bar{M}_{my} \)
Reduced bending capacities about the x- and y-axes that can be resisted in the absence of axial load (kN-m)

\(M_p \)
Required plastic moment capacity (kN-m)

\(M_{px}, M_{py} \)
Design plastic bending capacities about the x- and y-axes (kN-m)

\(M_x, M_y \)
Peak-applied moments about the x- and y-axes (kN-m)

\((M_{EH})_R \)
Portion of roof panel mass assigned to horizontal dynamic-degrees-of-freedom at ends of girder (kg)

\((M_{EH})_W \)
Portion of wall panel mass assigned to horizontal dynamic-degrees-of-freedom at ends of column (kg)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(M_{EV})_R$</td>
<td>Portion of roof panel mass assigned to vertical dynamic-degrees-of-freedom at ends of girder (kg)</td>
</tr>
<tr>
<td>$(M_{EV})_W$</td>
<td>Portion of wall panel mass assigned to vertical dynamic-degrees-of-freedom at ends of column (kg)</td>
</tr>
<tr>
<td>$(M_{IV})_R$</td>
<td>Portion of roof or floor panel mass assigned to vertical dynamic-degrees-of-freedom at intermediate mass points on girder (kg)</td>
</tr>
<tr>
<td>$(M_{IH})_W$</td>
<td>Portion of wall panel mass assigned to horizontal dynamic-degrees-of-freedom at intermediate mass point on column (kg)</td>
</tr>
<tr>
<td>$(M_p)_n$</td>
<td>Required plastic bending capacity about n-axis (kN-m)</td>
</tr>
<tr>
<td>$(M_p)_x$</td>
<td>Required plastic bending capacities about x- and y-axes (kN-m)</td>
</tr>
<tr>
<td>$(M_p)_y$</td>
<td></td>
</tr>
<tr>
<td>$(M_u)_i$</td>
<td>Unbalanced moment on element at time i due to $P-\Delta$ and beam column effects (Eq (10), Appendix C) (kN-m)</td>
</tr>
<tr>
<td>$[M]$</td>
<td>Mass matrix of system (kg)</td>
</tr>
<tr>
<td>$[M^*]$</td>
<td>Equivalent mass matrix (Eq (6), Appendix C) (kg)</td>
</tr>
<tr>
<td>m</td>
<td>Number of braced bays in multi-bay frame</td>
</tr>
<tr>
<td>m_e</td>
<td>Equivalent mass of a frame for sideways natural period (Eq (36)) (kg)</td>
</tr>
<tr>
<td>m_g</td>
<td>Mass of one girt within wall panel (kg)</td>
</tr>
<tr>
<td>m_p</td>
<td>Mass of one purlin within roof panel (kg)</td>
</tr>
<tr>
<td>NDT</td>
<td>Number of integration time increments for analysis specified in the input</td>
</tr>
<tr>
<td>N_{DOFH}</td>
<td>Number of horizontal dynamic-degrees-of-freedom at intermediate mass points within wall panel (Fig 17)</td>
</tr>
<tr>
<td>N_{DOFV}</td>
<td>Number of vertical dynamic-degrees-of-freedom at intermediate mass points within roof panel (Fig 19)</td>
</tr>
</tbody>
</table>
n Number of bays in a multi-bay frame

n Number of diagonal braces

ng Number of girts within wall panel (Fig 17)

np Number of purlins within roof panel (Fig 19)

P Applied axial load (kN)

PA, PB Axial loads at ends A and B of element (Fig 63) (kN)

PC Axial load at yield (kN)

Pp Ultimate tensile load capacity of member (kN)

PPk Peak pressure initially acting at mass point (kPa)

Pr Peak positive normal reflected pressure (kPa)

Pr a Peak-reflected pressure at angle of incidence \(\alpha_i \) (kPa)

ps Incident pressure at time \(t_c \) (kPa)

Pso Peak positive incident pressure (kPa)

Pu Ultimate compressive load capacity of member (kN)

(PPk)AVG Average peak pressure acting on tributary area (kPa)

\{P(t)\} Matrix of applied blast loads (Eq (9), Appendix C) (kN)

p Infinitely elastic fraction of total element stiffness

Pb Peak reflected blast pressure on blastward wall (kPa)

PV Peak pressure on roof (kPa)

q Elasto-plastic fraction of total element stiffness
\(q_h \) Peak horizontal load on frame (kN/m)
\(q_o \) Peak dynamic pressure (kPa)
\(q_v \) Peak vertical load on frame (kN/m)
\(R \) Slant distance from explosive charge to point of interest on structure (m)
\(R_A \) Normal distance from explosive charge to point of interest on structure (m)
\(R_C \) Rotation capacity of beam column
\(R_n \) Nodal reduction factor for bi-axial bending
\(R_a \) DLF reduction factor for quartering loads
\(\{R_1\}_\tau,\{R_2\}_\tau \) Resistance of system at time \(\tau \) (Eq(3), Appendix C) (kN)
\(r_b \) Radius of gyration of bracing member (m)
\(r_x, r_y \) Radius of gyration about the x- and y-axes (m)
\(S_F \) Safety factor
\(T_N \) Natural period of vibration (sec)
\(T_a \) Natural period of vibration of the primary extensional mode of a frame member (sec)
\(T_b \) Natural period of a bending mode of vibration of a beam (sec)
\(T_c \) Desired duration of response (sec)
\(T_s \) Sidesway natural period of vibration of a frame (sec)
\(t \) \(\tau \) (sec)
\(t_a \) Arrival time of blast wave (sec)
\(t_c \) Clearing time required to relieve the reflected pressure (sec)
\(t_c' \)
Fictitious clearing time of reflected pressure (sec)

\(t_f \)
Flange thickness (mm)

\(t_{DI} \)
Duration of pressure-time history (sec)

\(t_{dr} \)
Total duration of blast pressure (sec)

\(t_{pk} \)
Time at which pressure \((P_{pk})_{AVG}\) occurs (sec)

\(t_R \)
Fictitious duration of the reflected pressure (sec)

\(t_{of} \)
Positive phase pressure duration (sec)

\(t_{rt} \)
Rise time (sec)

\(t_T \)
Time at which the pressure decays to zero (sec)

\(t_w \)
Web thickness (mm)

\(U \)
Shock front velocity (m/sec)

\(U_{AVG} \)
Average shock front velocity between blastward end of frame and mass point (m/sec)

\(u \)
Nodal point displacement (mm)

\(\dot{u} \)
Nodal point velocity (mm/sec)

\(\ddot{u} \)
Nodal point acceleration (mm/sec\(^2\))

\(V \)
Equivalent shear computed for second order effects (kN)

\(V_A, V_B \)
Shears at ends A and B of element (Fig 63) (kN)

\(W \)
Charge weight (kg)

\(W_E \)
Effective charge weight (kg)

\(W_T \)
Tributary width of structure supported by frame (m)

\(W_1, W_2 \)
One-half of widths of framing bays adjacent to frame (m)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W'_1, W'_2</td>
<td>Distances between frame and adjacent girts and/or purlins (m)</td>
</tr>
<tr>
<td>w</td>
<td>Load per unit length (kN/m)</td>
</tr>
<tr>
<td>w</td>
<td>Width of tributary area on blastward wall (Fig 31), roof (Fig 32) and leeward wall (Fig 33) (m)</td>
</tr>
<tr>
<td>w_b</td>
<td>Equivalent static load for beam mechanism (kN/m)</td>
</tr>
<tr>
<td>w_p</td>
<td>Equivalent static load for panel mechanism (kN/m)</td>
</tr>
<tr>
<td>w_1</td>
<td>Horizontal distance from end of building to nearest edge of tributary strip supported by frame (Fig 34 and 35) (m)</td>
</tr>
<tr>
<td>w_2</td>
<td>Horizontal distance between edge of strip supported by frame and tributary area (Fig 34 and 35) (m)</td>
</tr>
<tr>
<td>w_3</td>
<td>Width of tributary area (Fig 34 and 35) (m)</td>
</tr>
<tr>
<td>y_A, y_B</td>
<td>Displacements at ends A and B of element (mm)</td>
</tr>
<tr>
<td>Z</td>
<td>Scaled distance (m/kg$^{1/3}$)</td>
</tr>
<tr>
<td>Z</td>
<td>Plastic section modulus (cm3)</td>
</tr>
<tr>
<td>Z_x, Z_y</td>
<td>Plastic section moduli about the x- and y-axes (m3)</td>
</tr>
<tr>
<td>Z_n</td>
<td>Plastic section modulus about n-axis (m3)</td>
</tr>
<tr>
<td>α</td>
<td>Ratio of horizontal-to-vertical load on a frame</td>
</tr>
<tr>
<td>α</td>
<td>Rigid body component of element end rotation (deg)</td>
</tr>
<tr>
<td>α_i</td>
<td>Angle of incidence between the shock front and blastward surface (deg)</td>
</tr>
<tr>
<td>β</td>
<td>Base fixity factor for single story frame (Table 8)</td>
</tr>
<tr>
<td>β</td>
<td>Plastic rotation component of element end rotation (deg)</td>
</tr>
<tr>
<td>β_{max}</td>
<td>Maximum plastic member or element end rotation (deg)</td>
</tr>
</tbody>
</table>
\(\gamma \) Total element end rotation (deg)

\(\gamma \) Angle between bracing member and horizontal plane (deg)

\(\Delta \) Differential displacement between ends of element (mm)

\(\Delta t \) Integration time increment (sec)

\(\delta \) Frame sideways deflection (mm)

\(\theta \) Support or member end rotation angle or chordal angle (deg)

\(\theta \) Nodal point rotation (deg)

\(\theta_{\text{max}} \) Maximum permitted support or member end rotation or chordal angle (deg)

\(\mu \) Ductility ratio

\(\mu_{\text{max}} \) Maximum permitted ductility ratio

\(\mu_{\text{ult}} \) Ultimate ductility ratio at failure

\(\phi \) Elastic component of element end rotation (deg)

\(\phi_{\text{max}} \) Maximum elastic member or element end rotation (deg)
LIST OF SYMBOLS USED IN INPUT TO DYNFA

A
Cross sectional area of element \((\text{m}^2) \)

ADIR
Direction of element uniform loads specified in terms of the axis of global system in the direction of the loads

AFX
Tributary area associated with dynamic-degree-of-freedom in X-direction \((\text{m}^2) \)

AFY
Tributary area associated with dynamic-degree-of-freedom in Y-direction \((\text{m}^2) \)

DAMP
Percentage of damping expressed as a decimal

DT
Integration time interval (sec)

E
Modulus of elasticity (kPa)

ELEM NO
Element identification number

END
End of data indicator

FX
Static load in X-direction (kg)

FY
Static load in Y-direction (kg)

I
Moment of inertia of element \((\text{cm}^4) \)

IMPV
Input parameter for requesting printing of element end loads

INDXX
Identification number of pressure waveform associated with load in X-direction

INDYY
Identification number of pressure waveform associated with load in Y-direction

IPP
Input parameter for requesting printing of nodal point displacement-time histories

JA
Nodal point at end A of element

JB
Nodal point at end B of element
\(M_{MA} \) Ultimate bending capacity at end A of element (kN-m)

\(M_{MB} \) Ultimate bending capacity at end B of element (kN-m)

\(M_X \) Nodal mass assigned to dynamic degree-of-freedom in X-direction (kg)

\(M_Y \) Nodal mass assigned to dynamic degree-of-freedom in Y-direction (kg)

\(M_Z \) Static moment around Z-axis (kg-m)

\(N_{DEAD} \) Input parameter for omitting static analysis

\(N_{DT} \) Number of integration time increments

\(N_{ELAS} \) Input parameter for omitting inelastic behavior from analysis

\(N_{ELM} \) Number of elements

\(N_{LNODE} \) Number of nodal points with static loads

\(N_{NODE} \) Number of nodal points

\(N_{NOF} \) Number of nodal points subjected to blast loads

\(N_{NOR} \) Number of nodal points with restraints

\(N_{NOW} \) Number of nodal points with assigned masses (number of mass points)

\(NODE \ NO \) Nodal point number

\(N_{POINT} \) Number of points in pressure waveform

\(N_{SKIP} \) Number of integration time increments to be skipped between printout of structure's response

\(N_{U} \) Input parameter for specifying U.S. System of Units for input and output of program

\(N_{WF} \) Number of pressure waveforms
PA Pin code for end A of element
PB Pin code for end B of element
Pi Pressure of point i of pressure waveform (kPa)
Pp Ultimate dynamic load capacity in axial tension (kN)
Pu Ultimate dynamic load capacity in axial compression (kN)
rX X-direction nodal restraint
rY Y-direction nodal restraint
rθ Rotational nodal restraint
Ti Time of point i of pressure waveform (sec)
WF NO Pressure waveform identification number
WUNIF Uniform static load acting on element (kg/m)
X X-direction nodal coordinate (m)
Y Y-direction nodal coordinate (m)
YFACT Fraction of elastic stiffness utilized after yielding
APPENDIX F

INTERNATIONAL SYSTEM OF UNITS
F.1 General

This appendix deals with the conversion of quantities from the U. S. System of measurement to the International System of Units which is officially abbreviated as SI in all languages. It includes units most frequently used in the various fields of science and industry and conforms to the Metric Practice Guide as presented in the American Society for Testing and Materials Standard E 380.

F.2 SI Units and Prefixes

SI consists of seven base units, two supplementary units, a series of derived units consistent with the base and supplementary units, and a series of approved prefixes for the formation of multiples and sub-multiples of various units. A summary of the base units, supplementary units, derived units and prefixes is given below:

Base Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>Electric current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>Thermodynamic temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mole</td>
<td>mol</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>candela</td>
<td>cd</td>
</tr>
</tbody>
</table>

Supplementary Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane angle</td>
<td>radian</td>
<td>rad</td>
</tr>
<tr>
<td>Solid angle</td>
<td>steradian</td>
<td>sr</td>
</tr>
<tr>
<td>Quantity</td>
<td>Unit</td>
<td>Symbol or Formula</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Acceleration</td>
<td>meter per second</td>
<td>(m/s^2)</td>
</tr>
<tr>
<td>Activity (radioactive source)</td>
<td>disintegration per second</td>
<td>(disintegration)/s</td>
</tr>
<tr>
<td>Angular acceleration</td>
<td>radian per second</td>
<td>(\text{rad/s}^2)</td>
</tr>
<tr>
<td>Angular velocity</td>
<td>radian per second</td>
<td>(\text{rad/s})</td>
</tr>
<tr>
<td>Area</td>
<td>square meter</td>
<td>(\text{m}^2)</td>
</tr>
<tr>
<td>Density</td>
<td>kilogram per cubic meter</td>
<td>(\text{kg/m}^3)</td>
</tr>
<tr>
<td>Electric capacitance</td>
<td>farad</td>
<td>(\text{F or A.s/V})</td>
</tr>
<tr>
<td>Electrical conductance</td>
<td>siemens</td>
<td>(\text{S or A/V})</td>
</tr>
<tr>
<td>Electric field strength</td>
<td>volt per meter</td>
<td>(\text{V/m})</td>
</tr>
<tr>
<td>Electric inductance</td>
<td>henry</td>
<td>(\text{H or V.s/A})</td>
</tr>
<tr>
<td>Electric potential difference</td>
<td>volt</td>
<td>(\text{V or W/A})</td>
</tr>
<tr>
<td>Electric resistance</td>
<td>ohm</td>
<td>(\text{Ω or V/A})</td>
</tr>
<tr>
<td>Electromotive force</td>
<td>volt</td>
<td>(\text{V or W/A})</td>
</tr>
<tr>
<td>Energy</td>
<td>joule</td>
<td>(\text{J or N.m})</td>
</tr>
<tr>
<td>Entropy</td>
<td>joule per kelvin</td>
<td>(\text{J/K})</td>
</tr>
<tr>
<td>Force</td>
<td>newton</td>
<td>(\text{N or kg.m/s}^2)</td>
</tr>
<tr>
<td>Frequency</td>
<td>hertz</td>
<td>(\text{Hz or (cycle)/s})</td>
</tr>
<tr>
<td>Illuminance</td>
<td>lux</td>
<td>(\text{lx or lm/m}^2)</td>
</tr>
<tr>
<td>Luminance</td>
<td>candela per square meter</td>
<td>(\text{cd/m}^2)</td>
</tr>
<tr>
<td>Luminous flux</td>
<td>lumen</td>
<td>(\text{lm or cd.sr})</td>
</tr>
<tr>
<td>Magnetic field strength</td>
<td>ampere per meter</td>
<td>(\text{A/m})</td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>weber</td>
<td>(\text{Wb or V.s})</td>
</tr>
<tr>
<td>Magnetic flux density</td>
<td>tesla</td>
<td>(\text{T or Wb/m}^2)</td>
</tr>
<tr>
<td>Magnetomotive force</td>
<td>ampere</td>
<td>(\text{A})</td>
</tr>
<tr>
<td>Power</td>
<td>watt</td>
<td>(\text{W or J/s})</td>
</tr>
<tr>
<td>Pressure</td>
<td>pascal</td>
<td>(\text{Pa or N/m}^2)</td>
</tr>
<tr>
<td>Quantity of electricity</td>
<td>coulomb</td>
<td>(\text{C or A.s})</td>
</tr>
<tr>
<td>Quantity of heat</td>
<td>joule</td>
<td>(\text{J or N.m})</td>
</tr>
<tr>
<td>Radiant intensity</td>
<td>watt per steradian</td>
<td>(\text{k/s.r})</td>
</tr>
<tr>
<td>Specific heat</td>
<td>joule per kilogram-kelvin</td>
<td>(\text{J/kg.K})</td>
</tr>
<tr>
<td>Stress</td>
<td>pascal</td>
<td>(\text{Pa or N/m}^2)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>watt per meter-kelvin</td>
<td>(\text{W/m.K})</td>
</tr>
<tr>
<td>Velocity</td>
<td>meter per second</td>
<td>(\text{m/s})</td>
</tr>
<tr>
<td>Viscosity, dynamic</td>
<td>pascal-second</td>
<td>(\text{Pa.s})</td>
</tr>
<tr>
<td>Viscosity, kinematic</td>
<td>square meter per second</td>
<td>(\text{m}^2/\text{s})</td>
</tr>
<tr>
<td>Voltage</td>
<td>volt</td>
<td>(\text{V or W/A})</td>
</tr>
<tr>
<td>Quantity</td>
<td>Unit</td>
<td>Symbol or Formula</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic meter</td>
<td>m³</td>
</tr>
<tr>
<td>Wavenumber</td>
<td>reciprocal meter</td>
<td>(wave)/m</td>
</tr>
<tr>
<td>Work</td>
<td>joule</td>
<td>J or N.m</td>
</tr>
</tbody>
</table>

Prefixes

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000,000,000,000 = 10¹²</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>1,000,000,000 = 10⁹</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>1,000,000 = 10⁶</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>1,000 = 10³</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>100 = 10²</td>
<td>hecto</td>
<td>h</td>
</tr>
<tr>
<td>10 = 10¹</td>
<td>deka</td>
<td>da</td>
</tr>
<tr>
<td>0.1 = 10⁻¹</td>
<td>deci</td>
<td>d</td>
</tr>
<tr>
<td>0.01 = 10⁻²</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>0.001 = 10⁻³</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>0.000,000 = 10⁻⁶</td>
<td>micro</td>
<td>μ</td>
</tr>
<tr>
<td>0.000,000,000,000 = 10⁻⁹</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>0.000,000,000,000,000 = 10⁻¹²</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>0.000,000,000,000,000,000 = 10⁻¹⁵</td>
<td>femto</td>
<td>f</td>
</tr>
<tr>
<td>0.000,000,000,000,000,000,000 = 10⁻¹⁸</td>
<td>atto</td>
<td>a</td>
</tr>
</tbody>
</table>

To be avoided where possible

Selection of prefixes representing steps of 1,000 is recommended for most multiple and submultiple prefixes. An exception is made in the case of area and volume used alone. When expressing a quantity by a numerical value and a unit, prefixes should preferably be chosen so that the numerical value lies between 0.1 and 1,000, except where certain multiples or submultiples have been agreed to for particular use. The same unit, multiple or submultiple is used for tabular values even though the series exceeds the preferred range 0.1 to 1,000. Double prefixes should not be used. Prefixes should not be used in the denominator of compound units, except for the kilogram which is a base unit of SI. However, prefixes may be applied to numerator of a combined unit. With SI units of higher order such as m², m³, etc., the prefix is also raised to the same order; e.g., mm³ is 10⁻³m³ and not 10⁻⁹m³. In such cases, the use of cm², cm³, dm², dm³ and similar nonpreferred prefixes is acceptable.
F.3 Mass, Force and Weight

The principal departure of SI from the gravimetric form of metric engineering units is the separate and distinct units for mass and force. The kilogram is restricted to the unit of mass. The newton is the unit of force and should be used in place of kilogram-force. Likewise, the newton instead of kilogram-force should be used in combination units which include force; e.g., pressure or stress \(N/m^2=\text{Pa}\), energy \(N.m=J\), and power \(N.m/s=W\).

Considerable confusion exists in the use of the terms mass and weight. Mass is a property of matter to which it owes its inertia. If a body or particle of matter at rest on the earth's surface is released from the forces holding it at rest, it will experience the acceleration of free fall (or acceleration of gravity, \(g\)). The force required to restrain it against free fall is commonly called weight. This force is proportional to the mass of the body and is often expressed in mass units (kg), but as it is a force it should be expressed in force units (N). The acceleration of free fall \(g\) varies in time and space; weight (which is proportional to it) does too, although mass does not. Further confusion arises in the measuring of weight because of the buoyant effect of the medium in which the weighing is performed. In common parlance the term weight is used where the technically correct word is mass and, therefore, the use of the term weight should be avoided in technical practice.

F.4 Conversion and Rounding Rules

Conversion of quantities should be handled with careful regard to the implied correspondence between the accuracy of the data and the given number of digits. In all conversions, the number of significant digits retained should be such that accuracy is neither sacrificed nor exaggerated. Proper conversion procedure is to multiply the specific quantity by the conversion factor exactly as given and then round to the appropriate number of significant digits.

The following table contains conversion factors that give exact or seven-figure accuracy where the nature of the dimension makes this degree of accuracy practical:
Selected Conversion Factors

To convert from	to	Multiply by
atmosphere (technical = 1 kfg/cm²) | pascal (Pa) | 9.806 650*10⁴
bar | pascal (Pa) | 1.000 000*10⁵
board foot | meter³(m³) | 2.359 737*10⁻³
British thermal unit (International Table) | joule (J) | 1.055 056*10³
Btu (International Table) - in./s-ft²-°F (k, thermal conductivity) | watt/meter-kelvin (W/m.K) | 5.192 204*10²
Btu (International Table) /hour | watt (W) | 2.930 711*10⁻¹
calorie (International Table) | joule (J) | 4.186 800*
centipoise | pascal-second (Pa.s) | 1.000 000*10⁻³
centistokes | meter²/second (m²/s) | 1.000 000*10⁻⁶
degree (angle) | radian (rad) | 1.745 329*10⁻²
degree Fahrenheit | degree Celsius | \(t°C=(t°F-32)/1.8\)
fluid ounce (U.S.) | meter³(m³) | 2.957 353*10⁻³ooth | meter (m) | 3.048 000*10⁻¹
footh² | meter²(m²) | 9.290 304*10⁻²ooth³ (volume and section modulus) | meter³(m³) | 2.831 685*10⁻²
foot/second | meter/second (m/s) | 3.048 000*10⁻¹
foot-pound-force | joule (J) | 1.355 818
foot-pound-force/second | watt (W) | 1.355 818
foot/second² | meter/second² (m²/s²) | 3.048 000*10⁻¹
gallon (U.S. liquid) | meter³(m³) | 3.785 412*10⁻³
horsepower (electric) | watt (W) | 7.460 000*10²
inch | meter (m) | 2.540 000*10⁻²
inch² | meter²(m²) | 6.451 600*10⁻⁴
inch³ (volume and section modulus) | meter³(m³) | 1.638 706*10⁻⁵
inch of mercury (60°F) | pascal (Pa) | 3.376 851*10³
inch of water (50°F) | pascal (Pa) | 2.488 4*10²
kilogram-force (kgf) | newton (N) | 9.806 650*
kilogram-force/millimeter² | pascal (Pa) | 9.806 650*10⁶
kilogram-mass | kilogram (kg) | 1.000 000*
kip (1000 lbf) | newton (N) | 4.448 222*10³
kip/inch² (ksi) | pascal (Pa) | 6.894 757*10⁶
lux | lumen/meter²(1m²) | 1.000 000*
minute (angle) | radian (rad) | 2.908 882*10⁻⁴
ounce-force (avoirdupois) | newton (N) | 2.780 139*10⁻¹

*Exact

443
<table>
<thead>
<tr>
<th>Selected Conversion Factors (Continued)</th>
<th>To convert from</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>ounce-mass (avoirdupois)</td>
<td>kilogram (kg)</td>
<td>2.834 952x10^-2</td>
</tr>
<tr>
<td>ounce-mass/yard^2</td>
<td>kilogram/meter^2</td>
<td>3.390 575x10^-2</td>
</tr>
<tr>
<td>ounce (avoirdupois) (mass)/inch^3</td>
<td>kilogram/meter^3</td>
<td>1.728 994x10^3</td>
</tr>
<tr>
<td>ounce (U.S. fluid)</td>
<td>meter^3 (m^3)</td>
<td>2.957 833x10^-5</td>
</tr>
<tr>
<td>pint (U.S. liquid)</td>
<td>meter^3 (m^3)</td>
<td>4.731 765x10^-4</td>
</tr>
<tr>
<td>pound-force (lbf avoirdupois)</td>
<td>newton (N)</td>
<td>4.448 222</td>
</tr>
<tr>
<td>pound/force/inch^2 (psi)</td>
<td>pascal (Pa)</td>
<td>6.894 757x10^3</td>
</tr>
<tr>
<td>pound-mass (lbm avoirdupois)</td>
<td>kilogram (kg)</td>
<td>4.535 924x10^-1</td>
</tr>
<tr>
<td>pound-mass-inch^2 (moment of inertia)</td>
<td>kilogram-meter^2</td>
<td>2.926 397x10^-4</td>
</tr>
<tr>
<td>pound-mass/inch^3</td>
<td>kilogram/meter^3</td>
<td>2.767 990x10^4</td>
</tr>
<tr>
<td>quart (U.S. liquid)</td>
<td>meter^3 (m^3)</td>
<td>9.463 529x10^-4</td>
</tr>
<tr>
<td>second angle</td>
<td>radian (rad)</td>
<td>4.848 137x10^-6</td>
</tr>
<tr>
<td>ton (short, 2000 lbm)</td>
<td>kilogram (kg)</td>
<td>9.071 847x10^2</td>
</tr>
<tr>
<td>watt-hour</td>
<td>joule (J)</td>
<td>3.600 000x10^3</td>
</tr>
<tr>
<td>yard</td>
<td>meter (m)</td>
<td>9.144 000x10^-1</td>
</tr>
<tr>
<td>yard^2</td>
<td>meter^2 (m^2)</td>
<td>8.361 274x10^-1</td>
</tr>
<tr>
<td>yard^3</td>
<td>meter^3 (m^3)</td>
<td>7.645 549x10^-1</td>
</tr>
</tbody>
</table>

*Exact
DISTRIBUTION LIST

Commander
US Army Armament Research and Development Command
ATTN: DRDAR-CG
 DRDAR-LCM E
 DRDAR-LCM-S
 DRDAR-SF
 DRDAR-TSS
 28-32
 Dover, NJ 07801

Chairman
Dept of Defense Explosive Safety Board
Forrestal Bldg, GB-270
Washington, DC 20314

Administrator
Defense Documentation Center
ATTN: Acquisitions Division
Cameron Station
Alexandria, VA 22314

Commander
Department of the Army
Office, Chief Research, Development & Acquisition
ATTN: DAMA-CSM-P
 47
Office, Chief of Engineers
ATTN: DAEN-MCZ
 48
Washington, DC 20314

Commander
US Army Materiel Development & Readiness Command
ATTN: DRCSF
 DRCDE
 DRCRP
 DRCIS
 52
 501 Eisenhower Avenue
 Alexandria, VA 22333

Commander
DARCOM Installations & Services Agency
ATTN: DRCIS-RI
 53
 Rock Island, IL 61201
Commander
Badger Army Ammunition Plant
Baraboo, WI 53913

Commander
Indiana Army Ammunition Plant
Charlestown, IN 47111

Commander
Holston Army Ammunition Plant
Kingsport, TN 37660

Commander
Lone Star Army Ammunition Plant
Texarkana, TX 75501

Commander
Milan Army Ammunition Plant
Milan, TN 38358

Commander
Iowa Army Ammunition Plant
Middletown, IA 52638

Commander
Joliet Army Ammunition Plant
Joliet, IL 60436

Commander
Longhorn Army Ammunition Plant
Marshall, TX 75670

Commander
Louisiana Army Ammunition Plant
Shreveport, LA 71130

Commander
Cornhusker Army Ammunition Plant
Grand Island, NB 68801

Commander
Ravenna Army Ammunition Plant
Ravenna, OH 44266

Commander
Newport Army Ammunition Plant
Newport, IN 47566
Commander
Volunteer Army Ammunition Plant
Chattanooga, TN 37401

Commander
Kansas Army Ammunition Plant
Parsons, KS 67357

District Engineer
US Army Engineering District, Mobile
Corps of Engineers
PO Box 2288
Mobile, AL 36628

District Engineer
US Army Engineering District, Ft. Worth
Corps of Engineers
PO Box 17300
Ft. Worth, TX 76102

District Engineer
US Army Engineering District, Omaha
Corps of Engineers
6014 US PO & Courthouse
215 N 17th Street
Omaha, NB 78102

District Engineer
US Army Engineering District, Baltimore
Corps of Engineers
PO Box 1715
Baltimore, MD 21203

District Engineer
US Army Engineering District, Norfolk
Corps of Engineers
803 Front Street
Norfolk, VA 23510

Division Engineer
US Army Engr District, Huntsville
PO Box 1600, West Station
Huntsville, AL 35807

Commander
Naval Ordnance Station
Indianhead, MD 20640
Commander
US Army Construction Engr Research Laboratory
Champaign, IL 61820

Commander
Dugway Proving Ground
Dugway, UT 84022

Commander
Savanna Army Depot
Savanna, IL 61704

Civil Engineering Laboratory
Naval Construction Battalion Center
ATTN: L51
Port Hueneme, CA 93043

Commander
Naval Facilities Engineering Command
(Code 04, J. Tyrell)
200 Stovall Street
Alexandria, VA 22322

Commander
Southern Division
Naval Facilities Engineering Command
ATTN: J. Watts
PO Box 10068
Charleston, SC 29411

Commander
Western Division
Naval Facilities Engineering Command
ATTN: W. Moore
San Bruno, CA 94066

Officer In Charge
Trident
Washington, DC 20362

Officer in Charge of Construction
Trident
Bangor, WA 98348

Commander
Atlantic Division
Naval Facilities Engineering Command
Norfolk, VA 23511
Commander
Naval Ammunition Depot
Naval Ammunition Production Engineering Center
Crane, IN 47522