Microbiological Quality Control
of Freeze Dried Foods

APPROVED
FOR PUBLIC RELEASE

C. H. FORBES-EWAN

March, 1977
THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS AUTHORISED TO REPRODUCE AND SELL THIS REPORT

APPROVED

FOR PUBLIC RELEASE
SUMMARY

In the past two years, a total of 192 batches of freeze-dried meals have been examined for microbiological contamination. Analyses were conducted for standard plate count (SPC), coliforms, E. coli type 1, salmonellae, staphylococi, yeasts and moulds and, since November, 1976, enterobacteriaceae.

The average SPC was 310 per gram. Salmonellae, staphylococci and E. coli type 1 were not detected. Fewer than 1% of samples showed coliform contamination. Moulds were detected in 2 samples.

The quality control programme emphasizes prevention of contamination during processing rather than detection after processing. (U)

POSTAL ADDRESS: The Director, Armed Forces Food Science Establishment, P.O. Box 147, Scottsdale, Tasmania, 7254
1. DOCUMENT NUMBERS
 a. AR Number: 000703
 b. Document Series and Number: -
 c. Report Number: 1/77

2. SECURITY CLASSIFICATION
 a. Complete document: Unclas
 b. Title in isolation: Unclas
 c. Summary in isolation: Unclas

3. TITLE: Microbiological Quality Control of Freeze Dried Foods

4. PERSONAL AUTHOR:
 Forbes-Ewan, C.H.

5. DOCUMENT DATE:
 March, 1977

6. TYPE OF REPORT AND PERIOD COVERED:
 Technical Report

7. CORPORATE AUTHORS:
 Armed Forces Food Science Establishment,
 Scottsdale, Tasmania, Aust.

8. REFERENCE NUMBERS:
 a. Task: FSE 76/038
 b. Sponsoring Agency: DOD (Army)
 c. Task: -
 d. Sponsor: -
 e. Agency: -

9. COST CODE: 241

10. IMPRINT:
 AFFSE - March, 1977

11. COMPUTER PROGRAM
 -

12. RELEASE LIMITATIONS: Approved for public release

13. ANNOUNCEMENT LIMITATIONS: -

14. DESCRIPTORS:
 Microbiology, quality control freeze-dried foods.

15. COSATI CODES:
 0608-0613

16. SUMMARY:
 In the past two years, a total of 192 batches of freeze-dried meals have been examined for microbiological contamination. Analyses were conducted for standard plate count (SPC), coliforms, E. coli type 1, salmonellae, staphylococci, yeasts and moulds and, since November, 1976, enterobacteriaceae.

 The average SPC was 310 per gram. Salmonellae, staphylococci and E. coli type 1 were not detected. Fewer than 1% of samples showed coliform contamination. Moulds were detected in 2 samples.

 The quality control programme emphasizes prevention of contamination during processing rather than detection after processing. (U)
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Methods</td>
<td>2</td>
</tr>
<tr>
<td>Results</td>
<td>3</td>
</tr>
<tr>
<td>Discussion</td>
<td>4</td>
</tr>
<tr>
<td>Table 1</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Distribution List</td>
<td></td>
</tr>
</tbody>
</table>
MICROBIOLOGICAL QUALITY CONTROL OF FREEZE DRIED FOODS

by

C. Forbes-ewan, B.Sc.(Hons)

INTRODUCTION

The quality control of dried foods, as of foods generally, is often considered to be "suppressive", in that samples are taken of the finished product and a batch is accepted or rejected on the basis of results obtained with these samples.

The statistical reliability of such a system is, however, very low (Mossel, 1975). A negative result does not necessarily imply that a batch is free from contamination, as only a small proportion of the total food in each batch is sampled for microbiological examination. Contamination may be localised in parts of the food not included in the sample.

The diversity of microorganisms which can contaminate food precludes the possibility of analysing for all possible contaminants. Instead, examination is carried out for a selected group of "likely" contaminants and for indicator organisms as well as for total aerobic mesophiles. Thus some pathogens may escape detection because the food is not examined for them.

Lastly, techniques are not perfect and a small proportion of contaminated samples can be expected to pass the most stringent screening tests.

Another drawback of a suppressive system is that it fails to detect at which stage of processing contamination occurs. Thus it does not allow measures to be taken to remedy any deficiencies. To allow this, a quality control system should emphasize prevention of contamination at all stages of production to prevent rather than suppress contamination.

At the AFFSE, freeze-dried meals are examined for bacteriological contamination at four stages in their production:

1. The raw materials are visually inspected for freshness and purity.

2. The cooked meal is examined for standard plate count (SPC) and coliforms.

3. After removal from the freeze-dryer, a sample of the meal is taken for "complete analysis" - SPC, coliforms, E. coli type 1, salmonellae, staphylococci, yeasts and moulds and, since November, 1976, enterobacteriaceae.
Preventative quality control also depends on monitoring of the microbiological state of equipment, bench surfaces, the hands and uniforms of process workers and the air in the processing building.

Consequently, swabs are taken of equipment and benches in the processing area and of the hands and uniforms of processors. Swabs are examined for SPC and coliforms. Open petri dishes of plate count agar are placed at random on bench surfaces and equipment to estimate levels of air-borne bacteria.

Fundamental to this programme is the rigorous observance of high levels of personal hygiene by processors. Frequent cleaning and disinfection of hands, equipment, bench surfaces and the floor is conducted. Ultra-violet insect traps and fly-wire doors ensure that insect-borne contamination is kept to a minimum.

METHODS

As far as possible, techniques of examination for microorganisms should be standardized to allow comparison of results from different laboratories and to give practical meaning to standards and specifications.

The APPSE observes the methods of microbiological examination prepared by the Standards Association of Australia (SAA 1975).

a. Standard Plate Count (SPC)

A 10 per cent homogenate of the food sample is produced using peptone solution. Aliquots of 1 ml from each of 3 decimal dilutions of the homogenate are plated out using Plate Count Agar. Incubation is for 72 hours at 30°C. The SPC is expressed as "organisms per gram". The current Australian Defence Forces Food Specification (ADFFS) requires the SPC to be 20,000 or less.

b. Coliforms and E. coli type 1

The initial step is common in the examination for these organisms. Incubation of Lauryl Sulphate Tryptone Broth (LSB) with 3 dilutions of the homogenate is followed by incubation of the LSB at 35°C for 48 hours. Confirmation of coliforms is achieved by inoculation of Brilliant Green Bile Broth (BGBB) with gas-positive LSB and incubation at 35°C. E. coli type 1 is confirmed by inoculation of BGBB with gas positive LSB followed by incubation at 44°C.

c. Enterobacteriaceae

Three dilutions of the homogenate are used to inoculate Enterobacteria Enrichment Broth (EE broth).
c. Enterobacteriaceae (Con't)

These are incubated for 24 hours at 37°C and used to streak Violet Red Bile Glucose Agar (VRBG). Plates are incubated for 24 hrs at 37°C after which enterobacteriaceae colonies are surrounded by a zone of precipitation accompanied by a purple discoloration of the agar.

d. Salmonellae

The examination for salmonellae is qualitative, not quantitative, as the specification requires salmonellae to be absent (or not detected) in 50 grams of sample. Thus examination commences with pre-enrichment of 50 grams of food in Lactose Broth, incubated overnight at 37°C. This is followed by selective enrichment in Tetrathionate and Seleptite-Cystine Broths, again incubated overnight at 37°C. Next comes selective plating on Desoxycholate-Citrate Agar, Bismuth Sulphite Agar and Salmonella Shigella Agar.

Biochemical confirmatory tests are carried out at this laboratory and confirmed Salmonella cultures are sent to the Salmonella Reference Centre for typing.

e. Staphylococci

A 1 ml aliquot of the 10^-1 dilution of the homogenate is streaked onto Baird Parker Agar which has had potassium tellurite and egg yolk emulsion added previously. Incubation is for 48 hours at 37°C. A tube coagulase test is carried out using Rabbit Plasma and Brain-Heart Infusion Broth.

f. Yeasts and Moulds

A 1 ml aliquot of the homogenate is plated onto Potato Dextrose agar. Tartaric acid is used to suppress bacterial growth. Plates are incubated for 5 days at 25°C. Results are expressed separately as yeasts per gram and moulds per gram.

RESULTS

Since January, 1975, a total of 192 freeze-dried meals has been analysed for microbiological contamination. The average SFC for the freeze-dried meals was 310. Salmonella, Staphylococcus and E. coli type 1 were not detected. Coliform contamination was found in fewer than 1 per cent of samples analysed - two batches of lamb and vegetable curry were found to have a low level of coliforms (MPN = 2 per gram and 5 per gram).

The highest SFC recorded was 18,600 in a batch of freeze-dried rice. Two other batches of rice gave SFC over 10,000. No other meal had a SFC in excess of 7,000.

Table 1 shows the results obtained for the period 1975/76.
DISCUSSION

The current Australian Defence Forces Food Specification specifies that the SPC of freeze-dried food shall not exceed 20,000. At no time in the past two years has this laboratory attained an SPC in excess of the specification.

The low level of coliform contamination and the non-detection of possibly pathogenic organisms (Salmonella, Staphylococcus and E. coli type 1) point to the success of the quality control programme.

In previous reports (Harder 1971, Forbes-Ewan 1973) it was stated that "... the total plate count (now SPC) should be reduced to suit the product (freeze-dried foods) and an absolute limit of 1,000 organisms per gram should be observed".

The results obtained over the past years indicate that this recommendation is justified.
TABLE 1*

RESULTS OF BACTERIOLOGICAL ANALYSIS OF FREEZE-DRIED FOODS 1975/76

All results are in terms of organisms per gram.

<table>
<thead>
<tr>
<th>MEAL VARIETY</th>
<th>NO. OF SAMPLES</th>
<th>COOKED</th>
<th></th>
<th>COOKED</th>
<th></th>
<th>COOKED</th>
<th></th>
<th>COOKED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SPC</td>
<td>COLIFORMS</td>
<td>SPC</td>
<td>COLIFORMS</td>
<td>SPC</td>
<td>COLIFORMS</td>
<td>YEASTS AND MOULDS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AVERAGE)</td>
<td>(AVERAGE)</td>
<td>(MAXIMUM)</td>
<td>(AVERAGE)</td>
<td>(MAXIMUM)</td>
<td>(AVERAGE)</td>
<td>(TOTAL)</td>
</tr>
<tr>
<td>Beef and Onions</td>
<td>26</td>
<td>120</td>
<td>Nil</td>
<td>2,400</td>
<td>210</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Beef and Beans</td>
<td>26</td>
<td>230</td>
<td>Nil</td>
<td>1,200</td>
<td>480</td>
<td>Nil</td>
<td>Nil</td>
<td>3 moulds</td>
</tr>
<tr>
<td>Savoury Steak Fingers</td>
<td>30</td>
<td>180</td>
<td>Nil</td>
<td>1,600</td>
<td>240</td>
<td>Nil</td>
<td>Nil</td>
<td>1 mould</td>
</tr>
<tr>
<td>Sweet and Sour Pork</td>
<td>24</td>
<td>640</td>
<td>Nil</td>
<td>1,720</td>
<td>290</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Roast Pork and Gravy</td>
<td>26</td>
<td>80</td>
<td>Nil</td>
<td>640</td>
<td>100</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Lamb and Vegetable Curry</td>
<td>28</td>
<td>120</td>
<td>Nil</td>
<td>830</td>
<td>80</td>
<td>5</td>
<td>Nil</td>
<td>4 moulds</td>
</tr>
<tr>
<td>Freeze Dried Rice</td>
<td>30</td>
<td>2,100</td>
<td>Nil</td>
<td>18,600</td>
<td>1,900</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

*Salmonella, Staphylococci, E. coli type 1 were not detected and so are not included in Table 1.
REFERENCES

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>DEFENCE ESTABLISHMENTS</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Defence,</td>
<td></td>
</tr>
<tr>
<td>Russell Offices,</td>
<td></td>
</tr>
<tr>
<td>CANBERRA. A.C.T. 2600</td>
<td></td>
</tr>
<tr>
<td>(a) Secretary</td>
<td>6</td>
</tr>
<tr>
<td>(b) Chief Defence Scientist</td>
<td>1</td>
</tr>
<tr>
<td>(c) Executive Controller, Australian Defence Scientific Services</td>
<td>1</td>
</tr>
<tr>
<td>(d) Controller, Service Laboratories and Trials</td>
<td>2</td>
</tr>
<tr>
<td>(e) Mr. R. H. Methams,</td>
<td></td>
</tr>
<tr>
<td>J1O Russell L.</td>
<td>1</td>
</tr>
<tr>
<td>Department of Defence (Army Office), Russell Offices, CANBERRA. A.C.T. 2600</td>
<td></td>
</tr>
<tr>
<td>(a) Directorate of Army Development</td>
<td>2</td>
</tr>
<tr>
<td>(b) Director of Infantry</td>
<td>2</td>
</tr>
<tr>
<td>(c) Director of Catering</td>
<td>1</td>
</tr>
<tr>
<td>(d) Scientific Adviser (Army Office)</td>
<td>1</td>
</tr>
<tr>
<td>(e) Librarian, Central Library</td>
<td>1</td>
</tr>
<tr>
<td>Department of Defence (Air Office), Russell Offices, CANBERRA. A.C.T. 2600</td>
<td></td>
</tr>
<tr>
<td>(a) Scientific Adviser</td>
<td>1</td>
</tr>
<tr>
<td>Department of Defence (Navy Office), Russell Offices, CANBERRA. A.C.T. 2600</td>
<td></td>
</tr>
<tr>
<td>(a) Scientific Adviser</td>
<td>1</td>
</tr>
<tr>
<td>Scientific and Technical Information Branch (STIB), Department of Defence, Campbell Park Offices, CANBERRA. A.C.T. 2601</td>
<td></td>
</tr>
<tr>
<td>Director General of Supply, Department of Defence (Army Office), G.P.O. Box 1932R, MELBOURNE. Vic. 3001</td>
<td></td>
</tr>
</tbody>
</table>
DEFENCE ESTABLISHMENTS (Con't)

Headquarters,
Supply Division,
St. James Plaza,
G.P.O. Box 1932R,
MELBOURNE. Vic. 3001

Director General of Medical Services,
Department of Defence (Army Office),
St. James Plaza,
G.P.O. Box 1932R,
MELBOURNE. Vic. 3001

The Director of Victualling and General Stores,
Department of Defence (Navy Office),
Victoria Barracks,
St. Kilda Road,
MELBOURNE. Vic. 3004

Headquarters,
Field Force Command,
Victoria Barracks,
PADDINGTON. N.S.W. 2021

Headquarters,
Logistic Command,
St. James Plaza,
G.P.O. Box 1932R,
MELBOURNE. Vic. 3001

Headquarters,
Training Command,
Victoria Barracks,
PADDINGTON. N.S.W. 2021

Headquarters,
Support Command RAAF,
Victoria Barracks,
St. Kilda Road,
MELBOURNE. Vic. 3004

Headquarters,
1 Military District,
Victoria Barracks,
BRISBANE. Qld. 4000

Headquarters,
2 Military District,
Victoria Barracks,
SYDNEY. N.S.W. 2000

Headquarters,
3 Military District,
Victoria Barracks,
MELBOURNE. Vic. 3000
DEFENCE ESTABLISHMENTS (Con't)

Headquarters, 4 Military District, Keswick Barracks, ADELAIDE, S.A. 5035	1
Headquarters, 5 Military District, Swan Barracks, PERTH, W.A. 6000	1
Headquarters, 6 Military District, Anglesea Barracks, HOBART, Tas. 7002	1
Headquarters, 7 Military District, Larrakeya Barracks, DARWIN, N.T. 5790	1
Commandant, Royal Military College, DUNTHOON, A.C.T. 2600	1
Commandant, Army Staff College, QUEENSCLIFFE, Vic. 3255	2
Commanding Officer/Chief Instructor, RAAF Centre, Milpa, BANDIANA, Vic. 3662	2
Commandant, RAAF Staff College, Royal Australian Air Force Base, CANBERRA, A.C.T. 2600	2
Director, Institute of Aviation Medicine, POINT COOK, RAAF, Vic. 3029	2

CIVILIAN ESTABLISHMENTS

| Librarian, CSIRO, Stowell Avenue, HOBART, Tas. 7000 | |
| The Librarian, CSIRO Division of Food Research, Food Research Laboratory, P.O. Box 52, NORTH RYDE, N.S.W. 2113 | |
CIVILIAN ESTABLISHMENTS (Con't)

Librarian,
CSIRO Dairy Research Laboratory,
P.O. Box 20,
HIGHETT. Vic. 3190

Government Analyst,
Department of Science,
CANBERRA. A.C.T. 2600

Dr. R. I. Garrod
Department of Education and Science,
P.O. Box 826,
CANBERRA. A.C.T. 2601

The Librarian,
Department of Health,
P.O. Box 100,
WODEN. A.C.T. 2606

Dr. R. C. Hutchinson,
Derwentlaken Road,
GREGSON. Tas. 7402

Head,
Library Department,
Central Library,
Royal Melbourne Institute of Technology,
Floor 1, Casey Wing,
368 Swanston Street,
MELBOURNE. Vic. 3000

Officer-in-Charge,
Preparation Branch,
National Library of Australia,
CANBERRA. A.C.T. 2600

State Librarian,
State Library of Tasmania,
Murray Street,
HOBART. Tas. 7000

Director,
Food Preservation Laboratory,
Department of Primary Industries,
HAMILTON. Qld. 4000

Head,
Food School,
East Sydney Technical College,
Forbes Street,
DARLINGHURST. N.S.W. 2010
CIVILIAN ESTABLISHMENTS (Con't)

University of New South Wales,
P.O. Box 1,
KENSINGTON, N.S.W. 2033

(a) Head,
Department of Food Technology 1

(b) Librarian,
Serials Department,
Central Library 1

The Medical Library,
Flinders University of South Australia,
BEDFORD PARK, S.A. 5042 1

OVERSEAS ESTABLISHMENTS

BRITAIN

Australian Army Representative,
Australia House,
Strand,
London, WC2, England 2

Ministry of Defence (Navv),
Directorate of Supplies & Transport
(General and Victualling),
Empress State Building,
Lillie Road,
London, SW6, England 2

Adviser in Nutrition,
AND5, (Army Dept), Ministry of Defence,
Landsdowne House, Berkeley Square,

Deputy Chief Scientist (Army),
Sag (a) 3D,
Ministry of Defence,
Main Building, Whitehall Gardens,
London SW 1A 2HB, England 1

The Director,
Army Personnel Research Establishment,
C/- Royal Aircraft Establishment,
Farnborough, Hants, England 2

The Information Officer,
British Food Manufacturing Industries
Research Association,
Randalls Road, Leatherhead,
Surrey, England 1
OVERSEAS ESTABLISHMENTS (Con't)

BRITAIN (Con't)

The Librarian,
Food Research Institute,
Colney Lane,
Norwich NOR 7OF, England

Superintendent,
Foods and Nutrition Division,
Laboratory of the Government Chemist,
Cernwall House, Stamford Street,
London, SE1 9NQ, England

The Librarian,
Meat Research Institute,
Langford, Bristol, England

Dr. D. J. McWeeny,
Ministry of Agriculture, Fisheries and Food,
Food Science Unit,
Food Research Institute,
Colney Lane, Norwich,
Norfolk, NOR 7OF, England

Mr. J. F. Hearne,
Food Standards Science and Safety Division,
Ministry of Agriculture, Fisheries and Food,
Great Westminster House, Horseferry Road,
London, SW1, England

The Librarian,
National College of Food Technology,
University of Reading,
St. George's Avenue, Weybridge,
Surrey, England

The Director,
Tropical Products Institute,
Gray's Inn Road,
London WC1, England

CANADA

National Defence Headquarters,
Ottawa, Ontario, K1A OK2.

(a) Major N. A. Galbraith
(DGSE 3-4)

(b) D Food S

(c) DGSE Technical Library
OVERSEAS ESTABLISHMENTS (Cont'd)

CEYLON

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director,</td>
<td>Food Research and Nutrition Council,</td>
<td></td>
</tr>
<tr>
<td>Food Research and Nutrition Council, C/- Food Commissioner,</td>
<td>Union Place, Colombo, Ceylon</td>
<td>1</td>
</tr>
</tbody>
</table>

GERMANY

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed Services Food Chemist,</td>
<td>89 Supply Depot RAOC, Viersen, Germany, BFPC 40.</td>
<td>1</td>
</tr>
</tbody>
</table>

GHANA

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defence Adviser,</td>
<td>Office of the High Commission for Ghana</td>
<td></td>
</tr>
<tr>
<td>Office of the High Commission for Ghana</td>
<td>13 Belgrave Square, London SW1, England</td>
<td>1</td>
</tr>
</tbody>
</table>

INDIA

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director General,</td>
<td>Research and Development Organisation,</td>
<td></td>
</tr>
<tr>
<td>Research and Development Organisation, Ministry of Defence,</td>
<td>New Delhi, 11</td>
<td>2</td>
</tr>
</tbody>
</table>

| The Director, | Defence Food Research Laboratory, | |
| Defence Food Research Laboratory, | Jyothi Nagar, PB No. 45 Mysore - 1, India | 2 |

MALAYSIA

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director,</td>
<td>Defence Research Centre, Ministry of Defence,</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Defence Research Centre,</td>
<td>Ministry of Defence, Rifle Range Road,</td>
<td></td>
</tr>
<tr>
<td>Ministry of Defence, Rifle Range Road, Kuala Lumpur, Malaysia</td>
<td>Kuala Lumpur, Malaysia</td>
<td>3</td>
</tr>
</tbody>
</table>

| Director of Supplies and Transport, Ministry of Defence, C/- G.P.O. Kuala Lumpur | | 1 |

NEW ZEALAND

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Scientist,</td>
<td>Defence Science Organisation, DSIR,</td>
<td></td>
</tr>
<tr>
<td>Defence Science Organisation, DSIR,</td>
<td>P.O. Box 8010, Wellington, New Zealand</td>
<td>1</td>
</tr>
</tbody>
</table>
OVERSEAS ESTABLISHMENTS (Con't)

PAPUA NEW GUINEA

Australian Defence Headquarters Co-operation Group,
P.O. Box 2270,
Kongdolu, Papua New Guinea 3

PHILIPPINES

Science Research Supervisor,
Food Research Division,
Food & Nutrition Research Institute,
Manila, Philippines 1

UNITED STATES OF AMERICA

Chief, Food and Nutrition Section,
NASA - Manned Spacecraft Center,
Houston, Texas 1

Director,
U.S. Army Natick Laboratories,
Food Laboratory,
Natick, Massachusetts, U.S.A. 2