<table>
<thead>
<tr>
<th>Page 1 of 2</th>
<th>Page 2 of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>SAN DIEGO STATE UNIV. CALIF CENTER FOR REGIONAL ENVIR. ETC F/G 6/6</td>
<td>SAN DIEGO STATE UNIV. CALIF CENTER FOR REGIONAL ENVIR. ETC F/G 6/6</td>
</tr>
<tr>
<td>ECOLOGICAL ASSESSMENT OF VANDENBERG AIR FORCE BASE, CALIFORNIA—ETC(U)</td>
<td>ECOLOGICAL ASSESSMENT OF VANDENBERG AIR FORCE BASE, CALIFORNIA—ETC(U)</td>
</tr>
<tr>
<td>SEP 76 R M REILLY, F P STUTZ, C F COOPER F29601-75-C-0116</td>
<td>SEP 76 R M REILLY, F P STUTZ, C F COOPER F29601-75-C-0116</td>
</tr>
<tr>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

This page contains pages of text and diagrams, likely related to an ecological assessment of Vandenbergs Air Force Base in California.
ECOLOGICAL ASSESSMENT OF
VANDENBERG AIR FORCE BASE, CALIFORNIA
VOLUME III. ENVIRONMENTAL
PLANNING SYSTEM

CENTER FOR REGIONAL ENVIRONMENTAL STUDIES
SAN DIEGO STATE UNIVERSITY
SAN DIEGO, CALIFORNIA 92182

SEPTEMBER 1976

FINAL REPORT: JUNE 1975 - AUGUST 1976

Approved for public release; distribution unlimited.
Abstract

This third volume of a three volume report contains a description and documentation of the computer-based Environmental Planning System (EPS) developed for Vandenberg Air Force Base (VAFB), California. The environmental inventory of VAFB provided the basic data, in computer-compatible form, for the EPS presented in this volume. The GRID computer graphics program and other computer programs used in the EPS are described. A detailed users manual is presented which describes the specific procedures for operating the computer.
programs with the computerized data base developed for VAFB. A complete description of the quantitative ecological data base upon which the EPS operates is provided. A series of case studies show how to apply the EPS to VAFB. An evaluation of manual and automated methods for determining areas of vegetation is presented using statistical tests to compare the various methods. Complete documentation is given for all computer programs used in the EPS.
PREFACE

This final report was prepared by the Center for Regional Environmental Studies, San Diego State University, San Diego, California, under AFSC Contract No. F29601-75-C-0116, and was funded by the Air Force Civil Engineering Center (AFCEC), Tyndall AFB, Florida. This work was accomplished under JON 21033E24. Major Rutherford C. Wooten, Jr., (AFCEC/EVP), was the Center Project Officer in Charge. This project was transferred from the Air Force Weapons Laboratory (AFWL), Kirtland AFB, New Mexico.

This report consists of three volumes: Volume I - Evaluation and Recommendations, Volume II - Biological Inventory 1974/1975, Volume III - Environmental Planning System. Volume III was presented as a master's thesis to San Diego State University in partial fulfillment of the requirements for the degree, Master of Science in Biology, by Richard M. Reilly.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

RUTHERFORD C. WOOTEN, JR
Major, USAF, BSC
Chief, Environmental Planning Div

ROBERT E. BRANDON
Technical Director

DONALD A. SILVA
Lt Col, USAF, BSC
Director of Environics

ROBERT M. ITEN
Colonel, USAF
Commander
ACKNOWLEDGMENTS

Appreciation is expressed to Mr. Gary J. Zupan for providing computer programming assistance at San Diego State University, and Mr. Mike Hughes for implementing the computer programs in the Environmental Planning System (EPS) on the computer system at Vandenberg AFB. Special gratitude goes to Mr. Thomas A. Oberbauer for his assistance in interpreting and constructing the vegetation data base used in the EPS. We also thank Mr. Clark R. Mahrdt for his assistance in applying the EPS to map animal distributions.

The following source was used as a key reference in writing sections of this Users Manual pertaining to GRID:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II DESCRIPTION OF THE ENVIRONMENTAL PLANNING SYSTEM (EPS)</td>
<td>2</td>
</tr>
<tr>
<td>III HOW TO USE THE ENVIRONMENTAL PLANNING SYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>IV CASE STUDIES - APPLICATION OF THE ENVIRONMENTAL PLANNING SYSTEM TO VANDENBERG AFB (VAFB)</td>
<td>5</td>
</tr>
<tr>
<td>Distribution of Elevation Classes for VAFB</td>
<td>5</td>
</tr>
<tr>
<td>Areas Sensitive to Erosion on VAFB</td>
<td>5</td>
</tr>
<tr>
<td>Use of GRID to Display Areas of Biotic Sensitivity</td>
<td>8</td>
</tr>
<tr>
<td>Effects on Vegetation Types due to Alternate Placements of a Runway-Launch Complex Using the Search/Count Program</td>
<td>15</td>
</tr>
<tr>
<td>V COMPARISON OF MANUAL AND AUTOMATED METHODS FOR DETERMINING AREAS OF VEGETATION</td>
<td>21</td>
</tr>
<tr>
<td>Manual Method</td>
<td>21</td>
</tr>
<tr>
<td>Planimeter Method</td>
<td>24</td>
</tr>
<tr>
<td>Automated Method</td>
<td>24</td>
</tr>
<tr>
<td>Investigation of Three Different Scales of Analysis</td>
<td>24</td>
</tr>
<tr>
<td>Comparison of the Small Cell Count Program and GRID</td>
<td>30</td>
</tr>
<tr>
<td>VI USERS MANUAL</td>
<td>34</td>
</tr>
<tr>
<td>Introduction</td>
<td>34</td>
</tr>
<tr>
<td>Basic Principles of GRID</td>
<td>34</td>
</tr>
<tr>
<td>Subroutine Flexin</td>
<td>35</td>
</tr>
<tr>
<td>Irregular Outline Package</td>
<td>38</td>
</tr>
<tr>
<td>Map Package</td>
<td>39</td>
</tr>
<tr>
<td>Data Input Package</td>
<td>47</td>
</tr>
<tr>
<td>Computer Submissions</td>
<td>48</td>
</tr>
<tr>
<td>Search/Count Program</td>
<td>49</td>
</tr>
<tr>
<td>VII QUANTITATIVE ECOLOGICAL DATA BASE</td>
<td>51</td>
</tr>
<tr>
<td>Grid System and Registration</td>
<td>51</td>
</tr>
<tr>
<td>Soil Data Base</td>
<td>52</td>
</tr>
<tr>
<td>Exposure Data Base</td>
<td>57</td>
</tr>
<tr>
<td>Elevation Data Base</td>
<td>57</td>
</tr>
</tbody>
</table>
Vegetation Data Base .. 57
Merged Data Base ... 64
Update Procedures .. 64

APPENDIX A--GRID Program Listing as Adapted to the
Burroughs 3500 Computer 67

APPENDIX B--Vandenberg Irregular Outline for GRID 85

APPENDIX C--Subroutine Flexin for GRID Program Displaying
Soils with High Erosion Potential 89

APPENDIX D--Subroutine Flexin for GRID Program Displaying
Areas of High Erosion Potential Based on Soils
and Vegetation .. 90

APPENDIX E--Subroutine Flexin for GRID Program Displaying
Areas of Prime Ecological Significance on
Vandenberg AFB .. 91

APPENDIX F--Subroutine Flexin for GRID Program Displaying
Areas of Suitable Habitat for the California
Legless Lizard on Vandenberg AFB 92

APPENDIX G--Search/Count Program as Adapted to the
Burroughs 3500 Computer .. 93

APPENDIX H--Small Cell Count Program Listing as Adapted to
the Burroughs 3500 Computer 96

REFERENCES .. 97
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Areas with Soils of High Erosion Potential on Vandenberg AFB</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Areas of High Erosion Potential Based on Soils and Vegetation on Vandenberg AFB</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Areas of Prime Ecological Significance on Vandenberg AFB</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Areas of Suitable Habitat for the California Legless Lizard on Vandenberg AFB</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Relative Positions of Affected Grid Cells by a Runway-Launch Complex Located on the Present Runway Facility at Vandenberg AFB</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Relative Positions of Affected Grid Cells for Configuration I of the Runway-Launch Complex</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Grid Cell Scales</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>Grid Cell Coordinates</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table	Title	Page
1 | Summary of Elevation Classes for Vandenberg AFB Based on GRID Display Output | 6
2 | Summary of GRID Levels Displaying Areas with Soils of High Erosion Potential on VAFB | 9
3 | Summary of GRID Levels Displaying Areas of High Erosion Potential Based on Soils and Vegetation on VAFB | 9
4 | Summary of GRID Levels Displaying Areas of Prime Ecological Significance on VAFB | 13
5 | Summary of GRID Levels Displaying Areas of Suitable Habitat for the California Legelss Lizard (*Anniella pulchra*) on VAFB | 13
6 | Summary of the Vegetation Types Affected by the Proposed Runway Extension (34 Grid Cells) Based on the Search/Count Program | 17
7 | Summary of the Vegetation Types Affected by the Existing and Proposed Runway Facilities (43 Grid Cells) Based on the Search/Count Program | 17
8 | Summary of the Vegetation Types Affected by Configuration I of the Runway-Launch Complex Based on the Search/Count Program | 20
9 | Summary of the Vegetation Types Affected by Configuration II of the Runway-Launch Complex Based on the Search/Count Program | 20
10 | Areas of Vegetation by the Cutting and Weighing Method for Vegetation Map Sheet No. 61 | 22
11 | Planimeter Summary for Vegetation Map Sheet No. 61 | 23
12 | Planimeter Summary for Vegetation Map Sheet No. 28 | 25
13 | Planimeter Summary for Vegetation Map Sheet No. 41 | 26
14 | Planimeter Summary for Vegetation Map Sheet No. 62 | 27
15 | Pooled Data of Four Vegetation Map Sheets Using Three Different Scales of Analysis | 29
16 | Areas of Vegetation for Vandenberg AFB | 31
17 | Soil/Slope Codes and Categories for Vandenberg AFB | 53-56
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Exposure Codes and Categories for Vandenberg AFB</td>
<td>58</td>
</tr>
<tr>
<td>19</td>
<td>Elevation Codes and Categories for Vandenberg AFB</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>Vegetation Codes and Categories for Vandenberg AFB</td>
<td>61</td>
</tr>
<tr>
<td>21</td>
<td>Vegetation Data Card Fields</td>
<td>62</td>
</tr>
<tr>
<td>22</td>
<td>Merged Data Deck Fields</td>
<td>65</td>
</tr>
</tbody>
</table>

(The reverse of this page is blank)
SECTION I
INTRODUCTION

This report contains a description and documentation of the computer-based ecological evaluation tools developed for Vandenberg Air Force Base (VAFB). It is presented as a companion to Volume I (Evaluation and Recommendations) and Volume II (Biological Inventory), (References 1,2). This volume is primarily intended for use by personnel involved in environmental planning.

The ecological inventory developed for VAFB provided the basic data, in computer-compatible form, for the Environmental Planning System (EPS) presented in this volume. The EPS is designed to be a flexible tool usable by base personnel having a minimum of computer experience. The EPS will calculate and display the area of each major vegetation type, or other ecologically sensitive unit, that is likely to be altered by any proposed development configuration. It will assist in the identification of optimal locations for development or operational actions, either for the Space Transportation System (STS) or other elements of the VAFB mission, on the basis of their relative ecological suitability.

This report is functionally organized in the interests of the user. Sections II and III briefly describe the EPS and how to use it. Section IV is a series of actual case studies using the EPS. Section V is a comparison of methods for determining areas of vegetation. The data presented in this section provide a comparison of the accuracy of the manual method versus the automated method for determining areas of vegetation. Section VI is a detailed Users Manual which describes how to use the computer programs in the EPS. Section VII is a description of the computerized data base in the EPS along with instructions for its use and updating procedures. The appendix contains complete program listings for the computer programs, subroutines used in the case studies, and the portion of the data base containing the irregular outline used by the GRID computer program to map VAFB.
SECTION II
DESCRIPTION OF THE ENVIRONMENTAL PLANNING SYSTEM

The EPS used for VAFB was based upon a study done for the coastal plain of San Diego County (Reference 3). Use of this type EPS seemed to allow for the concurrent experimental and observational design of the ecological assessment of VAFB.

The GRID computer mapping program was selected to display the computerized data base developed from the ecological inventory. The GRID program was developed at the Harvard Laboratory for Computer Graphics and Spatial Analysis. It provides a highly efficient means for graphic display of large quantities of information collected on the basis of a rectangular coordinate grid. The GRID program is written in FORTRAN IV. It is operational on the IBM 360 computer at San Diego State University and the Burroughs 3500 computer at VAFB.

The GRID computer mapping program is an automated alternative to drawing and planimetering overlays for mapping studies. The GRID program produces a composite map output which selectively displays from two to ten classes of data. GRID calculates the frequency of each class of data (the number of grid cells), the percent total by classes, and displays the results with a histogram. GRID has two distinct advantages over manual methods:

1. Combinations of overlays for displaying alternatives can be produced almost without limit.

2. The cost is minimal once the data base and the computer graphics program are established.

To apply the GRID program to VAFB, the area encompassing the base was divided into rectangular grids. Two grid scales of analysis were used. A square grid cell 1000 feet on a side was adopted for standard processing by the GRID program. This cell size was chosen because it was the same as the 1000-foot grid of the California Coordinate System used in the Base Master Plan maps (Reference 4). This provided a raster of 4646 cells (22.96 acres per cell) covering the entire base. For data requiring more detailed resolution, such as vegetation cover, the basic grid cell was subdivided into nine square subunits of 2.55 acres each. An interpretive subroutine in the GRID program then provides a decision for the assignment of each 23-acre cell to a category determined by the values of the nine subunits.

The EPS also contains a Search/Count program. This program is run independently of GRID with the computerized data base. It will locate and print out data base variables for selected grid cells. By entering the alphanumeric coordinates of selected grid cells, the program will print out the data base variables for each grid cell and count the frequency of each subvariable. The Search/Count program can be used, for example, to compute the areas of various vegetation types that would be affected by alternate placements of a runway-launch complex.
The computerized data base developed during the Vandenberg study contains both abiotic and biotic information coded into the grid system. For each grid cell the data base now contains an interpretation for soil type, slope, exposure, elevation, and vegetative cover. The data base exists on cards and magnetic tape. It is organized so that it can be easily updated.
SECTION III
HOW TO USE THE ENVIRONMENTAL PLANNING SYSTEM

To effectively operate the EPS, as a flexible tool for environmental analysis and planning, the user must be familiar with the components of the system and how they operate. Section II gave an overview of the EPS. A detailed Users Manual for operating GRID and the Search/Count program, as adapted for VAFB, is presented in Section VI. Many examples for use of different program options were incorporated into the Users Manual to aid in understanding. A complete description of the computerized data base developed for VAFB, and instructions for using it, are given in Section VII. The combination of the Users Manual and the data base description and instructions will provide the user with the tools to operate the system.

A series of case studies using the EPS are presented in Section IV. Several of the case studies are fully documented in the appendix with program listings. In addition, the appendix contains a complete program listing for GRID and the Search/Count program as adapted to the Burroughs 3500 computer. To gain initial experience operating the EPS, the user should practice by duplicating the computer output of one or a number of the case studies.

The user now has the tools, the data base, and the instructions for a computerized environmental planning system. The challenge is now to implement the EPS for operational environmental analysis and planning.
SECTION IV

CASE STUDIES - APPLICATION OF THE ENVIRONMENTAL PLANNING SYSTEM TO VANDENBERG AIR FORCE BASE

The following are a series of case studies to illustrate different uses of the EPS.

1. DISTRIBUTION OF ELEVATION CLASSES FOR VAFB

 Elevation was coded in 200-foot intervals for each grid cell. The highest elevation in the grid cell determined the code assigned to that cell. Using this system, 10 different codes were used to describe the elevation from sea level to the highest point of VAFB. All areas 1800 feet and above were combined into one elevation class. The highest elevation on the base is 2170 feet.

 The GRID program was used to display the distribution of the elevation classes on VAFB. Table 1 is a summary of the elevation classes based on GRID display output. The same information could easily be obtained by planimetering the appropriate contours on a topographic map. This case is too simple to display the full power of the EPS, but it is desirable to include for just that reason.

 The elevation data, along with other data variables, can be used to study general hydrologic features on the base. A GRID map could be printed to study lowland drainage areas by printing out all the areas with an elevation of less than 600 feet. The areas shown might also indicate areas dominated by coastal fog if 600 feet represents the mean low ceiling (see Volume I, Figure 3.2.3). Similarly, areas below 1200 feet may be consistently below the inversion layer and thus subject to potential effects of the exhaust cloud from a rocket launch (see Volume I, Figure 3.2.4).

2. AREAS SENSITIVE TO EROSION ON VANDENBERG AFB

 This study uses the GRID program and data base variables to define areas of high environmental sensitivity to erosion. The soil and vegetation data base variables were used in the study. They are described in detail in Section VIII.

 The erosion potential of the soil was analyzed using the soil series/phase or land type with its slope characteristic. Using this procedure, 62 soil codes in the data base were defined to have a high erosion potential. These included the following groups: severely eroded soils, soils with steep slopes (greater than 15 percent), and unsuitable land types (based on engineering restraints). The term "land type" is used to describe areas where the soil materials are too rocky, shallow, severely eroded, sandy, or wet to be classified as distinct soil types. The category "unsuitable land types" includes land types on VAFB judged to be unsuitable for construction purposes based on engineering restraints. Examples of unsuitable land types are: coastal beaches, sedimentary rock land, gullied land, etc.

 A GRID map (Figure 1) was produced to display the erosion potential of the soil in 5 levels based on the above criteria. They are:
TABLE 1. SUMMARY OF ELEVATION CLASSES FOR VANDENBERG AIR FORCE BASE, BASED ON GRID DISPLAY OUTPUT.

<table>
<thead>
<tr>
<th>Elevation Classes (Feet)</th>
<th>No. of Cells</th>
<th>*Estimated Acres</th>
<th>Percent of Total Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>0- 200</td>
<td>844</td>
<td>19378</td>
<td>18.2</td>
</tr>
<tr>
<td>200- 400</td>
<td>1339</td>
<td>30743</td>
<td>28.8</td>
</tr>
<tr>
<td>400- 600</td>
<td>963</td>
<td>22110</td>
<td>20.7</td>
</tr>
<tr>
<td>600- 800</td>
<td>528</td>
<td>12122</td>
<td>11.4</td>
</tr>
<tr>
<td>800-1000</td>
<td>406</td>
<td>9322</td>
<td>8.7</td>
</tr>
<tr>
<td>1000-1200</td>
<td>248</td>
<td>5694</td>
<td>5.3</td>
</tr>
<tr>
<td>1200-1400</td>
<td>131</td>
<td>3008</td>
<td>2.8</td>
</tr>
<tr>
<td>1400-1600</td>
<td>88</td>
<td>2020</td>
<td>1.9</td>
</tr>
<tr>
<td>1600-1800</td>
<td>50</td>
<td>1148</td>
<td>1.1</td>
</tr>
<tr>
<td>1800 and over</td>
<td>49</td>
<td>1125</td>
<td>1.1</td>
</tr>
<tr>
<td>TOTALS</td>
<td>4646</td>
<td>106670</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*Estimated acres = no. of cells x 22.96 acres per cell.
LEGEND

BACKGROUND
SEVERELY ERODED SOIL
SOIL WITH STEEP SLOPES
SEVERELY ERODED SOIL WITH STEEP SLOPES
UNSUITABLE LAND TYPES

FIGURE 1. AREAS WITH SOILS OF HIGH EROSION POTENTIAL ON VAFB.
Level 1 = Background (.) e.g., all soils not classed in levels 2 to 5.
Level 2 = Severely eroded soil (+)
Level 3 = Soil with steep slopes (X)
Level 4 = Severely eroded soil with steep slopes (e)
Level 5 = Unsuitable land types (■)

The Flexin subroutine to produce the GRID map in Figure 1 is listed in Appendix C. The DATA statements in Subroutine Flexin list the individual soil codes in each of the 5 levels. Table 2 is a summary of the 5 levels based on the GRID map output.

The GRID program has the advantage of producing computer maps displaying different combinations of variables almost without limit at minimal cost. This is demonstrated by another GRID map (Figure 2). This GRID output used the soil erosion potential data (described above) combined with unstable vegetation. Unstable vegetation was defined as annual grassland in this study.

A GRID map was produced to display areas of potentially high soil erosion and unstable vegetation in 10 levels. They are:

Level 1 = Background (.) e.g., all soils and vegetation types not included in levels 2 to 10.
Level 2 = Severely eroded soil (,)
Level 3 = Soil with steep slopes (■)
Level 4 = Severely eroded soil with steep slopes (+)
Level 5 = Unsuitable land types (X)
Level 6 = Annual grassland (0)
Level 7 = Annual grassland and severely eroded soil (e)
Level 8 = Annual grassland and soil with steep slopes (e)
Level 9 = Annual grassland and severely eroded soil with steep slopes (■)
Level 10 = Annual grassland and unsuitable land types (■)

The Flexin subroutine to produce the GRID map in Figure 2 is listed in Appendix D. Table 3 is a summary of the 10 levels based on GRID output.

Other combinations of eroded soil, steep slopes, and unstable vegetation can be mapped using GRID and the data base variables. For example, the exposure variable contains subvariable codes for multiple exposures in a cell due to drainage areas or ridge lines. These subvariable codes would indicate sloping land with potentially eroded soil. A GRID map could be produced to display the variables for soil, vegetation, and exposure in up to 10 different levels depending upon the design of Subroutine Flexin.

3. USE OF GRID TO DISPLAY AREAS OF BIOTIC SENSITIVITY

The GRID program and data base developed for VAFB can be used to locate and print out areas likely to contain plant or animal species of substantial importance that must be considered in an Environmental Impact Statement. As a result of the ecological assessment of VAFB three vegetation areas on the base were identified to be of prime ecological significance and were cited as a potential environmental problem deserving special consideration.
TABLE 2. SUMMARY OF GRID LEVELS DISPLAYING AREAS WITH SOILS OF HIGH EROSION POTENTIAL.

<table>
<thead>
<tr>
<th>Level</th>
<th>No. of Cells</th>
<th>Estimated Acres</th>
<th>Percent of Total Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2648</td>
<td>60798</td>
<td>57.0</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>574</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>1152</td>
<td>26450</td>
<td>24.8</td>
</tr>
<tr>
<td>4</td>
<td>89</td>
<td>2043</td>
<td>1.9</td>
</tr>
<tr>
<td>5</td>
<td>732</td>
<td>16807</td>
<td>15.8</td>
</tr>
<tr>
<td>TOTALS</td>
<td>4646</td>
<td>106672</td>
<td>100.0</td>
</tr>
</tbody>
</table>

TABLE 3. SUMMARY OF GRID LEVELS DISPLAYING AREAS OF HIGH EROSION POTENTIAL BASED ON SOILS AND VEGETATION.

<table>
<thead>
<tr>
<th>Level</th>
<th>No. of Cells</th>
<th>Estimated Acres</th>
<th>Percent of Total Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1674</td>
<td>38435</td>
<td>.360</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>184</td>
<td>.02</td>
</tr>
<tr>
<td>3</td>
<td>687</td>
<td>15774</td>
<td>14.8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>367</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>589</td>
<td>13523</td>
<td>12.7</td>
</tr>
<tr>
<td>6</td>
<td>974</td>
<td>22363</td>
<td>21.0</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>390</td>
<td>0.4</td>
</tr>
<tr>
<td>8</td>
<td>465</td>
<td>10676</td>
<td>10.0</td>
</tr>
<tr>
<td>9</td>
<td>73</td>
<td>1676</td>
<td>1.6</td>
</tr>
<tr>
<td>10</td>
<td>143</td>
<td>3283</td>
<td>3.1</td>
</tr>
<tr>
<td>TOTALS</td>
<td>4646</td>
<td>106671</td>
<td>100.1</td>
</tr>
</tbody>
</table>
LEGEND

BACKGROUND
SEVERELY ERODED SOIL
SOIL WITH STEEP SLOPES
SEVERELY ERODED SOIL WITH
STEEP SLOPES
UNSUITABLE LAND TYPES
ANNUAL GRASSLAND
ANNUAL GRASSLAND AND
SEVERELY ERODED SOIL
ANNUAL GRASSLAND AND SOIL
WITH STEEP SLOPES
ANNUAL GRASSLAND AND
SEVERELY ERODED SOIL WITH
STEEP SLOPES
ANNUAL GRASSLAND AND
UNSUITABLE LAND TYPES

FIGURE 2. AREAS OF HIGH EROSION
POTENTIAL BASED ON SOILS AND
VEGETATION ON VAFB.
for the STS program (Reference 1). The areas are: Tanbark Oak forest, Bishop Pine forest, and stabilized sand dunes.

Each of the areas above is a vegetation type and is coded as a subvariable in the computerized data base. A GRID map, Figure 3, was produced to display areas of prime ecological significance in 7 levels. They are:

- **Level 1** = Bishop Pine forest (X)
- **Level 2** = Tanbark Oak forest (O)
- **Level 3** = Stabilized sand dunes (■)
- **Level 4** = Background (.) e.g., all vegetation types not included in levels 1 to 3 or levels 5 to 7
- **Level 5** = Bishop Pine forest—partial occurrence (+)
- **Level 6** = Tanbark Oak forest—partial occurrence (○)
- **Level 7** = Stabilized sand dunes—partial occurrence (○)

The Flexin subroutine to produce the GRID map in Figure 3 is listed in Appendix E. The vegetation subvariables were coded at the 2.55-acre subcell level. Subroutine Flexin was written to direct the computer to read each of the 9 subcells for a grid cell. A routine then calculated the vegetation type of the grid cell using the vegetation type occurring in a majority of the subcells. If the vegetation type was one of the key types, it was mapped as level 1, 2, or 3 for the grid cell. If a key vegetation type was present, but did not occur in the majority of the subcells, it was mapped as level 5, 6, or 7. All other vegetation types were mapped as background. Table 4 is a summary of the 7 levels based on the GRID output.

The GRID map displaying areas of prime ecological significance can also be interpreted to display the distribution of plant species which are characteristic of the vegetation type. For example, 6 rare plant species are restricted to the stabilized sand dunes (Reference 1). Therefore, the 6 rare plant species have a high probability of occurring within grid cells mapped as stabilized sand dunes.

Similarly, the probable distribution of some animals can be mapped based on their habitat preference. The California Legless Lizard (Anniella pulchra) is a species regulated by the California Fish and Game Commission. It occurs on VAFB and is considered relatively sensitive due to its habitat specificity (Reference 1).

A. pulchra is a burrowing reptile and is relatively restricted to soils it can penetrate. Based on the field studies done at VAFB during the ecological assessment and Miller's research (Reference 5), suitable habitat for *A. pulchra* was described using subvariables in the computerized data base. Suitable habitat for *A. pulchra* included: a suitable soil type (sandy or loamy soils), a preferred vegetation type, or a combination of both.

A GRID map (Figure 4) was produced to display areas of suitable habitat in 10 levels. They are:
FIGURE 3. AREAS OF PRIME ECOLOGICAL SIGNIFICANCE ON VAFB.
TABLE 4. SUMMARY OF GRID LEVELS DISPLAYING AREAS OF PRIME ECOLOGICAL SIGNIFICANCE OF VAFB.

<table>
<thead>
<tr>
<th>Level</th>
<th>No. of Cells</th>
<th>Estimated Acres</th>
<th>Percent of Total Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>459</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>46</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>411</td>
<td>9437</td>
<td>8.8</td>
</tr>
<tr>
<td>4</td>
<td>4032</td>
<td>92575</td>
<td>86.8</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>1033</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>207</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>2916</td>
<td>2.7</td>
</tr>
<tr>
<td>TOTALS</td>
<td>4646</td>
<td>106673</td>
<td>99.9</td>
</tr>
</tbody>
</table>

TABLE 5. SUMMARY OF GRID LEVELS DISPLAYING AREAS OF SUITABLE HABITAT FOR THE CALIFORNIA LEGLESS LIZARD (ANIELLA PULCHRA) ON VAFB.

<table>
<thead>
<tr>
<th>Level</th>
<th>No. of Cells</th>
<th>Estimated Acres</th>
<th>Percent of Total Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>321</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>344</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>115</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>895</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>1360</td>
<td>31226</td>
<td>29.3</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
<td>1561</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>374</td>
<td>8587</td>
<td>8.0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>92</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>146</td>
<td>3352</td>
<td>3.1</td>
</tr>
<tr>
<td>10</td>
<td>2621</td>
<td>60178</td>
<td>56.4</td>
</tr>
<tr>
<td>TOTALS</td>
<td>4646</td>
<td>106671</td>
<td>99.9</td>
</tr>
</tbody>
</table>
LEGEND

COASTAL STRAND
STABILIZED SAND DUNES
COASTAL BLUFF
OAK WOODLAND

SUITABLE SOIL ASSOCIATIONS

COASTAL STRAND-SUITABLE
SOIL OVERLAP
STABILIZED SAND DUNES-
SUITABLE SOIL OVERLAP
COASTAL BLUFF-SUITABLE
SOIL OVERLAP
OAK WOODLAND-SUITABLE
SOIL OVERLAP

BACKGROUND

FIGURE 4. AREAS OF SUITABLE
HABITAT FOR THE CALIFORNIA
LEGLESS LIZARD ON VAFB.
Level 1 = Coastal strand (,)
Level 2 = Stabilized sand dunes (■)
Level 3 = Coastal bluff (+)
Level 4 = Oak woodland (X)
Level 5 = Suitable soil associations (O)
Level 6 = Coastal strand/suitable soil overlap (Θ)
Level 7 = Stabilized sand dunes/suitable soil overlap (Θ)
Level 8 = Coastal bluff/suitable soil overlap (Θ)
Level 9 = Oak woodland/suitable soil overlap (Θ)
Level 10 = Background (.) e.g., areas of unsuitable habitat.

The Flexin subroutine to produce the GRID map in Figure 4 is listed in Appendix F. The data statement in Subroutine Flexin contains 22 soil codes which were designated as suitable soil associations. Table 5 is a summary of the 10 levels used to display suitable habitat for A. pulchra based on the GRID computer output. The levels of suitable habitat were not ranked in this study, but with expert consultation this could be done.

4. EFFECTS ON VEGETATION TYPES DUE TO ALTERNATE PLACEMENTS OF A RUNWAY-LAUNCH COMPLEX USING THE SEARCH/COUNT PROGRAM

The Search/Count program developed for the EPS is useful for making detailed studies within the general study area of VAFB. Given the alphanumeric coordinates of selected grid cells, the Search/Count program will: direct the computer to locate the grid cells in the data base; frequency count the subvariables of the selected grid cells (and convert them to acres if requested); print out the data base file for each selected grid cell; and print out the frequency counts of the subvariables for the group of selected grid cells. Instructions for using the Search/Count program are given in Section VI. A listing of the Search/Count program is given in Appendix G.

In this case study, the Search/Count program was used to compute areas of various vegetation types that would be affected by alternate placements of a runway-launch complex to be used for the proposed Space Transport System (STS). The dimensions of the runway-launch complex are given in the DOD STS Facility Development Specification (Reference 6). The grid cell layout requires that analysis of anything other than exact North-South or East-West layout include adjacent areas.

Figure 5 is a diagram showing the relative positions of the grid cells affected if the runway-launch complex was located on the present runway facility at VAFB with a new runway extension and additional construction of facilities. The darkened grid cells represent the area affected by the runway extension only (34 grid cells). The light area in the diagram represents the existing runway with existing and proposed facilities (43 grid cells).

Table 6 is a summary of the vegetation types affected, at the 2.55-acre subcell resolution, for the proposed runway extension only (dark area of Figure 5) based on the Search/Count program output. Table 7 is a similar summary of the vegetation types affected in the light area of Figure 5.
Shaded grid cells = Area affected by a new runway extension

Unshaded grid cells = Area affected by existing runway with facilities and proposed facilities

FIGURE 5. RELATIVE POSITIONS OF AFFECTED GRID CELLS BY A RUNWAY-LAUNCH COMPLEX LOCATED ON THE PRESENT RUNWAY FACILITY AT VANDENBERG AFB.
TABLE 6. SUMMARY OF THE VEGETATION TYPES AFFECTED BY THE PROPOSED RUNWAY EXTENSION (34 GRID CELLS) BASED ON THE SEARCH/COUNT PROGRAM.

<table>
<thead>
<tr>
<th>Vegetation Type</th>
<th>No. of Subcells</th>
<th>Estimated Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland-annual</td>
<td>48</td>
<td>122</td>
</tr>
<tr>
<td>Chaparral</td>
<td>130</td>
<td>332</td>
</tr>
<tr>
<td>Ruderal vegetation</td>
<td>72</td>
<td>184</td>
</tr>
<tr>
<td>Coastal sage scrub-normal phase</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Planted trees</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Chaparral-sparse phase</td>
<td>34</td>
<td>87</td>
</tr>
<tr>
<td>Coastal sage scrub-stabilized dune phase</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Man-made facilities</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>TOTALS</td>
<td>306</td>
<td>781</td>
</tr>
</tbody>
</table>

TABLE 7. SUMMARY OF THE VEGETATION TYPES AFFECTED BY THE EXISTING AND PROPOSED RUNWAY FACILITIES (43 GRID CELLS) BASED ON THE SEARCH/COUNT PROGRAM.

<table>
<thead>
<tr>
<th>Vegetation Type</th>
<th>No. of Subcells</th>
<th>Estimated Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaparral</td>
<td>54</td>
<td>138</td>
</tr>
<tr>
<td>Ruderal vegetation</td>
<td>256</td>
<td>653</td>
</tr>
<tr>
<td>Coastal sage scrub-normal phase</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Man-made facilities</td>
<td>64</td>
<td>163</td>
</tr>
<tr>
<td>Grassland-annual</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>TOTALS</td>
<td>387</td>
<td>987</td>
</tr>
</tbody>
</table>
Two alternate configurations of the runway-launch complex are tested to demonstrate the flexibility of using the Search/Count program. Configuration I shows the effect on the various vegetation types if the runway-launch complex was constructed as a mirror image of the previous cell configuration at the same general location of the present runway. Figure 6 shows the relative position of the 77 grid cells for Configuration I. Table 8 is a summary of the vegetation types affected by Configuration I.

Configuration II demonstrates the effect on the various vegetation types if the proposed runway-launch complex was shifted approximately 6000 feet north of the present runway location. The configuration of the affected grid cells is the same as in Figure 5. Table 9 is a summary of the vegetation types affected by Configuration II.

In addition to information on the vegetation types affected, as described in the above examples, the Search/Count program prints out sub-variables and frequencies for the soil types, exposure categories, and elevation classes. An infinite variety of configurations for the runway-launch complex (or other developments) can be tested using the Search/Count program depending upon the needs of the user.
FIGURE 6. RELATIVE POSITIONS OF AFFECTED GRID CELLS FOR CONFIGURATION I OF THE RUNWAY-LAUNCH COMPLEX.
TABLE 8. SUMMARY OF THE VEGETATION TYPES AFFECTED BY CONFIGURATION I OF THE RUNWAY-LAUNCH COMPLEX BASED ON THE SEARCH/COUNT PROGRAM.

<table>
<thead>
<tr>
<th>Vegetation Type</th>
<th>No. of Subcells</th>
<th>Estimated Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland-annual</td>
<td>120</td>
<td>306</td>
</tr>
<tr>
<td>Coastal sage scrub-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal phase</td>
<td>108</td>
<td>275</td>
</tr>
<tr>
<td>Chaparral</td>
<td>285</td>
<td>727</td>
</tr>
<tr>
<td>Riparian woodland-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>sparse phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian woodland</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Ruderal vegetation</td>
<td>151</td>
<td>385</td>
</tr>
<tr>
<td>Man-made facilities</td>
<td>27</td>
<td>69</td>
</tr>
<tr>
<td>TOTALS</td>
<td>693</td>
<td>1768</td>
</tr>
</tbody>
</table>

TABLE 9. SUMMARY OF THE VEGETATION TYPES AFFECTED BY CONFIGURATION II OF THE RUNWAY-LAUNCH COMPLEX BASED ON THE SEARCH/COUNT PROGRAM.

<table>
<thead>
<tr>
<th>Vegetation Type</th>
<th>No. of Subcells</th>
<th>Estimated Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal sage scrub-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stabilized dune phase</td>
<td>27</td>
<td>69</td>
</tr>
<tr>
<td>Grassland-annual</td>
<td>276</td>
<td>704</td>
</tr>
<tr>
<td>Coastal sage scrub-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal phase</td>
<td>113</td>
<td>288</td>
</tr>
<tr>
<td>Ruderal vegetation</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>Chaparral</td>
<td>250</td>
<td>637</td>
</tr>
<tr>
<td>Planted trees</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Riparian woodland</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Riparian woodland-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sparse phase</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Man-made facilities</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>TOTALS</td>
<td>693</td>
<td>1767</td>
</tr>
</tbody>
</table>
SECTION V
COMPARISON OF MANUAL AND AUTOMATED METHODS FOR DETERMINING AREAS OF VEGETATION

The purpose of this study is to test several methods for manually determining areas of vegetation and statistically compare them to automated methods using the digitized data base. Three different scales of analysis were used to compare selected areas of vegetation -- two manual methods and one automated method.

1. MANUAL METHODS

Two manual methods were used for determining areas of vegetation in the following study:

a. cutting and weighing method
b. planimeter method

The overlay vegetation maps made for the C series of maps in the Base Master Plan (Reference 4) were used in the study.

2. CUTTING AND WEIGHING METHOD

The cutting and weighing method involves cutting out (from a copy of the vegetation map) each distinct area of vegetation and weighing the combined pieces of each vegetation type. The weight of each vegetation type is then compared with the known weight and area of the vegetation map to calculate the area of each vegetation type. A sensitive balance (+ 0.0001 gram) must be used to accurately weigh the pieces of the map.

The following procedure was used with Vegetation Map Sheet No. 61 using the cutting and weighing method:

a. Determine the total area of the map sheet.
b. Weigh the whole map sheet.
c. Cut out the individual areas of vegetation with a sharp razor blade or knife.
d. Weigh the combined pieces of each vegetation type.
e. Calculate the areas of each vegetation type by equating the area and weight of the whole map with the individual weights of each vegetation type.

Table 10 is a summary of the cutting and weighing method analysis for Vegetation Map Sheet No. 61. The areas calculated by the cutting and weighing method compare rather closely to those planimetered for the same map sheet (see Table 11).

The cutting and weighing method has several disadvantages when compared to the planimeter method:

a. It takes longer (depending on the number of areas to be cut and their irregularity).
b. There are more calculations and measurements required to estimate the unknown areas.
TABLE 10. AREAS OF VEGETATION BY THE CUTTING AND WEIGHING METHOD FOR VEGETATION MAP SHEET NO. 61.

<table>
<thead>
<tr>
<th>Vegetation Code No.*</th>
<th>Weight (Grams)</th>
<th>Estimated Area (Square Inches)</th>
<th>Estimated Area (Acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.0052</td>
<td>0.12</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0.0046</td>
<td>0.10</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>0.0180</td>
<td>0.41</td>
<td>7</td>
</tr>
<tr>
<td>118</td>
<td>0.0338</td>
<td>0.77</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>0.0746</td>
<td>1.71</td>
<td>31</td>
</tr>
<tr>
<td>00</td>
<td>1.7802</td>
<td>40.73</td>
<td>736</td>
</tr>
<tr>
<td>19</td>
<td>0.0017</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0.0153</td>
<td>0.35</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1.0607</td>
<td>24.27</td>
<td>439</td>
</tr>
<tr>
<td>16</td>
<td>3.1711</td>
<td>72.56</td>
<td>1312</td>
</tr>
<tr>
<td>UND**</td>
<td>0.0169</td>
<td>0.39</td>
<td>7</td>
</tr>
<tr>
<td>TOTALS</td>
<td>6.1821</td>
<td>141.45</td>
<td>2557</td>
</tr>
</tbody>
</table>

Weight of whole map = 6.1825 grams
Area of whole map = 141.47 square inches
Total time for analysis = 3.5 hours
*See Section VII
**Undetermined vegetation types
TABLE 11. PLANIEMETER SUMMARY FOR VEGETATION MAP SHEET NO. 61.

<table>
<thead>
<tr>
<th>Vegetation Code No.*</th>
<th>Area (Square Inches)</th>
<th>Estimated Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UND**</td>
<td>0.44</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>0.40</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>73.05</td>
<td>1321</td>
</tr>
<tr>
<td>18</td>
<td>0.65</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>0.33</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2.05</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.13</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>24.18</td>
<td>437</td>
</tr>
<tr>
<td>00</td>
<td>41.21</td>
<td>745</td>
</tr>
<tr>
<td>25</td>
<td>0.12</td>
<td>2</td>
</tr>
<tr>
<td>TOTALS</td>
<td>142.70</td>
<td>2577</td>
</tr>
</tbody>
</table>

Total time for analysis = 3.2 hours
*See Section VII
**Undetermined vegetation types
c. A copy of the map must be sacrificed to the procedure.
d. It is extremely tedious work.

Because of the reasons given above, the cutting and weighing method is unsuitable for determining areas of vegetation in large scale studies.

3. PLANIMETER METHOD

The planimeter method was the second manual method used for determining areas of vegetation in this study. The planimeter used was calibrated to give area measurements in square inches. Of the two manual methods tested, the planimeter method was easier and quicker. Four selected map sheets were planimetered for use in later analyses. Tables 11, 12, 13, and 14 summarize the planimeter data for the four map sheets.

An advantage of using the planimeter method over automated methods is that the display is in a form familiar to those accustomed to reading maps. Disadvantages of using the planimeter method over automated methods are:

a. Cost and time of preparing and planimetering overlay combinations limit the number of closely related alternatives that can be evaluated and displayed.
b. Too many overlays put on top of one another quickly get confusing unless irrelevant elements are screened out, which is difficult with conventional cartography.

4. AUTOMATED METHOD

The GRID computer graphics program was the automated method used for determining and displaying areas of vegetation in this study. The Search/Count program and the Small Cell Count program were used with the data base to independently determine areas for computation. Listings of the Search/Count program and the Small Cell Count program are given in Appendixes G and H.

Advantages of the automated method over manual methods are:

a. Combinations of overlays for displaying alternatives can be produced almost without limit.
b. The cost is minimal once the data base and the computer graphics program are established.

Disadvantages of the automated method include:

a. The display may look crude and unattractive to the unaccustomed user.
b. The resolution is not as fine as with the manual method.

5. INVESTIGATION OF THREE DIFFERENT SCALES OF ANALYSIS

This study compares areas of vegetation on four selected map sheets using:

a. Planimeter
b. Small Cell Count program (2.55-acre grid cells)
c. GRID (aggregated to 23 acres)
<table>
<thead>
<tr>
<th>Vegetation Code No. *</th>
<th>Area (Square Inches)</th>
<th>Estimated Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>2.96</td>
<td>54</td>
</tr>
<tr>
<td>UND**</td>
<td>2.25</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>17.79</td>
<td>322</td>
</tr>
<tr>
<td>9</td>
<td>0.34</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>63.57</td>
<td>1149</td>
</tr>
<tr>
<td>5</td>
<td>49.31</td>
<td>891</td>
</tr>
<tr>
<td>19</td>
<td>1.10</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>3.13</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>0.32</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>0.83</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>141.61</td>
<td>2561</td>
</tr>
</tbody>
</table>

Total time for analysis = 6.0 hours

*See Section VII

**Undetermined vegetation types
TABLE 13. PLANIMETER SUMMARY FOR VEGETATION MAP SHEET NO. 41.

<table>
<thead>
<tr>
<th>Vegetation Code No.*</th>
<th>Area (Square Inches)</th>
<th>Estimated Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.26</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>9.14</td>
<td>165</td>
</tr>
<tr>
<td>6</td>
<td>11.94</td>
<td>216</td>
</tr>
<tr>
<td>16</td>
<td>57.22</td>
<td>1034</td>
</tr>
<tr>
<td>14</td>
<td>0.32</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>3.80</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>14.91</td>
<td>270</td>
</tr>
<tr>
<td>25</td>
<td>0.11</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>4.14</td>
<td>75</td>
</tr>
<tr>
<td>52</td>
<td>2.06</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>15.90</td>
<td>287</td>
</tr>
<tr>
<td>18</td>
<td>4.79</td>
<td>87</td>
</tr>
<tr>
<td>23</td>
<td>1.93</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>UND**</td>
<td>1.35</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>13.42</td>
<td>243</td>
</tr>
<tr>
<td>19</td>
<td>0.34</td>
<td>6</td>
</tr>
<tr>
<td>42</td>
<td>0.41</td>
<td>7</td>
</tr>
<tr>
<td>TOTALS</td>
<td>142.09</td>
<td>2569</td>
</tr>
</tbody>
</table>

Total time for analysis = 4.5 hours
*See Section VII
**Undetermined vegetation types
TABLE 14. PLANIMETER SUMMARY FOR VEGETATION MAP SHEET NO. 62.

<table>
<thead>
<tr>
<th>Vegetation Code No.*</th>
<th>Area (Square Inches)</th>
<th>Estimated Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>43.40</td>
<td>785</td>
</tr>
<tr>
<td>16</td>
<td>91.40</td>
<td>1652</td>
</tr>
<tr>
<td>6</td>
<td>4.74</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>1.02</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>0.78</td>
<td>14</td>
</tr>
<tr>
<td>52</td>
<td>0.95</td>
<td>17</td>
</tr>
<tr>
<td>00</td>
<td>0.10</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>UND**</td>
<td>0.09</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>0.13</td>
<td>2</td>
</tr>
<tr>
<td>TOTALS</td>
<td>142.66</td>
<td>2579</td>
</tr>
</tbody>
</table>

Total time for analysis = 4.0 hours

*See Section VII

**Undetermined vegetation types
The map sheets used in the study are described in Section V #3. The Small Cell Count program was simulated for the map sheets by tallying the vegetation types in the 2.55-acre grid cells from a printout of the data base. GRID (aggregated to 23-acre cells) was simulated using the same procedure. The vegetation type of the center subcell determined the vegetation type for the 23-acre grid cell.

The grid cell counts were converted to acres for comparison of areas of vegetation for the three scales of analysis. Table 15 is the pooled data of the four vegetation map sheets. The vegetation types were ranked from largest to smallest in numbers of acres, using the estimated acres planimetered for each vegetation type. The percent deviation (small cells) was computed by the following formula:

$$\text{percent deviation (small cells)} = \frac{\text{acres (small cells)} - \text{acres (planimetered)}}{\text{acres (planimetered)}} \times 100 \text{ percent}$$

Acres computed for the planimetered data were assumed to be more accurate than acres computed by the grid method.

The percent deviation (large cells) was computed by a similar formula:

$$\text{percent deviation (large cells)} = \frac{\text{acres (large cells)} - \text{acres (planimetered)}}{\text{acres (planimetered)}} \times 100 \text{ percent}$$

Comparing the percent deviations for both the small and large cells gives a common trend of less deviations between the three scales of analysis for estimating large areas. As the area decreases, the percent deviations increase for both the small cell and large cell grid data. For this particular study, there was less than 7 percent deviation between the three different scales of analysis for areas greater than 1200 acres.

The weighted mean deviation was used to compare the percent deviation (small cells) to the percent deviation (large cells) when their values were weighted by using the planimeter estimated acres for each vegetation type. The weighted mean deviation was calculated by the following formula:

$$\text{weighted mean deviation} = \frac{\sum (\text{acres (planimetered)} \times |\text{percent deviation}|)}{\text{acres (planimetered)}}$$

Using the data in Table 15, the following values were calculated:

- weighted mean deviation (small cells) = 3.3
- weighted mean deviation (large cells) = 7.1

The above values indicate that overall, there is more variability when estimating acres of vegetation using the aggregated 23-acre GRID cell, as compared to the small cell count method.
TABLE 15. POOLED DATA OF FOUR VEGETATION MAP SHEETS USING THREE DIFFERENT SCALES OF ANALYSIS.

<table>
<thead>
<tr>
<th>Vegetation Type (Code No.)</th>
<th>Planimeter Estimated Acres</th>
<th>Small Cells Estimated Acres</th>
<th>Percent Deviation Small Cells</th>
<th>Large Cells Estimated Acres</th>
<th>Percent Deviation Large Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>5157</td>
<td>5182</td>
<td>0.5</td>
<td>5250</td>
<td>2.4</td>
</tr>
<tr>
<td>7</td>
<td>1222</td>
<td>1242</td>
<td>1.6</td>
<td>1240</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>1181</td>
<td>1247</td>
<td>5.6</td>
<td>1263</td>
<td>6.9</td>
</tr>
<tr>
<td>00</td>
<td>747</td>
<td>719</td>
<td>-3.7</td>
<td>620</td>
<td>-17.0</td>
</tr>
<tr>
<td>6</td>
<td>660</td>
<td>701</td>
<td>6.2</td>
<td>735</td>
<td>11.4</td>
</tr>
<tr>
<td>4</td>
<td>344</td>
<td>367</td>
<td>6.7</td>
<td>344</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>243</td>
<td>237</td>
<td>-2.5</td>
<td>230</td>
<td>-5.3</td>
</tr>
<tr>
<td>13</td>
<td>165</td>
<td>173</td>
<td>4.8</td>
<td>230</td>
<td>39.4</td>
</tr>
<tr>
<td>18</td>
<td>152</td>
<td>130</td>
<td>-14.5</td>
<td>161</td>
<td>5.9</td>
</tr>
<tr>
<td>22</td>
<td>77</td>
<td>64</td>
<td>-16.9</td>
<td>23</td>
<td>-70.1</td>
</tr>
<tr>
<td>17</td>
<td>69</td>
<td>61</td>
<td>-11.6</td>
<td>23</td>
<td>-66.7</td>
</tr>
<tr>
<td>52</td>
<td>54</td>
<td>36</td>
<td>-33.3</td>
<td>46</td>
<td>-14.8</td>
</tr>
<tr>
<td>23</td>
<td>50</td>
<td>59</td>
<td>18.0</td>
<td>46</td>
<td>-8.0</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>0</td>
<td>-100.0</td>
<td>0</td>
<td>-100.0</td>
</tr>
<tr>
<td>19</td>
<td>27</td>
<td>23</td>
<td>-14.8</td>
<td>0</td>
<td>-100.0</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>13</td>
<td>8.3</td>
<td>23</td>
<td>91.7</td>
</tr>
<tr>
<td>42</td>
<td>7</td>
<td>3</td>
<td>-57.1</td>
<td>0</td>
<td>-100.0</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-100.0</td>
<td>0</td>
<td>-100.0</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>8</td>
<td>33.3</td>
<td>0</td>
<td>-100.0</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>10</td>
<td>150.0</td>
<td>23</td>
<td>475.0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>--</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>UND**</td>
<td>75</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

TOTALS 10286 10283 10287

*See Section VII
**Undetermined vegetation types (from vegetation map sheets)

Weighted mean deviation (small cells) = 3.3
Weighted mean deviation (large cells) = 7.1
The nonparametric Spearman rank correlation method (Reference 7) was used to compare the pooled data in Table 15. The computing formula for the Spearman rank correlation coefficient is:

\[r_s = \frac{1 - 6 \bar{d}^2}{n^3 - n} \]

The value of \(r_s \) may range from -1 to +1. The interpretation of \(r_s \) is that as its value approaches +1, the two groups have increasingly similar rank correlation.

Two Spearman rank correlation tests were performed on the data in Table 15. In the first test, acres (planimetered) were compared to acres (small cells) for the different vegetation types. The calculated value of \(r_s \) is:

\[r_s = 0.958 \]

In the second test, acres (planimetered) were compared to acres (large cells) for the different vegetation types. The calculated value is:

\[r_s = 0.920 \]

Both tests showed highly significant rank correlations. The critical value of the Spearman rank correlation coefficient for the above two tests is:

\[r_{s.05(2)} = 0.447 \quad P < 0.001 \]

The interpretation which can be made from the Spearman rank correlation tests above is that both methods of estimating areas of vegetation (small cell and large cell), when compared to planimetered areas, show highly significant correlation when their areas are ranked. The percent deviation of the planimetered areas from the small cell and large cell areas must be considered to view the Spearman rank correlation test in perspective.

6. COMPARISON OF THE SMALL CELL COUNT PROGRAM AND GRID

This study compares areas of vegetation for the entire base as estimated by the small cell (subcell) count program and GRID (aggregated to 23-acre cells). Two different aggregation methods were used. In the first method, the computer was directed to determine the predominant vegetation type of a grid cell from the vegetation types of the nine subcells. In the second method, the computer was directed to determine the vegetation type for a grid cell by using the vegetation type of the center subcell. Table 16 summarizes the data. The grid cell counts were converted to acres for comparison.

The vegetation types in Table 16 were ranked from largest to smallest (in numbers of acres) using estimated acres by small cells. The differences between the totals for both GRID methods was due to rounding error.

Percent deviation was computed by the formula:
<table>
<thead>
<tr>
<th>Vegetation Type (Code No.)*</th>
<th>Small Cells Area</th>
<th>GRID Grids (Majority) Acres</th>
<th>Percent Deviation Grid (Majority)</th>
<th>GRID Grids (Center) Acres</th>
<th>Percent Deviation Grid (Center)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>38610</td>
<td>39422</td>
<td>2.1</td>
<td>38389</td>
<td>-0.6</td>
</tr>
<tr>
<td>6</td>
<td>19337</td>
<td>19746</td>
<td>2.1</td>
<td>19103</td>
<td>-1.2</td>
</tr>
<tr>
<td>5</td>
<td>14359</td>
<td>14671</td>
<td>2.2</td>
<td>14350</td>
<td>-0.1</td>
</tr>
<tr>
<td>8</td>
<td>9091</td>
<td>9092</td>
<td>0.0</td>
<td>8931</td>
<td>-1.8</td>
</tr>
<tr>
<td>3</td>
<td>4149</td>
<td>4294</td>
<td>3.5</td>
<td>4248</td>
<td>2.4</td>
</tr>
<tr>
<td>23</td>
<td>3815</td>
<td>3697</td>
<td>-3.1</td>
<td>3903</td>
<td>2.3</td>
</tr>
<tr>
<td>7</td>
<td>3302</td>
<td>3421</td>
<td>3.6</td>
<td>3398</td>
<td>2.9</td>
</tr>
<tr>
<td>18</td>
<td>2512</td>
<td>2388</td>
<td>-4.9</td>
<td>2663</td>
<td>6.0</td>
</tr>
<tr>
<td>00</td>
<td>2259</td>
<td>1010</td>
<td>-55.3</td>
<td>2319</td>
<td>2.7</td>
</tr>
<tr>
<td>20</td>
<td>1907</td>
<td>1975</td>
<td>3.6</td>
<td>1929</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>1658</td>
<td>1676</td>
<td>1.1</td>
<td>1883</td>
<td>13.6</td>
</tr>
<tr>
<td>4</td>
<td>1617</td>
<td>1561</td>
<td>-3.5</td>
<td>1676</td>
<td>3.6</td>
</tr>
<tr>
<td>42</td>
<td>436</td>
<td>390</td>
<td>-10.6</td>
<td>528</td>
<td>21.1</td>
</tr>
<tr>
<td>24</td>
<td>431</td>
<td>436</td>
<td>1.2</td>
<td>321</td>
<td>-25.5</td>
</tr>
<tr>
<td>72</td>
<td>357</td>
<td>253</td>
<td>-29.1</td>
<td>298</td>
<td>-16.5</td>
</tr>
<tr>
<td>14</td>
<td>352</td>
<td>321</td>
<td>-8.8</td>
<td>321</td>
<td>-8.8</td>
</tr>
<tr>
<td>99</td>
<td>321</td>
<td>321</td>
<td>0.0</td>
<td>321</td>
<td>0.0</td>
</tr>
<tr>
<td>52</td>
<td>283</td>
<td>184</td>
<td>-35.0</td>
<td>321</td>
<td>13.4</td>
</tr>
<tr>
<td>13</td>
<td>280</td>
<td>321</td>
<td>14.6</td>
<td>321</td>
<td>14.6</td>
</tr>
<tr>
<td>19</td>
<td>273</td>
<td>298</td>
<td>9.2</td>
<td>184</td>
<td>-32.6</td>
</tr>
<tr>
<td>25</td>
<td>255</td>
<td>253</td>
<td>-0.8</td>
<td>230</td>
<td>-9.8</td>
</tr>
<tr>
<td>1</td>
<td>227</td>
<td>207</td>
<td>-8.8</td>
<td>321</td>
<td>41.4</td>
</tr>
<tr>
<td>22</td>
<td>194</td>
<td>184</td>
<td>-5.2</td>
<td>161</td>
<td>-17.0</td>
</tr>
<tr>
<td>17</td>
<td>166</td>
<td>161</td>
<td>-3.0</td>
<td>115</td>
<td>-30.7</td>
</tr>
<tr>
<td>11</td>
<td>158</td>
<td>115</td>
<td>-27.2</td>
<td>207</td>
<td>31.0</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
<td>161</td>
<td>26.8</td>
<td>92</td>
<td>-27.6</td>
</tr>
<tr>
<td>2</td>
<td>61</td>
<td>46</td>
<td>-24.6</td>
<td>69</td>
<td>13.1</td>
</tr>
<tr>
<td>26</td>
<td>43</td>
<td>46</td>
<td>7.0</td>
<td>46</td>
<td>7.0</td>
</tr>
<tr>
<td>62</td>
<td>33</td>
<td>0</td>
<td>-100.0</td>
<td>23</td>
<td>-30.3</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>0</td>
<td>-100.0</td>
<td>0</td>
<td>-100.0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>106621</td>
<td>106650</td>
<td></td>
<td>106671</td>
<td></td>
</tr>
</tbody>
</table>

*See Section VII

Weighted mean deviation GRID (majority) = 3.7
Weighted mean deviation GRID (center) = 2.1
percent deviation = \frac{\text{acres(GRID)} - \text{acres(small cells)}}{\text{acres(small cells)}} \times 100 \text{ percent}

Acres computed by the small cell count method were assumed to be more accurate than acres computed by the aggregated GRID method. Comparing the three methods, there is less than 4 percent deviation for areas decreasing to 3500 acres. In general, the percent deviations increase as the areas of the vegetation types decrease.

The weighted mean deviation was used to compare the percent deviation GRID (majority) to the percent deviation GRID (center) when their values were weighted by using the small cells estimated acres for each vegetation type in Table 16. See Section V #5 for the computing formula for the weighted mean deviation.

Using the data in Table 16, the following values were calculated:

weighted mean deviation GRID (majority) = 3.7
weighted mean deviation GRID (center) = 2.1

The values above indicate that there is more overall variability for estimating acres of vegetation using estimated acres GRID (majority) compared to estimated acres GRID (center).

The nonparametric Spearman rank correlation method was used to compare areas of vegetation for the entire base as estimated by small cells and the aggregated GRID method. Two Spearman rank correlation tests were performed on the data in Table 16. In the first test, acres (small cells) were compared to acres (GRID, aggregated by the majority of subcells) for the different vegetation types. The calculated value of r_s is:

$r_s = 0.983$

In the second test, acres (small cells) were compared to acres (GRID, aggregated by the center subcell vegetation type). The calculated value is:

$r_s = 0.980$

The calculated values of r_s in both tests showed highly significant rank correlations. The critical value of r_s for the above two tests is:

$r_{s.05(2)} = 0.362 \quad P < 0.001$

The interpretation from the Spearman rank correlation tests is that both GRID methods of estimating areas of vegetation for the entire base when compared to areas computed by the small cell method show highly significant correlation when their areas are ranked. The calculated Spearman rank correlation coefficients are almost identical for the two comparisons.

The percent deviations for the two aggregation methods show close similarity, especially for the larger areas. As the areas decrease, departures from the areas estimated by small cells increase. The aggregated
GRID method by the majority of subcells seems to be the most severely affected. This is probably due to the patchiness of the scarce vegetation types.

The best aggregation method to display vegetation for GRID studies, based on the data in Table 16, is the center subcell method. This method can be modified to more accurately display areas of scarce vegetation (less than 200 acres) by having GRID display areas of partial occurrence of the scarce vegetation types. More research is needed on this aspect of aggregation.
SECTION VI
USERS MANUAL

1. INTRODUCTION
The following Users Manual is written specifically for the use of the
GRID computer graphics program and the Search/Count program with the
environmental data base developed for VAFB. The GRID Manual (Reference 8)
was used as a key reference in writing sections of this Users Manual
pertaining to GRID.

The GRID program was developed at the Harvard Laboratory for Computer
Graphics and Spatial Analysis. It provides an efficient means for the
graphic display of large quantities of information collected on the basis
of a rectangular coordinate grid. It has the capacity of manipulating up
to 10,000 different grid cells.

The Search/Count program is essentially a frequency counting program.
It can be used in conjunction with GRID or independently to locate and print
out data base variables for selected grid cells.

GRID and the Search/Count program are written in FORTRAN IV. They are
operational on the IBM 360 computer at San Diego State University and the
Burroughs 3500 computer at VAFB. The computer programs in the EPS are
designed for computer users rather than computer programmers. They require
the user to have a basic knowledge of FORTRAN IV.

Complete listings for the GRID program and the Search/Count program are
given in Appendixes A and G. Examples in the Users Manual and programs
listings in the appendixes are specifically adapted for the Burroughs 3500
computer. The user is advised to consult with a programmer to adapt the
computer programs to other computer systems.

2. BASIC PRINCIPLES OF GRID
The GRID program associates a data value with a cell on a grid. The
program processes the data in the order in which it prints the map.
Therefore, the data must be in correct order. The program begins processing
the data starting with the grid cell in the northwest corner of the map and
continues horizontally row by row and from left to right in each row. The
numbers below represent the order in which the first 40 grid cells are
processed and printed for GRID maps of VAFB:

1 2
3 4 5 6
7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40

To obtain a map, the user must provide the following packages or sets of
instructions: Subroutine Flexin, Irregular Outline Package, Map Package,
and Data Input Package.
3. SUBROUTINE FLEXIN

Flexin is the FORTRAN subroutine in GRID which is modified by the user to produce a map. Flexin is called by the main program once for each data cell that is mapped. The user specifies two sets of instructions in Flexin:

a. Where the data value is located on the data card or tape.
b. What analysis, if any, is to be performed on the data variable or variables to derive the value that is mapped.

The subroutine statement for Flexin is:

SUBROUTINE FLEXIN(IFORM, T, FIRST)

The variables IFORM and FIRST are carried into the subroutine as control variables. The data value to be mapped is carried back to the main program as T (once for every value to be mapped). T is mapped according to the instructions specified in the Map Package. The following examples (1, 2 and 3) demonstrate the use of IFORM and T. The variable FIRST can be used as a logical variable in Subroutine Flexin. It is true on the first entry to Flexin and false on all other entries from the main program. This use of FIRST is automatically set in the GRID program outside of Subroutine Flexin.

Example 1 shows how to use Flexin to map the elevation data coded for VAFB. This is a relatively simple use of Flexin.

Example 1:
A Simple Use of Subroutine Flexin

SUBROUTINE FLEXIN(IFORM, T, FIRST)
READ(11,1) EL
1 FORMAT(16X, F1.0)
T = EL
RETURN
END

This subroutine instructs the computer to read the variable EL from the data tape. The FORMAT statement specifies where the variable is on the data tape. The fourth statement assigns the variable T the elevation value assigned to variable EL. The elevation value to be mapped for the grid cell is returned to the main program as the value of T in the subroutine statement. Flexin is called once for each grid cell that is mapped. A new value for T is read and returned to the main program for the value to be mapped for each grid cell. T is mapped according to instructions given in the Map Package. For example, the Map Package could be set up to map the elevation data into 10 levels -- for the 10 possible elevation codes.

Example 2 shows how to use Flexin in a more detailed analysis to produce a map which will display areas of suitable habitat for the California Legless Lizard. Both the soil and vegetation data were used in making the map. Figure 4 shows the GRID map for this example.
Example 2:
A Complex Use of Subroutine Flexin

Explanatory Notes

SUBROUTINE FLEXIN(IFORM, T, FIRST)
REAL SOIL(22)
DATA SOIL /4.,5.,6.,25.,28.,59.,60.,63.,64.,76.,113.,
114.,133.,134.,138.,168.,170.,206.,207.,208.,217.,71./
NTYPE= 22
READ(11,11) S,V
11 FORMAT (3X,F3.0,3OX,F2.0)
T=10.
DO 300 J= 1,NTYPE
 IF(S.EQ.SOIL(J)) GO TO 450
300 CONTINUE
 IF(V .EQ.12.) T= 1.
 IF(V.EQ.8.) T=2.
 IF(V.EQ.11.) T=3.
 IF(V.EQ.3) T=4.
 IF(V.EQ.31.) T=9.
GO TO 500
450 IF(V.NE.12.) T=5.
 IF(V.NE.8.) T=5.
 IF(V.NE.11.) T=5.
 IF(V.NE.3.) T=5.
 IF(V.NE.31.) T=5.
 IF(V.EQ.12.) T=6.
 IF(V.EQ.8.) T=7.
 IF(V.EQ.11.) T=8.
 IF(V.EQ.3.) T=9.
GO TO 500
500 CONTINUE
RETURN
END

Explanatory Notes for Example 2:
a. This statement creates storage space for 22 soil codes.
b. Twenty-two soil types were identified as suitable for the Legless Lizard.
 These soil codes are entered into the storage spaces created in a.
c. A soil code and vegetation code are read for a grid cell from the data
 tape.
d. The remainder of the subroutine compares criteria for a suitable habitat
 for the Legless Lizard with each vegetation and soil code in the data
 base. Ten different levels were selected for printing the map. Each grid
 cell is classified into one of the levels based on its vegetation and
 soil codes. The level is returned to the main program as the value of
 T. The levels for suitable habitat are:

Level 1 = Coastal strand vegetation
Level 2 = Coastal sage scrub-stabilized dune phase vegetation
Level 3 = Coastal bluff vegetation
Level 4 = Oak woodland vegetation
Level 5 = Suitable soil associations
Level 6 = Coastal strand/suitable soil overlap
Level 7 = Coastal sage scrub-stabilized dune phase/suitable soil overlap
Level 8 = Coastal bluff/suitable soil overlap
Level 9 = Oak woodland/suitable soil overlap
Level 10 = Areas which are not suitable habitat for the Legless Lizard

e. Once the value of T is determined for a grid cell in Subroutine Flexin, it is mapped according to instructions provided in the Map Package.

Example 3 shows a relatively simple use of the control variable IFORM, if more than one map is desired with one computer submission. In this example, the computer is directed to produce two maps.

Example 3:
Use of IFORM With Subroutine Flexin

Explanatory Notes

GO TO (1, 2), IFORM
1 CONTINUE
READ(11,15) EL
15 FORMAT(16X,F1.0)
 T = 2.
 IF EL.EQ. 0. T=1.
 IF EL.EQ. 1. T=1.
 IF EL.EQ. 2. T=1.
 RETURN
2 CONTINUE
READ(11,15) EL
 T=2.
 IF EL.EQ.6. T=1.
 IF EL.EQ.7. T=1.
 IF EL.EQ.8. T=1.
 RETURN
END

Explanatory Notes for Example 3:

a. The variable IFORM is carried into the subroutine as a control variable. The value to be mapped is carried back to the main program as T (Flexin is called once for every value to be mapped).

b. Since 2 maps are to be made, Flexin is split into 2 segments. The variable IFORM is given its value in Elective 2, field 1 of the Map Package for each map. Two map packages are required to produce 2 maps. After reading the GO TO statement, the program jumps to the statement N CONTINUE, where N is the value of IFORM. If IFORM equals 2, as specified in the Map Package, the program will execute statement 2 CONTINUE and the statements following it.

In Example 3 there are only 2 routines in Subroutine Flexin. By extending the GO TO statement, as many routines as needed may be used. Each routine is sandwiched between a CONTINUE statement (which indicates the beginning of each routine) and a RETURN statement (which sends the value T back to the main program).
c. This routine instructs the computer to produce a map displaying elevation in 2 levels. Level 1 displays all grid cells coded from zero to 600 feet. Level 2 displays all grid cells coded at elevations greater than 600 feet.

d. This routine instructs the computer to produce a map displaying elevation in 2 levels. Level 1 displays all grid cells at 1200 feet or greater. Level 2 displays all grid cells less than 1200 feet.

4. IRREGULAR OUTLINE PACKAGE

This data set specifies the shape of the outline for the grid map. The irregular outline data determine the number of cells from the left and right sides of the map, in each row, that are left blank. The following data cards are used to make the Irregular Outline Package:

a. On the first card, IRREGULAR OUTLINE, is punched in columns 1-17.

b. On the last card, 99999, is punched in columns 1-5.

c. Between the first and last card, a series of cards with the following format are punched:

(1) In columns 1-5, the number of successive rows for which the format is repeated.

(2) In columns 6-10, the number of blank cells at the beginning of the row.

(3) In columns 11-15, the number of blank cells at the end of the row.

The numbers above must be punched as integer numbers. They must be right justified and contain no decimal points. The program processes the cards in order. The first card refers to the top row (or rows, as specified in columns 1-5). The second card refers to the second row (or rows) etc.

The irregular outline is the first package to prepare in doing a GRID study. The irregular outline for VAFB was prepared from the Base Master Plan maps (Reference 4) and U.S. Geological Survey maps. The C-1.2 series of the Base Master Plan maps are blocked into 1000-foot grid cells. This made it relatively easy to determine the irregular outline to enclose the base boundaries.

Once the irregular outline was determined, it was coded on to coding forms and the data cards were keypunched. The irregular outline data deck contains 102 data cards to specify the 146 rows of grid cells used for the VAFB GRID map. Example 4 shows how the data deck is arranged for the VAFB irregular outline. See Appendix B for the complete listing of the VAFB irregular outline.

Example 4:
Arrangement of the Data Deck for the VAFB Irregular Outline
Once the irregular outline was determined and keypunched, it was used for all successive GRID maps. The irregular outline is not usually changed in a study area once it is set. If the irregular outline is changed, the data coded for the grid cells must be readjusted to fit in the new irregular outline.

5. MAP PACKAGE

This package instructs the computer on how to make the GRID map. A set of map electives are used to specify the instructions for making the map.

a. Preparation of the Package

The map package is prepared according to the following procedure:

(1) On the first card of the package, punch MAP in columns 1-3.
(2) On the last card of the package, punch 99999 in columns 1-5.
(3) On the second, third, and fourth cards, punch the title you wish to have appear below the map. One or more of these cards may be left blank, but all 3 cards must be included.
(4) On the cards to be inserted between the fourth and last card, the desired electives are punched. Whenever a map elective is not called for, the standard result described under each elective will automatically occur. Electives 1 and 7 must be included because there is no standard condition created by the program for them.

b. Standard Format for the Electives

A standard format is used for the electives with the exception of electives 7, 10, and 13. The format is:

(1) The elective number is punched as an integer in columns 4 and 5 (right justified).
(2) Six fields of 10 columns each are used for specifying the electives:

<table>
<thead>
<tr>
<th>Field</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-20</td>
</tr>
<tr>
<td>2</td>
<td>21-30</td>
</tr>
<tr>
<td>3</td>
<td>31-40</td>
</tr>
<tr>
<td>4</td>
<td>41-50</td>
</tr>
<tr>
<td>5</td>
<td>51-60</td>
</tr>
<tr>
<td>6</td>
<td>61-70</td>
</tr>
</tbody>
</table>
The numbers punched in any of the six fields are real numbers and should contain a decimal point. The numbers may be punched anywhere within the columns assigned to that field. The decimal point may be omitted if the number is right justified.

c. Elective 1:
Grid (1 card)

The elective specifies the parameters for the rectangular grid that is to be mapped. In field 1 specify the number of rows of grid cells down the map. In field 2 specify the number of columns of grid cells across the map.

Fields 3 and 4 specify the size of each printed grid cell. Field 3 specifies the number of characters down and field 4 specifies the number of characters across. If fields 3 and 4 are left blank, the printer cell size will be 4 x 5 or ½ inch square.

For the VAFB irregular outline, a grid cell of 1 character (1 x 1) produces a map of approximately 8½ by 19½ inches when 8 characters per inch are printed by the line printer. This map is slightly distorted vertically since the line printer will print 10 characters per inch horizontally. The 1 x 1 map is suitable for most studies.

A larger map with slightly less distortion can be produced when the grid cell size is 2 x 3 (2 characters vertically by 3 characters horizontally). The line printer is set at 6 characters per inch vertically for this map. The map is produced in 2 parts by the GRID program. The halves must be taped together to form a complete map. The map measures approximately 22 by 49½ inches when measured from the bordering row and column numbers. The 2 x 3 grid cell map takes approximately twice as much computer time to produce as the 1 x 1 grid cell map. Example 5 shows how to punch Elective 1 for a 2 x 3 grid cell size for the VAFB irregular outline.

Example 5:
Elective 1

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
<th>11-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>146.0</td>
<td>68.0</td>
<td>2.0</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

d. Elective 2:
Data (1 card)

This elective controls the input options for the data. Data Option A (see section on the data package) was used for the VAFB data base. To activate Data Option A, specify a number greater than zero in field 1. The number specified in field 1 is transferred to Subroutine Flexin as the value of IFORM. The use of IFORM is discussed in the section on Subroutine Flexin. Example 6 shows how Elective 2 was used for the Vandenberg study.

Example 6:
Elective 2

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
e. Elective 3: Number of Levels (1 card)
This elective is used to specify the number of levels or class intervals used for the GRID map (from 2 to 10). The number desired is punched as a decimal number in field 1. Standard is 10 levels. Example 7 shows how to punch Elective 3 for an 8 level map.

Example 7:
Elective 3

<table>
<thead>
<tr>
<th>Column</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>11-20</td>
<td>3</td>
</tr>
</tbody>
</table>

f. Elective 4: Value Range Minimum (1 card)
This elective is used to specify a number as the minimum value of the total value range of the data. The number is punched as a decimal number in field 1. Standard is to use the minimum value of the data.

g. Elective 5: Value Range Maximum (1 card)
This elective is used to specify a number as the maximum value of the total value range of the data. The number is punched as a decimal number in field 1. Standard is to use the maximum value of the data.

h. Elective 6: Value Range Intervals (1 to 2 cards)
This elective controls the value range for each level or interval. The total value range of the data, as modified by the minimum and maximum of the data, (Electives 4 and 5), will be divided up into the number of levels specified in Elective 3. Standard is to have each level or interval assigned an equal range.

To specify the desired range for each level, use values proportionate to the size of the desired ranges. These should be punched as decimal numbers. See Example 8. If there are more than 6 levels, continue on a second card, punching the number for the seventh level in field 1, for the eighth level in field 2, etc.

Example 8: Unequal Value Range Levels

The data are to be divided in 4 levels: the lowest 10 percent, the next 25 percent, the next 35 percent, and the remainder. One card for Elective 6 would be punched as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>11-20</td>
<td>21-30</td>
<td>31-40</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10.</td>
<td>25.</td>
<td>35.</td>
</tr>
</tbody>
</table>

i. Elective 7: Symbolism (5 cards)
This elective specifies the symbolism that will be printed on the map. No standard symbolism is stored in the program. Therefore, this
elective must be included in the map package. All 5 cards must be included each time the program is run.

On card 1, punch the elective number 7 in column 5.

On card 2, punch as follows (any print characters may be used for symbolism):

Columns 1-10 are used to specify the general symbolism for each level (column 1 for the symbol to designate the first level, etc. -- for as many levels as are to be used).

Columns 11-20 are used to specify the special symbolism for the flag points (column 11 for the symbol to designate flag points in the first level, etc.). The flag point is the central character of a grid cell.

Column 21 is used to specify the symbolism for a value less than the minimum specified in Elective 4.

Column 22 is used to specify the flag point symbolism for a low value.

Column 23 is used to specify the symbolism for a value greater than the maximum specified in Elective 5.

Column 24 is used to specify the flag point symbolism for a high value.

Column 25 is used to specify background symbolism. Background symbolism appears outside the outline of the study area. This column is normally left blank to indicate that no symbolism is to appear outside of the study area.

On cards 3, 4 and 5, punch in the columns given above any overprint desired. Any printer characters may be used. Example 9 shows a gray scale symbolism for 10 levels.

Example 9:
Gray Scale Symbolism for 10 levels
This example shows:
(1) A gray scale for 10 levels of symbolism (columns 1-10).
(2) Flag point symbolism for the 10 levels (columns 11-20).
(3) Blank low value symbolism and flag point (columns 21-22).
(4) Blank high value symbolism and flag point (columns 23-24).
(5) Blank background symbolism (column 25).

<table>
<thead>
<tr>
<th>Column</th>
<th>11111111112222222</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>123456789012345678901234567</td>
</tr>
</tbody>
</table>

card 1 7

card 2 .,.+X0000000123456789

card 3 -X0000A

card 4 -=XX

card 5 V

A 2 x 3 grid cell for level 7 would be printed on the GRID map as follows:

```
000
070
```

To make a gray scale for less than 10 levels, the level symbols can be eliminated in the following order:
for: 9 levels eliminate: 2
8 levels 2, 9
7 levels 2, 9, 8
6 levels 2, 9, 8, 3
5 levels 2, 9, 8, 3, 6

The flag point symbolism should be adjusted accordingly.

j. Elective 8:
Flag Point (1 card)
The flag point is the central character of a grid cell. The flag point symbolism specified in Elective 7 is printed at the flag point. If flag point symbolism is not desired, specify 1.0 in field 1. Standard is special symbolism at the flag point. When a map is made with a 1 x 1 character grid, the flag point symbolism is automatically suppressed.

k. Elective 9:
Histogram (1 card)
This elective controls the printing at the bottom of the map. Specify 1.0 in field 1 to generate a histogram bar chart at the bottom of the map. This bar chart shows the frequency of grid cells in each level. Specify 1.0 in field 2 to suppress numeric information which is included with the levels. Standard is no bar chart and inclusion of numeric information.

l. Elective 10:
Text (3 to 32 cards)
This elective is used to print up to 30 lines of text below the map. Standard is to have no text. However, some explanatory text is usually desirable for interpreting the map.

To use this elective:
(1) On card 1, punch the identifying elective number 10 in columns 4-5.
(2) On not more than 30 other cards, to be inserted between the first and last, punch in columns 1-72 any supplementary information to be used as the text for the map.
(3) On the last card, punch ENDTEXT in columns 1-7.

m. Elective 13:
Grid Numbering (1 card)
This elective generates row and column numbers on all four sides of the grid map to assist the user in locating individual cells on the map.

The top left hand cell of the grid is called the Reference Grid Cell (RGC). It provides the coordinates from which all the rows and columns are numbered. If the coordinates of the RGC are not specified, the program assumes them to be:

Column = 1
Row = N (N is the number of rows specified in Elective 1)

In field 1 specify 1.0 for grid numbering. In field 2 specify the column number of the RGC. The standard for Elective 13 is no numbering. Example
Example 10:
Elective 13 for the VAFB irregular outline

<table>
<thead>
<tr>
<th>Column</th>
<th>4-5</th>
<th>18-20</th>
<th>28-30</th>
<th>36-40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td>1.0</td>
<td>1.0</td>
<td>147.0</td>
</tr>
</tbody>
</table>

When Elective 13 is specified using the numbers given in Example 10, the row numbers will correspond to the row numbers given in the C-1.2 series of maps in the Base Master Plan. The column designators have been changed to correspond to the alpha designators given in the C-1.2 series of maps in the Base Master Plan. Subroutine FLATON on the GRID program was modified to print the alpha designators when Elective 13 is specified. Therefore, when Elective 13 is used, the alphanumerics of a grid cell correspond to the grid system and registration described in Section VII.

Example 11:
An Example of a Map Package

Example 2 showed how to use Flexin to produce a map which displays areas of suitable habitat for the California Legelss Lizard (Anniella pulchra). This example shows how the map package is set up to produce the map. The following cards are used to set up the map package:

Card 1:
Column | 1-3

MAP

Card 2:
Column | 2-63

ANNIELLA PULCHRA MICROHABITAT / DISTRIBUTION ON VANDENBERG AFB

Card 3: Blank

Card 4: Blank

Card 5: Elective 1

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
<th>16-20</th>
<th>27-30</th>
<th>38-40</th>
<th>48-50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>146.0</td>
<td>68.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Card 6: Elective 2

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Card 7: Elective 4

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
<th>11-13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Card 8: Elective 5

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
<th>11-14</th>
<th>5</th>
<th>10.5</th>
</tr>
</thead>
</table>

Card 9: Elective 6

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
<th>11-13</th>
<th>21-23</th>
<th>31-33</th>
<th>41-43</th>
<th>51-53</th>
<th>61-63</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Card 10: Continuation of Elective 6

<table>
<thead>
<tr>
<th>Column</th>
<th>11-13</th>
<th>21-23</th>
<th>31-33</th>
<th>41-43</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Card 11: Elective 7

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
</tr>
</thead>
</table>

Card 12: Continuation of Elective 7

<table>
<thead>
<tr>
<th>Column</th>
<th>1-20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+X00000.123456789</td>
</tr>
</tbody>
</table>

Card 13: Continuation of Elective 7

<table>
<thead>
<tr>
<th>Column</th>
<th>2-9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-X0000A</td>
</tr>
</tbody>
</table>

Card 14: Continuation of Elective 7

<table>
<thead>
<tr>
<th>Column</th>
<th>6-9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-XX</td>
</tr>
</tbody>
</table>

Card 15: Continuation of Elective 7

<table>
<thead>
<tr>
<th>Column</th>
<th>9</th>
</tr>
</thead>
</table>

Card 16: Elective 9

<table>
<thead>
<tr>
<th>Column</th>
<th>5</th>
<th>18-20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Card 17: Elective 10

<table>
<thead>
<tr>
<th>Column</th>
<th>4-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
Card 18: Continuation of Elective 10

Column 7-24

THE MAP LEGEND IS:

Card 19: Continuation of Elective 10

Column 7-23

LEVEL 1= COASTAL STRAND ()

Card 20: Continuation of Elective 10

Column 7-60

LEVEL 2= COASTAL SAGE SCRUB-STABILIZED DUNE PHASE ()

Card 21: Continuation of Elective 10

Column 7-33

LEVEL 3= COASTAL BLUFF ()

Card 22: Continuation of Elective 10

Column 7-31

LEVEL 4= OAK WOODLAND ()

Card 23: Continuation of Elective 10

Column 7-46

LEVEL 5= SUITABLE SOIL ASSOCIATIONS ()

Card 24: Continuation of Elective 10

Column 7-58

LEVEL 6= COASTAL STRAND / SUITABLE SOIL OVERLAP ()

Card 25: Continuation of Elective 10

Column 7-71

LEVEL 7= COASTAL SAGE SCRUB-STABILIZED DUNE PHASE / SUITABLE SOIL

Card 26: Continuation of Elective 10

Column 16-27

OVERLAP ()

Card 27: Continuation of Elective 10

Column 7-57

LEVEL 8= COASTAL BLUFF / SUITABLE SOIL OVERLAP ()

46
6. DATA INPUT PACKAGE

The GRID program has two input options for the data. These input options optimize the use of the program under two different types of operations.

a. Data Option A.

Option A uses GRID as an independent program in which Subroutine Flexin is used to:

(1) Read the data.
(2) Perform calculations on the data so as to generate the value to be mapped.

In Option A, the data are processed one cell at a time. This allows flexibility in the organization of the data. The Vandenberg data base is designed to operate using Option A.

Each time a map is made with GRID the basic data file must be read. The Vandenberg data file is available on either cards or magnetic tape. Since the data file is rather large (4646 cards), it is more efficient to submit the data file on magnetic tape. This permits the user to rewind the file between maps.

Data Option A is activated by specifying a number greater than zero in field 1 of Elective 2 (see Map Package). This number is transferred to Subroutine Flexin as the value of IFORM. IFORM is discussed in Section VI3.
b. Data Option B
This option was not used with the Vandenberg data base. In Option B, the data used to create the map are transferred to the GRID program as a series of binary arrays. One array specifies each row of the map. The program will expect one real value in the array for each cell in a row.

Option B is different from Option A in that it uses GRID as a final job step in a series of job steps to produce the map.

Option B is used automatically if Elective 2 is not specified. It is also used if zero is specified in field 1 of Elective 2.

7. COMPUTER SUBMISSIONS
After the packages have been prepared they must be placed in the correct order, together with the control cards needed for submission to the computer. The following procedure is used to operate the GRID program with the VAFB data base on the Burroughs 3500 computer.

a. To compile the GRID program and load to the program library use the following control cards:

(1) Column 1-37
1
2COMPILE SNFT00 XFORTN LIB DATA CARDS
3

(2) Column 1-5
11
3 LST1
8
GRID program (including Subroutine Flexin)

(3) Column 1-4
1
2END
3

b. To execute the GRID program and produce the map use the following control cards:

(1) Column 1-21
1
2EX SNFT00 DATA FILE5
3
Data on which the program operates

(2) Column 1-4
1
2END
3
c. Data on which the program operates:

The data on which the program operates (see above) consist of the Irregular Outline Package, the Map Package, and the Data Input. These packages must be in the correct order in the input card deck.

(1) The order for submitting the deck when the Data Input is read from cards is:

Control Card
Irregular Outline Package
Map Package(s)
Data Input
Control Card

The end of the Data Input is signaled by a card with END punched in columns 1-3. This card immediately follows the last data card.

The Irregular Outline Package must precede the Map Package to which it refers. Once the irregular outline has been specified it will be used for every Map Package in the computer submission.

Each time the program reads a Map Package it will attempt to make a map. There is no limit to the number of Map Packages in any one submission.

If the Data Input is read from cards, it must immediately follow the Map Package to which it refers.

(2) The order for submitting the deck when the Data Input is read from magnetic tape is:

Control Card
Irregular Outline Package
Map Package(s)
Control Card

The end of the Data Input is signaled by a card with END punched in columns 1-3 immediately following the last card in the Map Package. The READ statement in Subroutine Flexin must be changed to indicate that the data is being read from tape instead of cards.

8. SEARCH/COUNT PROGRAM

This program can be used in conjunction with GRID or independently as a feature of the EPS developed for VAFB. The Search/Count program will locate and print out data base variables for selected grid cells. By entering the alphanumeric coordinates of selected grid cells, the program will print out the data base variables for each grid cell, count the frequency of each subvariable, and convert the frequency to estimated acres. The Search/Count program is useful for studies such as computing the areas of various vegetation types that would be affected by alternate placements of a runway-launch complex.

The Search/Count program, like GRID, is written in FORTRAN IV and requires the user to have a basic knowledge of computer programming. A listing of the
Search/Count program, as used in a case study, is given in Appendix G. The user should refer to this listing as a guide in setting up the program.

Certain statements within the Search/Count program must be modified to fit the user's needs. These modifications are given in the following sections.

a. Title
 A title identifying the particular use of the Search/Count program should be included at the beginning of the program using comment cards.

b. REAL*8 Statement
 This statement must be modified to reflect the exact number of 23-acre grid cells to be counted in the program. To count 43 grid cells, the statement would be:

 \[
 \text{REAL*8 C(43), CX}
 \]

c. Size of Counting Arrays
 The size of arrays used in the counting program need to be adjusted for the number of cells counted. For counting up to 100 grid cells, the array sizes used for the program in Appendix G can be used.

d. Data Statement
 This statement is used to enter the alphanumeric coordinates of the selected grid cells. The general form is:

 \[
 \text{DATA C/''xxxx','xxxx','xxxx'/'}
 \]

Columns 7-72 are used for the Data Statement. Since only 7 grid cells can be entered on the first card, continuation cards are required. The general form for the alphanumeric coordinate of a grid cell is: 'xxxxx'.

50
SECTION VII
QUANTITATIVE ECOLOGICAL DATA BASE

1. GRID SYSTEM AND REGISTRATION

The grid system and registration used for the study of VAFB is based on the California Coordinate System. The basic units of this system are feet. The California Coordinate System was chosen for the Vandenberg study because of its flexibility. Most maps used in relation to the project were registered in California coordinate units. This greatly facilitated the transfer of information into the data base.

A basic grid cell size of 1000 by 1000 feet was adopted to register all information collected for the computerized data base. This represents a subdivision into 24 equal parts of the standard 4000 by 6000-foot sections of the California Coordinate System. The problem in determining grid cell size is that it should not be too small to be unfeasible for storage and economy and it should be small enough for the required analysis purposes. The 1000-foot grid cell has been used effectively in previous land use studies (Reference 3). It was determined to be suitable for this study only after thorough evaluation and discussion of the scope of the project.

The 1000-foot grid cell encompasses an area of approximately 23 acres. There are 4646 of the 1000-foot grid cells enclosing the approximate boundaries of VAFB. If a smaller grid cell size is required for registering data, the 1000-foot cell can be subdivided into nine 2.55-acre grid cells measuring 333.33 feet on each side (see Figure 7). For example, sensitive areas that need more detailed analysis could be redefined from the larger 23-acre units into the smaller 2.55-acre units.

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Figure 7. Grid Cell Scales

An alphanumeric registration system was adopted to locate a particular grid cell in the Vandenberg area. Each 1000-foot vertical line is coded with a two-letter designator. The 1000-foot horizontal lines are coded with number designators. See C-1.2 series of maps in the Base Master Plan (Reference 4). A series of letters and numbers will then specify a particular grid cell in the Vandenberg area. The cell is identified by a point in the southwest corner of the grid cell. For example, RA055 represents the cell where the vertical line RA intersects the horizontal line 055. Figure 8 illustrates this.
Figure 8. Grid Cell Coordinates

If the coordinate of the grid cell specified in Figure 7 is RA055, the coordinate of the fourth subcell is specified as RA055.4.

2. SOIL DATA BASE

The U.S. Department of Agriculture soil surveys of Northern Santa Barbara area and Santa Barbara area (References 9, 10) were used to classify the soils occurring within VAFB. The soils were classified and coded according to:

a. soil series and phase or
b. land type
c. slope of the land

Soils with similar profiles make up a soil series. A soil series is divided into phases based on the texture of the surface soil and slope. A land type is soil material that cannot be classified into a soil series because it is too rocky, shallow, or severely eroded. A land type is given a descriptive name in contrast to a soil series which is named for the town or geographic feature near the place where the soil of that series was first observed and mapped.

A transparent grid overlay was used with the soil survey maps to code the soils. Each grid cell on the overlay represented the standard 23-acre grid cell. The predominant soil series or land type occurring on each 23-acre grid cell was used for the overall interpretation of that cell. Forty-three different soil series and 13 land types were classified on VAFB using this coding method.

The combination of the soil series/phase or land type with the slope characteristic can be used to determine the erosion potential on the soil. Similarly, it can be used to predict the potential occurrence of a plant or animal according to its substrate preference. One hundred eighty-three different soil/slope categories were coded on VAFB using the above system. Table 17 lists the soil/slope categories in the data base.

The soil/slope type for each grid cell was coded on computer data cards in integer form using the code numbers listed in Table 17. Twenty-five fields of three columns each were defined in columns 1-75 of each data card. Columns 76-80 were assigned an identification number for ordering purposes. Therefore, the soil/slope types for 25 grid cells were coded on each computer data card.
<table>
<thead>
<tr>
<th>Code Number</th>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Ocean</td>
</tr>
<tr>
<td>2</td>
<td>AgC</td>
<td>Agueda silty clay loam, 0 to 2% slopes</td>
</tr>
<tr>
<td>4</td>
<td>ArD</td>
<td>Arnold sand, 5 to 15% slopes</td>
</tr>
<tr>
<td>5</td>
<td>ArF</td>
<td>Arnold sand, 15 to 45% slopes</td>
</tr>
<tr>
<td>6</td>
<td>ArF3</td>
<td>Arnold sand, 9 to 45% slopes, severely eroded</td>
</tr>
<tr>
<td>16</td>
<td>Bd</td>
<td>Bayshore loam, drained</td>
</tr>
<tr>
<td>18</td>
<td>Bg</td>
<td>Bayshore silty clay loam</td>
</tr>
<tr>
<td>23</td>
<td>BnB2</td>
<td>Betteravia loamy sand, dark variant, 0 to 5% slopes, eroded</td>
</tr>
<tr>
<td>24</td>
<td>BnD2</td>
<td>Betteravia loamy sand, dark variant, 5 to 15% slopes, eroded</td>
</tr>
<tr>
<td>25</td>
<td>BoA</td>
<td>Botella loam, 0 to 2% slopes</td>
</tr>
<tr>
<td>27</td>
<td>BoC</td>
<td>Botella loam, 2 to 9% slopes</td>
</tr>
<tr>
<td>28</td>
<td>BoD2</td>
<td>Botella loam, 2 to 15% slopes, eroded</td>
</tr>
<tr>
<td>29</td>
<td>BsA</td>
<td>Botella loam, slightly wet, 0 to 2% slopes</td>
</tr>
<tr>
<td>30</td>
<td>BtA</td>
<td>Botella clay loam, 0 to 2% slopes</td>
</tr>
<tr>
<td>31</td>
<td>BtA2</td>
<td>Botella clay loam, 0 to 2% slopes, eroded</td>
</tr>
<tr>
<td>32</td>
<td>BtC</td>
<td>Botella clay loam, 2 to 9% slopes</td>
</tr>
<tr>
<td>33</td>
<td>BtD2</td>
<td>Botella clay loam, 2 to 15% slopes, eroded</td>
</tr>
<tr>
<td>34</td>
<td>BwA</td>
<td>Botella clay loam, wet, 0 to 2% slopes</td>
</tr>
<tr>
<td>35</td>
<td>Ca</td>
<td>Camarillo sandy loam</td>
</tr>
<tr>
<td>37</td>
<td>Cc</td>
<td>Camarillo very fine sandy loam</td>
</tr>
<tr>
<td>38</td>
<td>Cd</td>
<td>Camarillo silty clay loam</td>
</tr>
<tr>
<td>43</td>
<td>ChD</td>
<td>Chamise shaly loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>44</td>
<td>ChF</td>
<td>Chamise shaly loam, 15 to 45% slopes</td>
</tr>
<tr>
<td>46</td>
<td>ChG2</td>
<td>Chamise shaly loam, 30 to 75% slopes, eroded</td>
</tr>
<tr>
<td>48</td>
<td>CmF</td>
<td>Climara-Toomes complex, 15 to 45% slopes</td>
</tr>
<tr>
<td>49</td>
<td>CnB</td>
<td>Coastal beaches</td>
</tr>
<tr>
<td>52</td>
<td>CrF</td>
<td>Contra-Costa-Lodo loams, 30 to 45% slopes</td>
</tr>
<tr>
<td>55</td>
<td>CtA</td>
<td>Corralitos sand, 0 to 2% slopes</td>
</tr>
<tr>
<td>56</td>
<td>CtD</td>
<td>Corralitos sand, 2 to 15% slopes</td>
</tr>
<tr>
<td>57</td>
<td>CtD2</td>
<td>Corralitos sand, 9 to 15% slopes, eroded</td>
</tr>
<tr>
<td>58</td>
<td>CuA</td>
<td>Corralitos loamy sand, 0 to 2% slopes</td>
</tr>
<tr>
<td>59</td>
<td>CuC</td>
<td>Corralitos loamy sand, 2 to 9% slopes</td>
</tr>
<tr>
<td>60</td>
<td>CuD</td>
<td>Corralitos loamy sand, 9 to 15% slopes</td>
</tr>
<tr>
<td>62</td>
<td>CwE</td>
<td>Crow Hill loam, 15 to 30% slopes</td>
</tr>
<tr>
<td>63</td>
<td>CwF</td>
<td>Crow Hill loam, 30 to 45% slopes</td>
</tr>
<tr>
<td>64</td>
<td>CwG</td>
<td>Crow Hill loam, 45 to 75% slopes</td>
</tr>
<tr>
<td>65</td>
<td>CwG3</td>
<td>Crow Hill loam, 15 to 75% slopes, severely eroded</td>
</tr>
<tr>
<td>66</td>
<td>DaD</td>
<td>Diablo silty clay, 9 to 15% slopes</td>
</tr>
<tr>
<td>67</td>
<td>DaE</td>
<td>Diablo silty clay, 15 to 30% slopes</td>
</tr>
<tr>
<td>68</td>
<td>DaF</td>
<td>Diablo silty clay, 30 to 45% slopes</td>
</tr>
<tr>
<td>71</td>
<td>DuE</td>
<td>Dune land</td>
</tr>
<tr>
<td>74</td>
<td>EdA2</td>
<td>Elder sandy loam, 0 to 2% slopes, eroded</td>
</tr>
<tr>
<td>75</td>
<td>EdC2</td>
<td>Elder sandy loam, 2 to 9% slopes, eroded</td>
</tr>
<tr>
<td>76</td>
<td>EdD2</td>
<td>Elder sandy loam, 9 to 15% slopes, eroded</td>
</tr>
<tr>
<td>78</td>
<td>EmC</td>
<td>Elder loam, 2 to 9% slopes</td>
</tr>
<tr>
<td>79</td>
<td>EnA2</td>
<td>Elder shaly loam, 0 to 2% slopes, eroded</td>
</tr>
<tr>
<td>80</td>
<td>EnC2</td>
<td>Elder shaly loam, 2 to 9% slopes, eroded</td>
</tr>
<tr>
<td>Code Number</td>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>81</td>
<td>EnD2</td>
<td>Elder shaly loam, 9 to 15% slopes, eroded</td>
</tr>
<tr>
<td>89</td>
<td>GmG</td>
<td>Gaviota sandy loam, 30 to 75% slopes</td>
</tr>
<tr>
<td>91</td>
<td>GsE</td>
<td>Gazos clay loam, 15 to 30% slopes</td>
</tr>
<tr>
<td>92</td>
<td>GsF</td>
<td>Gazos clay loam, 30 to 45% slopes</td>
</tr>
<tr>
<td>93</td>
<td>GsG</td>
<td>Gazos clay loam, 45 to 75% slopes</td>
</tr>
<tr>
<td>94</td>
<td>GuE</td>
<td>Gullied land</td>
</tr>
<tr>
<td>99</td>
<td>LaF</td>
<td>Landslides</td>
</tr>
<tr>
<td>101</td>
<td>LcE</td>
<td>Linne clay loam, 15 to 30% slopes</td>
</tr>
<tr>
<td>102</td>
<td>LcF</td>
<td>Linne clay loam, 30 to 45% slopes</td>
</tr>
<tr>
<td>103</td>
<td>LcG</td>
<td>Linne clay loam, 45 to 75% slopes</td>
</tr>
<tr>
<td>106</td>
<td>LmG</td>
<td>Lopez shaly clay loam, 15 to 75% slopes</td>
</tr>
<tr>
<td>107</td>
<td>LoE</td>
<td>Los Osos clay loam, 15 to 30% slopes</td>
</tr>
<tr>
<td>108</td>
<td>LoG</td>
<td>Los Osos clay loam, 30 to 75% slopes</td>
</tr>
<tr>
<td>109</td>
<td>LSE</td>
<td>Los Osos-San Benito clay loams, 15 to 30% slopes</td>
</tr>
<tr>
<td>110</td>
<td>LSF</td>
<td>Los Osos-San Benito clay loams, 30 to 45% slopes</td>
</tr>
<tr>
<td>112</td>
<td>MaA</td>
<td>Marina sand, 0 to 2% slopes</td>
</tr>
<tr>
<td>113</td>
<td>MaC</td>
<td>Marina sand, 2 to 9% slopes</td>
</tr>
<tr>
<td>114</td>
<td>MaE</td>
<td>Marina sand, 9 to 30% slopes</td>
</tr>
<tr>
<td>115</td>
<td>MaE3</td>
<td>Marina sand, 9 to 30% slopes, severely eroded</td>
</tr>
<tr>
<td>116</td>
<td>Mh</td>
<td>Marsh</td>
</tr>
<tr>
<td>118</td>
<td>MnA</td>
<td>Metz loamy sand, 0 to 2% slopes</td>
</tr>
<tr>
<td>119</td>
<td>MnC</td>
<td>Metz loamy sand, 2 to 9% slopes</td>
</tr>
<tr>
<td>123</td>
<td>Mr</td>
<td>Mocho sandy loam, overflow</td>
</tr>
<tr>
<td>126</td>
<td>Mu</td>
<td>Mocho fine sandy loam</td>
</tr>
<tr>
<td>127</td>
<td>Mv</td>
<td>Mocho loam</td>
</tr>
<tr>
<td>129</td>
<td>Mx</td>
<td>Mocho silty clay loam</td>
</tr>
<tr>
<td>130</td>
<td>MyG</td>
<td>Montara rocky clay loam, 30 to 75% slopes</td>
</tr>
<tr>
<td>131</td>
<td>NrB</td>
<td>Narlon sand, 0 to 5% slopes</td>
</tr>
<tr>
<td>132</td>
<td>NSA</td>
<td>Narlon loamy sand, 0 to 2% slopes</td>
</tr>
<tr>
<td>133</td>
<td>NSC</td>
<td>Narlon loamy sand, 2 to 9% slopes</td>
</tr>
<tr>
<td>134</td>
<td>NSD</td>
<td>Narlon loamy sand, 9 to 15% slopes</td>
</tr>
<tr>
<td>136</td>
<td>NVC</td>
<td>Narlon sand, hardpan variant, 2 to 9% slopes</td>
</tr>
<tr>
<td>137</td>
<td>OcA</td>
<td>Oceano sand, 0 to 2% slopes</td>
</tr>
<tr>
<td>138</td>
<td>OcD</td>
<td>Oceano sand, 2 to 15% slopes</td>
</tr>
<tr>
<td>159</td>
<td>Rs</td>
<td>Riverwash</td>
</tr>
<tr>
<td>160</td>
<td>RuG</td>
<td>Rough broken land</td>
</tr>
<tr>
<td>161</td>
<td>SaA</td>
<td>Salinas loam, 0 to 2% slopes</td>
</tr>
<tr>
<td>162</td>
<td>SaC</td>
<td>Salinas loam, 2 to 9% slopes</td>
</tr>
<tr>
<td>166</td>
<td>SeD</td>
<td>Salinas and Sorrento loams, 9 to 15% slopes</td>
</tr>
<tr>
<td>167</td>
<td>SfD</td>
<td>San Andreas-Tierra complex, 5 to 15% slopes</td>
</tr>
<tr>
<td>168</td>
<td>SfE</td>
<td>San Andreas-Tierra complex, 15 to 30% slopes</td>
</tr>
<tr>
<td>169</td>
<td>SfF3</td>
<td>San Andreas-Tierra complex, 9 to 45% slopes, severely eroded</td>
</tr>
<tr>
<td>170</td>
<td>SfG</td>
<td>San Andreas-Tierra complex, 30 to 75% slopes</td>
</tr>
<tr>
<td>172</td>
<td>SgG</td>
<td>San Benito-Diablo complex, 45 to 75% slopes</td>
</tr>
<tr>
<td>173</td>
<td>Sh</td>
<td>Sandy alluvial land</td>
</tr>
<tr>
<td>174</td>
<td>Sk</td>
<td>Sandy alluvial land, wet</td>
</tr>
<tr>
<td>175</td>
<td>SmD</td>
<td>Santa Lucia shaly clay loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>176</td>
<td>SmE</td>
<td>Santa Lucia shaly clay loam, 15 to 30% slopes</td>
</tr>
<tr>
<td>Code Number</td>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>177</td>
<td>SmF</td>
<td>Santa Lucia shaly clay loam, 30 to 45% slopes</td>
</tr>
<tr>
<td>179</td>
<td>SmG</td>
<td>Santa Lucia shaly clay loam, 45 to 75% slopes</td>
</tr>
<tr>
<td>184</td>
<td>SpG</td>
<td>Sedimentary rock land</td>
</tr>
<tr>
<td>185</td>
<td>SrE</td>
<td>Shedd silty clay loam, 15 to 30% slopes</td>
</tr>
<tr>
<td>186</td>
<td>SrF</td>
<td>Shedd silty clay loam, 30 to 45% slopes</td>
</tr>
<tr>
<td>187</td>
<td>SrG</td>
<td>Shedd silty clay loam, 45 to 75% slopes</td>
</tr>
<tr>
<td>188</td>
<td>SrG3</td>
<td>Shedd silty clay loam, 30 to 75% slopes, severely eroded</td>
</tr>
<tr>
<td>190</td>
<td>SsF</td>
<td>Shedd silty clay loam, diatomaceous variant, 30 to 45% slopes</td>
</tr>
<tr>
<td>196</td>
<td>SvC</td>
<td>Sorrento loam, 2 to 9% slopes</td>
</tr>
<tr>
<td>204</td>
<td>Swz</td>
<td>Swamp</td>
</tr>
<tr>
<td>205</td>
<td>TaA</td>
<td>Tangair sand, 0 to 2% slopes</td>
</tr>
<tr>
<td>206</td>
<td>TaC</td>
<td>Tangair sand, 2 to 9% slopes</td>
</tr>
<tr>
<td>207</td>
<td>TcG</td>
<td>Terrace escarpments, sandy</td>
</tr>
<tr>
<td>208</td>
<td>TdF</td>
<td>Terrace escarpments, loamy</td>
</tr>
<tr>
<td>211</td>
<td>TmE</td>
<td>Tierra loamy sand, 9 to 30% slopes</td>
</tr>
<tr>
<td>212</td>
<td>TnC</td>
<td>Tierra sandy loam, 9 to 30% slopes</td>
</tr>
<tr>
<td>213</td>
<td>TnD2</td>
<td>Tierra sandy loam, 9 to 15% slopes, eroded</td>
</tr>
<tr>
<td>214</td>
<td>TrE2</td>
<td>Tierra sandy loam, 15 to 30% slopes, eroded</td>
</tr>
<tr>
<td>215</td>
<td>TrC</td>
<td>Tierra loam, 2 to 9% slopes</td>
</tr>
<tr>
<td>216</td>
<td>TrD</td>
<td>Tierra loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>217</td>
<td>TrE2</td>
<td>Tierra loam, 15 to 30% slopes, eroded</td>
</tr>
<tr>
<td>218</td>
<td>TrE3</td>
<td>Tierra loam, 5 to 30% slopes, severely eroded</td>
</tr>
<tr>
<td>219</td>
<td>TsF</td>
<td>Tierra clay loam, 15 to 45% slopes</td>
</tr>
<tr>
<td>220</td>
<td>TxG</td>
<td>Toomes-Climara complex, 30 to 75% slopes</td>
</tr>
<tr>
<td>226</td>
<td>Td</td>
<td>Tangair sand, 16 to 30% slopes</td>
</tr>
<tr>
<td>227</td>
<td>Th</td>
<td>Tangair sand, 9 to 15% slopes, severely eroded</td>
</tr>
<tr>
<td>228</td>
<td>Tf</td>
<td>Tangair sand, 9 to 15% slopes</td>
</tr>
<tr>
<td>229</td>
<td>Su</td>
<td>Santa Lucia, stony soils, undifferentiated, 31% slopes</td>
</tr>
<tr>
<td>230</td>
<td>Lp</td>
<td>Los Osos, stony soils, undifferentiated, 31% slopes</td>
</tr>
<tr>
<td>231</td>
<td>Te</td>
<td>Tangair sand, 16 to 30% slopes, moderately eroded</td>
</tr>
<tr>
<td>232</td>
<td>Ta</td>
<td>Tangair loamy sand, 16 to 30% slopes</td>
</tr>
<tr>
<td>233</td>
<td>Tb</td>
<td>Tangair loamy sand, 9 to 15% slopes</td>
</tr>
<tr>
<td>234</td>
<td>Tc</td>
<td>Tangair loamy sand, 9 to 15% slopes, moderately eroded</td>
</tr>
<tr>
<td>235</td>
<td>At</td>
<td>Arguello shaly loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>236</td>
<td>Bl</td>
<td>Baywood loamy sand, gently sloping, 3 to 8% slopes</td>
</tr>
<tr>
<td>237</td>
<td>Bn</td>
<td>Baywood loamy sand, over Watsonville soils, gently sloping, 3 to 8% slopes</td>
</tr>
<tr>
<td>238</td>
<td>Sq</td>
<td>Santa Lucia shaly loam, 16 to 30% slopes</td>
</tr>
<tr>
<td>239</td>
<td>Sr</td>
<td>Santa Lucia shaly loam, 31 to 45% slopes</td>
</tr>
<tr>
<td>240</td>
<td>Lr</td>
<td>Los Trancos stony loam, 16 to 45% slopes</td>
</tr>
<tr>
<td>241</td>
<td>Lf</td>
<td>Los Osos clay, 31 to 45% slopes</td>
</tr>
<tr>
<td>242</td>
<td>Yd</td>
<td>Yolo loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>243</td>
<td>Le</td>
<td>Los Osos clay, 16 to 30% slopes</td>
</tr>
<tr>
<td>244</td>
<td>Ja</td>
<td>Jalama shaly sandy loam, 3 to 15% slopes</td>
</tr>
<tr>
<td>245</td>
<td>Wh</td>
<td>Watsonville loam, 3 to 8% slopes</td>
</tr>
<tr>
<td>246</td>
<td>As</td>
<td>Arguello shaly loam, 3 to 8% slopes</td>
</tr>
<tr>
<td>247</td>
<td>Bp</td>
<td>Baywood loamy sand, 9 to 15% slopes</td>
</tr>
<tr>
<td>248</td>
<td>Ec</td>
<td>Elder shaly clay loam, 3 to 8% slopes</td>
</tr>
<tr>
<td>Code Number</td>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>249</td>
<td>St</td>
<td>Santa Lucia stony clay loam, 16 to 30% slopes</td>
</tr>
<tr>
<td>250</td>
<td>Bk</td>
<td>Baywood loamy fine sand, over Watsonville soils, 3 to 8% slopes</td>
</tr>
<tr>
<td>251</td>
<td>Ss</td>
<td>Santa Lucia shaly loam, 46%+ slopes</td>
</tr>
<tr>
<td>252</td>
<td>Nd</td>
<td>Nacimiento clay, 31 to 45% slopes</td>
</tr>
<tr>
<td>253</td>
<td>Cn</td>
<td>Climax clay (adobe), 31 to 45% slopes</td>
</tr>
<tr>
<td>254</td>
<td>Cm</td>
<td>Climax clay (adobe), 16 to 30% slopes</td>
</tr>
<tr>
<td>255</td>
<td>Gk</td>
<td>Gaviota stony soils, undifferentiated, 31%+ slopes</td>
</tr>
<tr>
<td>256</td>
<td>Ne</td>
<td>Nacimiento clay, 31 to 45% slopes, moderately eroded</td>
</tr>
<tr>
<td>257</td>
<td>Rh</td>
<td>Rough gullied land, Los Osos soil material</td>
</tr>
<tr>
<td>258</td>
<td>Yg</td>
<td>Yolo loam, 0 to 2% slopes</td>
</tr>
<tr>
<td>259</td>
<td>Ye</td>
<td>Yolo loam, 3 to 8% slopes</td>
</tr>
<tr>
<td>260</td>
<td>Na</td>
<td>Nacimiento clay, 16 to 30% slopes</td>
</tr>
<tr>
<td>261</td>
<td>Ct</td>
<td>Crow Hill loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>263</td>
<td>Sa</td>
<td>San Andreas fine sandy loam, moderately eroded, 9 to 15% slopes</td>
</tr>
<tr>
<td>264</td>
<td>Tp</td>
<td>Tierra fine sandy loam, moderately eroded, 31 to 45% slopes</td>
</tr>
<tr>
<td>265</td>
<td>(Sh)</td>
<td>San Andreas stony soils, undifferentiated, 46%+ slopes</td>
</tr>
<tr>
<td>267</td>
<td>Zv</td>
<td>Zaca stony soils, undifferentiated, 31%+ slopes</td>
</tr>
<tr>
<td>270</td>
<td>Zm</td>
<td>Zaca shaly clay loam, 16 to 30% slopes</td>
</tr>
<tr>
<td>271</td>
<td>Zk</td>
<td>Zaca shaly clay loam, 31 to 45% slopes</td>
</tr>
<tr>
<td>272</td>
<td>Zg</td>
<td>Zaca shaly clay loam, 16 to 30% slopes</td>
</tr>
<tr>
<td>273</td>
<td>Za</td>
<td>Zaca clay, 16 to 30% slopes</td>
</tr>
<tr>
<td>274</td>
<td>Jc</td>
<td>Jalama stony soils, undifferentiated, 16 to 45% slopes</td>
</tr>
<tr>
<td>275</td>
<td>Jb</td>
<td>Jalama shaly, sandy loam, 16 to 30% slopes</td>
</tr>
<tr>
<td>276</td>
<td>Zs</td>
<td>Zaca, shaly clay loam, 31 to 45% slopes</td>
</tr>
<tr>
<td>277</td>
<td>Kb</td>
<td>Kitchen middens, over impermeable soil material</td>
</tr>
<tr>
<td>278</td>
<td>Zc</td>
<td>Zaca clay, 9 to 15% slopes</td>
</tr>
<tr>
<td>279</td>
<td>Zd</td>
<td>Zaca clay, 31 to 45% slopes</td>
</tr>
<tr>
<td>280</td>
<td>NL</td>
<td>Nacimiento stony soils, undifferentiated, 46%+ slopes</td>
</tr>
<tr>
<td>281</td>
<td>S</td>
<td>San Andreas fine sandy loam, 16 to 30% slopes</td>
</tr>
<tr>
<td>282</td>
<td>Ad</td>
<td>Agueda, gravelly clay loam, 3 to 8% slopes</td>
</tr>
<tr>
<td>283</td>
<td>Ae</td>
<td>Agueda, gravelly clay loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>284</td>
<td>MN</td>
<td>Montezuma clay (adobe), 3 to 8% slopes</td>
</tr>
<tr>
<td>285</td>
<td>Nf</td>
<td>Nacimiento clay, 46%+ slopes</td>
</tr>
<tr>
<td>286</td>
<td>Zp</td>
<td>Zaca shaly clay loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>287</td>
<td>Ac</td>
<td>Agueda clay loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>288</td>
<td>Zn</td>
<td>Zaca shaly clay loam, moderately eroded, 16 to 30% slopes</td>
</tr>
<tr>
<td>289</td>
<td>Zl</td>
<td>Zaca nonstony soils, undifferentiated, 46%+ slopes</td>
</tr>
<tr>
<td>290</td>
<td>Wn</td>
<td>Watsonville loam, 9 to 15% slopes</td>
</tr>
<tr>
<td>291</td>
<td>MV</td>
<td>Montezuma clay loam, 3 to 8% slopes</td>
</tr>
<tr>
<td>292</td>
<td>Tg</td>
<td>Tangair sand, moderately eroded, 9 to 15% slopes</td>
</tr>
</tbody>
</table>
3. EXPOSURE DATA BASE
The exposure or aspect of the land was coded for each 23-acre grid cell. A transparent grid overlay was used with the C series of maps in the Base Master Plan (Reference 4) to code the exposure cell by cell. If multiple exposures occurred within a grid cell, the predominant exposure was used to describe the whole cell. Each cell was assigned an integer exposure code for processing exposure into the data base for the GRID computer program.

A series of 25 different exposure codes were used to evaluate the terrain. Codes 1-9 were used if a cell contained only a predominant single exposure (example: south facing). Codes 10-17 were used for multiple exposures in a cell caused by drainage areas. For example, a north sloping drainage provides both east and west exposure. Codes 18-25 were used for multiple exposures in a cell caused by a ridge line. For example, a ridge sloping to the northeast has northwest and southeast exposure. Table 18 lists the codes and categories used for describing exposure.

The exposure data were coded on computer data cards in two-column fields. Thirty-seven fields of two columns each were defined in columns 1-74. Columns 75-80 were assigned a card identification number. Using this coding system, 37 grid cells were contained on each data card.

4. ELEVATION DATA BASE
The elevation of the land was coded for each grid cell. Elevation was coded using the same basic procedure described for coding exposure. The highest elevation in a grid cell determined the overall elevation assigned to that cell. Elevation was coded in 200-foot intervals. Using this system, 10 different codes describe the elevation from sea level to the highest point on VAFB. All areas 1800 feet and above were combined into one elevation class. Table 18 lists the codes and categories used in making the data base.

The elevation data were coded on computer data cards in one-column fields. Seventy-five fields of one-column each were defined in columns 1-75. Columns 76-80 were assigned a card identification number.

The exposure and elevation data can be used for a variety of purposes. Examples include: hydrologic studies, meteorological studies, and studies such as potential effects of exhaust clouds from rocket launches on land areas below the inversion layer.

5. VEGETATION DATA BASE
The vegetation data base was developed from the vegetation maps prepared for VAFB. The maps are transparent overlays to the Base Master Plan, map series C-1 (66 sheets, 1 inch:800 feet scale). After the maps were drawn the vegetation was coded for the computerized data base. A transparent grid overlay was used with the vegetation maps to code the data. The vegetation data were coded at the 2.55-acre subcell level. Each 23-acre grid cell was divided into nine subcells using a transparent grid overlay (see Figure 7).

The dominant type of vegetation of each of the subcells was coded onto data forms. In many cases, the determination of the dominant type was a complicated matter because the scale of the maps was such that one 2.55-acre cell could contain several different vegetation types. If one vegetation type
TABLE 18. EXPOSURE CODES AND CATEGORIES FOR VANDENBERG AFB.

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Exposure</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Undefinable direction, less than 10 degrees of slope</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>North</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Northwest</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>West</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Southwest</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>South</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Southeast</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>East</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Northeast</td>
<td></td>
</tr>
</tbody>
</table>

Codes 10-17 describe multiple exposures in a cell due to drainage areas.

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Exposure</th>
<th>Ridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>East and West</td>
<td>North</td>
</tr>
<tr>
<td>11</td>
<td>East and West</td>
<td>South</td>
</tr>
<tr>
<td>12</td>
<td>Northwest and Southeast</td>
<td>Northeast</td>
</tr>
<tr>
<td>13</td>
<td>Northwest and Southeast</td>
<td>Southwest</td>
</tr>
<tr>
<td>14</td>
<td>North and South</td>
<td>East</td>
</tr>
<tr>
<td>15</td>
<td>North and South</td>
<td>West</td>
</tr>
<tr>
<td>16</td>
<td>Northeast and Southwest</td>
<td>Northwest</td>
</tr>
<tr>
<td>17</td>
<td>Northeast and Southwest</td>
<td>Southeast</td>
</tr>
</tbody>
</table>

Codes 18-25 describe multiple exposures in a cell due to ridge lines.
TABLE 19. ELEVATION CODES AND CATEGORIES FOR VANDENBERG AFB.

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Elevation (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 - 200</td>
</tr>
<tr>
<td>1</td>
<td>200 - 400</td>
</tr>
<tr>
<td>2</td>
<td>400 - 600</td>
</tr>
<tr>
<td>3</td>
<td>600 - 800</td>
</tr>
<tr>
<td>4</td>
<td>800 - 1000</td>
</tr>
<tr>
<td>5</td>
<td>1000 - 1200</td>
</tr>
<tr>
<td>6</td>
<td>1200 - 1400</td>
</tr>
<tr>
<td>7</td>
<td>1400 - 1600</td>
</tr>
<tr>
<td>8</td>
<td>1600 - 1800</td>
</tr>
<tr>
<td>9</td>
<td>1800 and above</td>
</tr>
</tbody>
</table>
clearly covered the subcell, it was designated as the type for the entire subcell. If one vegetation type was not dominant in area within the subcell, relations of vegetation types to other types within and outside the subcell were taken into account.

The vegetation types were given an integer code for processing into the data base. Table 20 lists the codes and categories.

One computer data card was used for each grid cell of the vegetation data base. Table 21 lists the fields and columns used for each data card. The field used for describing optional information for each subcell was used to code subcells containing fire breaks. The code number 1 in the optional field indicates a fire break occurs in that subcell. Columns 45-68 on each grid cell data card are blank and can be used to code additional information about each grid cell.

The GRID program processes the vegetation data for a GRID map on a 23-acre cell size. Therefore, Subroutine Flexin must be modified to assign an overall vegetation type to a grid cell on the basis of the vegetation types assigned to the 9 subcells. Examples 12 and 13 show two different modifications of Flexin for assigning an overall vegetation type to a grid cell. Other modifications of Flexin are possible depending upon the user's needs and knowledge of FORTRAN.

Example 12:
Assigning Vegetation Type by the Center Subcell
The FORTRAN statements given in this example of Subroutine Flexin direct the computer to assign an overall vegetation type to a grid cell based on the vegetation type of the center subcell (subcell 5). It can be demonstrated statistically that this method will give an unbiased estimate of vegetation coverage for all the grid cells. The FORTRAN statements are:

```fortran
SUBROUTINE FLEXIN(IFORM, T, FIRST)
READ(11, 11) V
11 FORMAT(36X,F2.0)
T=5.
IF(V.EQ.12.) T=1.
IF(V.EQ.8.) T=2.
IF(V.EQ.11.) T=3.
IF(V.EQ.3.) T=4.
IF(V.EQ.31.) T=4.
RETURN
END
```

Explanatory Notes for Example 12:

a. This FORMAT statement and the READ statement direct the computer to read the vegetation type for subcell 5.

b. The remainder of the FORTRAN statements in the subroutine direct the computer to produce a vegetation map of 5 levels, based on the instructions given in the Map Package. In this case the Map Package would be set up to produce a GRID map showing 4 types of vegetation and the remainder as background.
<table>
<thead>
<tr>
<th>Code Number</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bishop pine forest</td>
</tr>
<tr>
<td>72</td>
<td>Bishop pine forest - sparse phase</td>
</tr>
<tr>
<td>2</td>
<td>Tanbark oak forest</td>
</tr>
<tr>
<td>3</td>
<td>Foothill woodland</td>
</tr>
<tr>
<td>31</td>
<td>Foothill woodland - dense phase</td>
</tr>
<tr>
<td>4</td>
<td>Riparian woodland</td>
</tr>
<tr>
<td>42</td>
<td>Riparian woodland - sparse phase</td>
</tr>
<tr>
<td>5</td>
<td>Chaparral</td>
</tr>
<tr>
<td>52</td>
<td>Chaparral - sparse phase</td>
</tr>
<tr>
<td>6</td>
<td>Coastal sage scrub - normal phase</td>
</tr>
<tr>
<td>62</td>
<td>Coastal sage scrub - sparse phase</td>
</tr>
<tr>
<td>7</td>
<td>Coastal sage scrub - Salvia leucophylla phase</td>
</tr>
<tr>
<td>8</td>
<td>Coastal sage scrub - stabilized dune phase</td>
</tr>
<tr>
<td>9</td>
<td>Wet soil scrub</td>
</tr>
<tr>
<td>10</td>
<td>Huckleberry scrub</td>
</tr>
<tr>
<td>11</td>
<td>Coastal bluff</td>
</tr>
<tr>
<td>12</td>
<td>Coastal strand</td>
</tr>
<tr>
<td>13</td>
<td>Coastal salt marsh</td>
</tr>
<tr>
<td>14</td>
<td>Freshwater marsh</td>
</tr>
<tr>
<td>16</td>
<td>Grassland - annual</td>
</tr>
<tr>
<td>17</td>
<td>Miscellaneous native herb communities</td>
</tr>
<tr>
<td>18</td>
<td>Ruderal vegetation</td>
</tr>
<tr>
<td>19</td>
<td>Planted trees</td>
</tr>
<tr>
<td>20</td>
<td>Agricultural plantings</td>
</tr>
<tr>
<td>21</td>
<td>Non-agricultural plantings</td>
</tr>
<tr>
<td>22</td>
<td>Freshwater</td>
</tr>
<tr>
<td>23</td>
<td>Man-made facilities and cantonement</td>
</tr>
<tr>
<td>24</td>
<td>Disked areas</td>
</tr>
<tr>
<td>25</td>
<td>Naturally bare soil</td>
</tr>
<tr>
<td>26</td>
<td>Acer negundo stands</td>
</tr>
<tr>
<td>99</td>
<td>Land not within the base boundary</td>
</tr>
<tr>
<td>00</td>
<td>Ocean</td>
</tr>
</tbody>
</table>
TABLE 21. VEGETATION DATA CARD FIELDS.

<table>
<thead>
<tr>
<th>Column</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6</td>
<td>Alphanumeric coordinates for the grid cell</td>
</tr>
<tr>
<td>10-11</td>
<td>Subcell 1 vegetation code</td>
</tr>
<tr>
<td>12</td>
<td>Subcell 1 optional field</td>
</tr>
<tr>
<td>14-15</td>
<td>Subcell 2 vegetation code</td>
</tr>
<tr>
<td>16</td>
<td>Subcell 2 optional field</td>
</tr>
<tr>
<td>18-19</td>
<td>Subcell 3 vegetation code</td>
</tr>
<tr>
<td>20</td>
<td>Subcell 3 optional field</td>
</tr>
<tr>
<td>22-23</td>
<td>Subcell 4 vegetation code</td>
</tr>
<tr>
<td>24</td>
<td>Subcell 4 optional field</td>
</tr>
<tr>
<td>26-27</td>
<td>Subcell 5 vegetation code</td>
</tr>
<tr>
<td>28</td>
<td>Subcell 5 optional field</td>
</tr>
<tr>
<td>30-31</td>
<td>Subcell 6 vegetation code</td>
</tr>
<tr>
<td>32</td>
<td>Subcell 6 optional field</td>
</tr>
<tr>
<td>34-35</td>
<td>Subcell 7 vegetation code</td>
</tr>
<tr>
<td>36</td>
<td>Subcell 7 optional field</td>
</tr>
<tr>
<td>38-39</td>
<td>Subcell 8 vegetation code</td>
</tr>
<tr>
<td>40</td>
<td>Subcell 8 optional field</td>
</tr>
<tr>
<td>42-43</td>
<td>Subcell 9 vegetation code</td>
</tr>
<tr>
<td>44</td>
<td>Subcell 9 optional field</td>
</tr>
<tr>
<td>69-72</td>
<td>Date the card was prepared</td>
</tr>
<tr>
<td>77-80</td>
<td>Identification number for each data card</td>
</tr>
</tbody>
</table>
The mapping levels are:

- Level 1 = Coastal strand
- Level 2 = Coastal sage scrub-stabilized dune phase
- Level 3 = Coastal bluff
- Level 4 = Oak woodland
- Level 5 = Background symbolism (all other vegetation types)

Example 13:
Assigning Vegetation Type by the Majority of Subcells
The FORTRAN statements given in this example of Subroutine Flexin direct the computer to assign an overall vegetation type to a grid cell based on the vegetation types of the majority of subcells. The FORTRAN statements are:

```fortran
SUBROUTINE FLEXIN( IFORM, T, FIRST)
REAL A(9), B(9)
DO 100 I=1,9
100 B(I)=0.
   READ(11,11) (A(I),I=1,9)
   11 FORMAT( 18X,9(2X,F2.0),26X)
   DO 200 IN=1,9
   DO 300 I=IN,9
   300 IF(A(IN).EQ.A(I)) B(IN)=B(IN)+1
   200 CONTINUE
   T=A(1)
   DO 400 I=1,8
   400 IF(B(I).LT.B(I+1)) T=A(I+1)
   IF(T.EQ.3.) GO TO 590
   IF(T.EQ.31.) GO TO 590
   IF(T.EQ.1.) T=5.
   IF(T.EQ.5.) GO TO 600
   IF(T.EQ.12.) T=1.
   IF(T.EQ.1.) GO TO 600
   IF(T.EQ.2.) T=5.
   IF(T.EQ.5.) GO TO 600
   IF(T.EQ.8.) T=2.
   IF(T.EQ.2.) GO TO 600
   IF(T.EQ.11.) T=3.
   IF(T.EQ.3.) GO TO 600
   T=5.
   IF(T.EQ.5.) GO TO 600
   590 T=4.
   600 CONTINUE
   RETURN
END
```

Explanatory Notes for Example 13:
- The value of T is the vegetation type of the majority of subcells.
- The remainder of the FORTRAN statements direct the computer to produce a vegetation map of 5 levels, based on the instructions provided to the Map Package. The mapping levels are:
Level 1 = Coastal strand
Level 2 = Coastal sage scrub-stabilized dune phase
Level 3 = Coastal bluff
Level 4 = Oak woodland
Level 5 = Background symbolism (all other vegetation types)

Examples of different uses for the vegetation database include:

a. Mapping and calculating areas sensitive to erosion due to unstable vegetation.
b. Predicting occurrences of rare, endangered, or depleted species of plants and animals based on their vegetation preferences.
c. Mapping and calculating areas of different vegetation types that would be affected by alternative placements of construction (runways, launch pads, etc.).

6. MERGED DATA BASE

In order to do analyses with GRID using more than one variable, a merged data base was produced. The data base variables for each grid cell were merged, resulting in a common data set. The merged data base is similar to the vegetation data base in that one computer data card is used to describe the data variables for each grid cell. Therefore, the merged data base contains 4646 data cards.

Table 22 lists the fields and columns describing a grid cell for each data card. The merged data base is available for GRID and other computer programs on either data cards or magnetic tape at VAFB.

7. UPDATE PROCEDURES

The merged data base, because of its design, can easily be updated on a cell by cell basis. Example 14 illustrates the procedure for updating data cards.

Example 14:
Update Procedures for Data Cards

New firebreaks were made in a number of areas on the base. It is desirable to update the data base to include the new firebreaks. The following procedure can be used:

a. Locate the new firebreaks on the Base Master Plan Maps (C-1.2 series).
b. Identify the coordinates of the grid cells containing the new firebreaks -- for example, OA100, PA100, and QA100.
c. Locate the data cards in the data set which display the coordinates.
d. Keypunch new data cards to replace and update the affected data cards.
e. Return the updated data cards to their proper location in the data deck.

Data values can be updated on the magnetic tape by having the computer search the data tape for the desired cell coordinates and writing the new data values into their proper location on the tape. Example 15 illustrates the procedure with a FORTRAN program to update firebreaks in subcell 5 for the grid cells OA100, PA100, and QA100.
TABLE 22. MERGED DATA DECK FIELDS.

<table>
<thead>
<tr>
<th>Column</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>S=</td>
</tr>
<tr>
<td>4-6</td>
<td>Soil/slope code</td>
</tr>
<tr>
<td>8-10</td>
<td>EX=</td>
</tr>
<tr>
<td>11-12</td>
<td>Exposure code</td>
</tr>
<tr>
<td>14-16</td>
<td>EL=</td>
</tr>
<tr>
<td>17</td>
<td>Elevation code</td>
</tr>
<tr>
<td>19-20</td>
<td>V=</td>
</tr>
<tr>
<td>21-22</td>
<td>Subcell 1 vegetation code</td>
</tr>
<tr>
<td>23</td>
<td>Subcell 1 optional field</td>
</tr>
<tr>
<td>25-26</td>
<td>Subcell 2 vegetation code</td>
</tr>
<tr>
<td>27</td>
<td>Subcell 2 optional field</td>
</tr>
<tr>
<td>29-30</td>
<td>Subcell 3 vegetation code</td>
</tr>
<tr>
<td>31</td>
<td>Subcell 3 optional field</td>
</tr>
<tr>
<td>33-34</td>
<td>Subcell 4 vegetation code</td>
</tr>
<tr>
<td>35</td>
<td>Subcell 4 optional field</td>
</tr>
<tr>
<td>37-38</td>
<td>Subcell 5 vegetation code</td>
</tr>
<tr>
<td>39</td>
<td>Subcell 5 optional field</td>
</tr>
<tr>
<td>41-42</td>
<td>Subcell 6 vegetation code</td>
</tr>
<tr>
<td>43</td>
<td>Subcell 6 optional field</td>
</tr>
<tr>
<td>45-46</td>
<td>Subcell 7 vegetation code</td>
</tr>
<tr>
<td>47</td>
<td>Subcell 7 optional field</td>
</tr>
<tr>
<td>49-50</td>
<td>Subcell 8 vegetation code</td>
</tr>
<tr>
<td>51</td>
<td>Subcell 8 optional field</td>
</tr>
<tr>
<td>53-54</td>
<td>Subcell 9 vegetation code</td>
</tr>
<tr>
<td>55</td>
<td>Subcell 9 optional field</td>
</tr>
<tr>
<td>66-69</td>
<td>Date the card was prepared</td>
</tr>
<tr>
<td>71-75</td>
<td>Alphanumeric coordinates for the grid cell</td>
</tr>
<tr>
<td>77-80</td>
<td>Identification number for the data card</td>
</tr>
</tbody>
</table>
Example 15:
A FORTRAN Program to Update the Data Tape for Firebreaks

1
2COMPILE SNFT10 XFORTN LIB DATA CARDS
3
11
3LST1
8
IDENT MAIN
FILE 11=ANFTOT,UNIT=TAPE,RECORD=80,BLOCKING=1,UNLABELED,FIXED
C UPDATE PROGRAM
 INTEGER V, ID
 REAL*8 C(3), CX
 V=1
 NTYPE = 3
 DATA C/'OA100', 'PA100', 'QA100'/
1 READ(11,2) CX, ID
2 FORMAT(70X,A5, 1X,I4)
 DO 3 J=1,NTYPE
 IF(CX.EQ.C(J)) GO TO 4
3 CONTINUE
 IF(ID.LT.4646) GO TO 1
4 WRITE(4,5) V
5 FORMAT(38X, I1)
 IF(ID.LT.4646) GO TO 1
END
1
2END
3

66
APPENDIX A

GRID PROGRAM LISTING AS ADAPTED
TO THE BURROUGHS 3500 COMPUTER
IDENT MAIN
FILL 11=ANFT,T,UNIT=TAPE,RECORD=1),BLOCKING=1,LABELLED,FIXED
LARGE G, A, L, LIM
SEGMENT MAP+1,INDATA,FLATON,HEAD,FLEXIN
C GRID MAP PROGRAM VERSION 3
C PREPARED BY DAVID P. SINTON
C LABORATORY FOR COMPUTER GRAPHICS
C HARVARD UNIVERSITY
C AUGUST 1969
C
C MODIFIED BY T.D. HARTSOOK, GEOP. DEPT., SAN DIEGO STATE UNIV.
C THIS VERSION OF GRID IS MODIFIED TO RUN ON IBM 360/40 (3OS).
C IT ACCEPTS 10,000 DATA CELLS WITHOUT USING THE MULTIPLE DATASET OPTION.
C MODIFIED FOR VANDENBERG AF1 STUDY OCTOBER, 1974.
C F. STUZ, M. REILLY
C
C COMMON/C/, (1000)
C COMMON/A/ NCD, NCA, NGS, NGSHEE, NCS, NCL, NUCH, NCST, NNST
C COMMON/B/ NLEVEL, IFORM, NDD, IHT, NTX, OPT (25)
C COMMON/L1M/ VALMAX, VALMIN, RANGE (25), VAL (21), RANGE (20), NREF (25)
C COMMON /SYMBOL SYM: (25,4), XS (12), TITLE (60), TEXT (60)
C INTEGER SYMBOL
C INTEGER (25)
C DIMENSION (A (25))
C LOGICAL OPT
C DIMENSION KEYS (S)
C INTEGER TIM, TIME, TIMJ, TIMK
C INTEGER Z
C DATA KEYS /3HWP, 3HEND, 3HRR, 3HAT, 3HYY/
C OPT (24) = FALSE.
C OPT (25) = FALSE.
C MAP : =
C IF (KEYS = 1)
C "READ CONTROL WORD"
C IF (OPT (25) = ERR = ERR + 1)
C "READ (S, X) KEY"
C OPT (25) = FALSE.
C ON I = I + 1
C IF (KEYS = 0) (KEYS (11)) GOTO 11
C CONTINUE
C ENDS MESSAGES
C WRITE (6, 2000) KEY
C WRITE (6, 3000)
C "FLATON"
C STOP
C 12 WRITE (6, 1010)
C WRITE (6, 9010)
C ENDFILE R
C ENDFILE M
C STOP
C GOTO (1, 2, 3, 4, 5, 6)
WRITE(Z,9006)
END FILE Z
REWIND Z
STOP
4 WRITE(6,2410)
WRITE(B,9060)
ENDFILE B
REWIND B
STOP
5 GO TO 10
C READ IN IRREGULAR OUTLINE
1 IP=0
OPT(24)=.TRUE.
REWIND 9
WRITE(6,1050)
6 READ(5,1050) IK,NCB,NCE
IF (IK.GT.99999) GO TO 107
OPT(24)=IP,GT.0
GO TO 100
17 IF(IK.LT.1) IK=1
DC 105 I=1,IK
IP=IP+1
WRITE(6,1030) IP,NCB,NCE
18 WRITE(9) NCB,NCE
GO TO 106
C READ IN THE MAP CONTROLS
1 MAPN=MAPN+1
C CALL CTIME(TIM1)
ND=0
WRITE(6,1040)
CALL MAPN(MAPN)
IF(OPT(25)) GO TO 100
C
C READ THE DATA
20 ND=ND+1
IF(OPT(24).AND. IP.NE.NCD) GO TO 120
CALL INDATA(NCD,NC AND,IA)
IF(OPT(25)) GO TO 100
C LOOP THROUGH FLATON FOR EACH SHEET OF THE MAP
C C CALL CTIME(TIM2)
ISH=0
ISH=ISH+1
30 WRITE (6,3060)
WRITE(8,3040) MAPN,ISH,ND
WRITE (6,3040)
CALL FLATON(ISH,ND)
WRITE (6,3040)
IF (ISH.LT.NSHEET) GO TO 30
IF(ND.LT.NUD) GO TO 200
C CALL CTIME(TIM3)
C WRITE THE DATA BELOW THE MAP
WRITE (6,320) TITLE
IF(NTX.NE.0) WRITE(8,320) (TEXT(I),I=1,NTX)
IF(OPT(12).AND. OPT(22)) GO TO 210
CALL MHEAD
C CALL CTIME(TIM4)
210 IF(*NOT*OPT(15)) GO TO 100
C T1=(T1M2-T1M1)/300.
C T2=(T1M3-T1M2)/300.
C T3=(T1M4-T1M3)/300.
C T4=T1M4/300.
C WHITE(6,950) T1,T2,T3,T4
GO TO 100
1000 FORMAT(A31)
2000 FORMAT(2H,*,A3,34H- IS AN INVALID INPUT CONTROL WORD)
1010 FORMAT(//2X,5H IRREGULAR OUTLINES DO NOT SPECIFY THE CORRECT NUMBER//,A12)
1EN OF ROWS.)
4010 FORMAT(1H1,15,11H MAPS MADE/19H RUN COMPLETE)
<010 FORMAT(2H,*,34H DATA IS NO LONGER A VALID CONTROL)
1040 FORMAT(1H1,8(/,18H IRREGULAR OUTLINE/14H/17H)-------------1)
1050 FORMAT(J5)
1040 FORMAT(1H1,8(/,18H MAP TITLE /X1X12H-----------/)
3000 FORMAT (1H1,8(/) .
4050 FORMAT(1X,4HMAP /12,H,PLOT, (2,1G4,DATA SET *12))
3040 FORMAT (2H.*,12(14H-----------------),10H---------*)
<010 FORMAT(///(1X,2L44/1X)///)
3090 FORMAT (///(40X,20A4))
9000 FORMAT(/////////////,1,4AX,********** END OF DATA FILE **********///)
1*')
C9050 FORMAT(/// TIME IN SECONDS - DATA INPUT */7FB,3/17X,*)- PRINTING */7FB,3/17X
C (1X,/*7FB,3/17X,*- TOTAL RUN MAP/*3,3/17X,*- TOTAL ELAPSED,FB,3)
END
C
2 OPT(2) = A(1) .GT. 0.0
OPT(20) = A(1) .LT. 0.0
IFORM = A(1)
NOD = A(1)
WRITE(6, 3060) IOPT, IFORM
IF (NOD .GT. 1) WRITE(6, 3020) NOD
GO TO 100
C
OPTION 3 READ THE NUMBER OF LEVELS
3 NLEVEL = A(1)
WRITE(6, 1040) IOPT, NLEVEL
GO TO 100
C
OPTION 4 MINIMUM VALUE
4 VALMIN = A(1)
OPT(4) = A(2) .EQ. 0.0
IF (OPT(4)) WRITE(6, 1050) IOPT, VALMIN
GO TO 100
C
OPTION 5 MAXIMUM VALUE
5 VALMAX = A(1)
OPT(5) = A(2) .EQ. 0.0
IF (OPT(5)) WRITE(6, 1060) IOPT, VALMAX
GO TO 100
C
OPTION 6 VALUE SCALING
6 OPT(6) = A(1) .GT. 0.0
IF (NOD .GT. A(1)) GO TO 100
RANGE(I) = A(1)
IF (NLEVEL .GT. 6) READ(5, 1030) IB, (RANGE(I), I=1, NLEVEL)
WRITE(6, 1080) IOPT, (RANGE(I), I=1, NLEVEL)
GO TO 100
C
OPTION 7 SYMBOLISM
7 IOPT(7) = .TRUE.
READ(5, 1090) SYMBOL
WRITE(6, 1100) IOPT, SYMBOL
GO TO 100
C
OPTION 8 FLAG POINT SWITCH
8 IOPT(8) = A(1) .EQ. 1.0
IF (OPT(8)) WRITE(6, 1180) IOPT
C
OPTION 9 HISTOGRAM SWITCH
GO TO 100
C
OPTION 10 TEXT
12 J FORMAT(/15.3X,11HMAP TEXT IS/8X,11H----------)
1 WRITE(6, 1200) IOPT
NTX = 0
DO 106 N=1,40
 IBEG=NTX+1
 IEND=NTX+20
 READ (5,106) (TEXT(I),I=IBEG,IEND)
 IF(TEXT(IBEG),EQ.,TXTEND) GO TO 107
 NTX=IEND
106 CONTINUE
 WRITE(6,1220)
 WRITE(6,1000) TXTND
 IF((TXTND,NEQ,TXTEND)) GO TO 107
 IF((TXTND,NEQ,PACEND)) GO TO 300
 GO TO 108
107 WRITE (6,1210) (TEXT(I),I=1,NTX)
 GO TO 160
C 11 DO 103 I=1,3
 103 OPT(I+1)=A(I),EQ.1.0
 IF(OPT(9)) WRITE(6,1140)
 IF(OPT(10)) WRITE(6,1150)
 IF(OPT(11)) WRITE(6,1160)
 GO TO 100
C
C 0: T MAP OPTION
12 OPT(12)=A(1),EQ.1.0
 IF(.NOT.OPT(12)) GO TO 100
 WRITE(6,1110) I0PT
 NLEVEL=20
 IF(OPT(5)) NLEVEL=19
 IF((NGD,NEQ.4.,AND.,NGA,NEQ.5.)) GO TO 100
 NGD=4
 NGA=5
 GO TO 150
C
C GRID NUMBERING OPTION
13 NUMCH=A(1)
 OPT(13)=A(1),GT.0.0
 IF(.NOT.OPT(13)) GO TO 100
 IF((NUMCH,GT.1.)) READ(5,4002):NS(1),I=1,NUMCH
 NCST=A(2)
 NRST=A(3)
 IF((NCST,NEQ.0.)) NCST=1
 IF((NRST,NEQ.0.)) NRST=NGC
 WRITE(6,4000) I0PT,NCST,NRST
 IF((NGA*NGA+201.)*GT.(NSHEET+(13.-NGA.))) GO TO 111
 GO TO 100
111 NSHEET=NSHEET+1
 GO TO 112
C
C PRESCALED DATA OPTION
14 OPT(14)=A(1),EQ.1.0
 OPT(22)=.TRUE.
 IF(OPT(14)) WRITE(6,1190)
 GO TO 100
15 OPT(15)=A(1),GT.0.0
 IF(OPT(15)) WRITE(6,1250)
 GO TO 100
100 FORMAT (2CA4)
110 FORMAT(1X,20A4,/,)
112 FORMAT(/1X,27HRELECTIVES USED FOR THIS MAP./1X,27H--------------------------)
300 FORMAT(/1X,27H--------------------------)
73
103 FORMAT(15,5X,6F10.0) 0003200
1240 FORMAT(15,3X,12.7M LEVELS) 0003210
1050 FORMAT(15,3X,3M THE MINIMUM VALUE IS SPECIFIED AS,10.2) 0003220
1660 FORMAT(15,3X,3M THE MAXIMUM VALUE IS SPECIFIED AS,10.2) 0003230
1080 FORMAT(15,3X,3M THE RELATIVE SIZE OF EACH LEVEL IS,10F10.2) 0003240
1090 FORMAT(25A1) 0003250
1100 FORMAT(15,3X,17M THE SYMBOLS ARE -,-(10X,25A1)/) 0003260
1110 FORMAT(15,3X,2CMOD MAP SYMBOLS USED) 0003270
1140 FORMAT(13X,3M THE VALUES MAPPED ARE LISTED) 0003280
1150 FORMAT(13X,42H1 THE VALUES MAPPED ARE STORED ON CARDS) 0003290
1160 FORMAT(13X,42H1 THE LEVELS MAPPED ARE STORED ON CARDS) 0003300
1180 FORMAT(13X,42H1 THE VALUE S MAPPED ARE STORED ON CARDS) 0003310
1190 FORMAT(13X,42H1 THE LEVELS MAPPED ARE STORED ON CARDS) 0003320
1210 FORMAT(13X,42H1 THE DATA IS ASSUMED TO BE PRESCALED) 0003330
1220 FORMAT(13X,42H1 THE DATA IS ASSUMED TO BE PRESCALED) 0003340
1230 FORMAT(13X,42H1 THE DATA IS ASSUMED TO BE PRESCALED) 0003350
1240 FORMAT(13X,42H1 THE DATA IS ASSUMED TO BE PRESCALED) 0003360
1250 FORMAT(13X,42H1 THE DATA IS ASSUMED TO BE PRESCALED) 0003370
2000 FORMAT(15,3X,2CHGRID SIZE IS,14,13M CELLS DOWN AND,14,13M CELLS ACROSS) 0003380
2910 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003390
3900 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003400
3000 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003410
3020 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003420
4000 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003430
4020 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003440
9000 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003450
9020 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003460
9040 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003470
9060 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003480
9080 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003490
9090 FORMAT(15,3X,26HCHARACTERS ACROSS) 0003500
END 0003510
IDENT INDATA
SUBROUTINE INDATA (NCD,NCA,NO,IA)
COMMON/C/ P(10000)
COMMON/B/ NLEVEL,IFORM,NOD,IMINT,NTX,OPT(25)
COMMON/L/ VALMAX,VALMIN,RANGE(20),VAL(21),RANGE(20),NFREQ(25)
COMMON/STTS/ STAT(7)
LOGICAL FIRST,OPT
DIMENSION IA(IFORM)
C
INTEGER Z
C
Z=11
IF(OPT(24)) REWIND 9
NDATA=NCA*NCD
FIRST=TRUE.
C
READ IN THE DATA
C
NLTE OPT(24)=TRUE, FOR IRREGULAR OUTLINES AND OPT(2)=TRUE, FOR
C
READING A LOGICAL FILE
L=1
M=NCA
DO 100 I=1,NCD
IC=NCA*(I-1)
IF(.NOT.OPT(24)) GO TO 111
READ(9) MCB,MCE
IF((MCE+MCB)+GE,NCA) GO TO 170
M=NCA-MCE
L=MCA
IF(L.EQ.0) GO TO 101
DO 102 J=1,L
102 P(I+J)=999999.0
DO 103 J=1,L
103 FIRST=.FALSE.
GO TO 151
150 CONTINUE
151 CONTINUE
C
READ(INA,END=152) (P(IC+J),J=1,L)
151 IF(M.EQ.NCA) GO TO 100
M=M+1
DO 105 J=M,NCA
105 P(ID)=999999.0
100 CONTINUE
C
IF(OPT(2)) .AND. NO.GT.NOD) REWIND 12
C
WRITE OR PUNCH THE UNSCALED DATA VALUES
IF(OPT(9)) WRITE(10,1010)
IF(OPT(10)) WRITE(7,1000) (N,P(N),N=1,NOATA)
IF(OPT(14)) WRITE(14,1000) (N,P(N),N=1,NOATA)
IF(.NOT.OPT(14)) GO TO 141
C
C
SCALD DATA
DO 140 N=1,NODATA
IF (P(N),EQ.-999999.0) P(N)=24.0
14 P(N)=P(N)+1
140 GO TO 260
C
FIND THE MAXIMUM OR MINIMUM OF DATA
1000 CONTINUE
1010 RETURN
END
141 CONTINUE
IF(ND.GT.1) GO TO901
PN=0
PHI=-999999.0
PLO= 999999.0
PX1=0
PX2=0
PX3=0
PX4=0
901 CONTINUE
DO 204 N=1,NDATA
IF(P(N).EQ.-999999.0) GO TO 204
PN=PN+1
PLO=MIN(PLO,P(N))
PHI=MAX(PHI,P(N))
PX1=PX1+P(N)
PX2=PX2+P(N)**2
PX3=PX3+P(N)**3
PX4=PX4+P(N)**4
204 CONTINUE
IF(NC.GT.3) GO TO902
IF(ND.T.OPT(4)) VALMIN=PN
IF(ND.T.OPT(5)) VALMAX=PHI
C SET PARAMETERS TO SCALE THE DATA
201 VAL(1)=VALMIN
ARANGE=VALMAX-VALMIN
IF(ARANGE.LT.0.0000001) GO TO 171
IF(ND.T.OPT(6)) GO TO 118
TRAN=0.0
DO 121 I=1,NLEVEL
121 TRAN=TRAN+RANGE(I)
118 VALINC=ARANGE/NLEVEL
DO 122 I=1,NLEVEL
122 IF(ND.T.OPT(6)) VALINC=RANGE(I)*ARANGE/NLEVEL
RANGE(I)=VALINC*100.0/ARANGE
132 VAL(I+1)=VAL(1)+VALINC
VAL(NLEVEL+1)=VALMAX
902 CONTINUE
C CALCULATE THE SCALED DATA VALUE
199 DO 123 N=1,NDATA
IF(P(N).EQ.-999999.0) GO TO 124
IF(P(N).LT.VALMIN) GO TO 127
DO 125 I=1,NLEVEL
125 IF(P(N).LE.VAL(I+1)) GO TO 126
126 P(N)=23.0
GO TO 123
127 P(N)=25.0
GO TO 123
128 P(N)=1.0
GO TO 123
129 P(N)=21.0
IF(ND.T.OPT(11)) P(N)=6.0
132 CONTINUE
IF(ND.T.OPT(11)) WRITE(7,1000) (N,P(N),N=1,NDATA)
C CALCULATE FREQUENCIES
IF(ND.GT.1) GO TO903
200 DO 129 I=1,25
 IF (I.LT.8) STAT(1)=0
129 NFREQ(1)=0
403 CONTINUE
 IF (OPT(14)) GO TO 904
 STAT(1)=PN
 STAT(2)=PH
 STAT(3)=PL0
 STAT(4)=PX1/PH
 STAT(5)=(SORT(PN*PL0-PX1+PN))/PN
 STAT(6)=0
 STAT(7)=0
904 CONTINUE
 DO 203 N=1,NDATA
 NFREQ(I)=NFREQ(I)+1
 L=P(N)
203 NFREQ(I)=NFREQ(I)+1
 RETURN
171 WRITE(6,1030)
 OPT(25)=.TRUE.
 RETURN
170 WRITE(6,1020) I
 WRITE(6,9000)
 REWIND 8
 STOP
1900 FORMAT(15,5X,F10.2)
1010 FORMAT(1H1,8(I,1X,20HUNSCALED DATA VALUES,1X,20H---------------))
1020 FORMAT(2X,39HERROR - TOO MANY CELLS REMOVED FROM ROW,15)
1030 FORMAT(' DATA RANGE IS ZERO - MAP STOPS')
9030 FORMAT(/'************ END OF MAP PRINT OUT **********')
1****)
END
IDENT FLATON
SUBROUTINE FLATON(ISH,ND)

COMMON/CF/P(10000)
COMMON/AC/NGD,NGA,NSHEET,INCS,NCF,NCL,NCS,NCH,NCST,NSHEET
COMMON/B/NCLEVEL,IFORM,NGD,INST,NTX,OPT(25)
COMMON/SYMBOLS/SYMBOLS(25,4),NS(10),TITLE(60),TEXT(600)
COMMON/OUTPUT/MApALL(129,4)

DIMENSION X(10,129),INUM(129,4)
INTEGER BLANK,SYMBOL
LOGICAL OPT,FIN
DIMENSION NUM(10),STCEL(4,5),IR(4)

C
C SETS THE PARAMETERS FOR EACH SHEET OF THE MAP

FIN=.FALSE.
NUMCA=GDO5210
N=NGD
NCF=0

IF(NSHEET.EQ.1) GO TO 500

IF(ISH.EQ.1) GO TO 500

MNCP=I+CF+NCST*(ISH-2)

IF(ISH.EQ.NSHEET) N=NCST

500 JFIRST=64-NGD/2

X=(NGD/2)+1

J=(NGD/2)+1

K=1

IF(NUMCH.GT.1) NCH=4

IF(NCH.EQ.NST-.NCDF(ND-1)) GO TO 500

IF(.NOT.OPT(13)) GO TO 100

K=KNCP-1

DC 200 K=1,N

KZ=K+1

NUM=NST*(KZ/NUMCH)

INUM(K,1)=NUM/100

INUM(K,2)=NUM/100-

INUM(K,3)=NUM/100-

INUM(K,4)=NUM/100-

IF(IFIN) RETURN

FIN=.TRUE.

200 NUM(K,4)=KST(NST)

100 WRITE(0,1000)(BLANK,BORDER,(SYMBOL(25,1),J=1,129),BORDER;I=1,3)

WRITE(1,1003)

1002 FORMAT(24X,'BCDEFGHJKLMNOPQRSTUVWXYZABCD')

WRITE(1,1003)

1003 FORMAT(24X,'BCDEFGHJKLMNOPQRSTUVWXYZABCD')

WRITE(1,1003)

180 WRITE(0,1000)(BLANK,BORDER,(SYMBOL(25,1),J=1,129),BORDER;I=1,3)

IF(FIN) RETURN

FIN=.TRUE.

78
C 181 DO 124 IROW=1, NCD
C BLANKS CUT A ROW TO BACK GROUND SYMBOLISM
DO 101 I=1, NCD
DO 101 J=1, 129
IF(I.GT.4) GO TO 101
MAPALL(J, I) = SYMBOL(25, I)
101 X(I, J) = 25.0
C INITIALISE THE LOOP FOR EACH ROW OF CELLS
JB = JB FIRST
103 DO K=1, N
IF(P1(D).GE.25.0) GO TO 130
C INSERTS SYMBOLISM KEY FOR A GRID CELL
DO 132 I=1, NCD
DO 132 JY=1, NGA
X(I,J) = P1(D)
IF(OPT(12)) GO TO 131
X(I,J) = P1(D)
IF(OPT(8)) GO TO 132
IF(ISH.EQ.JX .OR. JY.EQ.JZ) GO TO 132
X(I,J) = X(I,J) + 10
IF(P1(D).GT.20.0) X(I,J) = X(I,J) - 9
GO TO 132
131 MAPALL(J, I) = BLANK
IF(ISH.LE.P1(D)) MAPALL(J, I) = SYM
132 CONTINUE
130 JB = JB + NGA
C 190 IF(OPT(13)) GO TO 220
IF(MNE.IX) GO TO 220
IF(ISH.GT.1 .AND. ISH.LT.NSHEET) GO TO 220
NUM = XST - (1 - NROW) / NUMCH
IR(1) = NUB / 100
IR(2) = NUB / 100 - IR(1)
IR(3) = NUB - IR(1) - 100 - IR(2)
IN = NUMCH - MOD((NROW - 1), NUMCH)
IR(4) = N5(N)
JX = JB FIRST + H
DO 223 J = 1, I2
DO 224 I = 1, NCH
II = IR(1) + 1
MAPALL(JX, I) = NUM(I)
224 JX = JX + 1
223 JX = JB FIRST + NGA + 6
C WRITES A LINE
225 WRITE(I,1000) BLANK, BORDER, (MAPALL(J, KK), J=1, 129), BORDER
IF(OPT(12)) GO TO 124
C WRITES OVERPRINT LINES

79
DO 123 I=2,4
DO 120 J=1,129
 IF (MAPALL(J,I) .NE. BLANK) GO TO 121
120 CONTINUE
 GO TO 123
121 WRITE(8,1000) PLUS BLANK (MAPALL(J,I), J=1,129) BLANK
123 CONTINUE
124 CONTINUE
 GO TO 100
1000 FORMAT (132A1)
1001 FORMAT (12A1,129X,A1)
END
IDENT MHEAD
SUBROUTINE MHEAD
COMMON/ NLEVEL, IFORM, NOD, IHIST, NTX, OPT(25)
COMMON/LIM/ VALMAX, VALMIN, RANGE(20), VAL(21), PRANGE(20), NREQ(25)
COMMON/STS/ STAT(7)
COMMON/SYMBL/ SYMBOL(25,4), NS(10), TITLE(60), TEXT(80)
COMMON/OUTPUT/ MAPALL(129,4)
DIMENSION MAPL(84,4), JSYM(12,4), ASYM(12,4), FMT(5), MAPLA(129)
EQUIVALENCE (MAPL(1,1), MAPALL(1,1)), (JSYM(1,1), MAPALL(80,3))
EQUIVALENCE (MAPLA(1), MAPALL(1,1)), (ASYM(1,1), MAPALL(1,4))
DIMENSION LOW(10), IGH(11)
INTEGER BLANK, SYM, SYMBOL, ASYM
LOGICAL FIN, OPT
INTEGER 2
DATA FMT/('X,N1.2')/ DATA A/ 'MIN', 'MAX', 'NUM', 'D'/ DATA L0/ 'L', 'G', 'H', 'L', 'U', 'C', 'S'/ DATA BL/ 'L', 'SYM/1', 'EQS', 'IH='/
DATA NWORK/1, OPT(1,1), 90/IF(OPT(4)) FMT(3) =E
DATA NLEVEL/1, OPT(1,2) WRITE(8,1000) NLEVEL, VALMIN, VALMAX, STAT(4), STAT(5)
IF (.NOT. OPT(12)) GO TO 500
WRITE(8,2010) (N, VAL(N), VAL(N+1), NREQ(N), N=1,NLEVEL)
RETURN
500 WRITE(8,1010)
WRITE(8,FMT) 'A,C.(VAL(1),I=1,NLEVEL)
WRITE(8,FMT) 'B,C.(VAL(1),I=2,NLEVEL)
WRITE(8,1020)
WRITE(8,FMT) 'D,C.(PRANGE(1)+1,I=1,NLEVEL)
WRITE(8,1030)
130 IF (.NOT. OPT(4)) GO TO 200
J=J+1
DO 201 K=1,4
JSYM(J,K)=SYMBOL(21,K)
201 CONTINUE
DO 210 L=1,NLEVEL
L=L+1,NLEVEL
210 NREQ(LL+1)=NREQ(LL)
NREQ(1)=NREQ(21)
DO 211 I=1,10
211 MAPL(I)=LOW(I)
207 DO 202 JJ=1,NLEVEL
J=J+1
DO 203 K=1,4
JSYM(J,K)=SYMBOL(JJ,K)
203 CONTINUE
DO 204 K=1,4
JSYM(J,K)=SYMBOL(JJ,K)
204 CONTINUE
NREQ(J)=NREQ(23)
JJ=(J-1)*10
DO 212 I=1,11
212 MAPLA(I,JJJ)=IGH(I)
203 LL=J
JJ=1
FIN=.FALSE.
NWORK=LL*10+1
WRITE(8,1100)(MAPLA(I),I=1,NWORK)
WRITE(8,1110)(I,I=1,J)
122 WRITE(8,1100) (EOS ,I=1,NWORK)
IF(FIN) GO TO 127
123 DO 124 J=1,2
 WRITE (8,1120) ((JSYM(L,1),M=1,9),L=1,LL)
 DO 124 K=1,3
 KK=K+5
 WRITE (8,1140) ((JSYM(L,KK),M=1,4),ASYM(L,K),JSYM(L,KK),M=1,LL)
 IF(FIN) GO TO 122
124 WRITE(8,1160) (NFREQ(I),I=1,LL)
127 WRITE (8,1160) (NFREQ(I),I=1,LL)
IF(.NOT.UPT(21))RETURN
C BLANK PRINT ARRAY
100 MAPL (J,1)=BLANK
C INITIALIZE PRINT ARRAY
J=1
NFREQ=0
DO 104 I=1,LL
 MAPL(J,1)=SYM1
 NFREQ=NFREQ+NFREQ(I)
 J=J+1
104 DO 103 K=1,4
 DO 101 L=1,2
 MAPL(J,K)=JSYM(I,K)
101 J=J+1
 MAPL(J,K)=ASYM(I,K)
 J=J+1
102 DO 102 L=1,2
 MAPL(J,K)=JSYM(I,K)
102 J=J+1
103 J=J+5
MAPL (J,1)=SYM1
104 J=J+1
MXFREQ=0
DO 105 I=1,LL
 BEGIN = NFREQ(I)*100
 BIGNBR = NFREQ(I)-BEGIN
 IF(BIGNBR.</p>
DO 110 I=1,MXFREQ
C
C BLANK USED BARS
C
DO 107 J=1,LL
IF (NFREQ(J) .NE. 1-1) GO TO 107
KSTART=7*J-8
KSTOP=7*J
DO 106 K=KSTART,KSTOP
DO 106 L=1,4
106 MAPL (K,L)=BLANK
107 CONTINUE
C
C WRITE LINE
WRITE (8,1220) 1,(MAPL (K,1),K=1,KWORK)
C
C WRITE OVERPRINT LINES
DO 109 J=2,4
DO 108 K=1,KWORK
IF (MAPL (K,J) .NE. BLANK) GO TO 109
108 CONTINUE
GO TO 110
109 WRITE (8,1200) (MAPL (K,J),K=1,7KWORK)
110 CONTINUE
C
WRITE(8,1230) NFREQ (25)
RETURN

1000 FORMAT /// DATA MAPPED IN "13" LEVELS BETWEEN EXTREME VALUES OF
C 10.2 AND 10.2 MEAN 10.2 STANDARD DEVIATION 10.2
C
1010 FORMAT ///44H ABSOLUTE VALUE RANGE APPLYING TO EACH LEVEL
C
1020 FORMAT ///64H PERCENTAGE OF TOTAL ABSOLUTE VALUE RANGE APPLYING
C TO EACH LEVEL
C
1030 FORMAT ///58H FREQUENCY DISTRIBUTION OF DATA POINT VALUES IN EACH
C LEVEL
1100 FORMAT (1X,12I1)
1110 FORMAT (* LEVELS",9X,"0",11(8X,12))
1120 FORMAT (11X,12I1)
1130 FORMAT (16+10X,12(IX,9AI))
1140 FORMAT (* SYMBOLS ",12(Ix,9AI))
1160 FORMAT (* FREQUENCY",17,1110)
1200 FORMAT (1H+, 9X,12(3X,7AI))
1220 FORMAT (4X,16+12(Ix,9AI))
1230 FORMAT(10X,"HISTOGRAM EXPRESSED AS PERCENT OF ALL NON-BACKGROUND
C CELLS*/10X,"NUMBER OF BACKGROUND CELLS "]
C
2010 FORMAT (6M LEVEL,9X,7MINIMUM,8X,7MAXIMUM,8X,9HFREQUENCY,/)
2020 FORMAT(15,7F10.2,5X10.2,9X15)
IDENT FLEXIN

SUBROUTINE FLEXIN(IFORM,T,FIRST)

DIMENSION SOIL(22)

DATA SOIL/4..5..6.,25.,69.,63.,64.,76.,113.,114.,133.,134.,
1.,136.,168.,170.,206.,207.,208.,217.,71./

NTYPE=22

READ(11,11) S,V

11 FORMAT(3X,F3.0,3X,F2.0)

T=10.

DO 300 J=1,NTYPE

IF(S.EQ.SOIL(J)) GO TO 450

300 CONTINUE

RETURN

END

GO TO 500

IF(S.EQ.SOIL(J)) GO TO 450

450 IF(V.EQ.12.) T=1.

IF(V.EQ.8.) T=2.

IF(V.EQ.11.) T=3.

IF(V.EQ.3.) T=4.

IF(V.EQ.31.) T=4.

GO TO 500

500 CONTINUE

RETURN

END
APPENDIX B
VANDENBERG IRREGULAR OUTLINE
FOR GRID
Vandenberg Irregular Outline for GRID

<table>
<thead>
<tr>
<th>Column</th>
<th>IRREGULAR OUTLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 7 59</td>
</tr>
<tr>
<td></td>
<td>1 7 57</td>
</tr>
<tr>
<td></td>
<td>1 7 52</td>
</tr>
<tr>
<td></td>
<td>1 7 49</td>
</tr>
<tr>
<td></td>
<td>1 7 48</td>
</tr>
<tr>
<td></td>
<td>1 8 46</td>
</tr>
<tr>
<td></td>
<td>2 8 45</td>
</tr>
<tr>
<td></td>
<td>1 8 44</td>
</tr>
<tr>
<td></td>
<td>2 8 43</td>
</tr>
<tr>
<td></td>
<td>1 9 42</td>
</tr>
<tr>
<td></td>
<td>1 10 41</td>
</tr>
<tr>
<td></td>
<td>1 12 41</td>
</tr>
<tr>
<td></td>
<td>1 13 40</td>
</tr>
<tr>
<td></td>
<td>1 15 40</td>
</tr>
<tr>
<td></td>
<td>1 15 39</td>
</tr>
<tr>
<td></td>
<td>1 16 38</td>
</tr>
<tr>
<td></td>
<td>1 17 38</td>
</tr>
<tr>
<td></td>
<td>2 17 37</td>
</tr>
<tr>
<td></td>
<td>2 17 36</td>
</tr>
<tr>
<td></td>
<td>2 17 35</td>
</tr>
<tr>
<td></td>
<td>3 16 34</td>
</tr>
<tr>
<td></td>
<td>4 16 25</td>
</tr>
<tr>
<td></td>
<td>1 16 9</td>
</tr>
<tr>
<td></td>
<td>4 15 9</td>
</tr>
<tr>
<td></td>
<td>2 14 9</td>
</tr>
<tr>
<td></td>
<td>1 14 1</td>
</tr>
<tr>
<td></td>
<td>4 13 1</td>
</tr>
<tr>
<td></td>
<td>2 12 1</td>
</tr>
<tr>
<td></td>
<td>1 12 0</td>
</tr>
<tr>
<td></td>
<td>3 11 0</td>
</tr>
<tr>
<td></td>
<td>2 10 0</td>
</tr>
<tr>
<td></td>
<td>2 9 0</td>
</tr>
<tr>
<td></td>
<td>1 8 4</td>
</tr>
<tr>
<td></td>
<td>4 8 5</td>
</tr>
<tr>
<td></td>
<td>2 9 5</td>
</tr>
<tr>
<td></td>
<td>3 10 5</td>
</tr>
<tr>
<td></td>
<td>1 11 11</td>
</tr>
<tr>
<td></td>
<td>1 11 12</td>
</tr>
<tr>
<td></td>
<td>1 13 12</td>
</tr>
<tr>
<td></td>
<td>1 14 12</td>
</tr>
<tr>
<td></td>
<td>1 14 13</td>
</tr>
<tr>
<td>Column</td>
<td>11111111</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>12345678901234567</td>
</tr>
<tr>
<td>1</td>
<td>15 13</td>
</tr>
<tr>
<td>1</td>
<td>15 12</td>
</tr>
<tr>
<td>2</td>
<td>16 12</td>
</tr>
<tr>
<td>1</td>
<td>16 13</td>
</tr>
<tr>
<td>1</td>
<td>17 13</td>
</tr>
<tr>
<td>1</td>
<td>17 14</td>
</tr>
<tr>
<td>1</td>
<td>18 14</td>
</tr>
<tr>
<td>2</td>
<td>18 15</td>
</tr>
<tr>
<td>2</td>
<td>18 17</td>
</tr>
<tr>
<td>1</td>
<td>17 18</td>
</tr>
<tr>
<td>2</td>
<td>17 19</td>
</tr>
<tr>
<td>1</td>
<td>17 24</td>
</tr>
<tr>
<td>3</td>
<td>16 24</td>
</tr>
<tr>
<td>1</td>
<td>15 34</td>
</tr>
<tr>
<td>2</td>
<td>15 35</td>
</tr>
<tr>
<td>1</td>
<td>14 35</td>
</tr>
<tr>
<td>1</td>
<td>14 34</td>
</tr>
<tr>
<td>1</td>
<td>14 33</td>
</tr>
<tr>
<td>1</td>
<td>13 32</td>
</tr>
<tr>
<td>2</td>
<td>13 30</td>
</tr>
<tr>
<td>1</td>
<td>12 31</td>
</tr>
<tr>
<td>1</td>
<td>12 32</td>
</tr>
<tr>
<td>1</td>
<td>11 33</td>
</tr>
<tr>
<td>1</td>
<td>11 34</td>
</tr>
<tr>
<td>1</td>
<td>11 32</td>
</tr>
<tr>
<td>1</td>
<td>10 30</td>
</tr>
<tr>
<td>1</td>
<td>10 28</td>
</tr>
<tr>
<td>2</td>
<td>9 28</td>
</tr>
<tr>
<td>3</td>
<td>8 26</td>
</tr>
<tr>
<td>2</td>
<td>7 26</td>
</tr>
<tr>
<td>2</td>
<td>6 26</td>
</tr>
<tr>
<td>4</td>
<td>5 26</td>
</tr>
<tr>
<td>1</td>
<td>5 27</td>
</tr>
<tr>
<td>1</td>
<td>5 28</td>
</tr>
<tr>
<td>1</td>
<td>4 29</td>
</tr>
<tr>
<td>1</td>
<td>4 32</td>
</tr>
<tr>
<td>2</td>
<td>4 34</td>
</tr>
<tr>
<td>1</td>
<td>2 33</td>
</tr>
<tr>
<td>1</td>
<td>4 32</td>
</tr>
<tr>
<td>1</td>
<td>5 30</td>
</tr>
<tr>
<td>1</td>
<td>5 23</td>
</tr>
<tr>
<td>1</td>
<td>5 21</td>
</tr>
<tr>
<td>1</td>
<td>5 20</td>
</tr>
<tr>
<td>1</td>
<td>6 16</td>
</tr>
<tr>
<td>1</td>
<td>8 16</td>
</tr>
</tbody>
</table>

87
<table>
<thead>
<tr>
<th>Column</th>
<th>1111111111</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12345678901234567</td>
</tr>
<tr>
<td>1</td>
<td>9 16</td>
</tr>
<tr>
<td>1</td>
<td>10 16</td>
</tr>
<tr>
<td>1</td>
<td>25 16</td>
</tr>
<tr>
<td>1</td>
<td>27 16</td>
</tr>
<tr>
<td>1</td>
<td>28 17</td>
</tr>
<tr>
<td>1</td>
<td>29 17</td>
</tr>
<tr>
<td>1</td>
<td>31 17</td>
</tr>
<tr>
<td>1</td>
<td>34 17</td>
</tr>
<tr>
<td>1</td>
<td>36 17</td>
</tr>
<tr>
<td>1</td>
<td>38 17</td>
</tr>
<tr>
<td>2</td>
<td>40 17</td>
</tr>
<tr>
<td>1</td>
<td>42 17</td>
</tr>
<tr>
<td>1</td>
<td>43 17</td>
</tr>
<tr>
<td>1</td>
<td>44 17</td>
</tr>
<tr>
<td>1</td>
<td>44 18</td>
</tr>
<tr>
<td>2</td>
<td>45 18</td>
</tr>
<tr>
<td></td>
<td>99999</td>
</tr>
</tbody>
</table>
APPENDIX C

SUBROUTINE FLEXIN FOR GRID OUTPUT DISPLAYING

SOILS WITH HIGH EROSION POTENTIAL

SUBROUTINE FLEXIN(IFORM,T,FIRST)
REAL SOIL(183),LEVEL(183)
4162.,166.,167.,168.,175.,176.,185.,196.,205.,206.,211.,212.,213.,22,
149.,151./
DATA LEVEL/117*1.,2*2.,46*3.,48*4.,14*5./
N TYPE=183
READ(9,10) T
10 FORMAT(3X,F3.0)
DO 300 J=1,N TYPE
IF(T.EQ.SOIL(J)) GO TO 450
300 CONTINUE
T=0
GO TO 460
450 T=LEVEL(J)
GO TO 450
460 CONTINUE
RETURN
END
APPENDIX D

SUBROUTINE FLEXIN FOR GRID PROGRAM DISPLAYING AREAS OF HIGH EROSION POTENTIAL BASED ON SOILS AND VEGETATION

SUBROUTINE FLEXIN(FMT,T,FIRST)
REAL SOIL(183),LEVEL(183)
DATA SOIL/2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,

DO 300 J=1,ATYPE
300 CONTINUE
GO TO 460
450 T=LEVEL(J)
460 CONTINUE
IF(T.EQ.16.) GO TO 461
IF(T.EQ.16.) GO TO 470
461 T=7.
470 CONTINUE
RETURN
END
APPENDIX E

SUBROUTINE FLEXIN FOR GRID MAP DISPLAYING AREAS OF
PRIME ECOLOGICAL SIGNIFICANCE ON VANDENBERG AFB

SUBROUTINE FLEX(IN,FIRST)
REAL A(9), B(IN)
DO 100 I= 1,9
100 B(I)=2.
READ(5,L1) &/I, I=1,9)
L FORMAT(18X,9(2X,F2.0),26X)
DO 200 IN=1,9
DO 300 I=IN,9
300 IF(A(IN).EQ.2) B(IN)=B(IN)+1
200 CONTINUE
T=A(I)
DO 400 J=I+1,9
400 IF(T.EQ.2) GO TO 600
402 IF(T.EQ.1) GO TO 600
403 IF(T.EQ.4) GO TO 600
404 IF(T.EQ.7) T=J
405 IF(T.EQ.2) GO TO 600
406 IF(T.EQ.8) GO TO 600
451 IF(A(J).EQ.1) T=5.
452 IF(A(J).EQ.7) T=5.
500 T=3.
CONTINUE
RETURN
END
APPENDIX F

SUBROUTINE FLEXIN FOR GRID MAP DISPLAYING AREAS OF SUITABLE HABITAT FOR THE CALIFORNIA LEGLESS LIZARD ON VANDENBERG AFB

SUBROUTINE FLEXIN(IFORM,T,FIRST)
REAL SOIL(22)
1.,138.,168.,170.,206.,207.,208.,217.,71./
NTYPE=22
READ(9,11) S,V
11 FORMAT(3X,F3.0,30X,F2.0)
T=10.
DO 300 J=1,NTYPE
 IF(S.EQ.SOIL(J)) GO TO 450
 CONTINUE
300 CONTINUE
 IF(V.EQ.12.) T=1.
 IF(V.EQ.8.) T=2.
 IF(V.EQ.11.) T=3.
 IF(V.EQ.3.) T=4.
 GO TO 500
450 IF(V.NE.12.) T=5.
 IF(V.NE.8.) T=5.
 IF(V.NE.11.) T=5.
 IF(V.NE.3.) T=5.
 IF(V.EQ.12.) T=6.
 IF(V.EQ.8.) T=7.
 IF(V.EQ.11.) T=8.
 IF(V.EQ.3.) T=9.
 IF(V.EQ.31.) T=9.
500 CONTINUE
RETURN
END
APPENDIX G
SEARCH/COUNT PROGRAM AS ADAPTED TO THE BURROUGHS 3500 COMPUTER

! COMPILSNFT1O XPORTN LIB DATA CARDS

"LST1
IDENT MAIN
FILE 11=ANFT01.UNIT=TAPE.RECORD=80.BLOCKING=1.UNLABELED.FIXED
C FREQUENCY COUNTING PROGRAM
C OLD RUNWAY AND NEW CONSTRUCTION SURROUNDING IT (43 CELLS)
REAL*8 C(43),CX
INTEGER S,EX,EL,D,10
INTEGER V(9)
INTEGER VALUES(100),VALUEX(100),VALUEL(100),VALUEV(50)
REAL FREQS(100),FREQX(100),FREQL(100),FREQV(50)
REAL ACS(100),ACX(100),ACXL(100),ACV(100)
DATA C/*A8085*,*B8086*,*C8086*,*Z8085*,*A8085*,*B8085*,*C8085*,*DB
1065*,*X8084*,*YA844*,*ZA844*,*AB084*,*BB084*,*CB084*,*DB084*,*YA08
23*,*Z8083*,*A8083*,*B8083*,*C8083*,*DB083*,*EB083*,*ZA082*,*AB082*
3*,*B8082*,*C8082*,*DB082*,*EB082*,*AB081*,*BR081*,*CB081*,*DB081*,*E
4EB081*,*BB080*,*CB080*,*DB080*,*EB080*,*CB079*,*DB079*,*EB079*,*FB
5079*,*DB078*,*EB078*/
NN=43
JFRE=0
JFREQX=0
JFREXL=0
JFREQV=0
DO 20 K=1,NN
20 VALUES(K)=0
DO 30 K=1,NN
30 VALUEX(K)=0
DO 40 K=1,NN
40 VALUEL(K)=0
DO 50 K=1,NN
50 VALUEV(K)=0
DO 60 K=1,NN
60 FREQS(K)=0
DO 70 K=1,NN
70 FREQX(K)=0
DO 80 K=1,NN
80 FREQL(K)=0
DO 90 K=1,NN
90 FREQV(K)=0
DO 270 K=1,NN
270 ACS(K)=0.0
93
DO 271 K=1,NN
271 ACX(K)=0.0
DO 272 K=1,NN
272 ACX(K)=0.0
DO 273 K=1,NN
273 ACX(K)=0.0
8 READ(11,11) S,EX,EL,(V(I),I=1,9),0,0,CX,ID
11 FORMAT(3X,I3,EX,I2,4X,I1,1X,9(I2,I2),11X,14,1X,A5,1X,I4)
DO 300 J=1,NN
IF(CX.EQ.C(J)) GO TO 450
300 CONTINUE
IF(ID.LT.4646) GO TO 8
GO TO 3005
450 WRITE(6,12) S,EX,EL,(V(I),I=1,9),0,0,CX,ID
12 FORMAT(*S=*I3,1X,*EX=*,I2,1X,*EL=*,I1,1X,*V=*,9(I2,2X),9X,I4,
11X,A5,1X,I4)
IF(JFREQS.EQ.0) GO TO 110
DO 100 J=1,JFREQS
IF(S.NE.VALUES(J)) GO TO 100
FREQS(J)=FREQS(J)+1
100 CONTINUE
110 JFREQS=JFREQS+1
VALUES(JFREQS)=S
FREQS(JFREQS)=1
200 CONTINUE
IF(JFREQX.EQ.0) GO TO 610
DO 600 J=1,JFREQX
IF(EX.NE.VALUEX(J)) GO TO 600
FREQX(J)=FREQX(J)+1
600 CONTINUE
610 JFREQX=JFREQX+1
VALUEX(JFREQX)=EX
FREQX(JFREQX)=1
800 CONTINUE
IF(JFREQL.EQ.0) GO TO 1050
DO 1000 J=1,JFREQL
IF(EL.NE.VALUEL(J)) GO TO 1000
FREQL(J)=FREQL(J)+1
GO TO 1200
1000 CONTINUE
1050 JFREQL=JFREQL+1
VALUE(JFREQL)=EL
FREQL(JFREQL)=1
1200 CONTINUE
DO 3000 K=1,9
IF(JFREQV,EQ,0) GO TO 2050
DO 2000 J=1,JFREQV
IF(V(K).NE.VALUEV(J)) GO TO 2000
FREQV(J)=FREQV(J)+1
GO TO 2000
2000 CONTINUE
2050 JFREQV=JFREQV+1
VALUE(JFREQV)=V(K)
FREQV(JFREQV)=1
2200 CONTINUE
3000 CONTINUE
IF(ID.LT.4645) GO TO 8
3005 CONTINUE
DO 250 L=1,NN
250 ACSIL(J)=FREQS(L)*2.957
DO 251 L=1,NN
251 ACX(L)=FREQX(L)*2.957
DO 252 L=1,NN
252 ACEL(L)=FREQL(L)*2.957
DO 253 L=1,NN
253 ACVL(J)=FREQV(L)*2.55
WRITE(6,3010)
3010 FORMAT(/1X,'SOIL TYPE FREQ, EST. ACRES')
WRITE(6,3015) (VALUES(N),FREQS(N),ACS(N), N=1,NN)
3015 FORMAT(3X,13,7X,F4.0,5X,F5.0)
WRITE(6,3020)
3020 FORMAT(/1X,'EXPOSURE FREQ, EST. ACRES')
WRITE(6,3025) (VALUES(N),FREQX(N),ACX(N), N=1,NN)
3025 FORMAT(3X,13,7X,F4.0,5X,F5.0)
WRITE(6,3030)
3030 FORMAT(/1X,'ELEVATION FREQ, EST. ACRES')
WRITE(6,3035) (VALUES(N),FREQL(N),ACEL(N), N=1,NN)
3035 FORMAT(3X,11,9X,F4.0,5X,F5.0)
WRITE(6,3040)
3040 FORMAT(/1X,'VEGETATION FREQ, SJ.BCELLS) EST. ACRES')
WRITE(6,3045) (VALUES(N),FREQV(N),ACV(N), N=1,NN)
3045 FORMAT(3X,12,10X,F5.0,11X,F5.0)
STOP
END
3050 CONTINUE
APPENDIX H

SMALL CELL COUNT PROGRAM LISTING AS ADAPTED TO THE BURROUGHS 3500 COMPUTER

1
2COMPILE SNFT10 XFORTN LIB DATA CARDS
3
11
3LIST1
8

IDENT MAIN
FILE 11=ANFTOT,UNIT=TAPE,RECORD=80,BLOCKING=1,UNLABELED,FIXED
C SMALL CELL COUNT PROGRAM
 INTEGER V(9), VALUEV(35), FREQV(35)
 JFREQV=0
 8 READ(11,11) (V(I),I=1,9), ID
11 FORMAT(18X,9(2X,I2),22X,I4)
 DO 3000 K=1,9
 IF(JFREQV.EQ.0) GO TO 2050
 DO 2000 J=1,JFREQV
 IF(V(K).NE.VALUEV(J)) GO TO 2000
 FREQV(J)=FREQV(J) + 1
 GO TO 2200
2000 CONTINUE
2050 JFREQV = JFREQV + 1
 VALUEV(JFREQV) = V(K)
 FREQV(JFREQV) = 1
2200 CONTINUE
3000 CONTINUE
 IF(ID.LT.4646) GO TO 8
 WRITE(6,300)
300 FORMAT(//1X,'VEGETATION FREQ.')
 WRITE(6,400) (VALUEV(N), FREQV(N), N=1,35)
400 FORMAT(5X,I2,7X,I4)
 STOP
END
2END
3
REFERENCES

3. The Coastal Plain of San Diego County, Laboratory for Experimental Design at California State Polytechnic University, Pomona, CA, 1972.

(The reverse of this page is blank)
<table>
<thead>
<tr>
<th>Agency/Institution</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ USAF/PREE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQ USAF/PREVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQ USAF/PREVX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQ USAF/RDPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQ USAF/SAFOI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQ USAF/SGPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSAF/SAFIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSC/DE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSC/DEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSC/SGB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSC/DLCAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATC/DEPV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CINCSAC/DEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CINCSAC/DEPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CINCSAC/SGPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAC/DE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFRES/DEEE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFIIT/DEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFOSR/NL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMRL/DAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEHL/CC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEHL/OL-AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEHL/OL-AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFWL/SUL (Tech Library)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USAFSAM/EDEO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USAFSAM/EPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFRPL/Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMRL/THE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMTEC/SEH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/DE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/DEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/LVRO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/SGX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/WE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/PP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/OI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/RS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMSO/DECP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD/RD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADTCS/CSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADTCS/DLOSL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USAF Regn Civ Engr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Med Service Wg/SGB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDC/TCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Defense Res & Engr/AD (E&LS)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 Dir, USA WW Exp Sta</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 Chief of Naval Ops</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Environ Protection Div, OP-45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Technology Transfer Staff (EPA)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 National Science Foundation</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 U.S. Fish & Wildlife Services</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1 Tetra Tech, Inc</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2 McDonnell-Douglas Aircraft Co</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Aerospace Corp</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 Tech Applications Ctr</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 San Diego State Univ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 San Diego State Univ/Library</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 DMA/Aerospace Center (PPRN)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 ISTRAD/CC</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 4392 Aerosg/CC</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 4392 Aerosg/DE</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3 4392 Aerosg/ACD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scripps Inst of Oceanography</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Library</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Univ of Calif, Geography Dept</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 AFRCE/Eastern Region</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 AFRCE/Central Region</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 AFRCE/Western Region</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 S. Central Coast Commission</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Environmental Analysis Systems</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 U.S. Forest Service</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 Los Padres National Forest</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Cal State Polytechnic Univ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Dept of Landscape Arch</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Univ of Calif, Library</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 Calif Polytechnic State Univ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Library</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Ctr for Regional Environmental Studies</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1 San Diego State Univ/Biology Dept</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1 Univ of Calif Natural Land & Water Reserves System</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Ctr for Regional Environmental Studies/San Diego State Univ</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 San Diego State Univ/Computing Center</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1 San Diego State Univ/Geography Dept</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 Harvard Univ/Lab for Computer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 Graphics & Spatial Analy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12 Univ of Cal/Water Resources Ctr</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
INITIAL DISTRIBUTION (CONCLUDED)

Stanford Univ/Dept of Civil Engr 1
Santa Barbara Museum of Natural History 1
Naval Weapons Ctr 1
AFCEC/SU 1
AFCEC/SUL 1
AFCEC/WE 1
AFCEC/EV 9