PRESERVED LIVER FUNCTION AND LEUKOCYTE RESPONSE IN SUPERLETHAL --ETC(U)

APR 77 L. T. ARCHER, G. L. WHITE, J. J. COALSON

N00014-76-C-0229

END

DATE FILMED 7-77
PRESED LIVER FUNCTION AND LEUKOCYTE RESPONSE IN SUPERLETHAL ENDOTOXIC SHOCK

Prepared for Publication in American Journal of Physiology

University of Oklahoma Health Sciences Center
Departments of Physiology & Biophysics, Surgery and Pathology
Oklahoma City, Oklahoma

22 April 1977

Reproduction in whole or in part is permitted for any purpose of the United States Government

Distribution of this report is unlimited
PRESERVED LIVER FUNCTION AND LEUKOCYTE RESPONSE IN SUPERLETHAL ENDOTOXIC SHOCK

Prepared for Publication in
American Journal of Physiology

University of Oklahoma Health Sciences Center
Departments of Physiology & Biophysics, Surgery and Pathology
Oklahoma City, Oklahoma

22 April 1977

TR-118

Reproduction in whole or in part is permitted for any purpose of the United States Government

Distribution of this report is unlimited
ABSTRACT

Recent studies reveal that endotoxin-pretreated awake dogs become markedly leukocytotic and survive superlethal endotoxin challenge without hypoglycemia. The purpose of this study was to determine if leukocytosis protects the liver and alters survival in endotoxin shock. Studies were conducted on awake, healthy dogs with the endotoxin group (N=5) injected i.v. with 1/1,000 LD₁₀₀ E. coli endotoxin on days 1 and 2, LD₁₀₀ on day 3 and 2 x LD₁₀₀ on day 4. The control group (N=6) received equal volumes of saline on days 1, 2 and 3, but on day 4 received 2 x LD₁₀₀ endotoxin. All saline-pretreated dogs died within 7 hr following superlethal endotoxin challenge. Since in parallel studies all endotoxin-pretreated dogs (n=11) lived 30 days, each animal in the experimental group was sacrificed at the time of its paired saline control's death for a comparison of liver pathology.

Endotoxin experimental animals exhibited a marked leukocytosis (39,000/mm³) (p<0.001) on day 4 compared with saline-pretreated controls. At the time of death, liver enzymes arginase and SGPT were elevated (p<0.02) in the saline controls compared with endotoxin-pretreated dogs. Histological findings for saline-pretreated animals ranged from marked to massive hepatocellular necrosis, while endotoxin-pretreated dogs' liver pathology consisted of mild central lobular congestion and necrosis. Results suggest that leukocytosis protects liver function and enhanced survival in endotoxin shock.

INDEX TERMS: canine, endotoxin shock, liver function and leukocytes
Alterations in carbohydrate metabolism have been recognized to play a pivotal role in host defense against shock; therefore, the hepatosplanchnic region may become the focal point determining circulatory and caloric homeostasis in shock. Recent studies have documented pathophysiologic manifestations in canine endotoxin shock or live E. coli septicemia including hypoglycemia, systemic hypotension, hepatosplanchnic dysfunction and death (3,18, 21,22). The progressively developing hypoglycemia has been proposed to result mainly from depressed liver and kidney function, particularly gluconeogenesis (2,11,14,18), although accelerated glucose uptake of blood has been implicated (2,22).

White blood cell (WBC) phagocytotic activity has been suggested as the primary factor responsible for the accelerated glucose uptake of blood following in vitro incubation of endotoxin and live E. coli organisms (22). Endotoxin is known to be efficiently phagocytized by polymorphonuclear leukocytes (6,7), and an associated increase in glucose utilization by neutrophils has been reported to occur (26,27). A recent report has shown circulating neutrophils to be of major importance in the clearance of bacterial organisms (25).

Recent results from this laboratory have shown that dogs become markedly leukocytotic when administered sublethal intravenous injections of endotoxin and subsequently survive a 2 x LD_{100} endotoxin, in contrast to control animals challenged with the identical superlethal dose (23,29). It was hypothesized that effective phagocytosis in the buffy coat could spare the liver and reticuloendothelial system the stress of endotoxin detoxification and prevent depression of gluconeogenic function (23,29). Blood glucose concentrations were found to decrease during early leukopenia but returned to normal in the "protected" endotoxin-pretreated group, suggesting an association of leukocytosis with preserved liver function (23,29).
The purpose of the present study was to explore a possible protective role of the leukocytes against the lethal effects of shock and the altered gluconeogenic capacity of the liver.

METHODS

Eleven awake mongrel adult dogs of random sex, free of disease, were used in the present study. All animals were treated for intestinal parasites and dogs with heartworm microfilaria were eliminated. Animals were allowed a stabilization period of 3-6 weeks and only those with initial white blood cell (WBC) counts between 7,000 and 20,000/mm3 and hematocrits exceeding 37% were utilized. Experiments were designed to follow alterations in peripheral white blood cell (WBC) counts, rectal temperatures (T_R), serum insulin, blood glucose, arginase and serum glutamic pyruvic transaminase (SGPT) during administration of sublethal and superlethal doses of E. coli endotoxin (Difco, Detroit) without the influence of anesthetics. Other parameters monitored were concentrations of potassium, sodium, serum glutamic oxalacetic transaminase (SGOT), lactate dehydrogenase (LDH) and fractionated-lactate dehydrogenase (F-LDH), using a Technicon SMA 12/60 and 6/60 system "Chem 18" (Technicon Instruments Corporation, Terrytown, New York).

Dogs were divided into saline control and endotoxin experimental groups. The endotoxin group received sublethal doses of endotoxin of 0.003 mg/kg body weight on days 1 and 2 (i.e., 1/1,000 LD$_{100}$), 3 mg/kg on day 3 (i.e., LD$_{100}$) and a challenge dose of endotoxin of 6 mg/kg on day 4 (i.e., 2 x LD$_{100}$). The control group received equal volumes of saline on days 1, 2 and 3, but on day 4 received a 6 mg/kg challenge dose of endotoxin (i.e., 2 x LD$_{100}$). The LD$_{100}$ of E. coli endotoxin (3 mg/kg) had been previously established in a group of approximately 25 dogs. White blood cell counts, rectal temperatures
(TR), insulin, glucose, arginase, SGPT, and Chem 18-surveyed agents were measured initially (i.e., before endotoxin or saline injection) during each of 4 days of observation. WBC, TR, and glucose values were measured at one and 6 hours post-injection on days 1, 2, and 3, while Chem 18 values were taken at one and 6 hours on day 1 but only at 6 hours on day 3. Recent studies from this laboratory documented that all dogs given sublethal injections of endotoxin survive a superlethal endotoxin shock (N=11), while 100% die when "pretreated" with saline and then challenged with the same superlethal dose of endotoxin (N=11) (23,29). Therefore on day 4 terminal blood samples were collected in both groups at the time of each saline-pretreated animal's death, the endotoxin-pretreated dog was sacrificed, post-mortem examinations were performed and tissues were evaluated by light and electron microscopy.

The WBC counts were measured with an automatic particle counter (Coulter ZF; Hialeah, Florida). Blood glucose concentrations were determined using a Beckman glucose analyzer (Beckman Instruments; Fullerton, Calif.) with an accuracy of ±3 mg%, and rectal temperatures were obtained using a Tele-Thermometer probe (Yellow Springs Instruments; Yellow Springs, Ohio). Serum insulin values were determined by the Phadebas insulin test (Pharmacia; Uppsala, Sweden) as previously reported (2,3). Arginase and SGPT values were determined using Chem assay kits (Pitman Moore, Inc; Washington Crossing, N.J.). Blood samples were obtained by venipunctures of the jugular vein, then placed in vacutainers containing ethylenediamine-tetraacetic acid (EDTA; Beckton-Dickinson) or clot tube vacutainers. The injection of saline or endotoxin was by the intravenous route utilizing the cephalic vein. Results were analyzed using the t test for paired or unpaired data.
RESULTS

Table 1 presents WBC (/mm3) and blood glucose (mg/100 ml) data obtained from animals receiving single sublethal injections of endotoxin on days 1, 2 and 3, and superlethal administrations of E. coli endotoxin on day 4. Daily values were obtained prior to injections of endotoxin in the experimental and control groups and are seen to reflect the effects of previous injections on days 2, 3 and 4. Significant leukocytosis ($p<0.02$) is observed in the experimental group on days 2, 3 and 4, with an initial value of 38,700/mm3 at zero time on day 4, which is significantly elevated ($p<0.001$) when compared with the control group. Following superlethal endotoxin challenge on day 4, mean glucose concentrations rose higher in the saline-pretreated group, although differences were not statistically significant due to variations between animals.

Results from Table 2 demonstrate significant increases in rectal temperatures ($^\circ$C) in dogs administered sublethal to lethal injections of endotoxin. Elevations in temperature were observed between one and 6 hours after sublethal injections of endotoxin on days 1-3 ($p<0.05$) in contrast to the control animals in which rises were not seen. Superlethal challenge of endotoxin on day 4 elicited significant increases in temperature ($p<0.02$) in both experimental and control groups.

Alterations in serum levels of arginase, glutamic oxalacetic transaminase and glutamic pyruvic transaminase in response to sublethal and superlethal injections of endotoxin are presented in Table 3. Arginase levels are similar in both the endotoxin experimentals and saline controls for days 1-3, while on the fourth day after superlethal endotoxin challenge concentrations of the enzyme in the control dogs are significantly higher ($p<0.02$) than in the endotoxin-pretreated group at both one and 6 hours post-endotoxin. On day 3 and at the day 4 initial sampling, concentrations of SGOT and SGPT were increased ($p<0.025$) in the endotoxin-pretreated animals, but by 6 hours after
superlethal endotoxin challenge both SGOT and SGPT were markedly higher (p<0.005) in the saline-pretreated control group.

Morphologic changes of the liver observed with light microscopy in 5 of 6 animals in the saline-pretreated group ranged from marked to massive central lobular necrosis throughout two-thirds or more of the individual lobules with central lobular congestion in the same 5 dogs. The 6 endotoxin-pretreated dogs exhibited minimal to mild central lobular congestion while two animals showed early minor central lobular necrosis. Liver sections from both groups contained minimal to mild numbers of polymorphonuclear leukocytes within the sinusoids.

Table 4 illustrates changes in serum concentrations of LDH and F-LDH in response to endotoxin. On day 3, LDH was significantly increased (p<0.01) in the control animals as compared with the endotoxin-pretreated group. Mean LDH concentration increased in the control group at the initial sampling on day 4 as compared with day 1, but this rise was not significant. On day 4, LDH and F-LDH values rose rapidly in the controls in response to superlethal endotoxin injection (p<0.01) and notably exceeded the increases in the endotoxin-pretreated group at one and 6 hours after endotoxin (p<0.001).

Fluctuations in serum insulin and potassium concentrations in response to sublethal and superlethal injections of endotoxin are arrayed in Table 5. On day 4 at one hour after 2 x LD100 endotoxin injection, serum insulin had decreased significantly (p<0.05) in the endotoxin-pretreated group but had risen sharply (p<0.02) in the control animals. The 254 µU/ml concentration observed in the control group is markedly above (p<0.01) the 10 µU/ml value seen in the experimental animals. Mean insulin values remained at the high level in the control group although variations in individual animals rendered this increase statistically insignificant. By day 4, control potassium concentrations were lower in experimental animals (p<0.01) than the initial
day 1 control values. In the control animals, potassium values increased from 4.5 to 8.7 mEq/L (p<0.01) by 6 hours in response to superlethal endotoxin challenge, while the experimental group showed minimal changes.

DISCUSSION

Results from the present experiments reveal a rapid leukopenia (p<0.05) followed by a leukocytosis in response to sublethal and superlethal injections of endotoxin. In recent studies (23,29), all animals receiving daily sublethal injections of endotoxin survived superlethal challenges of endotoxin and were permanent survivors. Recent data (23,29), as well as results from the present study, show that animals not receiving sublethal endotoxin injections are very susceptible to the adverse effects of endotoxin and die in an average time of 6 hours. Normoglycemia was observed in the "protected" animals in contrast to hypoglycemia seen in the saline-pretreated control dogs at 5 1/2 hours post-endotoxin (29). The sharp contrast in blood glucose concentration and 100% survival versus 100% mortality observed between the two groups led us to speculate that the circulating neutrophil was playing a liver-sparing role. In order to test the hypothesis that the circulating leukocyte is the host's first line of defense and that the leukocytosis seen in endotoxin-pretreated dogs may protect the liver in its ability to perform gluconeogenesis, a battery of liver-specific enzymes as well as light microscopy of liver sections were studied.

The increased numbers of neutrophils seen in the present study may have effected an efficient and rapid clearance of endotoxin since Cline and co-workers (6) and Cohn et al. (7) have documented that neutrophils phagocytize endotoxin. Increased phagocytosis could account for the significant difference in the specific liver enzyme values observed between endotoxin- and saline-pretreated animals in response to 2 x LD$_{100}$ endotoxin injection. Six
hours after superlethal endotoxin challenge, SGPT values were 265 Units in the saline-pretreated animals compared with 100 Units (p<0.001) in the endotoxin pre-injected dogs. Cornelius et al. (8) documented that elevated serum concentrations of glutamic pyruvic transaminase (GPT) are a sensitive specific test for liver necrosis since GPT is found in high concentrations in canine hepatic parenchymal cells. Arginase is found in significant concentrations within the liver of the dog (9), and therefore a marked elevation (p<0.05) in plasma arginase activity from a mean of 9 at control to 296, as seen in response to 2 x LD100 endotoxin in the saline controls, indicates a necrotic process within the liver. The "unprotected" saline group in the present study sustained more severe liver damage than the endotoxin-protected dogs in response to superlethal endotoxin challenge, as indicated by elevated serum arginase and GPT values as well as morphologic examination of liver tissues. These results are supportive of the hypothesis that the initial increased numbers of white cells (38,700/mm³) through phagocytosis may be the most effective defense against the hepatic dysfunction observed in shock.

In the present study marked cellular damage was sustained by the saline-pretreated animals in response to superlethal endotoxin compared with endotoxin-pretreated dogs, since SGOT, LDH and F-LDH concentrations are significantly elevated at both one and 6 hours post-endotoxin (p<0.01). Elevations in SGOT, LDH and F-LDH have been documented in the cases of diseases of the heart, liver and even skeletal muscle (4,30). An additive factor conceivably contributing to lethality may be the significant increases (p<0.01) in serum potassium seen in the saline-pretreated dogs in response to 2 x LD100 endotoxin compared with the endotoxin-pretreated animals. These elevations further support the present enzyme data suggesting notable tissue damage and reflecting a generalized loss of intracellular potassium.

Although other factors may have performed key functions in the survivability to endotoxin in the present study, the primary purpose of the present
study was to assay the role of leukocytes in the host-defense mechanism. It has been suggested that the host's primary defense mechanism against microbial infections depends upon phagocytosis and intracellular killing by polymorphonuclear leukocytes (25). The present study suggests the protective influences of leukocytosis as stimulated by sublethal injections of endotoxin. Leukocytosis associated with endotoxin has been reported to occur via entry of new leukocytes from the bone marrow into the circulation (19). Hollingsworth and Beeson (24) have shown that if rabbits are transfused with healthy leukocytes, injections of E. coli are cleared normally despite the fact that the transferred leukocytes have disappeared from the peripheral blood.

Since survivability has been associated with leukocytosis (23,29), there are possible therapeutic implications regarding the role of the white blood cell in endotoxin shock. Recent reports have described beneficial effects of transfused white blood cells as a treatment for septicemia in neutropenic patients (17) and dogs (12,13). Graw et al. (17) reported a significant increase in survival rate in patients with gram-negative sepsis when transfused with granulocytes.

In the present study rectal temperatures markedly increased (p<0.02) in both saline- and endotoxin-pretreated dogs following superlethal endotoxin challenge although there were no significant differences in febrile response between the groups. Studies in rabbits administered endotoxin have shown that neutrophils release a pyrogen producing a febrile response (16). Other reports have produced evidence that endotoxin elicits fever by a direct action on the brain (15). Rabbits rendered leukopenic with nitrogen mustard and then given endotoxin exhibited a rapidly developing fever (16). Apparently the febrile response as observed in the present study played no role in determining lethality since the "protected" dogs spiked fevers equal to the "non-protected" animals; in fact, the febrile response may perform a beneficial
role in enhancing metabolic activities of the white cells (23) in the leukocytotic animals or improving hepatic blood flow on the basis of decreased blood viscosity, as well as through the release of a pyrogen derived from the leukocyte (16) or endotoxin itself (15).

Buchanan and Filkins (5) have documented in rats that any condition associated with elevated insulin secretion increases lethality in endotoxin shock, whereas lethality is reduced in situations of depressed insulin secretion. In the present study a marked hyperinsulinemia (p<0.02) was observed in the saline-pretreated control dogs after superlethal endotoxin challenge, and all animals died. Hiebert et al. (20) compared insulin secretory rates (ISR) in dogs and monkeys subjected to hemorrhagic shock and found a six-fold increase in shocked dogs after glucose loading with no ISR response in monkeys. Glucose disappearance rates during intravenous glucose tolerance testing in the hypotensive dogs and monkeys were not different, suggesting that the alterations in glucose metabolism during shock in the dog might be mediated principally through peripheral factors of "insulin resistance", whereas the monkey was influenced more by altered insulin secretion (20). Insulin values of 250 μU/ml in response to blood glucose concentrations of 140 mg% in the present study are excessive when compared with results from a study of burn patients in which Allison and co-authors (1) reported higher than normal insulin responses of approximately 250 μU/ml to a glucose load of 450 mg%, suggesting an insulin resistance. A hyperglycemia of 140 mg% with an excessive insulin release was observed in the present study one hour post-endotoxin, but blood glucose remained at 142 mg% after 6 hours, further suggesting the presence of insulin resistance.

Normally, the early hyperglycemia of endotoxic, septic and hemorrhagic shock (3,5,10,14,20,21) has been attributed to sympathetically-stimulated glycogenolysis and alpha-adrenergic suppression of beta cell insulin release
from the pancreas (10). Data from the present study in endotoxic shock suggest that the dog escapes catecholamine-induced insulin suppression in accordance with data reported on the canine species in hemorrhagic shock (20).

Results from the present study show that the dog may be protected against the lethal effects of endotoxin shock (2 x LD100) by prior treatment with sublethal intravenous injections of endotoxin; data suggest that the febrile response is not a factor determining lethality and that the neutrophil may be the host's first natural line of defense against infection (28); and therefore leukocytosis plays a significant role in protecting the liver against damage, enhancing survival in endotoxin shock.
ACKNOWLEDGMENTS

This research was supported by the Veterans Administration Hospital, U. S. Navy Contract N00014-76-C-0229, and the Oklahoma Heart Association (Grant #G76-153).

Appreciation is expressed to R. T. Brantley, Bill Hickey, Jane Drake and Celeste Chavez for technical assistance and to Jeanette Glasgow for secretarial and editorial support.
REFERENCES

TABLE 1. Effect of endotoxin on leukocyte and blood glucose concentrations in dogs

<table>
<thead>
<tr>
<th>Time (days)*</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (/mm³)</td>
<td>C</td>
<td>E</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13,500</td>
<td>12,300</td>
<td>.005</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>12,700</td>
<td>26,300</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Blood glucose (mg/100 ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>91</td>
<td>104</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td>E</td>
<td>93</td>
<td>93</td>
<td>87</td>
<td>91</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
</tr>
<tr>
<td>Time (hours)+</td>
<td>+1</td>
<td>+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC (/mm³)</td>
<td>C</td>
<td>E</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6,700</td>
<td>19,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>7,800</td>
<td>29,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood glucose (mg/100 ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>140</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>107</td>
<td>84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of 11 dogs; 5 pretreated with endotoxin and 6 with saline. Experimental animals received sublethal doses of E. coli endotoxin; 1/1,000 LD₁₀₀ on days 1 and 2, LD₁₀₀ on day 3, and 2 x LD₁₀₀ (6 mg/kg) on day 4. The control group received volumes of saline equal to endotoxin solution on days 1, 2 and 3, and 2 x LD₁₀₀ on day 4. *Initial measurements in each group on four consecutive days. Value for day 4 serves as the control measurement for the time designations of hours. †Hours post-injection of 2 x LD₁₀₀ E. coli endotoxin. ‡E = mean of experimental group; C = mean of control group. $p =$ unpaired comparison between control and experimental groups.
TABLE 2. Effect of endotoxin on rectal temperature in dogs

<table>
<thead>
<tr>
<th>Day</th>
<th>Group</th>
<th>0</th>
<th>+1</th>
<th>+3</th>
<th>+6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td>38.3</td>
<td>38.4</td>
<td>38.3</td>
<td>38.3</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>38.1</td>
<td>38.7</td>
<td>39.5</td>
<td>38.8</td>
</tr>
<tr>
<td>p^2</td>
<td></td>
<td>.001</td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>38.1</td>
<td>38.2</td>
<td>38.2</td>
<td>38.2</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>38.2</td>
<td>39.0</td>
<td>39.5</td>
<td>38.6</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>.001</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>38.1</td>
<td>38.2</td>
<td>38.1</td>
<td>38.1</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>38.4</td>
<td>39.2</td>
<td>39.7</td>
<td>39.9</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>38.2</td>
<td>39.8</td>
<td>40.2</td>
<td>39.9</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>38.8</td>
<td>40.3</td>
<td>40.0</td>
<td>39.7</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TR = °C. Total of 11 dogs; 5 pretreated with endotoxin and 6 with saline. Experimental animals received sublethal doses of E. coli endotoxin; 1/1,000 LD100 on days 1 and 2, LD100 on day 3, and 2 x LD100 (6 mg/kg) on day 4. The control group received volumes of saline equal to endotoxin solution on days 1, 2 and 3, and 2 x LD100 on day 4. *Hours post-injection; control group receiving saline only on days 1, 2 and 3.

^E = mean of experimental group; C = mean of control group.

^p = unpaired comparison between control and experimental groups.
TABLE 3. Effect of endotoxin on arginase, serum glutamic oxalacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in dogs

<table>
<thead>
<tr>
<th></th>
<th>Time (days)*</th>
<th></th>
<th>Time (hours)+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
<td>Day 2</td>
<td>Day 3</td>
</tr>
<tr>
<td>Arginase (IU/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>p</td>
<td>.005</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>SGOT (mU/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>E</td>
<td>33</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>p</td>
<td>.01</td>
<td>.01</td>
<td>.005</td>
</tr>
<tr>
<td>SGPT (IU/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>51</td>
<td>49</td>
<td>41</td>
</tr>
<tr>
<td>E</td>
<td>72</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>p</td>
<td>.025</td>
<td>.01</td>
<td>.001</td>
</tr>
</tbody>
</table>

See legend to Table 1.
TABLE 4. Effect of endotoxin on lactate dehydrogenase (LDH) and fractionated-lactate dehydrogenase (F-LDH) in dogs

<table>
<thead>
<tr>
<th></th>
<th>Time (days)*</th>
<th>Time (hours)+</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
<td>Day 2</td>
<td>Day 3</td>
<td>Day 4</td>
</tr>
<tr>
<td>LDH (mU/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>103</td>
<td>151</td>
<td>204</td>
<td>211</td>
</tr>
<tr>
<td>E</td>
<td>79</td>
<td>85</td>
<td>99</td>
<td>190</td>
</tr>
<tr>
<td>P</td>
<td>.01</td>
<td>.01</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td>F-LDH (mU/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>24</td>
<td>22</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>E</td>
<td>22</td>
<td>23</td>
<td>26</td>
<td>100</td>
</tr>
<tr>
<td>P</td>
<td>.05</td>
<td>.01</td>
<td>.01</td>
<td></td>
</tr>
</tbody>
</table>

See legend to Table 1.
TABLE 5. Effect of endotoxin on serum insulin and potassium concentrations in dogs

<table>
<thead>
<tr>
<th></th>
<th>Time (days)*</th>
<th></th>
<th>Time (hours)†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
<td>Day 2</td>
<td>Day 3</td>
</tr>
<tr>
<td>Insulin (µU/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>E</td>
<td>17</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium (mEq/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.5</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>E</td>
<td>4.6</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>p</td>
<td>.025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See legend to Table 1.
OFFICE OF NAVAL RESEARCH
BIOLOGICAL & MEDICAL SCIENCES DIVISION
MEDICAL AND DENTAL SCIENCES PROGRAM, CODE 444
DISTRIBUTION LIST FOR TECHNICAL, ANNUAL AND FINAL REPORTS

<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Name and Address</th>
</tr>
</thead>
</table>
| (12) | Administrator, Defense Documentation Center
 Cameron Station
 Alexandria, Virginia 22314 |
| (6) | Director, Naval Research Laboratory
 Attention: Technical Information Division
 Code 2627
 Washington, D. C. 20375 |
| (6) | Office of Naval Research
 Attention: Code 1021P (ONRL DOC)
 800 N. Quincy Street
 Arlington, Virginia 22217 |
| (3) | Office of Naval Research
 Medical and Dental Sciences
 Code 444
 Arlington, Virginia 22217 |
| (1) | Commanding Officer
 Naval Medical Research and Development Command
 National Naval Medical Center
 Bethesda, Maryland 20014 |
| (1) | Chief, Bureau of Medicine and Surgery
 Department of the Navy
 Washington, D. C. 20375 |
| (2) | Technical Reference Library
 Naval Medical Research Institute
 National Naval Medical Center
 Bethesda, Maryland 20014 |
| (1) | Office of Naval Research Branch Office
 495 Summer Street
 Boston, Massachusetts 02210 |

Enclosure (3)
Office of Naval Research Branch Office
536 South Clark Street
Chicago, Illinois 60605

Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101

Office of Naval Research
Contract Administrator for Southeastern Area
2110 G Street N.W.
Washington, D.C. 20037

Commanding Officer
Naval Medical Research Unit No. 2
Box 14
APO San Francisco 96263

Commanding Officer
Naval Medical Research Unit No. 3
FPO New York 09527

Officer in Charge
Submarine Medical Research Laboratory
Naval Submarine Base, New London
Groton, Connecticut 06342

Scientific Library
Naval Medical Field Research Laboratory
Camp Lejeune, North Carolina 28542

Scientific Library
Naval Aerospace Medical Research Institute
Naval Aerospace Medical Center
Pensacola, Florida 32512

Commanding Officer
Naval Air Development Center
Attn: Aerospace Medical Research Department
Warminster, Pennsylvania 18974

Scientific Library
Naval Biomedical Research Laboratory
Naval Supply Center
Oakland, California 94625
(1) Commander, Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

(1) Directorate of Life Sciences Div.
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, D.C. 20332

(1) Commanding General
Army Medical Research and Development Command
Forrestal Building
Washington, D.C. 20314

(1) Department of the Army
U. S. Army Science and Technology Center - Far East
APO San Francisco 96328

(1) Assistant Chief for Technology
Office of Naval Research, Code 200
800 N. Quincy Street
Arlington, Virginia 22217
Abstract

Recent studies reveal that endotoxin-pretreated awake dogs become markedly leukocytotic and survive superlethal endotoxin challenge without hypoglycemia. The purpose of this study was to determine if leukocytosis protects the liver and alters survival in endotoxin shock. Studies were conducted on awake, healthy dogs with the endotoxin group (N=5) injected i.v. with 1/1,000 LD$_{50}$ E. coli endotoxin on days 1 and 2, 100 LD$_{50}$ on day 3 and 2 x LD$_{50}$ on day 4. The control group (N=6) received equal volumes of saline on days 1, 2 and 3, but on day 4 received 2 x LD$_{50}$ endotoxin. All saline-pretreated dogs died within 7 hr following superlethal endotoxin challenge. Since in parallel studies all endotoxin-pretreated dogs (N=11) lived 30 days, each animal in the experimental group was sacrificed at the time of its paired saline control's death for a comparison of liver pathology. Endotoxin experimental animals exhibited a marked leukocytosis (39,000/mm3) (p<0.001) on day 4 compared with saline-pretreated controls. At the time of death liver enzymes arginase and SGPT were elevated (p<0.02) in the saline controls compared with endotoxin-pretreated dogs. Histological findings for saline-pretreated animals ranged from marked to massive hepatocellular necrosis, while endotoxin-pretreated dogs' liver pathology consisted of mild central lobular congestion and necrosis. Results suggest that leukocytosis protects liver function and enhances survival in endotoxin shock.