U. S. NAVAL AIR ENGINEERING CENTER
LAKEHURST, NEW JERSEY

INTERIM REPORT
MOBILE ELECTRIC POWER PLANT (MEPP)
TEST SET DEVELOPMENT

AIR TASK NO. A3400000/051B/7F41461400
WORK UNIT NO. 31

PLATE NO. 11749A
NOTICE

Reproduction of this document in any form by other than naval activities is not authorized except by special approval at the Secretary of the Navy or the Chief of Naval Operations as appropriate.

The following Espionage notice can be disregarded unless this document is plainly marked CONFIDENTIAL or SECRET.

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.
NAVAL AIR ENGINEERING CENTER
LAKEHURST, NEW JERSEY 08733

NAEC-GSED-103 19 May 1977

INTERIM REPORT

MOBILE ELECTRIC POWER PLANT (MEPP)
TEST SET DEVELOPMENT

AIRTASK NO. A3400000/051B/7F41461400
WORK UNIT NO. 31

PREPARED BY
J. A. KERshaw JR.

APPROVED BY
F. E. EVANS

5/19/77
Military Standard 704B tightens the parametric tolerances governing the quality of power being generated for the various types of aircraft equipment either in use or currently undergoing development. The objective of the work being performed herein is to determine the configuration and cost of a test set that would be used to ensure the power supplied by Mobile Electric Power Plants (MEPP's) is within the tolerances defined in the specification. Surveys of the test equipment field were made, vendors...
were contacted and demonstrations for equipment evaluations were conducted, and in use assets were considered for MEPP evaluation after consultation with Navy field personnel. Subsequently, a breadboard model of the test set will be constructed and the basic design configuration will be established.

Since the equipment necessary to test MEPP's and aircraft generators for compliance with MIL-STD-704B is not available either in a configuration or in quantities that permit its utilization by organizational and intermediate maintenance personnel, it is recommended that a test set be developed that can be used by other than depot level maintenance personnel to ensure that future operational field equipment can be checked for compliance with the new specification.
I. SUMMARY

A. GENERAL. Military Standard 704B tightens the parametric tolerances governing the quality of power being generated for the various types of avionic equipment either in use or currently undergoing development. The objective of the work being performed herein is to determine the configuration and cost of a test set that would be used to ensure the power supplied by Mobile Electric Power Plants (MEPP's) is within the tolerances specified in the specification.

B. PROCEDURES AND RESULTS. Surveys of the test equipment field for equipment applicable to the test set were made. Vendors were contacted and demonstrations for equipment evaluations were conducted. In use assets were considered for MEPP evaluation after consultation with Navy field personnel. Subsequent to visits with Navy field personnel, a breadboard model of the test set will be constructed and the basic design configuration will be established.

C. CONCLUSION. Presently, the equipment necessary to test MEPP's and aircraft generators for compliance with MIL-STD-704B is not available either in a configuration or in quantities that permit its utilization by organizational and intermediate maintenance personnel.

D. RECOMMENDATIONS. It is recommended that a test set be developed that can be used by other than depot level maintenance personnel to ensure that future operational field equipment can be checked for compliance with the new specification.
II. PREFACE

A. BACKGROUND. There are two types of equipment capable of testing a MEPP to MIL-STD-704B and these are the computerized and non-computerized types. Neither type appears to be suited to testing a MEPP at the organizational and intermediate level of maintenance. The non-computerized type of equipment would occupy approximately two 19 inch wide by 6 feet high equipment racks and take between 8 and 16 hours to complete the required tests. The computerized equipment, although considerably smaller in physical size and much faster in testing time, has the disadvantage of requiring a high degree of training for the personnel who must use it. They must know the computer language of the test equipment in order to operate it.

B. EXPECTED OUTCOME. It is expected that the test set developed as a result of this program will be small, relatively inexpensive when compared to existing units, and provide an operational testing procedure that is both short and simple enough to permit its use by both organizational and intermediate maintenance personnel while completely satisfying the test parameters set forth in the new MIL-STD-704B.
III. TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>II. PREFACE</td>
<td>2</td>
</tr>
<tr>
<td>III. TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>IV. INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>V. DISCUSSION</td>
<td>5</td>
</tr>
<tr>
<td>A. BACKGROUND</td>
<td>5</td>
</tr>
<tr>
<td>B. EQUIPMENT AND PROCEDURES</td>
<td>5</td>
</tr>
<tr>
<td>C. ANALYSIS</td>
<td>5</td>
</tr>
<tr>
<td>D. RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>VI. CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>VII. RECOMMENDATIONS</td>
<td>12</td>
</tr>
<tr>
<td>VIII. APPENDIX</td>
<td>13</td>
</tr>
</tbody>
</table>
IV. INTRODUCTION

A. APPROACH. The following methods will be employed as possible solutions.

1. Investigate the equipment requirements and costs involved in using a number of non-computerized "off the shelf" instruments to make the conformance measurements.

2. Investigate the equipment requirements and costs involved in using a transportable computerized system to make the conformance measurements.

3. Determine the feasibility of using a portable unit to sample the power to be checked; then use existing Navy computers to process the data sample in order to verify conformance to MIL-STD-704B. This scheme had been proposed by NRL.

4. Contact various companies on the possibility of developing a dedicated diagnostic test set.

5. Check existing maintenance manuals to determine present requirements for insuring that MEPP's or aircraft electrical power systems supply power in conformance with the required specifications.

6. Determine the needs of Naval personnel.

7. Decide on the best configuration.

B. OBJECTIVE. The objective of this program is to determine the best configuration for a test set to be used to check a MEPP or aircraft electrical system output for conformance to MIL-STD-704B. The test set investigated will be used principally by organizational and intermediate level maintenance personnel.
V. DISCUSSION

A. BACKGROUND.

1. MIL-STD-704B defines the characteristics of electric power supplied to aircraft utilization equipment and dictates requirements so stringent that sophisticated test equipment not currently available in a typical test laboratory will be required to check ground support mobile electric power plants for conformance. Hence, the manufacturers of MEPP's who must perform first article tests and Navy personnel who must check MEPP's will be faced with the problem of obtaining the required test equipment. If a simplified, small sized, readily usable, standard test set were devised and manufactured, it could be made available when required to overcome this problem.

2. The object of this program is to determine the configuration and cost of a test set which can be used to test MEPP's for conformance to MIL-STD-704B.

B. EQUIPMENT AND PROCEDURES. The basic approach to the development of a MEPP test set is to:

1. Make a survey of the test equipment field for equipment that is applicable to the test set. Visit vendors' plants for equipment demonstrations or have vendors come to NAEC for demonstrations. Use the demonstrations as a means of evaluating the equipment. Also have equipment consigned for evaluation.

2. Investigate the possibility of using available Navy computers to process recorded data samples taken from MEPP's as a means for evaluating the MEPP performance.

3. Determine the needs of Naval personnel who are presently responsible for testing MEPP's in the field.

4. Based on findings, determine the best set configuration and approximate cost.

5. Perform simulated testing.

6. Procure hardware to build a prototype breadboard unit.

7. Test the breadboard design on aircraft equipment and MEPP's.

8. Release the breadboard unit to 6.4 R&D.

C. ANALYSIS. The new test set would have to be able to perform the following checkout and maintenance requirements.

1. F-14 Electrical Power System Demonstration Test. An electrical system power demonstration test is performed to verify that the power system can meet the specification (MIL-STD-704A) requirements. This test is performed in a single aircraft to demonstrate system capability.
2. F-14 Organizational Maintenance Requirements (from manual).
 a. Check AC voltage for 115±10VAC per phase Use test set AN/USM-128
 b. Check DC voltage for 28±3, ±2VDC
 c. Check Frequency for 400±25Hz

3. F-14 Intermediate/Depot Maintenance (from manual). The following tests are performed on the aircraft generator utilizing Aircraft Electrical Power Test Set MA 2 or MA 3 which basically is a drive stand.
 a. Perform generator winding resistance tests.
 b. Perform rotational tests.
 (1) Read line to line voltage at no load.
 (2) Make phase sequence check.
 c. No load tests.
 (1) Apply variable DC to the exciter field. Raise excitation until the voltage from T to T4 is 120 volts with no load. Read and note the three line to neutral and three line to line voltages. Voltage amplitude modulation shall not exceed 1/2%. Field current shall not exceed 1 amp.
 (2) Raise field current to 3. 85 amps. Read and note voltages as in step 1. Minimum line to neutral voltage shall be 160 volts.
 d. Full load and overload heating test.
 (1) Operate the generator with a 75KVA, .75PF load at rated voltage until the exciter voltage has stabilized. Read and note at 2 minute intervals.
 (a) AC line to line voltage.
 (b) DC line to line voltage.
 (c) Line currents.
 (d) Power in each phase.
 (e) Exciter field current.
 (f) Oil inlet and outlet temperature.
 (g) Oil inlet pressure and flow.
 (h) Generator case pressure.
 (i) Oil leakage.
 e. Phase Balance. From the data noted during the no load and 75KVA, .75PF rated load testing, check that none of the line to line or line to neutral voltages deviates from the average of the three by more than .5%.

4. MMG-1A MEPP Maintenance (from manual).
 a. Organizational Maintenance - inspect the unit.
 b. Intermediate Maintenance - make an operational check of the controls.
 c. Depot Maintenance
 (1) Measure stator and rotor winding resistance.
 (2) Measure dielectric strength (motor and generator windings).

5. NC-8A MEPP Maintenance (from manual).
 a. Organizational Maintenance - output power quality is not checked.
b. Intermediate Maintenance - output power quality is not checked.
c. Depot Maintenance.
 (1) Preliminary - Use load bank FSN RX 4920-571-7719515 and check the calibration of the instruments.
 (2) DC Output Power System.
 (a) DC voltage regulation test.
 (b) DC ripple test.
 (c) DC voltage transient recovery and load.
 (d) DC voltage trip test.

6. AC output power system test.

1. AC voltage regulation test.
2. Frequency regulation test.
3. Voltage modulation test.
4. Voltage waveform (harmonics).
5. Crest factor.
6. AC phase balance voltage test.
7. AC transient voltage recovery and load cycling test.
8. Transient frequency recovery test.
9. AC under voltage and over voltage trip test.
10. Under and over frequency trip test.

D. RESULTS. Several different computerized instruments, composite test sets, and other methods of test set output data analysis were examined.

1. Composite Instrument. It was determined that the following list constitutes one possible set of existing non-computerized instruments which could be used to check a MEPP or aircraft electrical system output for conformance to MIL-STD-704B. Brand names and model numbers are used merely to indicate the characteristics required, not to endorse the use of the specific instruments. It is estimated that this equipment would occupy approximately 2 standard 19 inch electrical racks.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Meter, Dianetz</td>
<td>$2,400</td>
</tr>
<tr>
<td>Model 305</td>
<td></td>
</tr>
<tr>
<td>Digital Voltmeter, Hewlett Packard</td>
<td>2,095</td>
</tr>
<tr>
<td>Model 3403C</td>
<td></td>
</tr>
<tr>
<td>Frequency Meter, Hewlett Packard</td>
<td>1,040</td>
</tr>
<tr>
<td>Models 5300A, 5311 and 5302</td>
<td></td>
</tr>
<tr>
<td>Oscillograph, Honeywell</td>
<td>2,450</td>
</tr>
<tr>
<td>Model 906 (with amplifiers)</td>
<td></td>
</tr>
</tbody>
</table>
2. Computerized Instruments. The following "self contained" computerized instruments were examined and the results of each is noted:

a. A demonstration of the Nicolet Instrument Corporation NIC-1180 series data acquisition and processing system was witnessed. Only a few of the required MIL-STD-704B measurements were demonstrated because the required computer programs were not available. A Nicolet Instruments representative stated that the computer program would be written and the NIC-1180 with these programs would sell for $40,000. The unit was transportable but not portable.

b. A demonstration of the Tektronix WP1210 Digital Processing Oscilloscope was witnessed. Some of the measurements required to show power system conformance to MIL-STD-704B were demonstrated. The company representative stated that he believed the WP1210 system is $48,000.

c. Preliminary arrangements have been made for a demonstration of the Noreland Instruments NI2001 Programmable Calculating Oscilloscope. The cost of the instrument is $17,300.

d. Johnsville NADC was visited to witness a demonstration of the Sostel System. This is an advanced electrical system being developed for future Naval Aircraft. The system contains a memory to record faults which occur in the electrical system during a flight. At the conclusion of a flight the memory is interrogated by maintenance personnel to determine which parts of the electrical system require servicing. Johnsville personnel stated that all the Sostel system would do regarding power quality would be to monitor the voltage level and the frequency and record any faults occurring in those characteristics.

3. Integrated Systems. Checks were made to determine if the 3M computers (see attached list) could be used to process MEPP/aircraft generator data samples taken by a portable digitizer-memory unit. The data would be sent by telephone lines to the computer. This scheme was originally suggested by NRL. It was found that

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memoryscope, Nickolay Model 1090</td>
<td>$5,100</td>
</tr>
<tr>
<td>Spectrum Analyzer, Hewlett Packard Model 3580A</td>
<td>4,665</td>
</tr>
<tr>
<td>Oscilloscope Camera, Hewlett Packard Model 197A</td>
<td>800</td>
</tr>
<tr>
<td>Spectrum Analyzer, Tektronix Model 7L5+C-51 Camera</td>
<td>7,600</td>
</tr>
</tbody>
</table>

$26,150
all the computers in the system could perform the required data processing except the IBM 1401C-6 and the IBM 360-20.

4. Self-contained Computerized Test Sets. Several manufacturers were contacted regarding the possibility of developing a dedicated test set.

a. One electronics company submitted a preliminary concept for a test set. In their concept the set consists of an attache case size unit which could be used to check a MEPP or aircraft power system for conformance to MIL-STD-704B. The unit would basically be a piece of automatic test equipment which would measure and display the voltage and frequency continuously. For all the other characteristics, if and when the power fails to meet MIL-STD-704B, the test set will trigger an alarm (such as a light) and display to the operator not a measured parameter but the identification of the faulty electrical characteristic. This portion of the test set would be used for flight line and other checks where a quick checkout is required. For shop checkout where diagnostic capability would be required, an add-on unit would be attached to the basic test set. The add-on unit would provide the capability of diagnosing the cause of the out of specification condition.

b. Personnel in another electronics specialty firm have been contacted regarding the possibility of developing a dedicated test set. No concrete response has been received as of this time.
VI. CONCLUSIONS

A. The list of non-computerized "off the shelf" instruments (see Section V, paragraph D.1.) required to check aircraft generator/MEPP supplied power for conformance to MIL-STD-704B is lengthy. The main reason for the large number of instruments listed is the variety and the complexity of the measurements to be made and the fact that each instrument is usually designed to make one specific type of measurement only. Making the measurements with these instruments will be a time consuming process also and it is estimated that the process would require 8 to 16 hours (including data reduction time). Because of the complexity of the measurements and the time involved, this type of test set is unacceptable for organizational and intermediate level maintenance.

B. The computerized, transportable "off the shelf" data processing units investigated showed advantages over the non-computerized instruments. For instance, both the Tektronix WP1210 and the Nicolet NIC-1180 were capable of obtaining a Fast Fourier Transform narrow band analysis in a matter of seconds. Obtaining a narrow band analysis (1 or 3Hz filter) with a spectrum analyzer could take a matter of hours. Both the computerized instruments did show some shortcomings however. For instance, the spectral analyses were presented on a linear scale rather than a log scale. A log scale format is required for quick checkout of compliance to MIL-STD-704B. Also as demonstrated, the individual frequency components were read off with a cursor arrangement. This was a time consuming process. With additional development both these instruments possibly could be made to overcome these difficulties. The other shortcoming noted in these instruments was the fact that the operator had to be computer oriented. For instance, he had to be familiar with the computer language for successful operation. Because of the shortcomings noted, the two units as demonstrated, did not appear to be good choices for an organizational or intermediate level maintenance instrument.

C. The NRL test set scheme of using a portable unit to sample the power to be checked then use existing Navy computers to process the data was found to have some shortcomings also. The concept was investigated from the standpoint of the availability of the required data links and computers. The system investigated was the 3M computer data link system. It was found that a number of Naval Air Stations were served by computers that did not have the required capabilities. Additional thought on the scheme also indicated that the overall process would be too time consuming to be used as an organizational or intermediate maintenance level procedure. Excessive time would be required to take the data sample, transmit the sample to the computer, wait for computer availability to reduce the data, then have the results transmitted back to the data point of origin.

D. The concept for a dedicated test set made by the first electronics company appeared to be the most acceptable of all the possibilities investigated. The basic unit is a self-contained go, no go, piece of automatic test equipment. The time involved in obtaining results is short and no special operator skills are necessary to use it. The add-on unit which will perform the diagnostics would consume more time in use. The basic unit would adapt itself in general to operational and intermediate
level maintenance while the add-on unit would be utilized in depot level maintenance. At the present time, the development costs for the first company's units are not yet known so a cost effectiveness analysis cannot be made.

E. The quality of the power output of the NC-8A or the MMG-1A are not required to be checked during operational or intermediate level maintenance check outs. On the F-14, at the organizational level, the voltage and frequency level of the aircraft system are checked using test set AN/USM-128. At the intermediate maintenance level the generator is checked as a component in test set MA 2 or MA 3 which essentially is a drive stand. Some power quality characteristics and other operating characteristics are checked during this test.
VII. RECOMMENDATIONS

A. The concept that suggests a dedicated test set in a suitcase should be pursued further with test equipment manufacturers.

B. To obtain cost effective quotes on a test set, more specific information (test parameters) and direction must be given.

C. Consultation with fleet personnel to determine what they desire in a piece of test gear will aid in the physical design and instrument readout of the equipment and supply much of the information required to design a test set.

D. Implement a test scheme (breadboard design) in the laboratory and combine test set development with current generator development programs.
VIII. APPENDIX

AVIATION 3-M SYSTEM LEAD PROGRAMMING ACTIVITIES

MSDO, North Island

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>DATA SERVICES FACILITY</th>
<th>SUPPORTED STATIONS/SHIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-3500</td>
<td>AFB Lajes Azores</td>
<td>NAF Lajes</td>
</tr>
<tr>
<td></td>
<td>AFB Lakenheath</td>
<td>NAF Midenhall</td>
</tr>
<tr>
<td></td>
<td>CNET DSC Pensacola</td>
<td>NAS Chase Field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Corpus Christi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Dallas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Ellyson Field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Kingsville</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Memphis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Meridan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Pensacola</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Saufley Field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Whiting Field</td>
</tr>
<tr>
<td></td>
<td>DPSCPAC North Island</td>
<td>NAF El Centro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Imperial Beach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Miramar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS North Island</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NWEG Albuquerque</td>
</tr>
<tr>
<td></td>
<td>NAS Alameda</td>
<td>NAS Alameda</td>
</tr>
<tr>
<td></td>
<td>NAS Jacksonville</td>
<td>NAS Albany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Atlanta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAS Jacksonville</td>
</tr>
<tr>
<td></td>
<td>NAS Norfolk</td>
<td>NAS Norfolk</td>
</tr>
<tr>
<td></td>
<td>NAS Whidbey Island</td>
<td>NAS Whidbey Island</td>
</tr>
<tr>
<td></td>
<td>NATC Patuxent River</td>
<td>NAS Patuxent River</td>
</tr>
<tr>
<td></td>
<td>NSC Pearl Harbor</td>
<td>NAS Barbers Point</td>
</tr>
<tr>
<td></td>
<td>NSD Guam</td>
<td>NAS Agana</td>
</tr>
<tr>
<td></td>
<td>NSD Subic Bay</td>
<td>NAS Cubi Point</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>DATA SERVICES FACILITY</td>
<td>SUPPORTED STATIONS/SHIPS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>IBM 1401C-6</td>
<td>NAF Washington</td>
<td>NAF Washington</td>
</tr>
<tr>
<td></td>
<td>NAS Bermuda</td>
<td>NAS Bermuda</td>
</tr>
<tr>
<td></td>
<td>NAS Brunswick</td>
<td>NAS Brunswick</td>
</tr>
<tr>
<td></td>
<td>NAS Key West</td>
<td>NAS Key West</td>
</tr>
<tr>
<td></td>
<td>NAS Lemoore</td>
<td>NAS Lemoore</td>
</tr>
<tr>
<td></td>
<td>NAS Moffett Field</td>
<td>NAS Moffett Field</td>
</tr>
<tr>
<td></td>
<td>NAS Oceana</td>
<td>NAS Oceana</td>
</tr>
<tr>
<td></td>
<td>NAVSTA Keflavik</td>
<td>NAVSTA Keflavik</td>
</tr>
<tr>
<td></td>
<td>NAVSTA Roosevelt Roads</td>
<td>NAVSTA Roosevelt Roads</td>
</tr>
<tr>
<td>IBM 360-20(Tape) (Emulating IBM 1401C-6)</td>
<td>NAVSTA Rota</td>
<td>NAVSTA Rota</td>
</tr>
<tr>
<td>IBM 360-30</td>
<td>DPI-28, H&MS-17</td>
<td>MCAS Iwakuni</td>
</tr>
<tr>
<td>IBM 360-40</td>
<td>MCDEC Quantico</td>
<td>MCAS Quantico</td>
</tr>
<tr>
<td>IBM 360-50</td>
<td>MCAS El Toro</td>
<td>MCAS El Toro</td>
</tr>
<tr>
<td></td>
<td>MCAS Santa Ana</td>
<td>MCAS Santa Ana</td>
</tr>
<tr>
<td></td>
<td>MCAS Yuma</td>
<td>MCAS Yuma</td>
</tr>
<tr>
<td></td>
<td>FMPFAC Camp Smith, Hawaii</td>
<td>MCAS Kaneohe</td>
</tr>
<tr>
<td></td>
<td>PMTR, Point Mugu</td>
<td>PMTR, Point Mugu</td>
</tr>
<tr>
<td>IBM 360-65</td>
<td>ASC Camp Butler, Okinawa (OS)</td>
<td>COMFLEACTS Okinawa</td>
</tr>
<tr>
<td></td>
<td>CNAVRES New Orleans</td>
<td>NAS New Orleans</td>
</tr>
<tr>
<td></td>
<td>MCAS Cherry Point</td>
<td>MCAS Beaufort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCAS Cherry Point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCAS New River</td>
</tr>
<tr>
<td></td>
<td>North East Computer Center</td>
<td>NAS Lakehurst</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>DATA SERVICES FACILITY</td>
<td>SUPPORTED STATIONS/SHIPS</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>U-1500 (AN/UYK-5)</td>
<td>COMEWARFOR, CHARLESTON SOUTH CAROLINA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAG-11, 3rd MAW (El Toro)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAG-13, 3rd MAW (El Toro)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAG-14, 2nd MAW (Cherry Point)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAG-16, 3rd MAW (Santa Ana)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAG-24, 1st MBGD (Kaneohe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAG-26, 2nd MAW (New River)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWSG-37, 3rd MAW (El Toro)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAVSTA Guantanamo Bay</td>
<td>NAS Guantanamo Bay</td>
</tr>
<tr>
<td>USS AMERICA (CVA-66)</td>
<td></td>
<td>USS AMERICA</td>
</tr>
<tr>
<td>USS CONSTELLATION (CVA-64)</td>
<td></td>
<td>USS CONSTELLATION</td>
</tr>
<tr>
<td>USS CORAL SEA (CVA-43)</td>
<td></td>
<td>USS CORAL SEA</td>
</tr>
<tr>
<td>USS ENTERPRISE (CVAN-65)</td>
<td></td>
<td>USS ENTERPRISE</td>
</tr>
<tr>
<td>USS F.D. ROOSEVELT (CVA-42)</td>
<td></td>
<td>USS F.D. ROOSEVELT</td>
</tr>
<tr>
<td>USS FORRESTAL (CVA-59)</td>
<td></td>
<td>USS FORRESTAL</td>
</tr>
<tr>
<td>USS GUADACANAL (LPH-7)</td>
<td></td>
<td>USS GUADALCANAL</td>
</tr>
<tr>
<td>USS GUAM (LPH-9)</td>
<td></td>
<td>USS GUAM</td>
</tr>
<tr>
<td>USS INCHON (LPH-12)</td>
<td></td>
<td>USS INCHON</td>
</tr>
<tr>
<td>USS INDEPENDENCE (CVA-62)</td>
<td></td>
<td>USS INDEPENDENCE</td>
</tr>
<tr>
<td>USS IWO JIMA (LPH-2)</td>
<td></td>
<td>USS IWO JIMA</td>
</tr>
<tr>
<td>USS J.F. KENNEDY (CVA-67)</td>
<td></td>
<td>USS J.F. KENNEDY</td>
</tr>
<tr>
<td>USS KITTY HAWK (CVA-63)</td>
<td></td>
<td>USS KITTY HAWK</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>DATA SERVICES FACILITY</td>
<td>SUPPORTED STATIONS/SHIPS</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>U-1500</td>
<td>USS MIDWAY (CVA-41)</td>
<td>USS MIDWAY</td>
</tr>
<tr>
<td>(AN/UYK-5)</td>
<td>USS NEW ORLEANS (LPH-11)</td>
<td>USS NEW ORLEANS</td>
</tr>
<tr>
<td>(Cont'd)</td>
<td>USS NIMITZ (CVAN-68)</td>
<td>USS NIMITZ</td>
</tr>
<tr>
<td></td>
<td>USS OKINAWA (LPH-3)</td>
<td>USS OKINAWA</td>
</tr>
<tr>
<td></td>
<td>USS ORISKANY (CVA-34)</td>
<td>USS ORISKANY</td>
</tr>
<tr>
<td></td>
<td>USS RANGER (CVA-61)</td>
<td>USS RANGER</td>
</tr>
<tr>
<td></td>
<td>USS SARATOGA (CVA-60)</td>
<td>USS SARATOGA</td>
</tr>
<tr>
<td></td>
<td>USS TRIPOLI (LPH-10)</td>
<td>USS TRIPOLI</td>
</tr>
</tbody>
</table>
Mobile Electric Power Plant (MEPP) Test Set Development

NAEC-GSED-103
Airtask
A3400000/051B/
6F41461400, WU #31

Military Standard 704B tightens the parametric tolerances governing the quality of power being generated for the various types of aircraft equipment either in use or currently undergoing development. The objective of the work being performed herein is to determine the configuration and cost of a test set that would be used to ensure the power supplied by Mobile Electric Power Plants (MEPP's) is within the tolerances defined in the specification. Surveys of the test equipment field were made, vendors were contacted and demonstrations for equipment evaluations were conducted, and in use assets were considered for MEPP evaluation after consultation with Navy field personnel. Subsequently, a breadboard model of the test set will be constructed and the basic design configuration will be established.

Since the equipment necessary to test MEPP's and aircraft generators for compliance with MIL-STD-704B is not available either in a configuration or in quantities that permit its utilization by organizational and intermediate maintenance personnel, it is recommended that a test set be developed that can be used by other than depot level maintenance personnel to ensure that future operational field equipment can be checked for compliance with the new specification.

Mobile Electric Power Plant (MEPP) Test Set Development

NAEC-GSED-103
Airtask
A3400000/051B/
6F41461400, WU #31

Military Standard 704B tightens the parametric tolerances governing the quality of power being generated for the various types of aircraft equipment either in use or currently undergoing development. The objective of the work being performed herein is to determine the configuration and cost of a test set that would be used to ensure the power supplied by Mobile Electric Power Plants (MEPP's) is within the tolerances defined in the specification. Surveys of the test equipment field were made, vendors were contacted and demonstrations for equipment evaluations were conducted, and in use assets were considered for MEPP evaluation after consultation with Navy field personnel. Subsequently, a breadboard model of the test set will be constructed and the basic design configuration will be established.

Since the equipment necessary to test MEPP's and aircraft generators for compliance with MIL-STD-704B is not available either in a configuration or in quantities that permit its utilization by organizational and intermediate maintenance personnel, it is recommended that a test set be developed that can be used by other than depot level maintenance personnel to ensure that future operational field equipment can be checked for compliance with the new specification.