An inequality for sums of dyads and tensors.*

John de Pillis

Univ. of Calif., Riverside 92502
Univ. of Calif., Santa Cruz 95064

Approved for public release;
distribution unlimited.

*This work was partially supported by AFOSR 75-2858.
A method for some of gases and aerosols.

John E. Paine

Unit: test site, Kevryon 8202
Unit: site test site, Kevryon 9202

Air force and military supplies for vehicle

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is approved for public release IAW AFR 190-12 (7b).
Distribution is unlimited.

A. D. BLOESE
Technical Information Officer
An inequality for sums of dyads and tensors.

John de Pillis

Department of Mathematics
University of California, Riverside
Riverside, California 92502

Air Force Office of Scientific Research (AFOSR)
Bolling AFB, Washington, DC 20332

Approved for public release; distribution unlimited.

Given finite rank transformation R on Hilbert space where

$$2 \text{rank}(R) \leq r(U) + r(V) \leq \text{rank}(R) + N,$$

where $r(U) = \dim(\text{span}(u_1, u_2, \ldots, u_N))$, $r(V) = \dim(\text{span}(v_1, v_2, \ldots, v_N))$.

Applications to sums of decomposable Kronecker products are given.
An inequality for sums of dyads and tensors*
John de Pillis
University of California, Riverside 92502
University of California, Santa Cruz 95064

ABSTRACT: Given a finite rank transformation \(R \) on Hilbert space with dyadic sum decomposition
\[
\sum_{i} (u_i \times v_i) = R,
\]
then it is shown that
\[
2 \cdot \text{rank}(R) \leq r(U) + r(V) \leq \text{rank}(R) + N,
\]
where \(r(U) = \dim(\text{span}(u_1, u_2, \ldots, u_N)) \) and
\(r(V) = \dim(\text{span}(v_1, v_2, \ldots, v_N)) \).

Applications to sums of decomposable Kronecker products and to sums of dyads are presented.

AMS(MOS) Primary classification 1500, 15A69
Secondary classification 47A65.

*This work was partially supported by AFSOR 75-2858
Introduction. In previous works, relations between dyadic and Kronecker products of vectors (definitions follow) are explored, cf. [2], [3]. In fact, consider the general situation where finite rank linear transformation R on infinite-dimensional Hilbert space, H, is the sum of dyadic products. If the number of terms of this sum is known, then these dyadic terms can be fairly well characterized [3, Thm. 3.2]. In this paper, we consider dyadic sum decompositions for R where N, the number of terms, is not known a priori, and present a sharp inequality which ties together

(i) the rank of R,

(ii) the ranks (dimension of the spans) of the dyad component vectors, and

(iii) N, the number of distinct dyads which sum to R.

This inequality proves useful for establishing necessary conditions for certain special questions, e.g., when do N dyads sum to a single Kronecker product, or when do N dyads sum to (another) dyad? These questions, in turn, relate to the complexity question in the computation of matrix products, cf., [4], [1].

2. Definitions and Preliminaries. $L(H,K)$ denotes all bounded linear transformations from Hilbert space H to Hilbert space K. Among the elements of $L(H,K)$ are the dyads (rank one transformations) $(x \times y)$ defined for each $y \in H$, $x \in K$ by requiring that for all $z \in H$, $(x \times y)z = \langle z, y \rangle x$, where \langle , \rangle is the inner product on H. We proceed to give the Kronecker or tensor product
A \otimes B^t: First, for A \in L(H,K), A^*, the adjoint of A, is that element of L(K,H) given by \langle Ay, x \rangle = \langle y, Ax \rangle for all y \in H, x \in K.

As an example, (x \otimes y)^* = (y \otimes x) for all dyads. H denotes the Hilbert space of linear functionals on H. That is, for x \in H, \overline{x} \in H is defined by \overline{x}: y \to \langle y, x \rangle for all y \in H. This leads to the definition of A^t \in L(K,H) where A \in L(H,K). In fact, for all x \in H, \overline{y} \in K, we define A^t(\overline{y})(x) = \overline{y}(A(x)). Finally, for any A \in L(H_1,K_1), B \in L(H_2,K_2) we define the Kronecker (or tensor) product A \otimes B^t by A \otimes B^t: C \to ACB for all C \in L(K_2,H_1).

We will use \text{rank}(R) to denote the rank of a transformation R, i.e., \text{rank}(R) is the dimension of the range of R. Also, if U = \{x_1, x_2, \ldots, x_N\} \subset H, then we will use \text{rank}(U) to denote the rank of the set U, i.e., \text{rank}(U) is the dimension of \text{span}(U), the linear span of the set U.

Before arriving at our inequality, we will be using the following characterization of dyadic sums:

\textbf{Theorem 2.1} ([3, Th. 3.2]). Given finite-rank linear transformation R \in L(H,K) and the set U = \{u_1, u_2, \ldots, u_n, \ldots, u_N\} \subset K where the range of R is a subspace of span \langle U \rangle. Assume (by re-ordering if necessary) that the first n \leq N elements of U form a basis for span \langle U \rangle (i.e., n = \text{rank}(U), the rank of U). Accordingly the N-n \geq 0 remaining vectors u_{n+1}, u_{n+2}, \ldots, u_N define N-n scalars \{a_i^{(j)}: i = 1, 2, \ldots, n, j = n+1, n+2, \ldots, N\} by the equations

$$u_j = \sum_{i=1}^{n} a_i^{(j)} u_i , \ j = n+1, n+2, \ldots, N.$$
Then for \(N-n \) arbitrary vectors \(\{v_{n+1}, v_{n+2}, \ldots, v_N\} \subset H \) we have the representation

\[
\sum_{i=1}^{N} (u_i \times v_i) = R
\]

(2.1)

if and only if each "earlier" \(v_1 \) is given by

\[
v_1 = R^*(\alpha_1) - \sum_{j=n+1}^{N} \overline{\alpha}_1(j) v_j, \quad i = 1, 2, \ldots, n=r(U),
\]

(2.2)

where \(\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \in \text{span } \langle U \rangle \) is the unique biorthonormal complement to \(\{u_1, u_2, \ldots, u_n\} \in \text{span } \langle U \rangle \) (i.e., \(\langle \alpha_i, u_j \rangle = \delta_{ij} \), the Kronecker delta). The summation in (2.2) is taken to be zero in case \(n = N \).

3. **The Inequality**

Theorem 3.1. Given finite-rank linear transformation \(R \in L(H, K) \) and sets of vectors \(U = \{u_1, u_2, \ldots, u_N\} \subset K, \ V = \{v_1, v_2, \ldots, v_N\} \subset H \) such that

\[
\sum_{i=1}^{N} (u_i \times v_i) = R.
\]

(3.1)

Then

\[
2 \cdot \text{rk}(R) \leq r(U) + r(V) \leq \text{rk}(R) + N,
\]

(3.2)
where \(\text{rk}(R) \) = dimension (range of \(R \)), and

\[
\text{r}(U) = \text{dimension (span } \langle U \rangle) \\
\text{r}(V) = \text{dimension (span } \langle V \rangle).
\]

Proof: By re-ordering the terms of sum (3.1) if necessary, we will assume that the first \(n = r(U) \) elements, \(u_1, u_2, \ldots, u_n \) of \(U \), form a basis for \(\text{span} \langle U \rangle \). Thus, the ordered set \(V \) lends itself to characterization (2.2). In fact,

\[
\text{r}(V) = \text{rank}(\text{span}\langle v_1, v_2, \ldots, v_n, v_{n+1}, \ldots, v_N \rangle), \quad (3.3)
\]

where \(v_1 = R^*(a_1) = \sum_{j=n+1}^{N} \alpha_j^{(i)} v_j, \ i = 1, 2, \ldots, n \) (from (2.2)). Equivalently,

\[
\text{r}(V) = \text{rank}(\text{span}\langle R^*(a_1), R^*(a_2), \ldots, R^*(a_n), v_{n+1}, \ldots, v_N \rangle) \quad (3.4)
\]

The equivalence of (3.3) and (3.4) follows by observing that each of the \(N \) vectors in (3.4) belong to the linear span of the \(N \) vectors in (3.3), and vice versa. From (3.4) we now obtain

\[
\text{r}(V) \leq \text{rank}(\text{span}\langle R^*(a_1), \ldots, R^*(a_n) \rangle) + \text{rank}(\text{span}\langle v_{n+1}, \ldots, v_N \rangle) \\
\leq \text{rk}(R^*) + N - n \quad (3.5) \\
= \text{rk}(R) + N - r(U),
\]
which gives us the right-hand side of inequality (3.2). Obtaining the left-hand side of (3.2) is immediate, since from (3.1) we deduce that \(\text{span} \langle U \rangle \supset \text{range } R \), while \(\text{span} \langle V \rangle \supset \text{range } R^* \) (recall \((u_1 \times v_1)^* = (v_1 \times u_1) \)). Thus, \(r(U) \geq rk(R) \) and \(r(V) \geq rk(R^*) = rk(R) \) implying

\[
2 \cdot rk(R) \leq r(U) + r(V). \tag{3.6}
\]

Finally, (3.5) with (3.6) establishes (3.2) and the proof is done. ■

Is the inequality sharp? The left side of (3.2) yields equality whenever the entire \(N \)-element sets \(U \) and \(V \) are linearly independent (i.e., when \(n = N = rk(R) \)). In following the proof of the right-hand inequality for (3.2), we observe the two inequalities in (3.5). The first inequality yields equality if and only if

\[
\text{span}<R^*(\bar{a}_1), R^*(\bar{a}_2), \ldots, R^*(\bar{a}_n)> \cap \text{span}\langle v_{n+1}, v_{n+2}, \ldots, v_N \rangle = \{0\}.
\]

That is, by choosing each of the \(N-n \) arbitrary vectors \(v_{n+1}, \ldots, v_N \) in \(H \) outside the range of \(R^* \). The second inequality of (3.5) becomes equality if and only if the \(N-n \) element set \(\{v_{n+1}, v_{n+2}, \ldots, v_N\} \) is linearly independent.

4. **Final Remarks.** In [3, Th. 4.2, 4.3], it is shown that
\[\sum (u_1 \times v_1) = R \text{ if and only if } \sum (u_1 \otimes v_1) = R' \] (4.1)

where the passage from \(R \) to \(R' \) is a well-defined linear relationship. This provides a dual form to (3.2) with tensor products replacing the dyads of (3.1) and this \(R' \) replacing \(R \). As an easy special case, let us use (3.2) and dyad-tensor duality to justify the following statements for non-zero \(u_i, v_i, x_i, y_i \in \mathbb{H}, i = 1, 2, 3 \).

Proposition. Suppose

\[
(u_1 \times v_1) + (u_2 \times v_2) = (u_3 \times v_3), \quad \text{and} \quad (x_1 \otimes u_1) + (x_2 \otimes y_2) = (x_3 \otimes y_3). \tag{4.2a} \tag{4.2b}
\]

Then all the \(u_i \)'s or else all the \(v_i \)'s are non-zero scalar multiples of each other. Similarly, all the \(x_i \)'s or else all the \(y_i \)'s are scalar multiples of each other.

Proof. The proof of this assertion will not appeal to the definitions of the dyad \((u_1 \times v_1) \) or of the tensor \((x_1 \otimes y_1) \), since inequality (3.2) applies. In fact, write (4.2a) as

\[
(u_1 \times v_1) + (u_2 \times v_2) - (u_3 \times v_3) = 0 \quad (\text{i.e., } N = 3, R = 0) \tag{4.2a'}
\]

from which we obtain via (3.2) that

\[
2 \cdot 0 \leq r([u_1, u_2, u_3]) + r([v_1, v_2, v_3]) \leq 0 + 3. \tag{4.3}
\]
Since we have assumed no \(u_1 \) or \(v_1 \) is zero, the ranks \(r(u), r(v) \geq 1 \). At the same time, the upper bound of 3 given by (4.3) assures us that both \(r(u) = 2 \) and \(r(v) = 2 \) can not happen, i.e., at least one of the terms \(r(u), r(v) \) in (4.3) equals one, or all the \(u_j \)'s or all the \(v_j \)'s are scalar multiples of each other. By our duality result, (4.1), (4.2a') is equivalent to

\[
(u_1 \otimes v_1) + (u_2 \otimes v_2) - (u_3 \otimes v_3) = 0 ,
\]

and the same conclusion obtains, i.e., in (4.2b), either \(r((x_1, x_2, x_3)) \) or \(r((y_1, y_2, y_3)) \) equals one, or all the \(x_j \)'s or all the \(y_j \)'s are scalar multiples of each other if (4.2b) is given.
References

2. _____, Decomposable tensors as sums of dyads, Linear and Multilinear Algebra 1 (1974), 327-335.
3. _____, Characterizations of sums of dyads and of Kronecker products (submitted).
SUPPLEMENTARY

INFORMATION
Errata

AD-A040 152

Page 8 is blank.

DTIC-DDAC
31 Aug 84