IMPLEMENTATION OF A METHOD TO DETECT THE SINGLE VISUAL EVOKED RESPONSE.

Master's Thesis,

AFIT/GE/EE/77-1

Charles E. Macomber
Capt
USAF

MAY 23 1977

Approved for public release; distribution unlimited.
IMPLEMENTATION OF A METHOD TO DETECT THE SINGLE VISUAL EVOKED RESPONSE

Thesis
Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirements for the Degree of Master of Science by
Charles E. Macomber, B.S.E.
Capt USAF Graduate Electrical Engineering January 1977

Approved for public release; distribution unlimited.
Preface

This report is the result of my attempt to implement a method of detecting the single visual evoked response (VER). The problem is analogous in many respects to the radar detection problem. That is, a small signal containing the useful information is buried in a higher amplitude noise background. There are, however, a considerable number of variables in evoked response detection not all of which are fully understood. The relationship of the signal (VER) and the noise (on-going electrical activity of the brain) is a prime example.

Most of the visual evoked response research to date has dealt with the averaged VER. This requires the presentation of a large number of stimuli and the computation of an averaged response. There are possible applications of the VER that require positive detection after a single stimulus presentation. It was toward this end that this project was undertaken.

I wish to acknowledge my indebtedness to Captain Gregg L. Vaughn for his invaluable help during this study. I also wish to express my sincere appreciation to Major Robert O'Donnell for his assistance during and after the data acquisition phase. I also give my thanks to Jack Capehart for both his work in digitizing the analog data and his programming assistance. Finally, a special thanks is accorded to my wife and three sons for their patience and understanding during this period.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>2</td>
</tr>
<tr>
<td>Approach</td>
<td>2</td>
</tr>
<tr>
<td>Assumptions</td>
<td>3</td>
</tr>
<tr>
<td>Relationship of EEG and VER</td>
<td>3</td>
</tr>
<tr>
<td>II. Data Acquisition</td>
<td>5</td>
</tr>
<tr>
<td>Data Description</td>
<td>6</td>
</tr>
<tr>
<td>Template Construction</td>
<td>6</td>
</tr>
<tr>
<td>Sample Data</td>
<td>6</td>
</tr>
<tr>
<td>Analog-to-Digital Conversion</td>
<td>9</td>
</tr>
<tr>
<td>III. Matched Filter Design and Implementation</td>
<td>12</td>
</tr>
<tr>
<td>Matched Filter Derivation</td>
<td>12</td>
</tr>
<tr>
<td>Matched Filter Simulation</td>
<td>15</td>
</tr>
<tr>
<td>Noise Power Spectrum Estimation</td>
<td>17</td>
</tr>
<tr>
<td>Filter Response</td>
<td>23</td>
</tr>
<tr>
<td>Filter Implementation</td>
<td>26</td>
</tr>
<tr>
<td>IV. Results and Discussion</td>
<td>33</td>
</tr>
<tr>
<td>Results for Vertex Data</td>
<td>34</td>
</tr>
<tr>
<td>Results for Occipital Data</td>
<td>34</td>
</tr>
<tr>
<td>V. Conclusions and Recommendations</td>
<td>42</td>
</tr>
<tr>
<td>Bibliography</td>
<td>44</td>
</tr>
<tr>
<td>Appendix A: Filter Implementation Program</td>
<td>45</td>
</tr>
<tr>
<td>Vita</td>
<td>49</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vertex Template</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Occipital Template</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Vertex EEG Data Sample, 1-6 Sec</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Occipital EEG Data Sample, 1-6 Sec</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Convolution-Filter & Vertex Template</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Convolution-Filter & Occipital Template</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Vertex Noise Power Spectrum</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Occipital Noise Power Spectrum</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Modified Vertex Noise Power Spectrum</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>Modified Occipital Noise Power Spectrum</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>Vertex Matched Filter Response</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>Occipital Matched Filter Response</td>
<td>30</td>
</tr>
<tr>
<td>13A</td>
<td>Vertex Filter Output, 1-30 Sec</td>
<td>35</td>
</tr>
<tr>
<td>13B</td>
<td>Vertex Filter Output, 31-60 Sec</td>
<td>36</td>
</tr>
<tr>
<td>13C</td>
<td>Vertex Filter Output, 61-90 Sec</td>
<td>37</td>
</tr>
<tr>
<td>14A</td>
<td>Occipital Filter Output, 1-30 Sec</td>
<td>38</td>
</tr>
<tr>
<td>14B</td>
<td>Occipital Filter Output, 31-60 Sec</td>
<td>39</td>
</tr>
<tr>
<td>14C</td>
<td>Occipital Filter Output, 61-90 Sec</td>
<td>40</td>
</tr>
</tbody>
</table>
Abstract

The visually evoked response (VER) is one neural response to an external event. Through computer averaging techniques the evoked response to a particular stimulus is readily available. However, there are some anticipated applications which require detection of the VER after a single stimulus presentation. The approach in this report describes an attempt to detect the single visual evoked response. The approach taken is based on the similarity of the problem to that of radar detection in which a known signal is buried in noise. Using the discrete Fourier transform (DFT) and other digital signal processing techniques, a filter matched to the VER template was computed and implemented on a digital computer.

Computation of the matched filter required an estimate of the noise power spectrum, where the noise in this case is the on-going electrical activity of the brain. This was accomplished by averaging modified periodograms. Data from both the vertex and occipital regions were filtered to determine if one region produced better results than the other.

The results indicate that the matched filter will detect the single evoked response. However, the false alarm rate is high. The filtered output for data from both regions indicate there were several stimuli in a given time period when few were actually presented. These results give rise to the conclusion that some components of the on-going activity match well with the filter. It is suggested that the effectiveness
of the matched filter approach may be improved by prefilttering the sample data to remove the contaminating components.
IMPLEMENTATION OF A METHOD TO
DETECT THE SINGLE VISUAL EVOKED RESPONSE

I. Introduction

The visually evoked response (VER) is one neural response to an external event. In practice, discrete visual stimuli such as light flashes can be discerned in the electroencephalogram (EEG), and these representations provide valuable information concerning the processing of the visual stimulus. However, the neural event generated in response to this stimulus is extremely small with respect to the on-going, spontaneous electrical activity of the brain as measured by the EEG, creating a signal-to-noise ratio which is unfavorable. The typical way to improve this ratio has been to average the response to a great number of stimulus presentations, allowing the average of the random activity to build slowly, while the actual evoked response builds quickly. While satisfactory in many applications, this technique precludes using the evoked response in a number of other applications. In particular, there are instances in which the VER is useful only if it can be detected after one stimulus presentation.

Purpose

The purpose of this research was to implement a method of detecting the visually evoked response after a single stimulus presentation. The scope of this work is limited to the signals and signal detection scheme used in the implementa-
tion. However, a brief discussion of the means of obtaining the experimental data is in order and will be presented in Chapter II.

Background

Approach. The approach taken was to consider signal detection methods known from information processing theory. The matched filter technique was selected since response detection, and not reproduction (fidelity) of the response was the primary objective.

A matched filter maximizes the ratio of the peak signal to rms noise and is used to detect the presence of the individual evoked response following a stimulus presentation. With the matched filter the output signal-to-noise ratio is a function solely of the energy in the signal (VER) and the spectral density of the on-going background activity which will be referred to as noise. It is the energy in the signal that provides its ultimate detectability in noise (Ref. 1:416).

The filter was constructed (e.g., simulated on a digital computer) from a template of the VER. When an individual evoked response to a single stimulus presentation closely matches the template the filter output is maximized. That is, the filter output is a pulse which indicates that the stimulus was perceived by the brain. In essence, the matched filter procedure is a cross-correlation between the expected waveform (or template) and the incoming data. When the two match well, the resulting cross-correlation is high.
If a predetermined threshold is exceeded the decision is made that an evoked response has occurred.

Assumptions. The implementation of the approach outlined above required some basic assumptions to be made. First, it was assumed that the signal activity will be similar with each stimulus presentation. It was also assumed that the averaged VER is a valid representation of each individual evoked response. A further assumption was to assume that the background activity and evoked response are additive. And, finally, the noise activity and the VER were assumed to be uncorrelated. The validity of these assumptions will be discussed along with the results in Chapter IV.

Relationship of the EEG and VER. The EEG and VER are complex phenomena whose specific electrogenseses are unknown (Ref. 2:40). The background activity is approximately ten times as great as the evoked response to a single visual stimulus with both having amplitudes measured in microvolts.

The EEG is often considered to be a mixture of activity compartmentalized into various frequency ranges. Starting with the low frequency range there is the delta rhythm or activity which is usually described as less than 4 Hz. Delta rhythm does not usually appear in normal awake adults. Next, the theta activity appears in the frequency band of 4-7 Hz. This activity is usually of low voltage. The most often encountered activity is alpha, which occurs in the range of 8-13 Hz. This activity is usually large and quite prominent. Alpha or alpha-like activity appears to be the major contaminant of the VER. The two remaining rhythms are beta,
usually described as low voltage, fast EEG in the range of 18–30 Hz, and gamma which occupies the frequency range of 35–50 Hz. This latter activity is seldom encountered or described and has little general acceptance (Ref. 3:25–26).

The data acquisition procedure is discussed in Chapter II. A complete discussion of the signal detection methodology follows in Chapter III. Results are presented and discussed in Chapter IV. An outline of the conclusions drawn and recommendations for future work are offered in Chapter V.
II. Data Acquisition

Data were obtained via a VER experiment designed by Major Robert O'Donnell of the Aerospace Medical Research Laboratory at Wright-Patterson Air Force Base, Ohio. The experiment was designed to optimize the averaged evoked response and thus increase the chances for successful detection. The experimental procedures and instrumentation are described in great detail by a previous Air Force Institute of Technology thesis (Ref. 4:8-33). In running a VER experiment there are many variables to be considered which influence the VER. Perry and Childers present a detailed discussion of these variables and their effect on experimental results (Ref. 3:49-84).

In its basic form the VER experiment consists of the following steps. Electrodes in contact with the scalp conduct the continuous electrical activity to an amplifier. The amplified signal is then fed to a signal averaging computer. If the signal were recorded prior to entering the computer, it would be described as the EEG. In order to obtain a VER, the computer triggers the light stimulus some predetermined number of times and simultaneously averages the scalp electrical activity evoked between stimuli. The resulting average of the nonrandom activity is the VER. A control or noise trial is obtained in exactly the same manner, except the stimulus is occluded.
Data Description

For purposes of this research four channels of information were recorded. One channel consists of vertex data with a second channel containing the occipital information. The third and fourth channels contained timing and stimulus triggering data. All follow-on data processing was duplicated to determine which region produced the higher probability of evoked response detection.

The experiment consisted of two parts. During the first series the template was constructed. In the second part test data were recorded which would allow study of the background activity while at the same time providing sample data. This sample data would later be used to test the matched filter.

Template Construction. Eight averaged VER's were obtained for each channel. The stimulus rate used was one presentation every five seconds for eight periods of five minutes each. A black and white checkerboard pattern was used as the stimulus. The individual responses for each period were computer averaged to arrive at the eight averaged VER's mentioned previously. One template for each channel was then computed by taking the average of these eight. The resulting templates are shown in Figs. 1 and 2 respectively. Each template is approximately 20 microvolts peak-to-peak (maximum) and 500 milliseconds in duration.

Sample Data. The sample data were obtained by running three 10 minute sessions on the day after the templates were constructed. A random stimulus presentation rate was used
Figure 1. Vertex Template
FIGURE 2. OCCIPITAL TEMPLATE
for each of these sessions. For the first run the rate was an average of one stimulus every 60 seconds. Next, an average rate of one every 30 seconds was used, and for the final session one every 10 seconds. Since the evoked response has little effect on the background activity the combined 30 minutes of sample data were assumed to approximate raw EEG for purposes of noise computations. Examples of vertex and occipital data are shown in Figs. 3 and 4 respectively. The time period for each sample is six seconds and the approximate peak-to-peak maximum amplitude is 100 microvolts.

Analog-to-Digital Conversion

All data were digitized on the hybrid computer facility of the Computer Science Center at Wright-Patterson Air Force Base, Ohio. Personnel of the Analog and Hybrid Branch developed programs to digitize the data, convert it to a 60-bit, CDC 6600 compatible representation, and store it on magnetic tapes. A sampling rate of 1000 per second was used which far exceeds the minimum requirement to sample at twice the highest signal frequency.
FIGURE 3. VERTEX EEG DATA SAMPLE, 1-6 SEC.
FIGURE 4. OCCIPITAL EEG DATA SAMPLE, 1-6 SEC.
III. Matched Filter Design and Implementation

The fundamental problem to solved is the detection of a known signal that is buried in noise. Its solution calls for a filter which will maximize the signal-to-noise ratio at its output. Under the assumptions listed in Chapter I matched filtering is the optimum method of implementing this solution.

This chapter begins with an overview of the matched filter derivation. Following this is a discussion of the matched filter simulation using the digital computer. Included in this discussion are a description of the discrete Fourier transform (DFT) and the method used to determine the noise power density spectrum. And, finally, the filtering algorithm used to filter the sample data is presented.

Matched Filter Derivation

Considering the VER template as the signal $s(t)$, its frequency spectrum $S(f)$ is given by the Fourier transform

$$S(f) = \int_{-\infty}^{\infty} s(t)e^{-j2\pi ft}dt. \quad (1)$$

The signal is applied with additive noise, $n(t)$ (the ongoing background activity), to the input of a linear filter with transfer function $H(f)$. It is desired to determine the characteristics of $H(f)$ that will give the greatest ratio of peak signal to rms noise at the output when the input, $x(t)$, is $s(t) + n(t)$. The linear aspects of the filter allow the
signal and noise to be treated separately and the output results added.

If signal, \(s(t) \), alone is applied to the filter, the output, \(g(t) \), is given by

\[
g(t) = \int_{-\infty}^{\infty} S(f)H(f)e^{j2\pi ft} df.
\] (2)

The magnitude of \(g(t) \) will be maximum at some time \(t = t_0 \), or

\[
\left| g(t_0) \right| = \left| \int_{-\infty}^{\infty} S(f)H(f)e^{j2\pi ft_0} df \right| \geq g(t).
\] (3)

If the input noise power density is considered to be \(B(f) \) watts/Hz, the mean square noise power at the output of the filter, \(N_0 \), is seen to be

\[
N_0 = \int_{-\infty}^{\infty} B(f) \left| H(f) \right|^2 df.
\] (4)

where,

\[
B(f) = \left| A(f) \right|^2.
\] (5)

The ratio to be maximized by the proper selection of \(H(f) \) is the peak signal to rms output noise, \(\left| g(t_0) \right| / \sqrt{N_0} \). This is accomplished by squaring, dividing by the energy in the input signal, \(E \), and applying Schwartz's inequality. The steps required are shown below.
\[\frac{|g(t_0)|^2}{E_{\text{no}}} = \frac{\int_{-\infty}^{\infty} S(f)H(f)e^{j2\pi f t_0} \, df}{\int_{-\infty}^{\infty} B(f)|H(f)|^2 \, df \int_{-\infty}^{\infty} |S(f)|^2 \, df} \]

(6)

\[\frac{\int_{-\infty}^{\infty} S(f)H(f)A(f)e^{j2\pi f t_0} \, df}{\int_{-\infty}^{\infty} B(f)|H(f)|^2 \, df \int_{-\infty}^{\infty} |S(f)|^2 \, df} \]

(7)

\[\leq \frac{\int_{-\infty}^{\infty} |S(f)|^2 \, df \int_{-\infty}^{\infty} |H(f)A(f)e^{j2\pi f t_0}|^2 \, df}{\int_{-\infty}^{\infty} B(f)|H(f)|^2 \, df \int_{-\infty}^{\infty} |S(f)|^2 \, df} \]

(8)

The ratio can therefore be maximized by letting

\[H(f)A(f) = \frac{S^*(f)}{A^*(f)} \]

(9)

or,

\[H(f) = \frac{S^*(f)e^{-j2\pi f t_0}}{A(f)A^*(f)} \]

(10)

\[S^*(f)e^{-j2\pi f t_0} = \frac{B(f)}{A(f)} \]

(11)

The filter may have an attenuation or gain, K, that is not a function of frequency. Thus, for a non-white noise power...
density spectrum, the transfer function of the matched filter is,

\[H(f) = \frac{K S^*(f) e^{-j2\pi f t}}{B(f)}. \] \hspace{1cm} (12)

Equation (12) demonstrates that the optimum filter weights most heavily those spectral components of the input signal which greatly exceed the noise spectral density and de-emphasizes the spectral regions in which the noise spectral density is much larger than the signal spectrum (Ref. 5:146).

Matched Filter Simulation

The output of the analog-to-digital process described in Chapter I is a discrete time signal represented by a digital sequence \(x(n) \). For this sequence it is possible to utilize an alternative Fourier representation referred to as the discrete Fourier transform (DFT). The DFT is a Fourier representation of a finite-length sequence which is itself a sequence rather than a continuous function. The DFT is essential for the computer implementation of a variety of digital signal processing problems. Computation time for the DFT has been reduced significantly by using fast Fourier transform (FFT) algorithms such as the one used in this study (Ref. 6:331). A detailed discussion of the DFT and derivation of computer algorithms for the FFT is presented in Reference (6).

The discrete Fourier transform of a sampled continuous
The time function \(f(t) \) is

\[
F(kv) = \sum_{n=0}^{N-1} f(nT)e^{-jvTnk}
\]

(13)

where,

- \(f(nT) \) are samples of \(f(t) \), \(0 \leq n \leq N-1 \)
- \(T \) is the sampling interval
- \(F(kv) \) are samples of \(F(f) \), \(0 \leq k \leq N-1 \)
- \(v = \frac{2\pi}{NT} \), and \(N \) = number of samples of \(f(t) \).

Its inverse discrete Fourier transform (IDFT) is given by

\[
f(nT) = \frac{1}{N} \sum_{k=0}^{N-1} F(kv)e^{jvTnk}
\]

(14)

Since the data were sampled at a rate greater than twice the highest frequency of \(F(kv) \), the discrete-time Fourier transform of \(f(nT) \) is equivalent to samples, equally spaced in frequency, of the Fourier transform of the sequence \(f(t) \).

The discrete matched filter transform can therefore be written as

\[
H(w) = \frac{KS^*(w)}{B(w)}
\]

(15)

where \(B(w) \) is the power density spectrum of the background activity. This is the discrete form of Eq. (12) with the exponential term dropped. The exponential serves to specify the time \(t_0 \) where the peak output will occur. However, the delay inherent in the filter can be observed in the
convolution of each template with its corresponding matched filter. For both cases $t_0 = 512$ milliseconds as can be seen in Figs. 5 and 6.

The problem at this point, then, is to compute the DFT of the filter. In order to do this the background power density spectrum must first be determined.

Noise Power Spectrum Estimation. The background activity is of indefinite duration and not periodic. Consequently, the discrete time signal which represents this activity can be modeled best in terms of an infinite-duration infinite-energy signal. Many of the properties of this type of signal can be summarized in terms of a finite-energy sequence called the autocovariance sequence, for which the Fourier transform exist. As will be developed below, the determination of the autocovariance sequence and its Fourier transform leads to a useful interpretation in terms of the frequency distribution of the power in the signal. For an exact signal the power density spectrum, $P(w)$, is defined as the Fourier transform of its autocovariance sequence.

The fundamental concept in the mathematical representation of infinite-energy signals is that of a random process. In the discussion that follows, it is assumed that the reader is familiar with fundamental concepts of probability and random processes.

The procedure used in determining a useful estimate of the noise power spectrum is basically the Welch method (Ref. 6:553-554). Implementation of this method calls for averaging
FIGURE 5. CONVOLUTION-FILTER & VERTEX TEMPLATE
FIGURE 6. CONVOLUTION-FILTER & OCCIPITAL TEMPLATE
modified periodograms. Periodograms are themselves estimates of the spectrum of a finite sequence. The usefulness of the noise power spectrum so determined requires that it converge to some meaningful result as the measurement interval increases. A simple and useful way of defining convergence is by requiring that the variance of the estimate approach zero as the measurement interval increases (Ref. 7:399).

As an estimate of the power density spectrum consider the Fourier transform of the biased autocovariance estimate \(c(m) \), e.g.,

\[
I_N(w) = \sum_{m=-(N-1)}^{N-1} c(m) e^{-jwm}.
\]

(16)

Since the Fourier transform of the real finite-length sequence \(x(n), 0 \leq n \leq N-1 \), is

\[
X(e^{jw}) = \sum_{n=0}^{N-1} x(n) e^{-jwn}
\]

(17)

and it can be shown that

\[
I_N(w) = \frac{1}{N} |X(e^{jw})|^2.
\]

(18)

The spectrum estimate \(I_N(w) \) is called the periodogram (Ref. 6:542). However, the variance of \(I_N(w) \) does not approach zero as \(N \) approaches infinity.
\[\text{var} \left[I_N(w) \right] = \text{cov} \left[I_N(w), I_N(w) \right] \]
\[= P^2(w) \left[1 + \left(\frac{\sin(wN)}{\sin(w)} \right)^2 \right] \quad (19) \]

Thus, the periodogram is not a consistent estimate.

A standard approach to reducing the variance of estimates is to average over a number of independent estimates. The application of this approach to spectrum estimation is often attributed to Bartlett (Ref. 648). Therefore, the data sequence \(x(n) \), representing the background activity, is divided into \(K \) segments of \(M \) samples each so that \(N = KM \); e.g., forming the segments

\[x^{(i)}(n) = x(n+im-m), \ 0 \leq n \leq m-1, \ 1 \leq i \leq K. \quad (20) \]

Next, the \(K \) periodograms are computed from Eq. (21).

\[I_M^{(i)}(w) = \frac{1}{M} \left| \sum_{n=0}^{M-1} x^{(i)}(n)e^{-jwn} \right|^2, \ 1 \leq i \leq K \quad (21) \]

The spectrum estimate is then defined as,

\[B(w) = \frac{1}{K} \sum_{i=1}^{K} I_M^{(i)}(w). \quad (22) \]

To determine if this is a useful estimate consider its variance as described in Eq. (23).
\[\text{var}[B(w)] = \frac{1}{K} \text{var}[I_M(w)] \]
\[\approx \frac{1}{K} p^2(w) \left[1 + \left(\frac{\sin(wM)}{M \sin(w)} \right)^2 \right] \] (23)

It is clear that the variance of \(B(w) \) is inversely proportional to the number of periodograms averaged, and as \(K \) gets large, the variance approaches zero. Therefore, the Bartlett estimate is a consistent estimate.

The Welch method is a modification of the Bartlett procedure. It is particularly well suited for direct computation of the power spectrum estimate using the FFT. In this procedure the data record is again sectioned into \(K = N/M \) segments of \(M \) samples each as defined in Eq. (20). However, the periodograms are modified by applying the triangular window sequence, \(w(n) \), directly to the data segments before computation of the periodogram. Thus, the \(K \) modified periodograms are defined by

\[J_M^{(i)}(w) = \frac{1}{MU} \left| \sum_{n=0}^{M-1} x^{(i)}(n)w(n)e^{-jwn} \right|^2 \]

\[i = 1, 2, \ldots, K \] (24)

where,

\[w(n) = \begin{cases}
\frac{2n}{N-1}, & 0 \leq n \leq \frac{N-1}{2} \\
2 - \frac{2n}{N-1}, & \frac{N-1}{2} \leq n \leq N-1
\end{cases} \]
and,

$$U = \frac{1}{M} \sum_{n=0}^{M-1} w^2(n).$$ \hfill (25)

The spectrum estimate is then defined as,

$$B(w) = \frac{1}{K} \sum_{i=1}^{K} J_M(i)(w).$$ \hfill (26)

Welch (Ref. 8) shows that if the segments of $x(n)$ are non-overlapping, such as in the present case, then

$$\text{var}[B(w)] \approx \frac{1}{K} P^2(w).$$ \hfill (27)

This is the same as for the Bartlett method and is therefore a consistent estimate.

As described above, then, a consistent estimate of the noise power spectrum was computed by averaging modified periodograms. The sample data were divided into 3510 segments of 512 samples each. Each segment was multiplied by the 512 point window sequence and then a 512 point FFT algorithm was computed. The magnitude of the FFT for each segment was squared and the power spectrum $P(w)$ was determined by taking the average of these squares. Figures 7 and 8 show the spectrum for the vertex and occipital channels respectively. The magnitude shown is in log_{10} format.

Filter Response. The matched filter response was computed from Eq. (15) by first computing $H(w)$. Dividing the
FIGURE 7. VERTEX NOISE POWER SPECTRUM
FIGURE 8. OCCIPITAL NOISE POWER SPECTRUM
complex conjugate of $S(w)$ by $B(w)$ yields $H(w)$. The constant K was arbitrarily set equal to one. Thus, the filter response, $h(n)$, is computed by finding the IDFT of $H(w)$.

The first computation of $h(n)$ did not produce the desired results. Upon inspection of Figs. 7 and 8, the higher frequency components are seen to be over emphasized. To correct this condition the power spectrum for both channels were modified. The curves were first mathematically smoothed. Then, to reduce the peak magnitudes the eighth root of the power spectrum was computed. The results of this procedure are shown in Figs. 9 and 10.

The matched filter response for each channel was then recomputed. As shown in Figs. 11 and 12, the resulting response curves very closely approximate the template signals running backwards in time.

Filter Implementation

In the general case the filtered output, $y(n)$, is computed by performing a linear convolution of the input signal and filter response, e.g.,

$$y(n) = \sum_{n=0}^{N-1} x(m)h(n-m)$$ \hspace{1cm} (28)

where,

- $x(n)$ is the input signal
- $h(n)$ is the filter response.
FIGURE 9. MODIFIED VERTEX NOISE POWER SPECTRUM
FIGURE 10. MODIFIED OCCIPITAL NOISE POWER SPECTRUM
FIGURE 11. VERTEX MATCHED FILTER RESPONSE
FIGURE 12. OCCIPITAL MATCHED FILTER RESPONSE
If both \(x(n) \) and \(h(n) \) are \(N \)-point sequences the output sequence will have at most \(2N-1 \) nonzero points.

For the problem at hand the input sequence is the on-going EEG containing randomly occurring VER signals. This sequence has an indefinite length and therefore must be segmented. The segment size selected was 512 points which is equal in length to the filter response sequence.

The discrete Fourier transform was utilized to effect the required linear convolution by performing a circular convolution between each input data segment and the filter response. A circular convolution is implemented by computing the DFT's of the two sequences, multiplying, and computing the IDFT of the product. To effect the linear convolution, however, there are some additional steps involved.

Prior to computing the DFT's the sequences must be zero filled to at least \(2N-1 \) points. In this case each sequence was made 1024 points in length and the DFT's were then computed on this basis. To construct the filtered output for the entire input sequence the results for the individual filtered segments must be added in a particular manner.

The procedure used to construct the filtered output from filtered segments is referred to as the overlap-add method (Ref. 6:112-113). Each filtered segment of length 1024 points will overlap the previous segment by 512 points. Thus, each filtered segment is overlapped with and added to the previous segment to construct the filtered output. The program used to implement this procedure is included in Appendix A.
Computer memory space requirements were high. To filter 30 seconds of data required approximately 200,000 octal words and consequently this was the maximum amount of data filtered per run. Results of the filter implementation are presented in the following chapter.
IV. Results and Discussion

Using the computed filter response and the overlap-add filtering scheme described in Chapter III, 30 second segments of sample data were filtered for both the vertex and occipital channels. The filtered output should show a positive peak whenever a stimulus was perceived by the subject. This peak should be well defined and have greater amplitude than the output where no stimulus occurred.

The sample data were arranged in three 10 minute files according to the stimulus rate used. File one is the one per 60 seconds rate; file two contains one stimulus per 30 seconds; and file three contains the one per 10 seconds rate.

Data from each file were filtered producing similar results in all cases. Therefore, the discussion that follows will be limited to the results of filtering the first 90 seconds from file one for both channels. Because the stimulus presentation rate is an average rate there are six stimuli occurring in these 90 seconds. These occurred at 0, 15, 30, 45, 60, and 76.5 seconds into the experiment. To simplify the discussion these will henceforth be referred to as stimulus A, B, C, D, E, and F respectively.

As will become obvious upon examination of the filtered output data, a decision as to whether or not a given evoked response was detected is somewhat arbitrary. The criteria for judging a positive detection was based primarily upon the appearance of a sharp peak .5 to 1.0 seconds after the stimulus was presented. First to be discussed is the vertex
data results followed by the results for the occipital data.

Results for Vertex Data

The vertex filter output is shown in Figs. 13A, B, and C. Clearly, the desired pattern is not in evidence. There are some peaks which are distinct and of greater amplitude than a majority of the remaining output. However, these do not coincide with the presentation of stimuli. Closer examination of the smaller peaks reveal concurrence (within .5 to 1.0 seconds afterward) with B, C, D, E, and F. The amplitude of these peaks ranges from 2.4 to 5.0 microvolts. Although the match between the filter and some of these single VER's is relatively poor they do indicate a positive detection rate of 83.3%. This is speculative to be sure. It is apparent that the on-going background activity contains other components that match well with the matched filter. For instance, the high amplitude peaks appearing at approximately 39 and 80 seconds coincide with alpha or alpha-like rhythm in the background activity.

Results for Occipital Data

The occipital filter output is shown in Figs. 14A, B, and C. As with the vertex filter the desired output was not achieved. Again there are some peaks which coincide with the presentation of stimuli. Specifically, these appear for A, B, C, D, and F with amplitudes ranging from 1.75 to 5.0 microvolts. This would also indicate a positive detection rate of 83.3%. It should be noted that high amplitude peaks occur at
FIGURE 13A. VERTEX FILTER OUTPUT, 1-30 SEC.
FIGURE 138. VERTEX FILTER OUTPUT, 31-60 SEC.
FIGURE 13C. VERTEX FILTER OUTPUT. 61-90 SEC.
FIGURE 14A. OCCIPITAL FILTER OUTPUT. 1-30 SEC.
FIGURE 14C. OCCIPITAL FILTER OUTPUT. 61-90 SEC.
39 and 80 seconds as in the vertex output. However, there are other high amplitude peaks, indicating a good match, such as the one at approximately 11 seconds for which no apparent explanation is available.
V. Conclusions and Recommendations

Conclusions

The objective of this project was to implement a detection scheme which would detect the visually evoked response to a single stimulus. This VER is known to be buried in the brain's on-going electrical activity. Based on the results of this study the following conclusions were drawn:

1. The matched filter will yield a positive detection rate of over 80%. However, its usefulness is nullified by the high number of false alarm indications in the filter output.

2. At this point no distinction can be made as to whether the vertex data or the occipital data is more preferable for single VER detection.

3. Because of the additional apparent matchings the matched filter by itself is not an effective method of single evoked response detection.

Recommendations

It is recommended that further study in this area consider some modifications to the basic matched filter approach described in this report. The validity of the averaged VER, which is used as the template, requires further study. There can be marked differences between any two individual responses although stability of the final averaged VER does not suggest the fluctuation of these contributing responses (Ref. 3:11-12, 2:73).
Further study is required into the relationship between the VER and the on-going background activity. The interaction between them is additive only to a first approximation. There is evidence of a non-linear or non-stationary interaction between the background activity and an evoked response. This non-linear interaction can also be inferred from an examination of evoked responses to single flashes of light such as in the present case. A large percentage of the time these individual evoked responses can be observed by the eye, despite the level of background activity - that is, the noise seems to be suppressed during the major portion of the evoked response (Ref. 3:27-28).

A final recommendation is to study the effectiveness of prefiltering the sample data with a bandpass filter to eliminate the low and high frequency noise components. Also, since alpha or alpha-like activity appears to be the major contaminant of the VER more than one bandpass filter may be in order. There is some speculation that comb filtering may provide some positive results. This technique utilizes a series of bandpass filters which pass only those frequency components that contribute to the evoked response and reject those frequency regions which are conjectured to be contaminated by noise alone (Ref. 3:113).
Bibliography

Appendix A

Filter Implementation Program
* THIS PROGRAM IMPLEMENTS THE TEMPLATE MATCHED FILTER TO DETECT SINGLE *
* VISUALLY EVOKED RESPONSES IN A 30 SECOND SECTION OF THE SAMPLE DATA. *

DIMENSION TEMPS(2,512),ASAMP(512),3SAMP(1024),FI(1024),
1Y(30800),IJF(1024),ID(10),X(6145)
COMPLEX S1(1024),FF(1024),YY(1024)
NSAMP = SAMPLE DATA SEGMENT COUNTER
FI = VERTEX FILTER RESPONSE
Y = FILTERED OUTPUT
NSAMP=0
READ(5,110) (FI(I),I=1,512)
110 FORMAT(1E11,4)
00 2 I=1,1024
FI(1)=0.
2 CONTINUE
00 3 I=1,30720
Y(I)=0.
3 CONTINUE
READ 150,(I(I),ID(I+1),I=1,17,2)
150 FORMAT(2X,A10,A10)
READ(5,110) (FI(I),I=1,512)
00 4 I=1,1024
FF(I)=CMPLX(FI(I),0,0)
4 CONTINUE
CALL FFT(FF,10,-1)
C FF = DISCRETE FOURIER TRANSFORM OF THE FILTER RESPONSE
5 READ(7)I1,I2,(TEMPS(I1,I),I=1,500)
C TEMPS = TEMPLATE DATA (NOT USED IN THIS PROGRAM)
IF (EOF(7)) 40, 5
40 READ(7) I1, I2, (ASAMP(I), BSAMP(I), I = 1, 256)
READ(7) I1, I2, (ASAMP(I), BSAMP(I), I = 257, 312)
C ASAMP = VERTEX SAMPLE DATA
C BSAMP = OCCIPITAL SAMPLE DATA
NSAMP = NSAMP + 1
IF (NSAMP .LE. 50.116) 42, 43
42 NSAMP = 0
47 READ(7) I1, I2, (ASAMP(I), BSAMP(I), I = 1, 256)
READ(7) I1, I2, (ASAMP(I), BSAMP(I), I = 257, 312)
NSAMP = NSAMP + 1
IF (NSAMP .EQ. 59) 60 TO 90
DO 49 I = 513, 1024
3SAMP(I) = .0.
49 CONTINUE
DO 50 I = 1, 1024
S1(I) = CMPLX(3SAMP(I), 0.0)
50 CONTINUE
CALL FFT(S1, 10, -1)
C S1 = DISCRETE FOURIER TRANSFORM OF VERTEX DATA SEGMENT
DO 50 I = 1, 1024
YY(I) = FF(I) * S1(I)
50 CONTINUE
CALL FFT(YY, 10, 1)
LX = 512*(NSAMP-1)
DO 70 I = 1, 1724
KK = I + LX
Y(KK) = Y(KK) + (REAL(YY(I)) / (1024.**2))
70 CONTINUE
GO TO 43

43

X(1)=0
DZ=0.01
I=1

IF(A*S(X(J)-X)**2+AS(Y(J)-Y)**2)*0.05.LT.0.01 GO TO 150

J=1

DX=60

150 CALL PLOTS(BUF,1024,4,0,0.0)
CALL PLOTS(BUF,1024,-3,0,0.0)
CALL HGRAP(BUF,Y,Y,J,1,0.74)
CALL PLOT((1)

END
Vita

Charles Edward Macomber was born 9 May 1945 in Charleston, West Virginia. He earned a Bachelor of Science Degree in Engineering from Widener College, Chester, Pennsylvania in 1970. Upon graduation from Officer's Training School in September of that year he received a commission in the United States Air Force. After completion of communication officer training in May of 1971 he was assigned to Tyndall Air Force Base, Florida. While at Tyndall he served as the communication officer for the 678th Air Defense Group (ADC). In June of 1973 he was assigned to Iran as a Technical Assistance Field Team (TAFT) team chief. In June of 1974 he entered the Engineering Science program at the Air Force Institute of Technology.
Implementation of a Method to Detect the Single Visual Evoked Response

Charles E. Macomber
Capt USAF

Air Force Institute Of Technology (AFIT/EN)
Wright-Patterson AFB, Ohio 45433

Aerospace Medical Research Laboratory (AMRL/HEA)
Wright-Patterson AFB, Ohio 45433

Charles E. Macomber
Capt USAF

Implementation of a Method to Detect the Single Visual Evoked Response

Implementation of a Method to Detect the Single Visual Evoked Response

Evoked Response
Signal Processing
Power Spectrum
Matched Filter
Discrete Fourier Transform

The visually evoked response (VER) is one neural response to an external event. Through computer averaging techniques the evoked response to a particular stimulus is readily available. However, there are some anticipated applications which require detection of the VER after a single stimulus presentation.
This report describes an attempt to detect the single visual evoked response. The approach taken is based on the similarity of the problem to that of radar detection in which a known signal is buried in noise. Using the discrete Fourier transform (DFT) and other digital signal processing techniques a filter matched to the VER template was computed and implemented on a digital computer.

Computation of the matched filter required an estimate of the noise power spectrum, where the noise in this case is the on-going electrical activity of the brain. This was accomplished by averaging modified periodograms. Data from both the vertex and occipital regions were filtered to determine if one region produced better results than the other.

The results indicate that the matched filter will detect the single evoked response. However, the false alarm rate is high. The filtered output for data from both regions indicate there were several stimuli in a given time period when few were actually presented. These results give rise to the conclusion that some components of the on-going activity match well with the filter. It is suggested that the effectiveness of the matched filter approach may be improved by prefiltering the sample data to remove the contaminating components.