NETWORK TIMING/SYNCHRONIZATION EVALUATION MODELING

Clarkson College of Technology

Approved for public release; distribution unlimited.
This report has been reviewed by the RADC Information Office (01) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

This report has been reviewed and approved for publication.

APPROVED: JACOB SCHERER
Project Engineer

APPROVED: JOSEPH J. NARESKY
Chief, Reliability and Compatibility Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or destroy.
<table>
<thead>
<tr>
<th>Title/Subject</th>
<th>Network Timing/Synchronization Evaluation Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performing Organization Name and Address</td>
<td>Clarkson College of Technology, Potsdam NY 13676</td>
</tr>
<tr>
<td>Controlling Office Name and Address</td>
<td>Rome Air Development Center (RADC), Griffiss AFB NY 13441</td>
</tr>
<tr>
<td>Monitor Agency Name and Address (if different from Controlling Office)</td>
<td>Same</td>
</tr>
<tr>
<td>Security Class. (of this report)</td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited.

Distribution Statement: Same

Supplementary Notes:

RADC Project Engineer: Jacob Scherer (RBC)

Key Words:

Digital Communications
Network Timing
Synchronization
Electromagnetic Compatibility

Abstract:

Digital transmission techniques are expected to play an important role in future Defense Communication Systems, since they offer many advantages over analog methods. One of the important requirements for digital transmission is synchronization of nodal clocks. This report evaluates four proposed synchronization techniques (Discrete-Control-Correction, Master Slave, Independent Clocks, and Time Reference Distribution) with respect to a set of overall system objectives. It is found that of the proposed techniques,
the time reference distribution technique with further refinements will best meet the DCS requirements.
This effort was conducted by Clarkson College of Technology under the sponsorship of the Rome Air Development Center Post-Doctoral Program for Defense Communications Agency (DCA). Harris Stover of DCA was the task project engineer and provided overall technical direction and guidance.

The RADC Post-Doctoral Program is a cooperative venture between RADC and some sixty-five universities eligible to participate in the program. Syracuse University (Department of Electrical and Computer Engineering), Purdue University (School of Electrical Engineering), Georgia Institute of Technology (School of Electrical Engineering), and State University of New York at Buffalo (Department of Electrical Engineering) act as prime contractor schools with other schools participating via sub-contracts with the prime schools. The U.S. Air Force Academy (Department of Electrical Engineering), Air Force Institute of Technology (Department of Electrical Engineering), and the Naval Post Graduate School (Department of Electrical Engineering) also participate in the program.

The Post-Doctoral Program provides an opportunity for faculty at participating universities to spend up to one year full time on exploratory development and problem-solving efforts with the post-doctorals splitting their time between the customer location and their educational institutions. The program is totally customer-funded with current projects being undertaken for Rome Air Development Center (RADC), Space and Missile Systems Organization (SAMSO), Aeronautical Systems Division (ASD), Electronic Systems Division (ESD), Air Force Avionics Laboratory (AFAL), Foreign Technology Division (FTD), Air Force Weapons Laboratory (AFWL), Armament Development and Test Center (ADTC), Air Force Communications Service (AFCS), Aerospace Defense Command
(ADC), Hq USAF, Defense Communications Agency (DCA), Navy, Army, Aerospace Medical Division (AMD), and Federal Aviation Administration (FAA).

Further information about the RADC Post-Doctoral Program can be obtained from Jacob Scherer, RADC/RBC, Griffiss AFB, NY, 13441, telephone AV 587-2543, COMM (315) 330-2543.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Organization and Reorganization Example</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Flow Chart for the Random Network Data Base Generator</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Flow Chart for the Random Network Data Base Lister</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Sample Networks Listed from the Data Base</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Averaged Organization Iterations for Simulators Al to B5</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>Averaged Reorganization Iterations for Simulators Al to B5</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>Flow Chart for the Decision Rule Simulator Program</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>Averaged Iterations for Initial Organization</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>Averaged Iterations for Reorganization</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>Standard Test Network Configuration</td>
<td>50</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Description of Synchronization Techniques Under Consideration</td>
<td>6</td>
</tr>
<tr>
<td>2:1</td>
<td>Master-Slave Method</td>
<td>6</td>
</tr>
<tr>
<td>2:2</td>
<td>Discrete-Control Correction</td>
<td>6</td>
</tr>
<tr>
<td>2:3</td>
<td>Independent Clocks</td>
<td>7</td>
</tr>
<tr>
<td>2:4</td>
<td>Time-Reference Distribution Method</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Criteria for the Comparison of Synchronization Techniques</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Interpretation of the Comparative Study</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Rules for Path Selection in Time Reference Distribution</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Proof of Network Organization Under the Selection and Decision Rules</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Random Test Network Generator</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>Simulations of Path Selection Rules</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>Network Test Models for Evaluating Synchronization</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>Conclusions</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>55</td>
</tr>
<tr>
<td>Appendix</td>
<td>Computer Program</td>
<td>60</td>
</tr>
<tr>
<td>Appendix</td>
<td>Standard Test Network</td>
<td>69</td>
</tr>
</tbody>
</table>
Network timing and synchronization are becoming ever more important in the field of communications. In particular, the switching and multiplexing of digital communications channels depends heavily on the ability of a network to maintain synchronization. For example, time division switching requires that the switch and the incoming channels have a common time reference. Even where time division switching is not used, such as, for example, in a space division switch, various digital data streams must be multiplexed together to form data streams which effectively utilize the available bandwidth of the communications links. The processes of switching and multiplexing are used to create networks. Networking is currently the only cost effective means for providing digital or even analog communications on a large scale [1,2,3,4,5].

Digital transmission techniques have many advantages over analog transmission. The error rate in digital systems is extremely low compared to analog systems and can be improved considerably by coding and error recovery methods. Furthermore, digital techniques provide for the ready implementation of cryptographic and other security techniques such as digitized secure voice.

The advantages of digital transmission techniques have justified the conversion of large scale communications networks from analog to digital mode of operation. Of course, one cannot simply change instantaneously from one system to another. This places considerable restrictions on the synchronization technique used since the digital and analog parts of the network must interoperate during the many transition phases from an analog to a totally digital network.
In designing a digital communications system, a definite set of fundamental performance goals or objectives must be established. Performance criteria for various alternative approaches can then be evaluated in light of such fundamental requirements. For the future Defense Communications System, the following four requirements appear to be the most crucial to a successful system design:

1. To endure, i.e., to maintain acceptable operation even in the event of perturbations such as partial physical destruction, component failures, enemy spoofing and/or jamming,

2. To interoperate, i.e., to communicate with other networks which may be using different operating techniques,

3. To be monitorable, i.e., to permit convenient acquisition of information pertinent to the evaluation, control, protection, maintenance, repair and modification of the system,

4. To be economical, i.e., to maximize the capabilities of 1, 2 and 3 above while minimizing the total procurement, operation, maintenance repair and modification costs.

In this report, four synchronization techniques (Discrete-Control Correction, Master Slave, Independent Clocks, and Time Reference Distribution) are evaluated with respect to this set of overall system objectives. In fact, this set of system objectives or goals are indeed very general and could be applied to almost any system with only slight changes in the wording.

Hence, the optimal communications system should endure, interoperate, be monitorable, and be economical.

This report presents the results of an initial investigation into the advantages and disadvantages of existing timing and synchronization techniques.
as they apply to digital communication networks. Basically, four fundamental
techniques were considered. These are: master-slave, discrete-control-corr-
rection, independent clocks, and time dissemination. The master-slave tech-
nique uses a fixed or selectable network structure to propagate timing infor-
mation. Discrete-control-correction is a discrete time analog of frequency
averaging wherein each node tracks a weighted average of the frequencies
arriving over its communications links. Independent clocks is the mode of
operation wherein each node of the network uses its own independent but pre-
cise clock. Finally, time dissemination, or more properly, precise time and
time interval (PTTI) dissemination, is a technique which passes time throughout
a network by starting at some master node and removing the time delays down
through a hierarchical structure to provide Precise Time and Time Interval at
the subordinate nodes. To be effective, this method should automatically
select the best clock in the network as the master and also select the best
path for transmission of the timing information. These four techniques are
described in more detail in Chapter 2.

The technique of pulse stuffing was not considered in this work since it
was felt that this method was more appropriate for link synchronization rather
than to the performance of the overall network. This opinion, from a network
viewpoint, is not likely to change due to the large communications overhead
which is necessary to maintain network synchronization when several levels of
multiplexing and switching are considered.

Since these techniques represent widely different modes of operation, it
is essential to select criteria for comparing their performance which can be
applied to each of these methods. Chapter 3 presents the criteria selected
for this study. A description of each criterion and the justification for
its selection are also presented. These criteria are then used in the com-
parative study of Chapter 4. The comparison itself is based more on qualita-
tive rather than quantitative information. Since the systems are so different,
it is almost impossible for many of these criteria to be compared quantitatively.
However, it is felt that the qualitative comparison is sufficient to jus-
tify the selection of an appropriate direction to be followed in defining the
best synchronization techniques for future digital communications systems.

The terminology used in Chapters 3 and 4 to compare the performance of
the different techniques was very carefully defined in an effort to prevent
any misunderstanding or misinterpretation of the results presented. Therefore,
one should be very careful in reading this material since careless interpreta-
tion of the phrases (which might have different meanings in the trade jargon)
could indeed considerably change the interpretation and implications of these
results.

A considerable amount of effort in this study was spent on bringing each
of the techniques up to the level where they could be equitably compared. This
is particularly true for the time dissemination technique. In order for this
technique to be as effective as possible, the master node and the path of time
dissemination should be automatically selected on a dynamic basis. Although
existing techniques would provide this type of selection when starting from a
fixed set of initial conditions, these techniques would not select the approp-
riate parameters when certain perturbations occur in the given network. Pre-
vious rules for path and master node selection were modified to form a new set
of rules which can be used to dynamically select the appropriate network time
dissemination structure under all operating conditions. This new set of rules
is presented in Chapter 5. A proof that these rules will always select the
appropriate structure is given in Chapter 6. This particular set of rules may not be the best from an operational viewpoint; however, it does positively establish the existence of a technique for selecting the best route for disseminating precise time.

In order to evaluate the performance of different rules for disseminating precise time, a set of random test networks was generated. A description of this set of networks and the computer program which generated them is presented in Chapter 7. Furthermore, Chapter 8 describes the simulation results of these test networks for the technique described in Chapter 5 as well as for some alternative rules which were considered.

Chapter 9 is a preliminary description of a general test network which could eventually be used to evaluate the different synchronization techniques. This network represents an attempt to include network substructures which typically cause synchronization problems. Furthermore, it tries to represent the distribution of nodal clocks and communications links found in a realistic network.

Finally, the direction this work has provided is interpreted in Chapter 10. Also included in this chapter are recommendations for future work which should be pursued in determining the character and structure of the synchronization technique best suited to future digital communications networks.
CHAPTER 2.

DESCRIPTION OF SYNCHRONIZATION TECHNIQUES UNDER CONSIDERATION

This chapter gives a brief description of the different techniques of synchronization that are being considered.

1. Master-Slave Method [11,12]

In this method, all the nodes of the network are 'slaved' in their timing to the reference timing from a designated master node. Each node receives the reference timing either on a direct link from the master node or over a pre-determined chain of links along which the reference timing is re-transmitted by the intermediate nodes. Thus, there is a hierarchy of nodes descending from the master node. Each node slaves itself to a fixed neighbor higher in the hierarchy and thus all the nodes are, in effect, slaved to the master node. A node slaves itself to the reference timing as received without attempting to correct for the time of propagation from the sending node.

In case a node loses its reference timing due to failure of a link, provision can be made for the node to switch to a pre-assigned alternative link or to operate as an independent clock until the link is restored. Given clocks of high precision at the nodes, the network should be able to operate in this manner for long periods without buffer overflow or depletion.

2. Discrete-Control Correction [6,7,8]

In this method, the clocks of the network are brought into synchronism by making periodic corrections to their frequencies. The correction to each clock is proportional to the change in the levels of the buffers at that node from the previous correction. The constant of proportionality is called the correction-gain for that node. It has been shown that so long as the correc-
tion-gain at each node remains within a specified range, the network attains synchronism. The frequency of synchronism is a weighted average of the initial frequencies of the clocks, the weighting depending on the correction-gains used by the clocks. Thus, this is a method of discrete frequency-averaging. It has been shown that in the event of failure of a part of the network, synchronism is automatically achieved in the remaining subnetwork or subnetworks.

3. Independent Clocks [11,12]

In this method, the nodes use clocks of high precision and stability, such as atomic clocks. The clocks operate independently of one another and no attempt is made to correct the slight discrepancies that might exist among them. Hence, this is not a method of synchronization but rather a method of asynchronous operation. The effects of clock discrepancies as well as delay variations in the medium are absorbed in elastic buffers at each node. Owing to the high precision and stability of the clocks, the nodes can operate for long periods despite a slight asynchronism before the buffers have to be reset to prevent their overflowing.

4. Time-Reference Distribution Method [9,10]

In this method, each clock of the network is assigned a unique rank according to its quality and each link of the network is assigned a figure of demerit according to its characteristics. Each node exchanges information on timing, clock-rank and path demerit with each of the nodes directly linked with it. Applying a set of rules to the information received, a node selects itself or one of its neighbors as an "immediate reference". The results are so designed that in normal operation, each node is using, either directly or indirectly, the highest ranking clock in the network as its "ultimate refer-
ence". Thus, all the clocks are able to remain in synchronism with the master-clock. Also, in normal operation, each node receives its time-reference from the master-clock by the path of least demerit. In the case of failure of some of the nodes or links, the rules for reference-selection should operate so as to re-synchronize each surviving connected part of the network with the highest ranking clock in that part of the network.
CHAPTER 3.

CRITERIA FOR THE COMPARISON OF SYNCHRONIZATION TECHNIQUES

This chapter first defines important parameters to be used to compare the four candidate methods described earlier. Then a qualitative comparison table is given along with pertinent remarks.

The parameters deemed important for the comparison of network operation under the different methods of synchronization are:

1. Bit Count Integrity
2. Effect of Delay Variations in the Propagation Medium
3. Security of Timing against External Action
4. Time Reference
5. Monitorability
6. Interoperability
7. Ease of Network Reconfiguration
8. Amount of Information Processed at a Node
9. Survivability

Brief Description of Criteria

1. Bit Count Integrity refers to keeping count of the exact number of bits transmitted/received at each node, so that all bits are accounted for.
2. A variation in the time of propagation between nodes due to "breathing" of the medium manifests itself as a change in the rate of the incoming bit stream as measured by the receiving node. This criterion refers to the effects of this apparent change of frequency on the synchronism of the network.
3. The third criterion refers to the effects on the system due to external
actions. Such actions may take the form of spoofing, jamming, etc.

4. Time Reference refers to the propagation throughout the network of a reference timing from a common source.

5. Monitorability refers to the ability to monitor the status of the network from information exchanged for the purpose of synchronization.

6. Interoperability refers to the ability of a system using a particular synchronization scheme to communicate with other systems using different synchronization techniques.

7. The seventh criterion refers to factors to be considered in making changes in the network structure by addition or deletion of nodes and links.

8. The next item refers to the amount of data processing involved at each node for the purpose of synchronization.

9. The last criterion, from a synchronization viewpoint, refers to the system's ability to survive in case of a failure in a part of the network.

The table which follows compares qualitatively the different techniques along with pertinent remarks. One should note that experimental investigations will be needed to substantiate some of these opinions since quantitative information is not currently available.

The criteria listed above are not necessarily listed in the order of their importance.
<table>
<thead>
<tr>
<th>CRITERION</th>
<th>MASTER-SLAVE</th>
<th>DISCRETE CONTROL CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Count Integrity</td>
<td>Maintained if buffers are large enough to absorb delay variations.</td>
<td>Maintained if buffers are large enough to absorb delay variations.</td>
</tr>
<tr>
<td>[Anticipated Buffer Size]</td>
<td>SMALL</td>
<td>MODERATE</td>
</tr>
<tr>
<td>Effect of Delay Variations</td>
<td>Model frequency swings with the delay variations depending on the tracking time constant.</td>
<td>Can change the synchronous frequency of operation.</td>
</tr>
<tr>
<td>Security of Timing against External Action</td>
<td>A given slaving chain can be disrupted by external action.</td>
<td>External action can significantly affect network performance and operating frequency.</td>
</tr>
<tr>
<td>Time Reference</td>
<td>Not available. May be carried as communications overhead.</td>
<td>Not available. May be carried as communications overhead.</td>
</tr>
<tr>
<td>Monitorability</td>
<td>Some monitoring possible.</td>
<td>Some monitoring possible.</td>
</tr>
<tr>
<td>Interoperability</td>
<td>Only affects the slaving configuration</td>
<td>Good provided only one fixed frequency exists in the overall network.</td>
</tr>
<tr>
<td>Ease of network Reconfiguration</td>
<td>GOOD</td>
<td>MODERATE</td>
</tr>
<tr>
<td>Amount of Information Processed at a Node</td>
<td>Only needs to track one incoming frequency.</td>
<td>Must consider multiple buffers and weighting factors.</td>
</tr>
<tr>
<td>Survivability</td>
<td>Requires post-failure reallocation of slaving chains.</td>
<td>Synchronization maintained in case of failures.</td>
</tr>
<tr>
<td>INDEPENDENT-PRECISE CLOCKS</td>
<td>TIME REFERENCE DISTRIBUTION</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Not maintained. Buffers must be periodically reset.</td>
<td>Maintained if buffers are large enough to absorb variations. Effects of constant delays are automatically eliminated.</td>
<td></td>
</tr>
<tr>
<td>MODERATE TO LARGE</td>
<td>SMALL</td>
<td></td>
</tr>
<tr>
<td>Can cause buffer overflow or depletion.</td>
<td>Transient delay can be absorbed if sufficiently frequent measurements are taken.</td>
<td></td>
</tr>
<tr>
<td>FAIR</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>Robust against external action.</td>
<td>Sophisticated external action may affect the overall network performance.</td>
<td></td>
</tr>
<tr>
<td>GOOD</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>Accurate to within the frequency standard available to each node.</td>
<td>Accurate to the best reference in the system within the ability to measure delays.</td>
<td></td>
</tr>
<tr>
<td>No monitoring needed for synchronization purposes.</td>
<td>Has capabilities of extensive monitoring.</td>
<td></td>
</tr>
<tr>
<td>May increase buffer reset rates and cause loss of bit count integrity.</td>
<td>Buffers may have to be reset at interfaces to other networks.</td>
<td></td>
</tr>
<tr>
<td>GOOD</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>Only clock trends and corrections.</td>
<td>Information from all neighbors must be processed for deciding best reference and determining time delays.</td>
<td></td>
</tr>
<tr>
<td>SMALL</td>
<td>MODERATE</td>
<td></td>
</tr>
<tr>
<td>Failures do not affect the operation of the surviving part of the system.</td>
<td>Path of time dissemination is automatically reallocated to establish a new hierarchy in each of the surviving subsystems.</td>
<td></td>
</tr>
</tbody>
</table>
Bit Count Integrity

Bit count integrity can be maintained in the master-slave mode of operation provided the buffers are large enough to absorb the network delay variation. It is not sufficient to simply absorb variations over links of the slaving structure since communications may take place between nodes which are separated by many links of the slaving hierarchy. This 'whip effect' is one of the dominant considerations in selection of an appropriate buffer size.

In the discrete-control-correction case, the buffers must be sufficiently large to absorb delay variations and the initial frequency offsets of the nodes. Appropriate measures can be taken to remove unwanted steady state contents of the buffers, however, this does not in general affect the buffer sizing considerations.

The independent clock scheme does not in general have the ability to maintain bit count integrity. Any small differences in clock frequencies will eventually cause a buffer to either deplete or overflow which causes a loss of bit count integrity. The only alternative in this case is to reset the buffers at known fixed points in time, thus causing a controllable loss of integrity. The use of very stable clocks and reasonably large buffers should allow such a system to run for extended periods of time before resetting the buffers becomes necessary.

In time reference distribution, only the delay variations between adjacent nodes need be absorbed since all the constant delays can be automatically removed and all nodes can be referenced to a common timing source. Hence, the 'whip effect' as observed in master-slave systems does not arise in the time reference distribution case.
Effects of Delay Variations

The dominant effects of delay variations have been discussed under the heading of bit count integrity. However, there are other effects which must be considered.

In master-slave networks, the nodal frequencies may vary as the time delays change. The magnitude of the frequency variation is proportional to the delay variations and the tracking time constants. In discrete-control-correction, the instantaneous nodal frequencies and the steady state frequency of operation can be affected by delay variations. The effects of delay variations on the precise clock system can be very dramatic since buffer overflow or depletion can occur. Transient delays can be automatically absorbed in time reference distribution systems if measurements of the delays on the individual communication links are made sufficiently often.

Security Against External Action

The independent clock technique is the most robust when considering external action against the synchronization of a network. Since the clocks run independently of the communication links and other network components, they are also independent from external harassment other than being destroyed or partially damaged.

In the case of time reference distribution, very sophisticated techniques would have to be used to alter the messages between nodes which establish the distribution structure and the measurement of link delays.

Discrete-control-correction is the most susceptible to external influence since all incoming information is in general used to determine the frequency of operation. However, much work is yet required to understand the sophisticated interrelationships involved in the determination of operating frequency
under the influence of external perturbations and actions.

The chain of hierarchy in the master-slave technique as well as the frequency of operation can be moderately affected by external action. This situation is usually easy to detect by cross referencing to nodes other than the normal master-slave hierarchy.

Time Reference

Availability of good time reference at a node might be required due to reasons not related to synchronization and might play an important role in the selection of a candidate synchronization technique. In the master-slave and discrete-control-correction schemes, time reference will have to be carried as communications overhead. In the independent clock scheme, it is accurate within the frequency standard available at the node. In time-reference distribution, this is an integral part of the scheme and all nodes have the best reference available in the network.

Monitorability

Dynamic system evaluation and control require that the performance and operation of the network be monitored adequately. In the master-slave scheme, only incoming frequencies can be monitored and it is difficult to estimate and control system performance from this information. In discrete-control-correction, buffer changes are monitored at the correction instants and the possible use of this information for control purposes has to be examined further. Monitoring in the independent clock system is only needed for the purposes of resetting buffers.

In the time-reference-distribution method, the time-delays are monitored and eliminated. All nodes have available a wealth of information (including PTTI) about the rest of the network and this could be used effectively to
dynamically improve system performance.

Interoperability

As the all digital DCS has to operate with/through different communication systems like ATT, TRI-TAC etc., it is expected that the synchronization technique selected should be compatible with the schemes used in other systems. This particular criterion can be looked at in different levels as follows.

Can the system with a particular synchronization scheme, interoperate with a different one on a

(i) communications level?

(ii) synchronization level?

(i) Interoperability is assured as long as sufficiently large buffers are used for interfacing to ensure bit count integrity.

(ii) In the master-slave method interoperability only affects the slaving configuration as there can only exist a unique master/slave hierarchy. In the discrete-control-correction method as long as only one fixed frequency is available interoperability is ensured. In the independent clock method interoperability is assured but may increase buffer reset rates. Time-reference-distribution may have to default to independent clocks if synchronization information is unavailable from other systems.

Ease of Network Reconfiguration

The addition or deletion of new nodes and links to the network causes no particular problems in any of the synchronization schemes. In the master-slave method, a new node has to be assigned a reference node that it should slave itself to. In the time-reference method, the new node should be assigned its proper rank and the new links should be assigned their proper demerits. The selection and decision rules then operate so as to disseminate the time-ref-
ference to each node from the master node by the best path in the new configuration. With independent clocks, of course, no special action is needed for the addition or deletion of nodes and links. However, in the case of discrete-control-correction, the clock corrections are based on changes in local buffer levels. Hence, when a link is added/deleted, the contribution of the corresponding buffer should be included/excluded from the calculation of the size of clock-correction. Also, the stable range of the correction parameter decreases with an increase in the number of nodes and this must be taken into account.

Amount of Information Processed to Achieve Synchronization

In the master-slave method each node merely needs to recover the frequency of the particular node it is slaving itself to. In discrete-control-correction the only information that is used is the level of the local buffer. With independent clocks, no clock corrections are sought to be made and the occurrence of overflow or depletion in the buffers is the information used to reset the buffers.

In the time-reference method, each node acquires information from each of its neighbors and processes it as set forth in the selection and decision rules to arrive at a reference node for use over the next period.

Survivability

When there is a failure of a part of the communication network it is possible to ensure, in all the schemes of synchronization, that each of the surviving parts of the network continues to operate as an independent network. In the case of the master-slave technique, this is accomplished by providing each node with a series of back-up references to use in case of progressive failures in the rest of the network. In the case of precise clocks, of course, each node operates as long as it survives regardless of the condition of the other.
nodes. In both Discrete-Control-Correction and the Time-Reference Method, the operating procedure automatically ensures that each surviving part of the network continues to operate as an independent network.

Failures in the network can be caused by many factors such as enemy attack, equipment breakdown, etc.
CHAPTER 4.

INTERPRETATION OF THE COMPARATIVE STUDY

The attributes considered essential for the Defense Communication Network were set forth in Chapter 1. A set of performance criteria was discussed in Chapter 3 and a broad comparison of the four techniques was presented in tabular form. The information collected there is now examined to determine the most promising directions for further investigation.

Security form hostile electronic measures such as jamming and spoofing is of the utmost importance in the Defense Communications Network. Moreover, in the event of a partial failure or destruction of the network, the surviving portions of the network should continue their operation. These two features, viz., resisting external electronic interference and carrying on operation in the surviving parts of the network in case of partial failure, were included in the attribute of 'endurance', which appears first in the list of essential attributes. In the event of a partial failure of the network, the continued operation of the surviving parts is assured in all the synchronization methods, as seen from the Comparison Table in Chapter 3. However, as regards the effects of hostile electronic measures on the timing of the nodes, the Comparison Table shows the method of Independent Clocks to be the least vulnerable. Hence, this method affords the best 'endurance', and, for this reason alone, would appear to be the method to adopt for at least the major portion of the network. This view, however, may have to be qualified by a 'monitorability' consideration that is discussed later.

The Defense Communications System should interoperate with other communication networks using other methods of operation. However, the Comparison Table
shows no significant differences among the techniques in this respect, and hence this is not a decisive criterion for comparison.

The third requirement, that the state of the Defense Communication Network should be monitorable from the information that is used to achieve timing synchronization, is of great practical importance. This aspect of system operation was not pursued as part of this study. However, the Time Reference Distribution method appears to have the greatest potential in this regard. In this method, each node collects a wealth of information from all its neighbors regarding their timing, clock references and the propagation time of the transmission paths. This information presents the possibility that tests can be devised to determine the state of the network, and, in particular, to detect the presence of external interference. If such interference is detected, the network can always fall back on the independent clock mode of operation and thus counter the hostile action. In our opinion, the development of such monitoring capabilities will render the Time Reference Distribution method superior to the Independent Clock technique. In normal operation, the Time Reference Distribution method provides an accurate time reference throughout the network without the use of highly precise clocks at all the nodes. In the method of Independent Clocks, the timing of the nodes is secure against hostile interference, but there seems to be little prospect of detecting such interference. If, on the other hand, the information that is available in the Time Reference Distribution method can be used to detect external interference, the system can change to the secure mode of Independent Clocks, with the additional advantage of being aware of hostile interference.

The foregoing arguments point to a choice between the method of Independent Clocks and the Time Reference Distribution techniques for at least the
major portion of the Defense Communications System. The monitorability aspect of the Time Reference Distribution method should be investigated further from the viewpoint of detecting the presence of interference. The results of such an investigation would bear on the final choice of a synchronization technique.

With respect to economy, the choice is influenced by the relative cost of a large number of precise clocks in the method of Independent Clocks and the cost of information processing and the implementation of associated logic in the Time Reference Distribution method. It is recommended that a study be conducted on possible alternative implementations of the Time Reference Distribution method so that this aspect of the problem is clarified.
CHAPTER 5.

RULES FOR PATH SELECTION IN TIME REFERENCE DISTRIBUTION

The need to provide precise time and time interval (PTTI) information throughout networks is growing at a rapid pace [13]. The application of PTTI to navigation and the synchronization of digital communication networks is placing increasing demands on the accuracy of PTTI systems. The use of very precise clocks [14] cannot, in itself, meet these demands unless all the clocks in a network are referenced to some common time source. One method for accomplishing this is to specify a hierarchical structure for the dissemination of PTTI by the "Transfer Standard" technique [15]. However, fixed structure techniques are not easily applied to an operational environment where clock failures and communication link outages must be accommodated.

An alternative approach is to construct a self organizing clock system which dynamically allocates the path over which PTTI information is transmitted [16]. Self organization is accomplished by assigning to each nodal clock a unique rank and to each link a given demerit and then providing a set of rules which decide, on a node by node basis, over which link a node should accept the PTTI information. The merits of this approach have been extensively discussed by Stover [17]. Techniques for implementing this approach have worked exceedingly well in the initial organization of the nodal clock systems. However, after a system failure or perturbation, the network may not reorganize itself.

Presented in this report is a modification of the self organizing clock approach [1] which organizes the system under all initial conditions and perturbations. Furthermore, when in an organized state, each node knows its
position from the selected master in the tree structure used to disseminate PTTI information.

Network Organization Technique

The technique described below is designed to iteratively determine the best path for information dissemination in a hierarchical network structure. Each node of the network is assigned a unique rank which could represent, for example, the relative quality of the node. Each bilateral link between nodes is assigned a demerit which reflects the quality of the interconnection. The object of allocating a unique path through the network is to pass information from the best node to the rest of the nodes over the path of least demerit. Since more than one path may have the same link demerit, uniqueness is guaranteed by selecting the path of minimum demerit via the highest ranking neighboring node.

The process of establishing a network path relies on each node conveying to its connected neighbors its rank, the rank of the node it is using as its ultimate reference, the demerit of the path to its ultimate reference and a nodal update counter. A set of tentative Selection Rules [16] can then be used at each node to decide from where a given node will select its reference, what its ultimate reference will be and the corresponding path demerit to the ultimate reference. These selection rules are used to decide on a unique path of least demerit. Furthermore, they are sufficient by themselves to cause an initial organization of the network if applied iteratively, if all the nodes are initially on self-reference. However, the selection rules are not sufficient to guarantee the reorganization of the network after some perturbation of the network structure.

In order to guarantee that the network will organize itself under all
conditions (in particular, reorganize itself after a perturbation), a set of Decision Rules are used to decide if a given node should use the selected best tentative reference or if it should reference itself. The decision rules operate primarily on information provided by the nodal update counters.

It will be shown that the set of rules consisting of the tentative Selection Rules and the Decision Rules are sufficient to guarantee that the network will organize itself under all circumstances.

Each iteration of the process consists of a transmission of information between directly connected nodes, a selection process and a decision process. We assume that all these processes occur in the time interval between the \(k \)th and \((k+1)\)st iterations. Hence, each node obtains its information for the \((k+1)\)st iteration from the information available at the \(k \)th iteration.

Notation

The nodes are numbered uniquely between 1 and \(n \) where \(n \) is the total number of nodes in the network. Furthermore, let \(r_i \) be the rank of the clock at node \(i \). The higher the rank, the lower the numerical value of \(r_i \). The nodal clock ranks must be uniquely defined.

The following variables are defined for each node \(i \) and for a given iteration \(k \).

\[
\begin{align*}
\sigma_i(k) & \quad \text{rank of the clock which node } i \text{ uses as an ultimate reference between the } k'\text{th and } (k+1)\text{st iterations.} \\
\tau_i(k) & \quad \text{the node which node } i \text{ uses as its immediate reference between the } k'\text{th and } (k+1)\text{st iterations.} \\
d_{ij} = d_{ji} & \quad \text{the demerit assigned to the communications link between nodes } i \text{ and } j \text{ when such a link exists. The larger the numerical value, the worse the link.}
\end{align*}
\]
\(D_i(k) \) \(\triangleq \) the total path demerit by which node \(i \) received the ultimate reference it uses between the \(k' \)th and \((k+1)\)st iterations.

\(T_i(k) \) \(\triangleq \) the update counter at node \(i \) for the period between the \(k' \)th and \((k+1)\)st iterations.

\(C_i \) \(\triangleq \) the set of all nodes which are directly linked to node \(i \). This set does not contain the node \(i \) itself.

Note: Symbols which are modified by a "\(\hat{\} \) indicate a tentative value for that variable, i.e., \(\hat{s}_1(k) \), \(\hat{u}_1(k) \) and \(\hat{D}_1(k) \).

Selection Rules

There are three basic rules which are used to decide the best tentative reference for a node to use. These rules are applied sequentially to determine the best tentative reference to use between the \((k+1)\)st and the \((k+2)\)nd iterations based on the information available between the \(k' \)th and \((k+1)\)st iterations. If a given rule uniquely determines the best tentative reference, the remaining rules are not applied. Once the best tentative reference is determined a set of decision rules are used to specify whether the best or an alternative reference is actually used.

Rule S1 Let \(\hat{s}_1(k) = \min \{r_1, \min_{j \in C_i} s_j(k-1)\} \) \(i = 1, \ldots, n \)

a) if \(\hat{s}_1(k) = r_1 \), then \(\hat{u}_1(k) = 1 \) and \(\hat{D}_1(k) = 0 \).

b) otherwise if \(\hat{s}_1(k) = s_q(k-1) \), then let \(\hat{u}_1(k) = q \) and

\[\hat{D}_1(k) = D_q(k-1) + d_{1q} \text{ if } q \text{ is unique.} \]

Note: Rule 1 fails to decide \(\hat{u}_1(k) \) uniquely if two or more of the \(s_j(k-1) \) terms are equal to the minimum value \(\hat{s}_1(k) \) and \(\hat{s}_1(k) \neq r_1 \). However \(\hat{s}_1(k) \) is uniquely determined.
Rule S2 Suppose \(j_1, \ldots, j_v \) are the nodes which give a minimum value for \(\hat{s}_i(k) \) in Rule 1. Let:

\[
\hat{D}_i(k) = \min_{1 \leq p \leq v} \left\{ d_{ij_p} + D_j(k-1) \right\}
\]

a) If the minimum is achieved by a unique \(j_0 \), then \(\hat{\mu}_i(k) = j_0 \)

b) Otherwise, apply Rule 3.

Note: Rule 2 fails to decide \(\hat{\mu}(k) \) uniquely if two or more paths have the same minimum demerit. However, \(\hat{D}_i(k) \) is uniquely determined.

Rule S3 Suppose \(j_1, \ldots, j_t \) are nodes which attain the minimum of Rule 2. Suppose that

\[
\hat{r}_j = \min_{1 \leq q \leq t} \{ r_{jq} \}
\]

Then let \(\hat{\mu}_i(k) = j_q \).

Decision Rules

Once a tentative best reference has been selected by a node, it must decide if it should use that reference. This decision is made using three rules which are applied sequentially. If a given rule is satisfied, the remaining rules are not applied.

Rule D1 If the tentative best reference for a given node \(i \) is a self reference, then the node uses itself as a reference and reduces its update counter by one unless its counter is already at zero in which case the counter is left at zero. If this rule applies, then rules D2 and D3 are not applied; i.e.,
a) if \(s_i(k) = r_i \), then \(s_i(k) = r_i \),

\[v_i(k) = i, \quad D_i(k) = 0 \quad \text{and} \quad T_i(k) = \begin{cases} T_i(k-1) - 1 & \text{if } T_i(k-1) > 0 \\ 0 & \text{if } T_i(k-1) = 0 \end{cases} \]

b) otherwise, apply Rule D2.

Rule D2 If the received update counter associated with the best tentative reference is smaller than the update counter at the given node \(i \), then the node \(i \) uses the best reference received and makes its update counter equal to the received update counter from the best tentative reference incremented by one. If this rule applies, rule D3 is not applied; i.e.,

a) if \(T_{x_i}(k) < T_i(k-1) \), then \(s_i(k) = s_i(k) \),

\[v_i(k) = \tilde{v}_i(k), \quad D_i(k) = \tilde{D}_i(k) \quad \text{and} \quad T_i(k) = T_{x_i}(k-1) + 1 \]

b) otherwise, apply Rule D3.

Rule D3 The node \(i \) uses itself as a reference and increments its update counter by one; i.e., \(s_i(k) = r_i, \quad v_i(k) = i, \quad D_i(k) = 0 \) and

\[T_i(k) = T_i(k-1) + 1 \]

Example

Shown in Fig. 1 is a simple 4 node example which is allowed to organize from initial conditions of each node referencing itself and zero update counters. After 5 iterations the network has organized itself. The highest ranking node, node 1, is then severed from the rest of the network forming two subnetworks. The larger subnetwork then reorganizes itself in an additional 6 iterations.
Fig. 1 Organization and Reorganization Example.
CHAPTER 6.

PROOF OF NETWORK ORGANIZATION UNDER THE SELECTION AND DECISION RULES

Before any of the techniques for synchronization could be considered in a competitive manner, the basic operational feasibility of the methods must be clearly demonstrated. In fact, all the methods except the time reference distribution path selection rules were well established and documented previous to this study. Therefore, the rules given in Chapter 5 were written so as to facilitate a proof that the network would organize itself under all operating conditions.

In the future, better rules or techniques may be formulated which provide a better means for the path selection problem. However, our purpose here is to demonstrate that at least one such method exists, thereby placing this technique on an equal footing for the purpose of this evaluation study. The rest of this Chapter is a proof that a network will organize itself under the rules of Chapter 5.

Theorem

Under the rules given above:

(a) the highest ranking node in the network will become the ultimate reference for all the nodes of the network in a finite number of steps;

(b) this reference will be propagated to each node over a path of minimum demerit from the master node;

(c) if some nodes and links are removed from the network, the highest ranking clock in each surviving subnetwork will become the ultimate reference for that subnetwork, transmitting its reference over a path of minimum demerit to each node.
The proof of this theorem will be developed through several propositions and lemmas.

Proposition 1

When a node v is removed from the network, all references to that node disappear from the network in a finite number of steps; i.e., even if some nodes were using v as their ultimate reference, there will be none doing so after a finite number of steps.

Let node v be removed from the network at $k = 0$. Let $M(k) \triangleq \{i: s_i(k) = r_v\}$, i.e., the set of nodes which accept node v as the ultimate reference at k'th step, $k \geq 0$. If $M(k)$ is not the empty set, let $T_{\min}(k) \triangleq \min_{i \in M(k)} T_i(k)$.

Lemma 1-a

If $M(0), M(1), \ldots, M(k), M(k+1), \ldots$, are not empty, then

$$T_{\min}(0) < T_{\min}(1) < \ldots < T_{\min}(k) < T_{\min}(k+1) < \ldots;$$

i.e., $T_{\min}(k+p) > T_{\min}(k) + p$, for $k, p \geq 0$.

Proof of Lemma 1-a

Consider $M(1) = \{i: s_i(1) = r_v\}$, the set of nodes which accept r_v as their ultimate reference at $k = 1$. Since node v is not in the network, each such node i must have accepted node v as the ultimate reference from some other node $j \in M(0)$. Hence, by rule D2, it must have set its counter $T_i(1)$ equal to $T_j(0) + 1 > T_{\min}(0)$. Thus, for each $i \in M(1)$, $T_i(1) > T_{\min}(0)$, and therefore $T_{\min}(1) > T_{\min}(0)$, or $T_{\min}(1) > T_{\min}(0) + 1$.

Clearly, this argument may be repeatedly used to show that $T_{\min}(k+p) > T_{\min}(k) + p$, for all $k, p \geq 0$.

Lemma 1-b

If $i \in M(k)$ (i.e., $s_i(k) = r_v$) and $T_i(k) = T_{\min}(k)$, then $s_i(k+p) \neq r_v$.
for $p \geq 1$; i.e., any node using node v as the ultimate reference, with its counter equal to the minimum of the counters of all such nodes, does so exactly once.

Proof of Lemma 1-b

Suppose, on the contrary, that $T_i(k) = T_{\text{min}}(k)$ and $s_i(k+p) = r_v$, $p \geq 1$. This implies that there exists a node $j \in M(k+p-1)$ such that

$$T_j(k+p-1) < T_i(k+p-1)$$ \hspace{1cm} (1)

An examination of the Decision Rules given above shows that, at each node, the counter can increase by at most one at each step. Hence

$$T_i(k+p-1) \leq T_i(k) + p - 1 = T_{\text{min}}(k) + p - 1.$$

Thus, from (1),

$$T_j(k+p-1) < T_{\text{min}}(k) + p - 1.$$ \hspace{1cm} (2)

However, by lemma 1-a,

$$T_j(k+p-1) > T_{\text{min}}(k+p-1) > T_{\text{min}}(k) + p - 1,$$

and hence

$$T_j(k+p-1) > T_{\text{min}}(k) + p - 1$$

which contradicts (2). This proves Lemma 1-b.

Proof of Proposition I

It follows directly from Lemma 1-b that at each $k \geq 0$, if the set $M(k)$ is not empty, there is at least one node in the network which drops node v as its ultimate reference for all later k. Since the number of nodes is finite, it follows that in a finite number of steps all reference to node v will have disappeared from the network.

Proposition II

Suppose that at $k = 0$, the ultimate reference used by each node in the
network corresponds to some node actually in the network. Then, in a finite number of steps, the highest ranking node will become the ultimate reference for all the nodes of the network. Furthermore, its reference is propagated to each node by a path of minimum demerit.

Proof of Proposition II

The reference-selection rules S1-S3 given above, define for each node i in the network, a unique path of minimum demerit from that node to the master-node, and the corresponding demerit G_i. Hence, the following definition is unambiguous:

let P_m be the set of nodes for which the above path of minimum demerit to the master-node consists of exactly m links, m = 0, 1, 2, ..., with P_0 = {the master-node, say, node 1}.

It is obvious that each node in P_{m+1} is directly linked to at least one node in P_m, m = 0, 1, 2, ...

(i) Under the hypothesis of this proposition and the given rules, the master node will always remain on self reference; moreover, in a finite number of steps its counter will be set to zero and will remain at zero thereafter.

Let this be the state at k = 0. Hence

s_1(k) ≡ r_1
D_1(k) ≡ 0
T_1(k) ≡ 0

Consider a node j ∈ P_1. It is directly linked to the master node and this direct link is also the path of minimum demerit to the master node.
Hence, for all $j \in P_1$,

$$
\begin{array}{l}
\hat{s}_j(k) \equiv r_1 \\
D_j(k) \equiv d_{j1} = G_j
\end{array}
\quad k \geq 1.
$$

Applying the rules at $k = 1$,

if $T_j(0) > 0$, then

$$
\begin{array}{l}
s_j(1) = \hat{s}_j(1) = r_1 \\
D_j(1) = \hat{D}_j(1) = G_j \\
T_j(1) = T_1(0) + 1 = 1
\end{array}
$$

and hence, in fact,

$$
\begin{array}{l}
s_j(k) = \hat{s}_j(k) = r_1 \\
D_j(k) = \hat{D}_j(k) = G_j \\
T_j(k) = T_1(k-1) + 1 = 1
\end{array}
k \geq 2.
$$

If, however, $T_j(0) = 0$, then

$$
\begin{array}{l}
s_j(1) = r_j \\
D_j(1) = 0
\end{array}
$$

$$
\begin{array}{l}
T_j(1) = T_j(0) + 1 \\
= 1 > T_1(1)
\end{array}
$$

hence, we have, as above,

$$
\begin{array}{l}
s_j(k) = \hat{s}_j(k) = r_1 \\
D_j(k) = \hat{D}_j(k) = G_j \\
T_j(k) = T_1(k-1) + 1 = 1
\end{array}
k \geq 2.
$$

Hence, in either case, for $j \in P_1$, the conditions (3) hold for $k \geq 2$.

(ii) Assume, as the induction hypothesis, that there exists a finite k,

say k_m such that for all $j \in P_m$,

$$
\begin{array}{l}
\hat{s}_j(k) \equiv r_1 \\
D_j(k) \equiv G_j > k \geq k_m.
\end{array}
$$

$$
\begin{array}{l}
T_j(k) \equiv m
\end{array}
$$
Consider a node $i \in P_{m+1}$. The path of minimum demerit from i to the master node connects i to some node $j \in P_m$. Then it follows from the induction hypothesis and the given rules that

\[
\begin{align*}
 s_i(k) &\equiv r_i, \\
 D_i(k) &\equiv G_i, \\
 k &\geq k_{m+1}.
\end{align*}
\]

If $T_i(k) > m$, then

\[
\begin{align*}
 s_i(k) &= s_i(k) = r_i, \\
 D_i(k) &= D_i(k) = G_i, \\
 k &\geq k_{m+1}.
\end{align*}
\]

If, on the other hand, $0 \leq T_i(k) \leq m$, then

\[
\begin{align*}
 s_i(k+1) &= r_i, \\
 D_i(k+1) &= 0, \\
 T_i(k+1) &= T_i(k) + 1.
\end{align*}
\]

Repeated application of the rules shows that, in any case, $T_i(k+1+m+1) > m$, and hence for all $i \in P_{m+1}$,

\[
\begin{align*}
 s_i(k) &\equiv r_i, \\
 D_i(k) &\equiv G_i, \\
 k &\geq k_{m+1}, \\
 T_i(k) &\equiv m+1
\end{align*}
\]

where $k_{m+1} \triangleq k_m + (m+1) + 1 = k_m + m + 2$.

Thus, the induction hypothesis on P_m implies similar properties for P_{m+1}.

Since the hypothesis has been verified for P_1, the proof of Proposition II is complete.

Proof of Theorem

The proof of the main theorem may now be stated as follows:

Proposition I shows that, whatever the initial state of the network may
be, it changes within a finite number of steps so as to satisfy the assumptions of Proposition II. Hence, the conclusions of Proposition II, which are the conclusions of the theorem, are established for all initial conditions. In particular, this also proves that in the event of the loss of some nodes and links, each of the surviving subnetworks independently attains the steady-state conditions described in the theorem.
CHAPTER 7.

RANDOM TEST NETWORK GENERATOR

In the process of developing the path selection rules of Chapter 5, it became apparent that some method for comparing different alternative rules was required. Simulation techniques were the only available methods which could be used to quickly compare the performance of given alternative rules. It was then necessary to construct networks which could be simulated by programs which implemented the appropriate rules.

A set of 480 randomly generated test networks were generated using the program listed in the "Computer Programs" Appendix. The networks generated range from very sparsely interconnected structures to ones with a moderate number of interconnections (links). This large data base of networks was used to verify that the basic simulator programs were operating correctly and to gather statistics on the performance of the different simulators.

The networks were generated in groups having the same number of nodes and bilateral communication links. Networks with 10 nodes have either 10, 15, 20, 25 or 30 links; networks with 15 nodes have either 15, 20, 25 or 30 links; and networks with 20 nodes have either 20, 25 or 30 links. Forty networks were generated in each group.

A program for listing the networks in the data base is also given in the Appendix.

Figs. 2 and 3 are the flow charts for the network data base generator program and the network data base listing program. Fig. 4 is an example listing of two test networks.
Fig. 2. Flow Chart for the Random Network Data Base Generator
Fig. 3. Flow Chart for the Random Network Data Base Lister.
PROBLEM 335, NODES = 15, LINKS = 30

<table>
<thead>
<tr>
<th>NODE#</th>
<th>RANK</th>
<th>(LINKED TO NODE/PATH DEMERIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2/29 4/28 5/28 12/7 6/30 8/2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1/29 3/14 7/16 8/6 13/19 12/2</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>2/14 6/22 9/27 15/12 10/14 11/17</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>1/18 10/9 7/7 6/28 15/18</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1/28 11/5 10/23 14/28</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>3/22 4/28 7/7 1/30 12/9 9/19</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>2/16 4/7 15/24 9/8 6/7</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>2/6 1/2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3/27 7/8 6/19</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4/9 14/4 5/23 3/14</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>5/5 3/17</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>1/7 2/2 6/9 15/8</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2/19</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>10/4 5/28</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>3/12 7/24 12/8 4/18</td>
</tr>
</tbody>
</table>

PROBLEM 336, NODES = 15, LINKS = 30

<table>
<thead>
<tr>
<th>NODE#</th>
<th>RANK</th>
<th>(LINKED TO NODE/PATH DEMERIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>2/28 4/2 8/24 7/1 9/5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1/28 3/27 6/21 14/27 15/15 5/18</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2/27 10/9 12/8 14/23 8/17</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>1/2 5/9 15/29 13/30</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>4/9 10/12 2/18</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2/21 7/9 9/16 14/6</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6/9 11/1 13/18 1/1 9/10</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1/24 13/22 3/17</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>6/16 11/2 1/5 7/10 13/5</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3/9 5/12 13/8</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>7/1 14/14 9/2</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>3/8</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>7/18 14/5 8/22 3/30 9/5 10/8</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>13/5 2/27 11/14 3/23 6/6</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>4/29 2/15</td>
</tr>
</tbody>
</table>

Figure 4. Sample Networks Listed from the Data Base.
CHAPTER 8.
SIMULATIONS OF PATH SELECTION RULES

As previously stated, it is desirable in the Time Reference Distribution technique to dynamically select the best possible path for disseminating network timing information. Initially, only the selection rules of Chapter 5 were used to select an appropriate dissemination path. This approach is satisfactory provided that each node starts from specified initial conditions and no perturbations in the network structure occur. However, if network perturbations are allowed, examples can be constructed which cause these selection rules to fail. In fact, a simple 3-node example is sufficient to demonstrate this problem.

The underlying difficulty with the original selection rules is that references to nodes which have been deleted from the network can remain in effect since the information describing such a reference can be circularly passed back to a given node. Hence, a reference to a node no longer in the network can be maintained.

As an initial attempt to block the circulation of old information, a set of alternative node Resetting Rules (A and B), and a set of alternative node Reset Holding Rules (1 to 5) were proposed.

Resetting Rules
A. A node must revert to self reference whenever:
 1) it changes its ultimate reference (unless the change is from self reference),
 2) the node from which it receives its reference changes ultimate reference.
iii) the node from which it was receiving its reference fails or the communication link over which it was receiving its reference fails.

B. A node must revert to self reference whenever:

i) it changes its ultimate reference (unless the change is from self reference),

ii) the communication link over which it was receiving its reference changes.

Reset Holding Rules

After reverting to self reference, a node must maintain its self reference until:

1. A number of synchronization cycles have occurred which is equal to the rank of the node.

2. The node from which it could take its reference has been using the same reference for a number of synchronization cycles which is greater than the magnitude of the maximum difference in rank between itself and all adjacent nodes, the cycles being measured from the point where the original node became self referencing.

3. The node from which it could take its reference has been using the same reference for a number of synchronization cycles which is greater than the magnitude of the difference in ranks between itself and the node from which it receives its reference, the cycles being measured from the point where the original node became self referencing.

4. The node from which it could take its reference has been using the same reference for a number of synchronization cycles which is greater than its nodal rank, the cycles being measured from the
point where the original became self referencing.

5. Either holding rule 3 or holding rule 4 is satisfied.

Initial Simulations

Ten simulators (A1 to B5) were constructed to evaluate the performance of the Resetting and Reset Holding Rules. The randomly generated test networks described in Chapter 7 were used to evaluate each simulator program. The number of iterations required for each network to organize itself under the given rules was computed. The best node in each network was then severed from the network and the reorganization process was allowed to proceed. The number of organization and reorganization iterations were averaged for each group of networks in the data base. The averaged organization iterations and reorganization iterations are shown in Figs. 5 and 6 respectively.

These simulations indicate that, for at least the set of networks in the random data base, each alternative method organizes and reorganizes the network properly. However, no insight was gained into a method for explicitly proving that any of these alternative techniques would select an appropriate network path.

The Decision Rule Approach

A simulator was constructed for the final set of Selection and Decision Rules described in Chapter 5. The program used for this simulator and the program for averaging and plotting the results are given in the 'Computer Program' Appendix. The flow chart for the simulator is shown in Fig. 7 and the simulation results in Figs. 8 and 9. These results indicate that these rules perform as well as the previously described rule modifications. However, the decision rule approach has the distinct advantage that proper performance can be demonstrated for all operating conditions.
X-axis = number of links
Y-axis = average number of iterations

Each simulator was tested on networks of 10, 15 and 20 nodes. The number beside each graph is the number of nodes in the corresponding class of networks.

Fig. 5 Averaged Organization Iterations for Simulators A1 to B5.
X-axis = number of links
Y-axis = average number of iterations

Each simulator was tested on networks of 10, 15 and 20 nodes. The number beside each graph is the number of nodes in the corresponding class of networks.

Fig. 6 Averaged Reorganization Iterations for Simulators A1 to B5.
Fig. 7. Flow Chart for the Decision Rule Simulator Program.
Fig. 8. Averaged Iterations for Initial Organization
Fig. 9. Averaged Iterations for Reorganization.
CHAPTER 9

NETWORK TEST MODELS FOR EVALUATING SYNCHRONIZATION

In order to effectively compare different synchronization techniques, it is essential to construct a standard test network. The network used for this purpose must realistically represent the majority of problems encountered in attempting to synchronize a large scale network. Both topological and communications constraints must be presented. Modulation techniques, multiplexing hierarchies and the number of channels per link will not be considered in this model since they do not affect the overall network synchronization problem.

The classes of links considered will include satellite, microwave, troposcatter, radio and wire. As an initial breakdown, the following tentative percentages of link types should be included.

- Satellite 8%
- Microwave 50%
- Troposcatter 10%
- Radio 2%
- Wire 30%

These percentages represent a first crude estimate of the makeup of the future DCS. Since we desire to represent all types of links in our network, the above percentages indicate that a test network should have at least 50 links in order that a minimum of 1 radio link is included on a percentage basis. The number of links in our standard network was arbitrarily chosen to be 100.

The most critical concern in constructing a test model is the con-
straints of the topology of the network. In this regard, the following topological conditions should be incorporated:

1. Long chain structures composed of microwave and/or troposcatter links.
2. Local clusters composed of microwave and/or wire links.
3. Local clustering at the ends of long single or spare chains. This produces the dumbell effect.
4. Separated clusters linked together via satellites.
5. Within the set of links chosen and the type of transmission assigned to those links, parameters should be chosen to represent the widest possible variation in normal operation. For example, microwave and troposcatter links should range from very short lengths to long links which represent marginal or fringe performance.
6. The interconnections at the nodes should represent a wide range in terms of the sparsity of interconnection.
7. The network should be formulated in a way which allows a separation into subnetworks which have different sparsity factors and can represent the degenerate cases of network performance. The links and nodes which must be deleted to generate these cases should be specified as part of the network model.

The network shown in Fig. 10 is a preliminary version of such a standard test network which meets the requirements listed above. There are 59 nodes in the network. Each link is labeled with the symbol $m_{x}n$, where m is the link number, x is one of the symbols \{R = radio, S = satellite, T = troposcatter, W = wire, M = microwave\} and n is the length of the link. A listing of the links is given in the 'Standard Test Network' Appendix.
See Appendix for description of links.

CHAPTER 10

CONCLUSIONS

In light of the evaluation presented in Chapter 4, the conclusion of this report is that the Time Difference Distribution Technique, with further development of its monitoring capabilities, will best meet the DCS requirements of endurance, inter-operability, monitor ability, and economy of operation. This is particularly true in the situation where the TRD technique is used to provide the backbone timing of a large network.

The Master Slave and Discrete Control Correction Techniques also have their appropriate place in the Defense Communication System. For example, they would be sufficient in a regional or tactical environment where simplicity of operation is essential.

Considerable work remains to be done on the Time Reference Distribution Technique. In particular, one provable set of decision rules have been presented; however, alternative methods should be developed and compared in order to provide the most effective technique. Furthermore, procedures and protocols need to be developed for transmitting information between nodes and for effecting time delay measurements.

Network strategies which can effectively utilize the increased monitor-ability provided by Time Reference Distribution need to be developed. These strategies should include the evaluation, control, protection, maintenance, repair, and modification of the system.

A study should be made of the algorithms to implement TRD decision rules in terms of hardwired logic or computer programs. This study should also include estimates of the computational capacity necessary to carry out these
algorithms.

An investigation of the sensitivities of the Discrete Control Correction and Time Reference Distribution Techniques to external influences should be performed in order to understand the implication of such influences on system performance and control.
REFERENCES

BIBLIOGRAPHY

General

Frequency Averaging and Discrete Control Correction.

Time Dissemination.

Pulse Stuffing

COMPUTER PROGRAM

APPENDIX
C RANDOM NETWORK GENERATOR FOR DCA SYNCHRONIZATION SIMULATORS

C IMPLICIT INTEGER*2(1-N)
 INTEGER*2 B,D,DD
 INTEGER*2 DL
 INTEGER*4 N
 INTEGER*4 KGET
DIMENSION NR(100),NS(100),IS(100),NU(1CC),IU(1CC),NC(1CC,1C)
ND(100),ID(100),NL(100),DL(100,10),B(1C),NT(1CC),IT(1CC)
N=93521
NPR=C
DC 116 NODES=10,20,5
DC 116 LINK=NODES,30,5
DC 116 NCCUN=1,40
NPR=NPR+1
C GENERATE RANDOM NODE CONFIGURATION
C
DC 101 I=1,NODES
101 NR(I)=I
 NN=NODES*5
DC 101 I=1,NN
 J=KGET(N,NODES)
 K=KGET(N,NODES)
 NRR=NR(J)
 NR(J)=NR(K)
102 NR(K)=NRR
DC 103 I=1,NODES
 NT(I)=0
 NU(I)=I
 ND(I)=0
 NL(I)=0
103 NS(I)=NR(I)
C GENERATE 2-WAY RANDOM LINKS
C
DC 106 I=2,NODES
 II=I-1
104 J=KGET(N,II)
IF (NL(J)-10) 105,104
105 NL(J)=NL(J)+1
 NL(I)=1
 DDD=KGET(N,LINK)
 NC(J,NL(J))=I
 NC(I,1)=J
 DL(J,NL(J))=DDD
106 DL(I,1)=DDD
IF (LINK-NODES) 115,107,107
107 DC 114 I=NODES,LINK
108 J=KGET(N,NODES)
IF (NL(J)-10) 109,108,108

61
109 K=KGET(N,NODES)
 IF (NL(K)-10) 110,109,110
110 IF (K-J) 111,109,111
111 NW=NL(K)
 DC 112 L=1,NW
 IF (NC(K,L)-J) 112,108,112
112 CONTINUE
 NW=NL(J)
 DC 113 L=1,NW
 IF (NC(J,L)-K) 113,109,113
113 CONTINUE
 DDD=KGET(N,LINK)
 NL(J)=NL(J)+1
 NL(K)=NL(K)+1
 NC(J,NL(J))=K
 NC(K,NL(K))=J
 DL(J,NL(J))=DDD
 DL(K,NL(K))=DDD
114 CONTINUE
115 CONTINUE
 WRITE (6) NPR,NODES,LINK,NR,NS,NU,ND,NL,NC,DL,NT
116 CONTINUE
STOP
END

INTEGER FUNCTION KGET(N,NN)
 INTEGER*2 NN
 F=NN
 KGET=F*FRA(N)
 KGET=KGET+1
RETURN
END
C DCA NETWORK SYNCHRONIZATION SIMULATOR

C

IMPLICIT INTEGER*2 (I-N)
INTEGER*2 B,DDD
INTEGER*2 DL
INTEGER*4 N
INTEGER*4 KGET
DIMENSION NR(100),NS(100),IS(100),NU(ICC),IL(ICC),NC(ICC,10),T2D00080
1 ND(100),ID(100),NL(100),DL(100,10),B(1C),NT(100),IT(ICC)
WRITE (2,142)
101 READ (6,END=3434) NPR,NODES,LINK,NR,NS,NL,ND,NL,NC,DL,NT
102 DC 120 I=1,NODES
103 DC 105 J=1,NLL
104 M=NS(NCC)
105 CONTINUE
106 IU(I)=I
107 DC 109 J=1,NLL
108 L=L+1
109 CONTINUE
110 IU(I)=NC(I,B(1))
111 DC 113 J=2,L
112 M=NC
113 CONTINUE
114 NC=C
115 DC 115 J=1,L

63
II=NC(I,B(J))
IF (M-ND(II)-DL(I,B(J))) 115,114,114
114 NC=NC+1
B(NC)=B(J)
115 CONTINUE
IF (NQ-1) 116,116,117
116 IU(I)=NC(I,B(I))
ID(I)=ND(IU(I))+DL(I,B(I))
IT(I)=NT(IU(I))
GO TO 120
117 NE=NC(I,B(I))
M=NR(NE)
NP=1
DC 119 J=2,NC
NE=NC(I,M(J))
IF (M-NR(NE)) 119,118,118
118 NP=J
M=NR(NE)
119 CONTINUE
IU(I)=NC(I,B(NP))
ID(I)=ND(IU(I))+DL(I,B(NP))
IT(I)=NI(IU(I))
120 CONTINUE
IFLAG=0
DC 124 I=1,NODES
IF (IU(I)-1) 121,124,121
121 IF (NT(I)-IT(I)) 123,123,122
122 IT(I)=IT(I)+1
GO TO 124
123 IFLAG=1
IU(I)=I
ID(I)=0
IS(I)=NR(I)
IT(I)=NT(I)+1
124 CONTINUE
DC 131 I=1,NODES
IF (IFLAG) 125,125,130
125 IF (NU(I)-IU(I)) 129,126,129
126 IF (NS(I)-IS(I)) 129,127,129
127 IF (ND(I)-ID(I)) 129,128,129
128 IF (IT(I)-NT(I)) 129,130,129
129 IFLAG=1
130 NS(I)=IS(I)
NT(I)=IT(I)
NU(I)=IU(I)
131 ND(I)=ID(I)
NT=NIT+1
IF (IFLAG) 132,132,102
132 NIT=NIT-1
WRITE (3,143) (NS(I),I=1,NODES)
IF (IGC) 133,133,141
133 1GC=1
 NIT1=NIT
 NIT=NIT+1
 DC 134 I=1,NODES
 IF (NR(I)-1) 134,135,134
134 CONTINUE
135 NTILE=1
 NLL=NL(NTEST)
 NL(NTEST)=0
 DC 140 I=1,NLL
 NCCC=NC(NTEST,1)
 NLLL=NL(NCCC)
 DC 146 J=1,NLLL
 IF (NC(NCCC,J)-NTEST) 136,137,136
136 CONTINUE
137 IF (J-NLLL) 138,140,140
138 JJ=J+1
 DC 139 K=JJ,NLLL
 KK=K-1
 DL(NCCC,KK)=DL(NCCC,K)
139 NC(NCCC,KK)=NC(NCCC,K)
140 NL(NCCC)=NLLL-1
 GO TO 102
141 NIT=NIT-N1T1-1
 WRITE (3,144) NPR,NODES,LINK,NIT1,NIT
 WRITE (2,144) NPR,NODES,LINK,NIT1,NIT
 GO TO 101
 STOP
C
C 142 FORMAT (49H DCA SYNCHRONIZATION SIMULATION DATA, CONTROL - T2)
143 FORMAT (IX,3012)
144 FORMAT (5110)
END
C DCA TEST NETWORK LISTER

C IMPLICIT INTEGER*2(A-2)
DIMENSION NR(100),NS(100),IS(100),NU(100),IL(100),NC(1CC,1C)
ND(100),ID(100),NL(100),DL(100,10),B(10),MM(1CC)
IND=1
READ (1,110) NIN,NFIN
NCCUNT=NIN-1
IF (NCCUNT) 103,103,101
101 DC 102 I=1,NCCUNT
102 READ (6,END=3434) NPR,NODES,LINK,NR,NS,NU,ND,NL,NC,DL,MM
NCCUNT=NCCUNT+1
IF (NCCUNT.GT.NFIN) GO TO 109
READ (6,END=3434) NPR,NODES,LINK,NR,NS,NU,ND,NL,NC,DL,MM
GO TO (104,105), IND
104 IND=2
WRITE (3,111) NPR,NODES,LINK
NN=NODES
GO TO 107
105 IND=1
NN=27-NN
DC 106 I=1,NN
106 WRITE (3,112)
WRITE (3,113) NPR,NODES,LINK
107 DC 108 I=1,NODES
NLI=NL(I)
108 WRITE (3,114) I,NR(I),(NC(I,J),DL(I,J),J=I,NLI)
GO TO 103
109 STOP
C
110 FORMAT (213)
111 FORMAT (1H1,9X, 8HPRCELEM, 13, 11H, NODES=, 13, 11H, LINKS=, 13, 12/10X, 11HNCDE# RANK,3X, 29H(LINKED TO NODE/PATH DEMERIT))
112 FORMAT (1H)
113 FORMAT (10X, 8HPRCELEM, 13, 11H, NODES=, 13, 11H, LINKS=, 13/LID00350
1/10X, 11HNCDE# RANK,3X, 29H(LINKED TO NODE/PATH DEMERIT))
114 FORMAT (11X,13,4X,12,2X,10(13, 1H/12))
END
DCA PLOT ROUTINE FOR RANDOM NETWORK ORGANIZATION RESULTS

C
DIMENSION A(11,5), B(11,5), X(7)
DIMENSION IBUF(1000)
DATA X/10,,15,,20,,25,,30,,5,,.5,,.5/.
DATA A1,A2,B1,B2/0,,3,,0,,3,./
101 CALL PLOTS (IBUF,1000,3)
102 READ (1,108,END=107) ISYM
DC 104 JJ=1,12
READ (1,109) NODES, LINK, MAVS, MAVR
MINS=MAVS
MINR=MAVR
MAXS=MAVS
MAXR=MAVR
DC 103 I=2,40
READ (1,110) M, MM
MAVS=MAVS+M
MAVR=MAVR+MM
IF (M.GT.MAXS) MAXS=M
IF (M.LT.MINR) MINR=M
IF (M.GT.MAXR) MAXR=MM
IF (M.LT.MINR) MINR=MM
103 CONTINUE
MAVS=MAVS/40
MAVR=MAVR/40
N=(NODES-5)/5
L=(LINK-5)/5
A(L,N)=MAVS
B(L,N)=MAVR
104 CONTINUE
CALL PLOT (10,,11,,3)
CALL PLOT (0,,15,,3)
CALL AXIS (0,,0,,15HNUMBER OF LINKS, -15,,6,,0,,5,,.5)
CALL AXIS (0,,0,,29HMEAN ORGANIZATION ITERATIONS, 29,8,,90,,
A1,A2)
CALL PLOT (0,,8,,3)
CALL PLOT (6,,8,,2)
CALL PLOT (6,,0,,2)
DC 105 I=1,3
NP=6-1
A(6,)=A1
A(7,)=A2
105 CALL LINE (X(I),A(I,,I),NP,1,1,1)
CALL SYMBOL (.2,,7,,8,,14,,3,,0,,.5,,.5)
CALL SYMBOL (.999,,999,,14,,11H - 20 NODES,0,,11)
CALL SYMBOL (.2,,7,,6,,14,,2,,.5,,.5)
CALL SYMBOL (.999,,999,,14,,11H - 15 NODES,0,,11)
CALL SYMBOL (.2,,7,,4,,14,,1,,0,,.5,,.5)
CALL SYMBOL (.999,,999,,14,,11H - 10 NODES,0,,11)
CALL PLOT (10,,11,,3)
CALL PLOT (0,,1,,3)
CALL AXI S (0,,0,,15H NUMBER OF LINKS, -15,,6,,0,,5,,.5)
CALL AXIS (0.,0.,31) MEAN REORGANIZATION ITERATIONS, 31, 8.,
90.,81.,B12)
CALL PLOT (0.,8.,3)
CALL PLOT (6.,8.,2)
CALL PLOT (6.,0.,2)
DC 106 I=1,3
NP=6-I
B(6,1)=B1
B(7,1)=B2
106 CALL LINE (X(I),B(1,1),NP,1,1,1)
CALL SYMBOL (.2,7.8.,14,3,0.,-1)
CALL SYMBOL (999.,999.,14,11H - 20 NODES,C.,11)
CALL SYMBOL (999.,999.,14,11H - 15 NODES,C.,11)
CALL SYMBOL (999.,999.,14,11H - 10 NODES,C.,11)
GO TO 102
107 CALL PLOT (0.,0.,999)
STOP
C
108 FORMAT (45X,A4)
109 FORMAT (10X,4I10)
110 FORMAT (30X,2I10)
END
STANDARD TEST NETWORK

APPENDIX
Test Network Listed by Link Numbers

<table>
<thead>
<tr>
<th>Link</th>
<th>Node-Node</th>
<th>Lgth.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>001 002</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>002</td>
<td>001 003</td>
<td>005</td>
<td>M</td>
</tr>
<tr>
<td>003</td>
<td>002 003</td>
<td>008</td>
<td>M</td>
</tr>
<tr>
<td>004</td>
<td>003 004</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>005</td>
<td>002 004</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>006</td>
<td>004 022</td>
<td>060</td>
<td>M</td>
</tr>
<tr>
<td>007</td>
<td>022 023</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>008</td>
<td>023 023</td>
<td>040</td>
<td>M</td>
</tr>
<tr>
<td>009</td>
<td>024 025</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>010</td>
<td>021 025</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>011</td>
<td>025 026</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>012</td>
<td>021 026</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>013</td>
<td>025 031</td>
<td>015</td>
<td>M</td>
</tr>
<tr>
<td>014</td>
<td>026 031</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>015</td>
<td>023 029</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>016</td>
<td>038 050</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>017</td>
<td>050 052</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>018</td>
<td>049 052</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>019</td>
<td>004 009</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>020</td>
<td>009 012</td>
<td>005</td>
<td>M</td>
</tr>
<tr>
<td>021</td>
<td>012 012</td>
<td>005</td>
<td>M</td>
</tr>
<tr>
<td>022</td>
<td>057 059</td>
<td>015</td>
<td>M</td>
</tr>
<tr>
<td>023</td>
<td>058 059</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>024</td>
<td>014 016</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>025</td>
<td>016 017</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>026</td>
<td>017 018</td>
<td>040</td>
<td>M</td>
</tr>
<tr>
<td>027</td>
<td>018 020</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>028</td>
<td>020 021</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>029</td>
<td>017 019</td>
<td>040</td>
<td>M</td>
</tr>
<tr>
<td>030</td>
<td>001 008</td>
<td>015</td>
<td>M</td>
</tr>
<tr>
<td>031</td>
<td>004 027</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>032</td>
<td>027 028</td>
<td>025</td>
<td>M</td>
</tr>
<tr>
<td>033</td>
<td>023 028</td>
<td>025</td>
<td>M</td>
</tr>
<tr>
<td>034</td>
<td>043 044</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>035</td>
<td>044 045</td>
<td>060</td>
<td>M</td>
</tr>
<tr>
<td>036</td>
<td>045 046</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>037</td>
<td>046 047</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>038</td>
<td>047 048</td>
<td>025</td>
<td>M</td>
</tr>
<tr>
<td>039</td>
<td>048 049</td>
<td>025</td>
<td>M</td>
</tr>
<tr>
<td>040</td>
<td>036 037</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>041</td>
<td>049 056</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>042</td>
<td>056 057</td>
<td>015</td>
<td>M</td>
</tr>
<tr>
<td>043</td>
<td>031 039</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>044</td>
<td>039 040</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>045</td>
<td>040 041</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>046</td>
<td>041 042</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>047</td>
<td>042 043</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>048</td>
<td>001 005</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>049</td>
<td>005 006</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>050</td>
<td>001 006</td>
<td>030</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link</th>
<th>Node-Node</th>
<th>Lgth.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>051</td>
<td>049 056</td>
<td>020</td>
<td>W</td>
</tr>
<tr>
<td>052</td>
<td>049 055</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>053</td>
<td>055 056</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>054</td>
<td>056 057</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>055</td>
<td>057 058</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>056</td>
<td>055 058</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>057</td>
<td>038 051</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>058</td>
<td>050 051</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>059</td>
<td>050 053</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>060</td>
<td>052 053</td>
<td>030</td>
<td>W</td>
</tr>
<tr>
<td>061</td>
<td>052 054</td>
<td>025</td>
<td>W</td>
</tr>
<tr>
<td>062</td>
<td>049 054</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>063</td>
<td>004 010</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>064</td>
<td>010 013</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>065</td>
<td>004 007</td>
<td>005</td>
<td>W</td>
</tr>
<tr>
<td>066</td>
<td>007 008</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>067</td>
<td>008 011</td>
<td>005</td>
<td>W</td>
</tr>
<tr>
<td>068</td>
<td>011 010</td>
<td>005</td>
<td>W</td>
</tr>
<tr>
<td>069</td>
<td>014 015</td>
<td>005</td>
<td>W</td>
</tr>
<tr>
<td>070</td>
<td>013 015</td>
<td>002</td>
<td>W</td>
</tr>
<tr>
<td>071</td>
<td>021 026</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>072</td>
<td>026 031</td>
<td>020</td>
<td>W</td>
</tr>
<tr>
<td>073</td>
<td>008 009</td>
<td>004</td>
<td>W</td>
</tr>
<tr>
<td>074</td>
<td>009 010</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>075</td>
<td>012 013</td>
<td>003</td>
<td>W</td>
</tr>
<tr>
<td>076</td>
<td>011 012</td>
<td>002</td>
<td>W</td>
</tr>
<tr>
<td>077</td>
<td>018 019</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>078</td>
<td>003 004</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>079</td>
<td>021 026</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>080</td>
<td>032 033</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>081</td>
<td>026 032</td>
<td>100</td>
<td>T</td>
</tr>
<tr>
<td>082</td>
<td>033 034</td>
<td>280</td>
<td>T</td>
</tr>
<tr>
<td>083</td>
<td>034 035</td>
<td>150</td>
<td>T</td>
</tr>
<tr>
<td>084</td>
<td>035 036</td>
<td>100</td>
<td>T</td>
</tr>
<tr>
<td>085</td>
<td>037 038</td>
<td>200</td>
<td>T</td>
</tr>
<tr>
<td>086</td>
<td>014 019</td>
<td>090</td>
<td>T</td>
</tr>
<tr>
<td>087</td>
<td>019 021</td>
<td>060</td>
<td>T</td>
</tr>
<tr>
<td>088</td>
<td>013 021</td>
<td>170</td>
<td>T</td>
</tr>
<tr>
<td>089</td>
<td>029 030</td>
<td>120</td>
<td>T</td>
</tr>
<tr>
<td>090</td>
<td>031 043</td>
<td>150</td>
<td>T</td>
</tr>
<tr>
<td>091</td>
<td>001 043</td>
<td>400</td>
<td>S</td>
</tr>
<tr>
<td>092</td>
<td>001 049</td>
<td>550</td>
<td>S</td>
</tr>
<tr>
<td>093</td>
<td>043 049</td>
<td>180</td>
<td>S</td>
</tr>
<tr>
<td>094</td>
<td>034 043</td>
<td>200</td>
<td>S</td>
</tr>
<tr>
<td>095</td>
<td>026 034</td>
<td>350</td>
<td>S</td>
</tr>
<tr>
<td>096</td>
<td>034 038</td>
<td>450</td>
<td>S</td>
</tr>
<tr>
<td>097</td>
<td>001 059</td>
<td>600</td>
<td>S</td>
</tr>
<tr>
<td>098</td>
<td>026 038</td>
<td>800</td>
<td>S</td>
</tr>
<tr>
<td>099</td>
<td>026 038</td>
<td>800</td>
<td>R</td>
</tr>
<tr>
<td>100</td>
<td>030 043</td>
<td>200</td>
<td>R</td>
</tr>
<tr>
<td>Link</td>
<td>Node-Node</td>
<td>Lgth.</td>
<td>Type</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>001</td>
<td>001 002</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>002</td>
<td>001 003</td>
<td>005</td>
<td>M</td>
</tr>
<tr>
<td>030</td>
<td>001 008</td>
<td>015</td>
<td>M</td>
</tr>
<tr>
<td>048</td>
<td>001 005</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>050</td>
<td>001 006</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>091</td>
<td>001 043</td>
<td>400</td>
<td>S</td>
</tr>
<tr>
<td>092</td>
<td>001 049</td>
<td>550</td>
<td>S</td>
</tr>
<tr>
<td>097</td>
<td>001 059</td>
<td>600</td>
<td>S</td>
</tr>
<tr>
<td>003</td>
<td>002 003</td>
<td>008</td>
<td>M</td>
</tr>
<tr>
<td>005</td>
<td>002 004</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>078</td>
<td>003 004</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>004</td>
<td>003 004</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>065</td>
<td>004 007</td>
<td>005</td>
<td>W</td>
</tr>
<tr>
<td>031</td>
<td>004 027</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>019</td>
<td>004 009</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>006</td>
<td>004 022</td>
<td>060</td>
<td>M</td>
</tr>
<tr>
<td>063</td>
<td>004 010</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>049</td>
<td>005 006</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>066</td>
<td>007 008</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>067</td>
<td>008 011</td>
<td>005</td>
<td>W</td>
</tr>
<tr>
<td>073</td>
<td>008 009</td>
<td>004</td>
<td>W</td>
</tr>
<tr>
<td>020</td>
<td>009 012</td>
<td>005</td>
<td>M</td>
</tr>
<tr>
<td>074</td>
<td>009 010</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>064</td>
<td>010 013</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>068</td>
<td>010 011</td>
<td>005</td>
<td>W</td>
</tr>
<tr>
<td>076</td>
<td>011 012</td>
<td>002</td>
<td>W</td>
</tr>
<tr>
<td>075</td>
<td>012 013</td>
<td>003</td>
<td>W</td>
</tr>
<tr>
<td>021</td>
<td>012 012</td>
<td>005</td>
<td>M</td>
</tr>
<tr>
<td>088</td>
<td>013 021</td>
<td>170</td>
<td>T</td>
</tr>
<tr>
<td>070</td>
<td>013 015</td>
<td>002</td>
<td>W</td>
</tr>
<tr>
<td>069</td>
<td>014 015</td>
<td>005</td>
<td>W</td>
</tr>
<tr>
<td>086</td>
<td>014 019</td>
<td>090</td>
<td>T</td>
</tr>
<tr>
<td>024</td>
<td>014 016</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>025</td>
<td>016 017</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>029</td>
<td>017 019</td>
<td>040</td>
<td>M</td>
</tr>
<tr>
<td>026</td>
<td>017 018</td>
<td>040</td>
<td>M</td>
</tr>
<tr>
<td>027</td>
<td>018 020</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>077</td>
<td>018 019</td>
<td>015</td>
<td>W</td>
</tr>
<tr>
<td>087</td>
<td>019 021</td>
<td>080</td>
<td>T</td>
</tr>
<tr>
<td>028</td>
<td>020 021</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>071</td>
<td>021 026</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>079</td>
<td>021 026</td>
<td>010</td>
<td>W</td>
</tr>
<tr>
<td>010</td>
<td>021 025</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>012</td>
<td>021 026</td>
<td>010</td>
<td>M</td>
</tr>
<tr>
<td>007</td>
<td>022 023</td>
<td>020</td>
<td>M</td>
</tr>
<tr>
<td>008</td>
<td>023 023</td>
<td>040</td>
<td>M</td>
</tr>
<tr>
<td>033</td>
<td>023 028</td>
<td>025</td>
<td>M</td>
</tr>
<tr>
<td>015</td>
<td>023 029</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>009</td>
<td>024 025</td>
<td>030</td>
<td>M</td>
</tr>
<tr>
<td>011</td>
<td>025 026</td>
<td>010</td>
<td>M</td>
</tr>
</tbody>
</table>
BASE UNITS:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>SI Symbol</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>metre</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>mass</td>
<td>kilogram</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>second</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>electric current</td>
<td>ampere</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>thermodynamic temperature</td>
<td>kelvin</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>amount of substance</td>
<td>mole</td>
<td>mol</td>
<td></td>
</tr>
<tr>
<td>luminous intensity</td>
<td>candela</td>
<td>cd</td>
<td></td>
</tr>
</tbody>
</table>

SUPPLEMENTARY UNITS:

| plane angle | radian | rad | |
| solid angle | steradian | sr | |

DERIVED UNITS:

Acceleration	metre per second squared	m/s
activity (of a radioactive source)	disintegration per second	(disintegration)/s
angular acceleration	radian per second	rad/s
angular velocity	radian per second	rad/s
area	square metre	m²
density	kilogram per cubic metre	kg/m³
electric capacitance	farad	F
electric conductance	siemens	S
electric field strength	volt per metre	V/m
electric inductance	henry	H
electric potential difference	volt	V
electric resistance	ohm	V
electromagnetic force	volt	V
energy	joule	J
entropy	joule per kelvin	J/k
force	watt	W
frequency	hertz	Hz
illuminance	lux	lx
luminance	lumen	lm
luminous flux	candela per square metre	cd/m²
magnetic field strength	ampere per metre	A/m
magnetic flux	weber	Wb
magnetic flux density	tesla	T
magnetomotive force	ampere	A
power	watt	W
pressure	pascal	Pa
quantity of electricity	coulomb	C
quantity of heat	joule	J
radiant intensity	watt per steradian	W/sterad
specific heat	joule per kilogram-kilometre	J/kg.km
stress	pascal	Pa
thermal conductivity	watt per metre-kelvin	W/m.kl
velocity	metre per second	m/s
viscosity, dynamic	Pascal-second	Pa.s
viscosity, kinematic	square metre per second	m²/s
voltage	volt	V
volume	cubic metre	m
wavenumber	reciprocal metre	J
work	joule	J

SI PREFIXES:

<table>
<thead>
<tr>
<th>Multiplication Factors</th>
<th>Prefix</th>
<th>SI Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000 000 000 000 000 = 10^12</td>
<td>Tera</td>
<td>T</td>
</tr>
<tr>
<td>1 000 000 000 000 = 10^9</td>
<td>Giga</td>
<td>G</td>
</tr>
<tr>
<td>1 000 000 000 = 10^6</td>
<td>Mega</td>
<td>M</td>
</tr>
<tr>
<td>1 000 = 10^3</td>
<td>Kilo</td>
<td>k</td>
</tr>
<tr>
<td>100 = 10^2</td>
<td>Hecto</td>
<td>h</td>
</tr>
<tr>
<td>10 = 10^1</td>
<td>Deca</td>
<td>da</td>
</tr>
<tr>
<td>0.1 = 10^-1</td>
<td>Deci</td>
<td>d</td>
</tr>
<tr>
<td>0.01 = 10^-2</td>
<td>Centi</td>
<td>c</td>
</tr>
<tr>
<td>0.001 = 10^-3</td>
<td>Milli</td>
<td>m</td>
</tr>
<tr>
<td>0.000 001 = 10^-6</td>
<td>Micro</td>
<td>μ</td>
</tr>
<tr>
<td>0.000 000 001 = 10^-9</td>
<td>Nano</td>
<td>n</td>
</tr>
<tr>
<td>0.000 000 000 001 = 10^-12</td>
<td>Pico</td>
<td>p</td>
</tr>
<tr>
<td>0.000 000 000 000 001 = 10^-15</td>
<td>Femto</td>
<td>f</td>
</tr>
<tr>
<td>0.000 000 000 000 000 001 = 10^-18</td>
<td>Atto</td>
<td>a</td>
</tr>
</tbody>
</table>

* To be avoided where possible.
MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced development programs in command, control, and communications (C³) activities, and in the C³ areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.