NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THE KALMAN FILTER APPLIED TO PROCESS RANGE DATA OF
THE CUBIC MODEL 40 AUTOTAPE SYSTEM

by

Benjamin E. Julian

December, 1976

Thesis Advisor: H. A. Titus

Approved for public release; distribution unlimited.
The Kalman Filter is implemented to process range data output from the Cubic Model 40 Autotape system, a surface position locating system currently employed on the underwater tracking ranges at Dabob Bay and Nanoose. Results are presented for different measurement noise and forcing function noise statistics.
The Kalman Filter Applied to Process Range Data of the Cubic Model 40 Autotape System

by

Benjamin E. Julian
Lieutenant Commander, United States Navy
B.S., University of Washington, 1966

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1976

Author

Benjamin E. Julian

Approved by:

Thesis Advisor

Chairman, Department of Electrical Engineering

Dean of Science and Engineering
ABSTRACT

The Kalman Filter is implemented to process range data output from the Cubic Model 40 Autotape system, a surface position locating system currently employed on the underwater tracking ranges at Dabob Bay and Nanoose. Results are presented for different measurement noise and forcing function noise statistics.
TABLE OF CONTENTS

I. INTRODUCTION .. 6

II. THE FILTER THEORY AND DESIGN 12
 A. THE SYSTEM DYNAMIC MODEL 12
 B. THE PROCESSOR ... 20
 C. NOISE AND ERROR CONSIDERATIONS 21
 D. PROCESSOR PERFORMANCE: AUTHOR’S CONCLUSIONS 25

III. FUTURE FILTER IMPROVEMENTS 32

APPENDIX A: PROCESSOR FLOWCHART MAIN PROGRAM 37

COMPUTER OUTPUT ... 45

COMPUTER PROGRAM ... 51

LIST OF REFERENCES ... 65

INITIAL DISTRIBUTION LIST 66
LIST OF FIGURES

1. Cubic Model 40 Autotape System ------------------------ 7
2. Typical Autotape Application Geometry ------------------ 8
3. Rectangular Plot of Raw Range Data ---------------------- 11
4. Block Diagram of Discrete Linear Estimator ------------- 14
5. Kalman Filter Block Diagram ----------------------------- 17
6. Simplified Information Flow Diagram of a Discrete
 Kalman Filter -- 18
7. Timing Diagram of Filter Equation Quantities ---------- 19
8. Error and Geometry ----------------------------------- 22
9. Error Contours -- 23
10. Residue 1 vs. Time. \(Q = .01I, R = I \) --------------- 28
11. Residue 2 vs. Time. \(Q = .01I, R = I \) --------------- 29
12. Error 1 vs. Time. \(Q = .01I, R = I \) --------------- 30
13. Error 2 vs. Time. \(Q = .01I, R = I \) --------------- 31
14. Relationship of Forward and Backward Filters ----------- 33
I. INTRODUCTION

The Cubic CM-40 Autotape is a microwave distance measuring system used (by the U.S. Navy at its acoustic underwater tracking ranges at Dabob Bay and Nanoose) to provide reference position information for units on the surface and in the air above the range. This portable system consists basically of an interrogator which is operated aboard the unit to be tracked, two responders operated at two different shore sites and the associated antenna/RF assemblies. Required support systems include a data display and recording setup and an ADP facility for off-line processing of the Autotape data. Figure 1 shows the Autotape system components and Figure 2 shows a typical application geometry.

Historically, the Autotape has been used in such applications as tracking hydrophone array survey, buoy and hydrophone array planting and as a reference position indicator for calibrating other position-finding devices against. Generally, the Autotape has been used where an extremely high degree of accuracy is not required.

In operation, the system will provide for the display and recording of two ranges simultaneously, once per second, the ranges being those between the interrogator and each of the responders. The ranges are computed from the phase delay between the output of the modulation signal generator and a signal which has traveled from the interrogator to a responder and back. Ranging accuracy is stated by the manufacturer to be \(\pm 0.5 \) meter \(+ 10 \) ppm \(\times \) range. Ranging frequencies of 1500 KHZ, 150 KHZ and 165 KHZ modulate a 3000 MHZ carrier, yielding a maximum unambiguous range of 10,000 meters with a resolution of 0.1 meter. However, independent
FIGURE 1: Cubic Model 40 Autotape System
testing by the U.S. Navy [Reference 1] has shown that system accuracy may not be quite as good as stated by the manufacturer.

The accuracy of the Autotape system is principally dependent upon range errors, the geometry of the system and the method of data reduction. These factors are, in turn, affected by propagation velocity, system stability, range dependency, land survey accuracy, system geometry, slope reduction and data smoothing. A final anomaly which, depending upon the application, can substantially degrade the quality of the data-stream out is the orientation, over time, of the interrogator antenna in the vertical dimension. The interrogator antenna has only a 10 degree vertical beam width. Thus, if the system is being used on a platform such as a moderately maneuvering helicopter or a ship rolling substantially in the seaway, the system tends to frequently lose track, resulting in fairly long streams of useless data.

Present data reduction techniques employed when the system is used on either of the ranges (Dabob or Nanoose) employ two overall iterations. The first, or initial processing, administers the following three corrections to the raw range data:

1. Range Calibration Correction: This is a fixed value (meters) added to or subtracted from each range.

2. Propagation Velocity Correction: This is a variable correction due to the atmospheric index of refraction at the particular time and place of the exercise.

3. Slope Reduction Correction: This reduces both range measurements (which are actually slant ranges because the interrogator and the responders are not normally located at the exact same elevation) to a common horizontal plane at sea level.

Subsequent processing of the data includes conversion of the corrected ranges to a rectangular x-y range coordinate system and a moving average smoothing technique which employs curve fitting algorithms (linear,
parabolic or logarithmic) to reduce the data to its final form. Not uncommonly, as a result of the total reduction effort, the net remainder is an inadequate data package (in terms of quantity) for proper final evaluation.

Figure 3 is a rectangular plot of the raw ranges recorded during a recent array survey. The purpose of this project has been to design a filter, a Kalman filter, which would provide more accurate range data, as well as one that would track through the periods of "lost track" ranging, thereby providing a significantly larger final volume of data for evaluation. This paper presents the basic theory necessary and includes the final version of the filter.
FIGURE 3: Rectangular Plot of Raw Range Data
II. THE FILTER THEORY AND DESIGN

A. THE SYSTEM DYNAMIC MODEL

A common application for the Autotape system is its use as a reference position locator on the surface unit conducting an acoustic hydrophone array (range) survey. The usual exercise plan will call for a service unit, carrying the interrogator and equipped with an acoustic pinger mounted on the underwater hull, to transit three concentric circular tracks, centered above the array, with track radii ranging from 100 to 1,000 meters, at speeds of up to eight knots. The direction of rotation for the outer track will normally be opposite to that of the middle circle. While the service unit is being tracked via Autotape, it is also being tracked by the acoustic array. By comparing the acoustic position data with that from the Autotape, a digital computer is able to compute actual position and attitude of the array.

The desired estimates will be those of position and velocity, \(R_1, R_2, \dot{R}_1, \dot{R}_2 \). It is proper at this point to define a number of terms and to summarize some pertinent results of observer theory. First, we may define a fourth order state vector:

\[
\mathbf{x} = \begin{bmatrix} R_1 \\ R_2 \\ \dot{R}_1 \\ \dot{R}_2 \end{bmatrix}
\]

Recall that a linear system can be described in the continuous time domain as:

\[
\dot{\mathbf{x}}(t) = A \mathbf{x}(t) + D \mathbf{w}(t)
\]
where: \(x(t) \) is the \(n \)-element column vector of the states
\(A \) and \(D \) are \(n \times n \) and \(n \times p \) matrices describing system dynamics
\(w(t) \) is a \(q \)-element vector of random noise inputs to the system

The system measurements may be expressed as:
\[
Z(t) = H x(t) + v(t)
\]

where: \(Z(t) \) is the \(q \)-element vector of system measurements
\(H \) is the \(q \times n \) weighting matrix for the measurements
\(v(t) \) is the \(q \)-element vector of random measurement noise

The corresponding linear discrete model may be written as:
\[
x(k + 1) = \Phi x(k) + \varphi w(k)
\]
with no deterministic inputs to the system.

Also,
\[
Z(k) = H x(k) + v(k)
\]

For the system under consideration, it can be shown that the state transition matrix
\[
\Phi = \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

and
\[
\varphi = \begin{bmatrix}
\frac{1}{4} & 0 \\
0 & \frac{1}{4} \\
1 & 0 \\
0 & 1
\end{bmatrix}
\]

for a sampling interval \(T \) of 1 second. A block diagram of the system is shown in Figure 4.
FIGURE 4: Block Diagram of Discrete Linear Estimator
The following assumptions will be made regarding the noise processes and the initial state, $x(0)$ of the plant [Ref. 2]:

The measurement noise has zero mean, is uncorrelated, and

$$E [v(k)v^T(j)] = R(k) \delta_{kj},$$

where δ is the kronecker delta.

The forcing noise has zero mean, is uncorrelated, and

$$E [w(k)w^T(j)] = Q(k) \delta_{kj}$$

The forcing noise and measurement noise are uncorrelated.

The initial state is a random variable with known mean and covariance, and

$$E \{ [x(0) - \bar{x}_0]. [x(0) - \bar{x}_0]^T \} = P_0$$

The measurement noise and initial state are uncorrelated.

The forcing noise and initial state are uncorrelated.

The Kalman Filter equations and their derivation are well known [Ref. 2], [Ref. 3]:

$$\mathbf{G}(k) = \mathbf{P}(k/k-1) H^T(k) [H(k) \mathbf{P}(k/k-1) H^T(k) + R(k)]^{-1}$$ \hspace{1cm} (1)

$$\mathbf{P}(k/k) = [\mathbf{I} - \mathbf{G}(k) H(k)] \mathbf{P}(k/k-1)$$ \hspace{1cm} (2)

$$\hat{x}(k/k) = \hat{x}(k/k-1) + \mathbf{G}(k) [z(k) - H(k) \hat{x}(k/k-1)]$$ \hspace{1cm} (3)

$$\hat{x}(k/k-1) = \mathbf{P}(k/k-1) \hat{x}(k-1/k-1) + \mathbf{P}(k/k-1)w(k-1)$$ \hspace{1cm} (4)

Where the notation $(k/k-1)$ interprets as the value of the parameter of note at time k given measurements at times up to and including time $k-1$. (k/k) and $(k-1/k-1)$ have similar interpretations. The \hat{x} denotes the estimate of x.

15
\(G(k) \) represents the filter gain at time \(k \). \(P \) represents the covariance of estimation error:

\[
P(k/k) = E \left[e(k/k) e^T(k/k) \right] = E \begin{bmatrix}
e_1(k/k) \\
e_2(k/k) \\
\vdots \\
e_n(k/k)
\end{bmatrix}^T
\begin{bmatrix}
e_1(k/k) \\
e_2(k/k) \\
\vdots \\
e_n(k/k)
\end{bmatrix}
\]

\[
= E \begin{bmatrix}
e_1^2(k/k) & e_1(k/k) e_2(k/k) & \cdots & e_1(k/k) e_n(k/k) \\
e_2(k/k) e_1(k/k) & e_2^2(k/k) & \cdots & e_2(k/k) e_n(k/k) \\
\vdots & \vdots & \ddots & \vdots \\
e_n(k/k) e_1(k/k) & e_n(k/k) e_2(k/k) & \cdots & e_n^2(k/k)
\end{bmatrix}
\]

where \(e(k/k) = \hat{x}(k/k) - \hat{x}(k) \). A complete standard block diagram for the filter and an information flow diagram are included as Figures 5 and 6 as slightly different viewpoints from which the system may be viewed and understood. Figure 7 shows a timing diagram of the various quantities contained in the filter equations.
FIGURE 5: Kalman Filter Block Diagram
FIGURE 6: Simplified Information Flow Diagram of a Discrete Kalman Filter
FIGURE 7: Timing Diagram of Filter Equation Quantities
B. THE PROCESSOR

Appendix A is a flowchart of the Kalman filter program utilized. Initially, the matrices describing the physical system, the noise statistics and other program parameters are read into storage and printed out. The discrete state-transition matrix, \(\Phi \), is computed and printed out and the gain schedule is computed and printed out. It is seen that the elements of the gain matrix reach a steady state, and, for example, with both the \(R \) and \(Q \) matrices being identity matrices, the gain reaches steady state between \(k=5 \) and \(k=10 \). Therefore, in the main iteration loop, the filter will essentially be a constant gain filter for \(k \geq 10 \).

Next, the main iteration loop commences. The initial measurements are read and \(x_1(0/-1) \) and \(x_2(0/-1) \) are initialized to these values. \(x_3(0/-1) \) and \(x_4(0/-1) \), representing the rates, are set to the mean constant value (in the respective directions) of 4.0 meters per second. The Autotape output is a 5 significant figure output, modulo 10,000, reading to 0.1 meter. Inherent in the output is a major degree of jitter in the two most significant digits, which would significantly distort the covariance of measurement noise. Therefore, as an option, measurements could be gated, and the gain automatically set to zero in those cases where the residue falls outside of a maximum reasonable bound.

Commencing with \(k=0 \), and utilizing the known values for \(\hat{x}(0/-1) \) and \(P(0/-1) \), the Kalman filter equations are solved iteratively in the following manner [see page 15, equations (1)-(5)]:

\[
(1), (3), (4), \\
\text{Increment } k \text{ to } k=1 \\
(5), (2), (1), (3), (4), \\
\text{Increment } k \text{ to } k=2 \\
(5), (2), (1), (3), (4), \\
\text{etc.}
\]
Also computed on each iteration are the error residues:

\[\text{RES} = z - x(k/k-1) \]

and the one-step prediction errors:

\[\text{ERR} = x(k/k) - x(k/k-1) \]

Finally, the computations are tabulated and plots are produced.

C. NOISE AND ERROR CONSIDERATIONS

Reference 1 documents an Autotape evaluation which was conducted in 1971. The error geometry is shown in Figure 8. Graphically, position is determined by locating the crossing point of the two range arcs, in conjunction with a knowledge of the baseline formed by the two responders. Since each range has an associated standard deviation (error), the point can actually be enclosed in a parallelogram which defines the probable position within one standard deviation of the ranges. The shape of the parallelogram will vary with the position of the crossing point relative to the baseline, as indicated in Figure 8. It can be shown that the maximum probable error (MPE) will be minimized where the range arcs are orthogonal. Figure 9 diagrams error contours which are actually the loci of constant MPE for two particular responder sites on the Nanoose Range. Table 1 summarizes pertinent results of the study.
FIGURE 8: Error and Geometry. At interrogator position 1, the range arcs are nearly orthogonal, and MPE is minimized. At interrogator position 2, the range arcs are not orthogonal, and MPE is greater.
FIGURE 9: Error Contours (Arcs represent maximum probable positional error in feet. End points of arcs are responder locations.)
<table>
<thead>
<tr>
<th>Survey</th>
<th>No. Points</th>
<th>R-1</th>
<th>R-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error Average</td>
<td>Standard Deviation</td>
<td>Error Average</td>
</tr>
<tr>
<td>Array 04</td>
<td>- 0.5</td>
<td>2.8</td>
<td>- 0.1</td>
</tr>
<tr>
<td>Array 07</td>
<td>- 1.3</td>
<td>2.3</td>
<td>- 0.4</td>
</tr>
<tr>
<td>Array 08</td>
<td>- 0.8</td>
<td>4.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Array 09</td>
<td>3.8</td>
<td>2.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Average</td>
<td>0.3</td>
<td>3.0</td>
<td>- 0.5</td>
</tr>
</tbody>
</table>
For the purpose of modeling the covariance of excitation noise, it was assumed that the service unit transited an 800 meter circle at an average speed of eight knots. Then:

\[a = \frac{v^2}{R} = \left(\frac{8 \text{ kts}}{\text{n. mile}} \right)^2 = \frac{1830 \text{ meter}}{3600 \text{ sec} \text{ Hr}} \]

\[= \frac{800 \text{ meters}}{0.0207 \text{ sec}^2} \]

Filter performance was investigated for \(Q = I, .1I, \) and \(.01I, \)

for \(P(0/-1) = P_0 = E \left\{ \begin{bmatrix} x(0) - x_0 \end{bmatrix} \begin{bmatrix} x(0) - x_0 \end{bmatrix} \right\} = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \)

and \(R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

where the a priori \(x(0/-1) \) is known to be a reasonably good estimate -- approximately the same accuracy as an observation.

D. PROCESSOR PERFORMANCE; AUTHOR'S CONCLUSIONS

Table 2 summarizes a comparison of the Kalman filter performance with the results of the (corrected) processing by the program presently being used for the cases \(Q = I, R = I, \) and \(Q = .1I, R = I. \) Figures 10, 11, 12 and 13 are residue and error plots for the example \(Q = .01I, R = I. \)

It is seen that the Kalman filter will satisfactorily handle the data where the measurement noise statistics approximate those used in the model. However, for the noise resulting from the jitter which appears in the "hundreds" and "thousands" digits, the filter, as configured without a gate, will estimate with considerable error. The raw range
R2 was clean of this particular noise element, and the results as indicated by Figures 12 and 13 were superior to those for R1.

It is suggested that the Kalman filter be used as the first iteration processing of the Autotape output.
<table>
<thead>
<tr>
<th>TIME</th>
<th>RAW 1</th>
<th>RAW 2</th>
<th>CURRENT PROCESSOR SMOOTHED</th>
<th>KALMAN FILTER Q=1.0</th>
<th>KALMAN FILTER Q=0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>R2</td>
<td>R1</td>
<td>R2</td>
<td>R1</td>
</tr>
<tr>
<td>105543</td>
<td>4639.9</td>
<td>4962.2</td>
<td>4640.95</td>
<td>4964.94</td>
<td>4640.5</td>
</tr>
<tr>
<td>105733</td>
<td>4911.7</td>
<td>4804.4</td>
<td>4911.72</td>
<td>4806.86</td>
<td>4911.6</td>
</tr>
<tr>
<td>105828</td>
<td>4860.7</td>
<td>4967.3</td>
<td>4858.71</td>
<td>4966.50</td>
<td>4862.3</td>
</tr>
<tr>
<td>105855</td>
<td>4732.6</td>
<td>4982.2</td>
<td>4730.33</td>
<td>4981.69</td>
<td>4732.2</td>
</tr>
<tr>
<td>105915</td>
<td>4628.9</td>
<td>4984.0</td>
<td>4630.19</td>
<td>4986.86</td>
<td>4629.4</td>
</tr>
<tr>
<td>105950</td>
<td>4572.6</td>
<td>4846.7</td>
<td>4571.74</td>
<td>4844.70</td>
<td>4572.9</td>
</tr>
<tr>
<td>110023</td>
<td>4656.7</td>
<td>4766.5</td>
<td>4652.96</td>
<td>4763.53</td>
<td>4656.1</td>
</tr>
<tr>
<td>110042</td>
<td>4741.2</td>
<td>4774.9</td>
<td>4738.52</td>
<td>4773.05</td>
<td>4740.9</td>
</tr>
<tr>
<td>110057</td>
<td>4755.3</td>
<td>4822.8</td>
<td>4754.26</td>
<td>4822.27</td>
<td>4755.1</td>
</tr>
<tr>
<td>110109</td>
<td>4750.0</td>
<td>4872.8</td>
<td>4748.80</td>
<td>4872.46</td>
<td>4749.7</td>
</tr>
<tr>
<td>110116</td>
<td>4748.1</td>
<td>4904.3</td>
<td>4747.17</td>
<td>4903.95</td>
<td>4748.1</td>
</tr>
<tr>
<td>110146</td>
<td>4748.6</td>
<td>5050.7</td>
<td>4744.84</td>
<td>5047.81</td>
<td>4748.0</td>
</tr>
<tr>
<td>110332</td>
<td>3550.6</td>
<td>5326.3</td>
<td>4550.12</td>
<td>5325.59</td>
<td>3729.8</td>
</tr>
<tr>
<td>110501</td>
<td>4165.0</td>
<td>5079.2</td>
<td>4164.08</td>
<td>5079.49</td>
<td>4167.0</td>
</tr>
<tr>
<td>110825</td>
<td>4720.0</td>
<td>4378.9</td>
<td>4718.36</td>
<td>4378.39</td>
<td>4721.5</td>
</tr>
<tr>
<td>111001</td>
<td>5123.4</td>
<td>4573.4</td>
<td>5121.11</td>
<td>4574.53</td>
<td>5122.5</td>
</tr>
<tr>
<td>111101</td>
<td>5196.0</td>
<td>4842.1</td>
<td>5193.48</td>
<td>4840.03</td>
<td>5195.9</td>
</tr>
<tr>
<td>111315</td>
<td>4985.2</td>
<td>5352.0</td>
<td>4983.58</td>
<td>5352.20</td>
<td>4984.8</td>
</tr>
<tr>
<td>111554</td>
<td>4306.8</td>
<td>5121.5</td>
<td>4303.26</td>
<td>5119.96</td>
<td>4317.9</td>
</tr>
<tr>
<td>111632</td>
<td>4216.3</td>
<td>4954.0</td>
<td>4212.63</td>
<td>4952.43</td>
<td>4215.7</td>
</tr>
<tr>
<td>112224</td>
<td>4406.6</td>
<td>5685.2</td>
<td>4357.80</td>
<td>5664.59</td>
<td>4471.0</td>
</tr>
<tr>
<td>112343</td>
<td>4733.0</td>
<td>5786.8</td>
<td>4730.69</td>
<td>5784.93</td>
<td>4732.8</td>
</tr>
<tr>
<td>112642</td>
<td>5552.4</td>
<td>5457.2</td>
<td>5455.20</td>
<td>5550.70</td>
<td>5457.1</td>
</tr>
<tr>
<td>112758</td>
<td>5255.5</td>
<td>5602.2</td>
<td>5600.75</td>
<td>5255.58</td>
<td>5602.1</td>
</tr>
<tr>
<td>112938</td>
<td>4766.1</td>
<td>5632.4</td>
<td>5630.61</td>
<td>4765.51</td>
<td>5632.5</td>
</tr>
<tr>
<td>113121</td>
<td>5347.8</td>
<td>4294.9</td>
<td>5347.12</td>
<td>4295.95</td>
<td>5347.9</td>
</tr>
<tr>
<td>113332</td>
<td>4789.6</td>
<td>3985.9</td>
<td>4788.31</td>
<td>3985.21</td>
<td>4789.5</td>
</tr>
<tr>
<td>113511</td>
<td>4297.8</td>
<td>4101.5</td>
<td>4296.09</td>
<td>4102.81</td>
<td>4298.0</td>
</tr>
</tbody>
</table>
FIGURE 10: Residue 1 vs. Time. $Q = .011$, $R = 1$.
FIGURE 11: Residue 2 vs. Time. \(q = .011, R = 1 \).
FIGURE 12: Error 1 vs. Time. $Q = .011, R = I$.
FIGURE 13: Error 2 vs. Time. $Q = 0.01$, $R = 1$.
III. FUTURE FILTER IMPROVEMENTS

The filter, as designed, will process by off-line (forward) filtering of the range measurements. It is suggested that, as an effort to further improve upon the quality of the processed data, a fixed-interval smoothing algorithm (the initial and final times, 0 and T, are fixed, and the estimate \(\hat{x}(t/T) \) is sought) be incorporated.

For the system and measurements described by:

\[
\dot{x} = Fx + Gw \\
\dot{z} = Hx + v
\]

the equations defining the forward filter are, in the time domain [Ref.3]:

\[
\begin{align*}
\dot{\hat{x}} &= F\hat{x} + PH^{-1} [z - H\hat{x}], \quad \hat{x} = \hat{x}_0 \\
\dot{p} &= FP + PF^T + GG^T - PH^{-1}HP, \quad p(0) = p_0
\end{align*}
\] (1)

To write the backward filter equations, set \(\tau = T - t \). Then \(\frac{dx}{d\tau} = -\frac{dx}{dt} \), and

\[
\frac{dx}{d\tau} = -Fx -Gw, \quad \text{for } 0 \leq \tau \leq T, \quad \text{denoting differentiation with respect to backward time.}
\]

Also,

\[
\hat{z}(\tau) = Hx + v.
\]

Then, by analogy, the backward filter equations can be written by changing \(F \) to \(-F \) and \(G \) to \(-G \), resulting in:

\[
\begin{align*}
\frac{d}{d\tau} \hat{x}_b &= -F\hat{x}_b + P_b H^{-1} [z - H\hat{x}_b] \\
\frac{d}{d\tau} p_b &= -FP_b - P_b F^T + GG^T - P_b H^{-1}HP_b
\end{align*}
\] (3)
FIGURE 14: Relationship of Forward and Backward Filters

From Figure 14, it can be seen that the smoothed estimate at time T must be the same as the forward filter estimate at that point, i.e.,

$$\hat{x}(T/T) = \hat{x}(T)$$

and

$$P(T/T) = P(T)$$

which yields the required boundary condition on P^{-1}_b,

$$P^{-1}_b(T=T) = 0, \text{ or } P^{-1}_b(T=T=0) = 0 \quad (4)$$

with the boundary condition on $\hat{x}_b(T)$ not yet known. Therefore, define the new variable:

$$s(t) = P^{-1}_b(t) \hat{x}_b(t) \quad (5)$$

and since $\hat{x}_b(T)$ is finite, it follows that:

$$s(t=T) = 0, \text{ or } s(T=0) = 0. \quad (6)$$
Reformulation in terms of P_b^{-1} yields:

$$\frac{d}{dt} P_b^{-1} = -P_b^{-1} \left(\frac{d}{dt} P_b \right) P_b^{-1}$$

Thus, equation (3) can be written as:

$$\frac{d}{dt} P_b^{-1} = P_b^{-1} F + F^T P_b^{-1} - P_b^{-1} G Q G^T P_b^{-1} + H^T R^{-1} H$$ \hspace{1cm} (7)

for which equation (4) is the appropriate boundary condition.

Differentiating equation (5) with respect to τ, and with some substitution and manipulation, we arrive at:

$$\frac{d}{dt} s = \left(F^T - P_b^{-1} G Q G^T \right) s + H^T R^{-1} z$$ \hspace{1cm} (8)

for which equation (6) is the appropriate boundary condition. Equations (1), (2), (7) and (8), along with:

$$P^{-1} (t/T) = P^{-1} (t) + P_b^{-1} (t)$$

$$x (t/T) = p (t/T) \left[P^{-1} (t) \hat{x} (t) + P_b^{-1} (t) \hat{x}_b (t) \right]$$

define the optimal smoother.

Many forms of the smoothing equations may be derived. The form proposed for use in this particular case is the Rauch-Tung-Striebel form, with the discrete-time expressions summarized as follows:
Smoothed State Estimate

\[\hat{x}(k/N) = \hat{x}(k/k) + A_k \left[\hat{x}(k+1/N) - \hat{x}(k+1/k) \right] \]

where

\[A_k = P(k/k) \Theta(k)^T P(k+1/k)^{-1} \]

for \(k = N-1 \)

Error Covariance Matrix Propagation

\[P(k/N) = P(k/k) + A_k \left[P(k+1/N) - P(k+1/k) \right] A_k^T \]

also for \(k = N-1 \)

Solution of the equations would proceed as follows: As an example, and because it is slightly easier to see when actual times are used, suppose \(NN = 100 \). On the forward filter pass, the values of \(\hat{x}(k/k) \), \(\hat{x}(k-1/k) \), \(P(k/k) \) and \(P(k/k-1) \) would be computed and stored. On the final iteration of the forward pass, with \(K = NN = 100 \),

\[\hat{x}(100/100) = \hat{x}(100/99) + \Theta(100) \left[z(100) - H \hat{x}(100/99) \right] \]

i.e., we have computed and stored \(\hat{x}(100/100) \).

Now, the smoothing process commences in the reverse direction. Decrement \(k \) to \(k = NN-1 = 99 \), then

\[\hat{x}(99/100) = \hat{x}(99/99) + A(99) \left[\hat{x}(100/100) - \hat{x}(100/99) \right] \]

stored \hspace{0.5cm} stored \hspace{0.5cm} stored

and

\[A(99) = P(99/99) \Theta^T P(100/99)^{-1} \]

stored \hspace{0.5cm} stored
let $k = NN-2 = 98$, then

$$
\hat{x}(98/100) = \hat{x}(98/98) + A(98) \left[\hat{x}(99/100) - \hat{x}(99/98) \right]
$$

stored computed stored last iteration

and

$$
A(98) = \frac{P(98/98)}{P(99/98)} T \frac{P(99/98)}{P(99/98)}^{-1}
$$

stored stored

Also, for each of the two preceding iterations,

$$
P(99/100) = \frac{P(99/99)}{P(99/99)} + A(99) \left[\frac{P(100/100)}{P(100/99)} - \frac{P(100/99)}{P(100/99)} \right] A^T(99)
$$

stored computed stored stored

$$
P(98/100) = \frac{P(98/98)}{P(98/98)} + A(98) \left[\frac{P(99/100)}{P(99/98)} - \frac{P(99/99)}{P(99/98)} \right] A^T(98)
$$

stored computed computed stored computed

etc.

It is seen that the smoothing process does not involve the processing of actual measurement data. It does, however, utilize the complete filtering solution, and so fixed interval smoothing cannot be done real-time, on-line. It must be done after all the measurement data are collected. Consequently, computation speed will not be the most important factor. Storage requirements could, however, conceivably be, in that the quantities to be stored on the forward pass are arrays. It is seen that, should an exercise run in excess of 30 minutes, retention of the data at each mark could require in excess of 100K bytes of memory, which could limit the facilities upon which the processor could be utilized.
APPENDIX A: Processor Flowchart Main Program

START

Read
N, M, ND, MD, LD,
NN, DT

Write
N, M, ND, MD, LD,
NN, DT

Read
R, Q, P(0/1), A, D

Write
R, Q, P(0/1), A, D

Call
PHIDEL

Write
Q, P

A
A

Read
H, HI

Write
H, HI

Do 10 k=0, 20

Call GAIN

Write
k, G(k), P(k/k-1)

Do 15 k=0, NN

IV3 = 6

Call IOW

if
IV6
NE 0

YES

NO

B

30
B

Decode
It ime, z(2,1), z(1,1)

if
k > 0

x(1,1) = z(1,1)
x(2,1) = z(2,1)
x(3,1) = -4
x(4,1) = 4

Call PROD
x(k/k-1) = 0x(k-1/k-1)

Call PROD
zCOR = H x(k/k-1)

Call SUB
zMOD = z - zCOR
= z - H x(k/k-1)

RES1 = z_{1,1}(k) - x_{1,1}(k/k-1)
RES2 = z_{2,1}(k) - x_{2,1}(k/k-1)

C

39
ARES1 = /RES1/
ARES2 = /RES2/

if
ARES1 < 50
else
ARES1 < 0

if
ARES2 < 50
else
ARES2 < 0

x(k/k) = x(k/k-1)

Call GAIN

Call PROD
xCOR = G zMOD
= G(z-H x(k/k-1)

D

D1

D2
Call ADD

\[x(k/k) = x(k/k-1) + x_{\text{COR}} \]
\[= x(k/k-1) + G(z-H \cdot x(k/k-1)) \]

ERR1 = \(x_1(k/k) - x_1(k/k-1) \)
ERR2 = \(x_2(k/k) - x_2(k/k-1) \)

Write 8 (Bulk storage)
Itim, RES1, RES2, ERR1, ERR2

PRINT
\[z1, z2, x1(k/k), x2(k/k), \]
RES1, RES2, ERR1, ERR2

PLOT

END
subroutine GAIN

if \(k \neq 0 \)

105

- Call TRANS
 \(\Phi \rightarrow \Phi^T \)

- Call PROD
 \(\text{TEMP3} = P(k/k)\Phi^T \)

- Call PROD
 \(\text{TEMP4} = \Phi \text{TEMP3} \)
 \(= \Phi P(k/k)\Phi^T \)

- Call ADD
 \(P(k/k-1) = \text{TEMP4} + \Phi \)
 \(= \Phi P(k/k)\Phi^T + \Phi \)

106

6
Call TRANS
\[H \rightarrow H^T \]

Call PROD
\[TEMP = P(k/k-1)H^T \]

Call PROD
\[TEMP1 = H TEMP = H P(k/k-1)H^T \]

Call ADD
\[TEMP1 = TEMP1 + R = H P(k/k-1)H^T + R \]

Call RECIP
\[TEMP2 = TEMP1^{-1} = [H P(k/k-1)H^T + R]^{-1} \]

Call PROD
\[G = TEMP \cdot TEMP2 = P(k/k-1)H^T [H P(k/k-1)H^T + R]^{-1} \]
Call PROD
TEMP3 = G H

TEMP3 = -TEMP3
= -G H

Call ADD
TEMP3 = HI + TEMP3
= I - G H

Call PROD
P(k/k) = TEMP3 P(k/k-1)
= [I - G H] P(k/k-1)

RETURN
<table>
<thead>
<tr>
<th>K</th>
<th>RAW R1</th>
<th>RAW R2</th>
<th>FILTERED R1</th>
<th>FILTERED R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4622.4</td>
<td>4622.4</td>
<td>4932.2</td>
<td>4932.2</td>
</tr>
<tr>
<td>1</td>
<td>4629.3</td>
<td>4627.4</td>
<td>4330.4</td>
<td>4330.4</td>
</tr>
<tr>
<td>2</td>
<td>4632.5</td>
<td>4632.4</td>
<td>4973.9</td>
<td>4973.9</td>
</tr>
<tr>
<td>3</td>
<td>4635.8</td>
<td>4635.3</td>
<td>472.2</td>
<td>472.2</td>
</tr>
<tr>
<td>4</td>
<td>4639.7</td>
<td>4639.6</td>
<td>4695.8</td>
<td>4695.8</td>
</tr>
<tr>
<td>5</td>
<td>4639.3</td>
<td>4640.5</td>
<td>4952.9</td>
<td>4952.9</td>
</tr>
<tr>
<td>6</td>
<td>4645.7</td>
<td>4646.6</td>
<td>4962.4</td>
<td>4962.4</td>
</tr>
<tr>
<td>7</td>
<td>4643.9</td>
<td>4649.1</td>
<td>4353.7</td>
<td>4353.7</td>
</tr>
<tr>
<td>8</td>
<td>4657.9</td>
<td>4653.6</td>
<td>4955.9</td>
<td>4955.9</td>
</tr>
<tr>
<td>9</td>
<td>4656.5</td>
<td>4651.7</td>
<td>4951.9</td>
<td>4951.9</td>
</tr>
<tr>
<td>10</td>
<td>4663.5</td>
<td>4663.4</td>
<td>4949.4</td>
<td>4949.4</td>
</tr>
<tr>
<td>11</td>
<td>4661.7</td>
<td>4662.5</td>
<td>4944.2</td>
<td>4944.2</td>
</tr>
<tr>
<td>12</td>
<td>4666.9</td>
<td>4662.4</td>
<td>4940.7</td>
<td>4940.7</td>
</tr>
<tr>
<td>13</td>
<td>4662.5</td>
<td>4665.7</td>
<td>4344.5</td>
<td>4344.5</td>
</tr>
<tr>
<td>14</td>
<td>4662.3</td>
<td>4662.7</td>
<td>4932.8</td>
<td>4932.8</td>
</tr>
<tr>
<td>15</td>
<td>4673.3</td>
<td>4675.3</td>
<td>4933.4</td>
<td>4933.4</td>
</tr>
<tr>
<td>16</td>
<td>4651.3</td>
<td>4646.6</td>
<td>4921.3</td>
<td>4921.3</td>
</tr>
<tr>
<td>17</td>
<td>4654.8</td>
<td>4652.4</td>
<td>4928.4</td>
<td>4928.4</td>
</tr>
<tr>
<td>18</td>
<td>4667.9</td>
<td>4662.3</td>
<td>4923.0</td>
<td>4923.0</td>
</tr>
<tr>
<td>19</td>
<td>4611.9</td>
<td>4611.5</td>
<td>4322.7</td>
<td>4322.7</td>
</tr>
<tr>
<td>20</td>
<td>4615.1</td>
<td>4615.3</td>
<td>4919.2</td>
<td>4919.2</td>
</tr>
<tr>
<td>21</td>
<td>4616.2</td>
<td>4617.5</td>
<td>4915.2</td>
<td>4915.2</td>
</tr>
<tr>
<td>22</td>
<td>4620.3</td>
<td>4624.6</td>
<td>4912.5</td>
<td>4912.5</td>
</tr>
<tr>
<td>23</td>
<td>4623.3</td>
<td>4629.8</td>
<td>4910.5</td>
<td>4910.5</td>
</tr>
<tr>
<td>24</td>
<td>4625.3</td>
<td>4628.9</td>
<td>4909.7</td>
<td>4909.7</td>
</tr>
<tr>
<td>25</td>
<td>4626.6</td>
<td>4630.9</td>
<td>4909.2</td>
<td>4909.2</td>
</tr>
<tr>
<td>26</td>
<td>4628.1</td>
<td>4632.7</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>27</td>
<td>4628.5</td>
<td>4628.5</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>28</td>
<td>4628.7</td>
<td>4630.7</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>29</td>
<td>4632.5</td>
<td>4637.1</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>30</td>
<td>4634.7</td>
<td>4640.3</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>31</td>
<td>4636.7</td>
<td>4642.8</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>32</td>
<td>4638.5</td>
<td>4644.7</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>33</td>
<td>4639.5</td>
<td>4645.6</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>34</td>
<td>4640.6</td>
<td>4647.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>35</td>
<td>4642.7</td>
<td>4649.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>36</td>
<td>4643.7</td>
<td>4651.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>37</td>
<td>4645.7</td>
<td>4655.7</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>38</td>
<td>4645.5</td>
<td>4651.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>39</td>
<td>4646.7</td>
<td>4651.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>40</td>
<td>4647.5</td>
<td>4656.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>41</td>
<td>4648.7</td>
<td>4656.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>42</td>
<td>4649.7</td>
<td>4656.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>43</td>
<td>4650.5</td>
<td>4656.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>44</td>
<td>4650.5</td>
<td>4656.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>45</td>
<td>4651.6</td>
<td>4656.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>46</td>
<td>4652.5</td>
<td>4656.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>47</td>
<td>4653.5</td>
<td>4657.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>48</td>
<td>4654.5</td>
<td>4657.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>49</td>
<td>4655.5</td>
<td>4657.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
<tr>
<td>50</td>
<td>4656.5</td>
<td>4657.9</td>
<td>4908.9</td>
<td>4908.9</td>
</tr>
</tbody>
</table>
\[Q = 1, \quad R = 1 \]

<table>
<thead>
<tr>
<th>RESIDUE 1</th>
<th>RESIDUE 2</th>
<th>ERROR 1</th>
<th>ERROR 2</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9</td>
<td>-7.1</td>
<td>9.0</td>
<td>-5.8</td>
<td>1C5538</td>
</tr>
<tr>
<td>5.0</td>
<td>-9.1</td>
<td>4.1</td>
<td>-7.5</td>
<td>1C5539</td>
</tr>
<tr>
<td>1.2</td>
<td>1.3</td>
<td>1.0</td>
<td>-1.1</td>
<td>1C5540</td>
</tr>
<tr>
<td>.7</td>
<td>-1.1</td>
<td>.6</td>
<td>-9.9</td>
<td>1C5541</td>
</tr>
<tr>
<td>-3.2</td>
<td>-4.1</td>
<td>-2.6</td>
<td>-3.3</td>
<td>1C5542</td>
</tr>
<tr>
<td>4.1</td>
<td>4.7</td>
<td>3.3</td>
<td>3.9</td>
<td>1C5543</td>
</tr>
<tr>
<td>-1.0</td>
<td>-3.3</td>
<td>-8.0</td>
<td>-3.3</td>
<td>1C5544</td>
</tr>
<tr>
<td>99.8</td>
<td>-1.5</td>
<td>821.6</td>
<td>-1.2</td>
<td>1C5545</td>
</tr>
<tr>
<td>********</td>
<td>-1.0</td>
<td>********</td>
<td>-8.0</td>
<td>1C5546</td>
</tr>
<tr>
<td>-1.1E-0</td>
<td>1.4</td>
<td>-27.0</td>
<td>1.2</td>
<td>1C5547</td>
</tr>
<tr>
<td>124.9</td>
<td>-2.7</td>
<td>102.7</td>
<td>-2.3</td>
<td>1C5548</td>
</tr>
<tr>
<td>127.4</td>
<td>-8.0</td>
<td>104.7</td>
<td>-6.0</td>
<td>1C5549</td>
</tr>
<tr>
<td>72.3</td>
<td>5.8</td>
<td>59.5</td>
<td>4.7</td>
<td>1C5550</td>
</tr>
<tr>
<td>25.6</td>
<td>-2.9</td>
<td>21.0</td>
<td>-2.4</td>
<td>1C5551</td>
</tr>
<tr>
<td>3.3</td>
<td>-2.2</td>
<td>6.8</td>
<td>-1.8</td>
<td>1C5552</td>
</tr>
<tr>
<td>-76.6</td>
<td>1.7</td>
<td>-63.0</td>
<td>1.9</td>
<td>1C5553</td>
</tr>
<tr>
<td>-20.4</td>
<td>-1.1</td>
<td>16.4</td>
<td>-0.1</td>
<td>1C5554</td>
</tr>
<tr>
<td>26.5</td>
<td>-3.3</td>
<td>23.4</td>
<td>-2.5</td>
<td>1C5555</td>
</tr>
<tr>
<td>13.6</td>
<td>2.0</td>
<td>15.3</td>
<td>1.8</td>
<td>1C5556</td>
</tr>
<tr>
<td>9.4</td>
<td>2.1</td>
<td>7.7</td>
<td>1.7</td>
<td>1C5557</td>
</tr>
<tr>
<td>35.4</td>
<td>-9.0</td>
<td>7G.2</td>
<td>-0.7</td>
<td>1C5558</td>
</tr>
<tr>
<td>-22.3</td>
<td>-3.7</td>
<td>-18.3</td>
<td>-3.0</td>
<td>1C5559</td>
</tr>
<tr>
<td>-25.7</td>
<td>3.9</td>
<td>-21.1</td>
<td>3.1</td>
<td>1C5560</td>
</tr>
<tr>
<td>-20.5</td>
<td>-2.1</td>
<td>-16.9</td>
<td>-1.7</td>
<td>1C5561</td>
</tr>
<tr>
<td>-13.2</td>
<td>-1.1</td>
<td>-10.8</td>
<td>-0.9</td>
<td>1C5562</td>
</tr>
<tr>
<td>-4.4</td>
<td>1.5</td>
<td>-3.3</td>
<td>1.2</td>
<td>1C5563</td>
</tr>
<tr>
<td>2.2</td>
<td>-2.3</td>
<td>-1.8</td>
<td>1.9</td>
<td>1C5564</td>
</tr>
<tr>
<td>-2.6</td>
<td>-1.2</td>
<td>-2.3</td>
<td>-1.0</td>
<td>1C5565</td>
</tr>
<tr>
<td>-1.3</td>
<td>-2.4</td>
<td>-1.1</td>
<td>-2.0</td>
<td>1C5566</td>
</tr>
<tr>
<td>1.4</td>
<td>-1.2</td>
<td>1.0</td>
<td>-1.0</td>
<td>1C5567</td>
</tr>
<tr>
<td>-1.1</td>
<td>4.3</td>
<td>-1.1</td>
<td>1.5</td>
<td>1C5568</td>
</tr>
<tr>
<td>2.0</td>
<td>1.6</td>
<td>1.7</td>
<td>1.3</td>
<td>1C5569</td>
</tr>
<tr>
<td>-9.0</td>
<td>-1.5</td>
<td>-0.0</td>
<td>-1.2</td>
<td>1C5570</td>
</tr>
<tr>
<td>-2.7</td>
<td>-7.0</td>
<td>-2.0</td>
<td>-2.7</td>
<td>1C5571</td>
</tr>
<tr>
<td>1.3</td>
<td>2.4</td>
<td>1.1</td>
<td>1.9</td>
<td>1C5572</td>
</tr>
<tr>
<td>-5.5</td>
<td>2.0</td>
<td>-1.4</td>
<td>-1.3</td>
<td>1C5573</td>
</tr>
<tr>
<td>-6.6</td>
<td>-1.6</td>
<td>-2.9</td>
<td>-2.7</td>
<td>1C5574</td>
</tr>
<tr>
<td>-3.5</td>
<td>2.7</td>
<td>-1.5</td>
<td>-2.1</td>
<td>1C5575</td>
</tr>
<tr>
<td>-7.0</td>
<td>2.1</td>
<td>-2.5</td>
<td>-2.4</td>
<td>1C5576</td>
</tr>
<tr>
<td>-3.1</td>
<td>-2.9</td>
<td>-2.5</td>
<td>-2.4</td>
<td>1C5577</td>
</tr>
<tr>
<td>-71.6</td>
<td>-1.1</td>
<td>-0.2</td>
<td>-2.2</td>
<td>1C5578</td>
</tr>
<tr>
<td>18.5</td>
<td>2.2</td>
<td>15.2</td>
<td>1.8</td>
<td>1C5579</td>
</tr>
<tr>
<td>26.5</td>
<td>-3.3</td>
<td>23.0</td>
<td>-2.2</td>
<td>1C5580</td>
</tr>
<tr>
<td>19.8</td>
<td>-1.7</td>
<td>16.2</td>
<td>-1.4</td>
<td>1C5581</td>
</tr>
<tr>
<td>1.8</td>
<td>4.9</td>
<td>7.0</td>
<td>4.0</td>
<td>1C5582</td>
</tr>
<tr>
<td>1.7</td>
<td>-7.3</td>
<td>1.4</td>
<td>-6.0</td>
<td>1C5583</td>
</tr>
<tr>
<td>1.4</td>
<td>2.0</td>
<td>68.9</td>
<td>-2.2</td>
<td>1C5584</td>
</tr>
<tr>
<td>-20.7</td>
<td>2.1</td>
<td>-17.0</td>
<td>1.7</td>
<td>1C5585</td>
</tr>
<tr>
<td>-25.1</td>
<td>1.9</td>
<td>-23.2</td>
<td>-8.0</td>
<td>1C5586</td>
</tr>
</tbody>
</table>

46
<table>
<thead>
<tr>
<th>K</th>
<th>RAW R1</th>
<th>RAW R2</th>
<th>FILTERED R1</th>
<th>FILTERED R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4622.4</td>
<td>4982.2</td>
<td>4622.4</td>
<td>4982.2</td>
</tr>
<tr>
<td>1</td>
<td>4629.3</td>
<td>4979.1</td>
<td>4629.7</td>
<td>4982.1</td>
</tr>
<tr>
<td>2</td>
<td>4633.0</td>
<td>4972.3</td>
<td>4628.8</td>
<td>4977.5</td>
</tr>
<tr>
<td>3</td>
<td>4636.1</td>
<td>4972.4</td>
<td>4633.1</td>
<td>4974.6</td>
</tr>
<tr>
<td>4</td>
<td>4639.7</td>
<td>4688.8</td>
<td>4637.6</td>
<td>4971.8</td>
</tr>
<tr>
<td>5</td>
<td>4639.9</td>
<td>4962.2</td>
<td>4640.1</td>
<td>4965.0</td>
</tr>
<tr>
<td>6</td>
<td>4646.7</td>
<td>4963.2</td>
<td>4645.0</td>
<td>4962.5</td>
</tr>
<tr>
<td>7</td>
<td>4648.9</td>
<td>4959.6</td>
<td>4648.7</td>
<td>4959.6</td>
</tr>
<tr>
<td>8</td>
<td>5652.3</td>
<td>4955.6</td>
<td>5230.4</td>
<td>4956.0</td>
</tr>
<tr>
<td>9</td>
<td>4656.6</td>
<td>4651.7</td>
<td>4686.8</td>
<td>4952.2</td>
</tr>
<tr>
<td>10</td>
<td>4660.8</td>
<td>4949.7</td>
<td>4662.8</td>
<td>4949.3</td>
</tr>
<tr>
<td>11</td>
<td>4666.5</td>
<td>4943.8</td>
<td>4666.2</td>
<td>4940.3</td>
</tr>
<tr>
<td>12</td>
<td>4673.6</td>
<td>4942.6</td>
<td>4646.2</td>
<td>4937.5</td>
</tr>
<tr>
<td>13</td>
<td>4674.3</td>
<td>4937.3</td>
<td>4645.3</td>
<td>4933.7</td>
</tr>
<tr>
<td>14</td>
<td>4676.8</td>
<td>4933.0</td>
<td>4652.3</td>
<td>4931.2</td>
</tr>
<tr>
<td>15</td>
<td>4661.0</td>
<td>4616.5</td>
<td>4600.2</td>
<td>4928.4</td>
</tr>
<tr>
<td>16</td>
<td>4604.6</td>
<td>4928.4</td>
<td>4600.2</td>
<td>4923.8</td>
</tr>
<tr>
<td>17</td>
<td>4609.6</td>
<td>4599.2</td>
<td>4655.5</td>
<td>4918.7</td>
</tr>
<tr>
<td>18</td>
<td>4611.9</td>
<td>4619.6</td>
<td>4660.0</td>
<td>4915.9</td>
</tr>
<tr>
<td>19</td>
<td>4616.1</td>
<td>4916.0</td>
<td>4692.0</td>
<td>4911.2</td>
</tr>
<tr>
<td>20</td>
<td>4702.0</td>
<td>4901.0</td>
<td>4711.8</td>
<td>4905.0</td>
</tr>
<tr>
<td>21</td>
<td>4709.8</td>
<td>4904.6</td>
<td>4720.9</td>
<td>4905.2</td>
</tr>
<tr>
<td>22</td>
<td>4711.8</td>
<td>4900.3</td>
<td>4722.8</td>
<td>4901.0</td>
</tr>
<tr>
<td>23</td>
<td>4711.6</td>
<td>4725.0</td>
<td>4897.7</td>
<td>4905.7</td>
</tr>
<tr>
<td>24</td>
<td>4718.1</td>
<td>4896.7</td>
<td>4728.0</td>
<td>4892.7</td>
</tr>
<tr>
<td>25</td>
<td>4724.1</td>
<td>4892.7</td>
<td>4729.4</td>
<td>4888.5</td>
</tr>
<tr>
<td>26</td>
<td>4725.7</td>
<td>4887.6</td>
<td>4730.8</td>
<td>4883.8</td>
</tr>
<tr>
<td>27</td>
<td>4728.5</td>
<td>4882.9</td>
<td>4733.7</td>
<td>4881.7</td>
</tr>
<tr>
<td>28</td>
<td>4733.2</td>
<td>4736.8</td>
<td>4888.8</td>
<td>4880.1</td>
</tr>
<tr>
<td>29</td>
<td>4736.7</td>
<td>4736.8</td>
<td>4814.4</td>
<td>4877.4</td>
</tr>
<tr>
<td>30</td>
<td>4742.4</td>
<td>4741.4</td>
<td>4813.2</td>
<td>4873.1</td>
</tr>
<tr>
<td>31</td>
<td>4746.6</td>
<td>4740.5</td>
<td>4872.9</td>
<td>4870.7</td>
</tr>
<tr>
<td>32</td>
<td>4748.5</td>
<td>4749.1</td>
<td>4871.9</td>
<td>4870.5</td>
</tr>
<tr>
<td>33</td>
<td>4753.7</td>
<td>4753.3</td>
<td>4869.5</td>
<td>4868.6</td>
</tr>
<tr>
<td>34</td>
<td>4757.9</td>
<td>4757.6</td>
<td>4765.4</td>
<td>4865.7</td>
</tr>
<tr>
<td>35</td>
<td>4762.6</td>
<td>4762.2</td>
<td>4764.7</td>
<td>4861.0</td>
</tr>
<tr>
<td>36</td>
<td>4763.4</td>
<td>4765.6</td>
<td>4767.9</td>
<td>4859.1</td>
</tr>
<tr>
<td>37</td>
<td>4767.7</td>
<td>4767.9</td>
<td>4772.1</td>
<td>4856.1</td>
</tr>
<tr>
<td>38</td>
<td>4772.6</td>
<td>4772.1</td>
<td>4779.3</td>
<td>4852.3</td>
</tr>
<tr>
<td>39</td>
<td>4773.2</td>
<td>4785.1</td>
<td>4774.3</td>
<td>4848.8</td>
</tr>
<tr>
<td>40</td>
<td>4700.8</td>
<td>4733.2</td>
<td>4710.8</td>
<td>4849.6</td>
</tr>
<tr>
<td>41</td>
<td>4703.6</td>
<td>4847.3</td>
<td>4730.6</td>
<td>4843.9</td>
</tr>
<tr>
<td>42</td>
<td>4706.9</td>
<td>4844.1</td>
<td>4751.8</td>
<td>4840.3</td>
</tr>
<tr>
<td>43</td>
<td>4712.1</td>
<td>4739.8</td>
<td>4720.0</td>
<td>4839.8</td>
</tr>
<tr>
<td>44</td>
<td>4715.8</td>
<td>4741.6</td>
<td>4726.3</td>
<td>4839.4</td>
</tr>
<tr>
<td>45</td>
<td>4718.3</td>
<td>4732.1</td>
<td>4711.6</td>
<td>4833.4</td>
</tr>
<tr>
<td>46</td>
<td>4724.9</td>
<td>4729.2</td>
<td>4763.8</td>
<td>4826.6</td>
</tr>
<tr>
<td>47</td>
<td>4704.6</td>
<td>4709.0</td>
<td>4795.0</td>
<td>4826.6</td>
</tr>
</tbody>
</table>
\[Q = 0.11, \ R = 1 \]

<table>
<thead>
<tr>
<th>RESIDUE 1</th>
<th>RESIDUE 2</th>
<th>ERROR 1</th>
<th>ERROR 2</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
</tr>
<tr>
<td>10.9</td>
<td>-7.1</td>
<td>6.3</td>
<td>-4.1</td>
<td>1C5538</td>
</tr>
<tr>
<td>1C.1</td>
<td>-12.3</td>
<td>5.8</td>
<td>-7.1</td>
<td>1C5504</td>
</tr>
<tr>
<td>6.9</td>
<td>-5.1</td>
<td>4.0</td>
<td>-3.0</td>
<td>1C5501</td>
</tr>
<tr>
<td>4.9</td>
<td>-4.7</td>
<td>2.8</td>
<td>-2.7</td>
<td>1C5542</td>
</tr>
<tr>
<td>-5.5</td>
<td>-6.6</td>
<td>-3.3</td>
<td>-3.8</td>
<td>1C5563</td>
</tr>
<tr>
<td>4.0</td>
<td>1.6</td>
<td>2.3</td>
<td>-9.9</td>
<td>1C5544</td>
</tr>
<tr>
<td>.4</td>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>1C5545</td>
</tr>
<tr>
<td>1C00.0</td>
<td>-.3</td>
<td>578.2</td>
<td>-.5</td>
<td>1C5546</td>
</tr>
<tr>
<td>-782.8</td>
<td>-.1</td>
<td>-492.5</td>
<td>-.6</td>
<td>1C5547</td>
</tr>
<tr>
<td>-374.2</td>
<td>1.0</td>
<td>-216.3</td>
<td>.6</td>
<td>1C5548</td>
</tr>
<tr>
<td>-132.3</td>
<td>-2.4</td>
<td>-76.5</td>
<td>-1.4</td>
<td>1C5549</td>
</tr>
<tr>
<td>6.9</td>
<td>-.2</td>
<td>5.1</td>
<td>-.1</td>
<td>1C5550</td>
</tr>
<tr>
<td>64.9</td>
<td>5.5</td>
<td>37.5</td>
<td>3.2</td>
<td>1C5551</td>
</tr>
<tr>
<td>66.8</td>
<td>-.4</td>
<td>39.8</td>
<td>-.2</td>
<td>1C5552</td>
</tr>
<tr>
<td>58.1</td>
<td>-1.8</td>
<td>33.6</td>
<td>-1.0</td>
<td>1C5553</td>
</tr>
<tr>
<td>-36.6</td>
<td>.9</td>
<td>-21.2</td>
<td>.5</td>
<td>1C5554</td>
</tr>
<tr>
<td>10.3</td>
<td>-.1</td>
<td>6.0</td>
<td>.0</td>
<td>1C5555</td>
</tr>
<tr>
<td>24.7</td>
<td>-.3</td>
<td>16.0</td>
<td>-.7</td>
<td>1C5556</td>
</tr>
<tr>
<td>30.0</td>
<td>.8</td>
<td>17.3</td>
<td>.5</td>
<td>1C5557</td>
</tr>
<tr>
<td>25.1</td>
<td>2.2</td>
<td>14.5</td>
<td>1.2</td>
<td>1C5558</td>
</tr>
<tr>
<td>50.6</td>
<td>.2</td>
<td>57.6</td>
<td>.1</td>
<td>1C5559</td>
</tr>
<tr>
<td>25.3</td>
<td>-3.3</td>
<td>14.6</td>
<td>-1.9</td>
<td>1C56CC</td>
</tr>
<tr>
<td>-4.8</td>
<td>2.3</td>
<td>-2.8</td>
<td>1.3</td>
<td>1C5621</td>
</tr>
<tr>
<td>-21.6</td>
<td>-1.4</td>
<td>-12.5</td>
<td>-.8</td>
<td>1C5622</td>
</tr>
<tr>
<td>-26.5</td>
<td>-1.6</td>
<td>-15.3</td>
<td>-.9</td>
<td>1C5623</td>
</tr>
<tr>
<td>-16.4</td>
<td>-.7</td>
<td>-9.5</td>
<td>.4</td>
<td>1C5604</td>
</tr>
<tr>
<td>-9.3</td>
<td>2.5</td>
<td>-5.4</td>
<td>1.4</td>
<td>1C5625</td>
</tr>
<tr>
<td>-2.8</td>
<td>.0</td>
<td>-5.1</td>
<td>.0</td>
<td>1C56C6</td>
</tr>
<tr>
<td>-5.5</td>
<td>-2.1</td>
<td>-3.2</td>
<td>-1.2</td>
<td>1C5627</td>
</tr>
<tr>
<td>-1.1</td>
<td>-2.2</td>
<td>-.7</td>
<td>-1.3</td>
<td>1C56C8</td>
</tr>
<tr>
<td>-3.0</td>
<td>3.0</td>
<td>-.2</td>
<td>1.8</td>
<td>1C5629</td>
</tr>
<tr>
<td>2.4</td>
<td>2.7</td>
<td>1.4</td>
<td>1.6</td>
<td>1C561C</td>
</tr>
<tr>
<td>1.5</td>
<td>.1</td>
<td>.9</td>
<td>.1</td>
<td>1C5611</td>
</tr>
<tr>
<td>-1.5</td>
<td>-2.9</td>
<td>-.9</td>
<td>-1.7</td>
<td>1C5612</td>
</tr>
<tr>
<td>-.9</td>
<td>1.0</td>
<td>.5</td>
<td>.6</td>
<td>1C5613</td>
</tr>
<tr>
<td>-.7</td>
<td>2.1</td>
<td>.4</td>
<td>1.2</td>
<td>1C5614</td>
</tr>
<tr>
<td>1.0</td>
<td>-.6</td>
<td>.6</td>
<td>-.4</td>
<td>1C5615</td>
</tr>
<tr>
<td>-3.0</td>
<td>-3.3</td>
<td>-1.7</td>
<td>-1.9</td>
<td>1C5616</td>
</tr>
<tr>
<td>-6.6</td>
<td>.9</td>
<td>-.3</td>
<td>.5</td>
<td>1C5617</td>
</tr>
<tr>
<td>1.2</td>
<td>2.1</td>
<td>.7</td>
<td>1.2</td>
<td>1C5618</td>
</tr>
<tr>
<td>-2.6</td>
<td>-1.8</td>
<td>-1.5</td>
<td>-1.0</td>
<td>1C5619</td>
</tr>
<tr>
<td>-76.7</td>
<td>-.5</td>
<td>-44.3</td>
<td>-.3</td>
<td>1C562C</td>
</tr>
<tr>
<td>-17.0</td>
<td>1.8</td>
<td>-9.8</td>
<td>1.0</td>
<td>1C5621</td>
</tr>
<tr>
<td>12.2</td>
<td>.5</td>
<td>7.0</td>
<td>.3</td>
<td>1C5622</td>
</tr>
<tr>
<td>23.9</td>
<td>-1.3</td>
<td>13.8</td>
<td>-.7</td>
<td>1C5623</td>
</tr>
<tr>
<td>22.4</td>
<td>4.3</td>
<td>13.0</td>
<td>2.5</td>
<td>1C5624</td>
</tr>
<tr>
<td>16.0</td>
<td>-5.5</td>
<td>9.2</td>
<td>-3.2</td>
<td>1C5625</td>
</tr>
<tr>
<td>91.6</td>
<td>-1.9</td>
<td>53.0</td>
<td>-1.1</td>
<td>1C5626</td>
</tr>
<tr>
<td>22.8</td>
<td>.6</td>
<td>13.2</td>
<td>.4</td>
<td>1C5627</td>
</tr>
<tr>
<td>-9.9</td>
<td>.9</td>
<td>-5.7</td>
<td>.5</td>
<td>1C5628</td>
</tr>
</tbody>
</table>
\[Q = 0.01 \text{I}, \ R = 1 \]

<table>
<thead>
<tr>
<th>K</th>
<th>RAW R1</th>
<th>RAW R2</th>
<th>FILTERED R1</th>
<th>FILTERED R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4622.4</td>
<td>4982.2</td>
<td>4622.4</td>
<td>4932.2</td>
</tr>
<tr>
<td>1</td>
<td>4623.3</td>
<td>4979.1</td>
<td>4622.4</td>
<td>4933.6</td>
</tr>
<tr>
<td>2</td>
<td>4633.0</td>
<td>4972.3</td>
<td>4624.3</td>
<td>4981.6</td>
</tr>
<tr>
<td>3</td>
<td>4636.0</td>
<td>4972.4</td>
<td>4627.4</td>
<td>4979.6</td>
</tr>
<tr>
<td>4</td>
<td>4639.7</td>
<td>4968.8</td>
<td>4631.3</td>
<td>4976.5</td>
</tr>
<tr>
<td>5</td>
<td>4639.9</td>
<td>4962.2</td>
<td>4634.5</td>
<td>4971.5</td>
</tr>
<tr>
<td>6</td>
<td>4646.7</td>
<td>4963.2</td>
<td>4639.5</td>
<td>4967.9</td>
</tr>
<tr>
<td>7</td>
<td>4648.9</td>
<td>4959.6</td>
<td>4644.0</td>
<td>4964.0</td>
</tr>
<tr>
<td>8</td>
<td>4652.3</td>
<td>4955.6</td>
<td>4651.7</td>
<td>4959.7</td>
</tr>
<tr>
<td>9</td>
<td>4656.6</td>
<td>4951.7</td>
<td>4936.2</td>
<td>4955.2</td>
</tr>
<tr>
<td>10</td>
<td>4660.8</td>
<td>4949.7</td>
<td>4864.3</td>
<td>4951.4</td>
</tr>
<tr>
<td>11</td>
<td>4657.7</td>
<td>4943.7</td>
<td>4871.7</td>
<td>4946.6</td>
</tr>
<tr>
<td>12</td>
<td>4666.5</td>
<td>4940.8</td>
<td>4753.9</td>
<td>4942.3</td>
</tr>
<tr>
<td>13</td>
<td>4673.6</td>
<td>4942.6</td>
<td>4919.4</td>
<td>4940.1</td>
</tr>
<tr>
<td>14</td>
<td>4674.3</td>
<td>4937.3</td>
<td>4969.4</td>
<td>4937.0</td>
</tr>
<tr>
<td>15</td>
<td>4676.8</td>
<td>4933.0</td>
<td>4977.8</td>
<td>4933.4</td>
</tr>
<tr>
<td>16</td>
<td>4601.0</td>
<td>4931.6</td>
<td>4963.9</td>
<td>4930.7</td>
</tr>
<tr>
<td>17</td>
<td>4604.6</td>
<td>4928.4</td>
<td>4961.3</td>
<td>4927.8</td>
</tr>
<tr>
<td>18</td>
<td>4607.9</td>
<td>4922.5</td>
<td>4957.4</td>
<td>4923.9</td>
</tr>
<tr>
<td>19</td>
<td>4611.8</td>
<td>4921.1</td>
<td>4958.6</td>
<td>4921.8</td>
</tr>
<tr>
<td>20</td>
<td>4616.1</td>
<td>4919.6</td>
<td>4981.1</td>
<td>4919.3</td>
</tr>
<tr>
<td>21</td>
<td>4702.0</td>
<td>4916.0</td>
<td>4962.0</td>
<td>4915.5</td>
</tr>
<tr>
<td>22</td>
<td>4702.7</td>
<td>4909.8</td>
<td>4968.5</td>
<td>4911.5</td>
</tr>
<tr>
<td>23</td>
<td>4709.8</td>
<td>4910.8</td>
<td>4967.2</td>
<td>4908.9</td>
</tr>
<tr>
<td>24</td>
<td>4711.8</td>
<td>4904.6</td>
<td>4969.1</td>
<td>4905.3</td>
</tr>
<tr>
<td>25</td>
<td>4711.6</td>
<td>4900.3</td>
<td>4715.3</td>
<td>4901.5</td>
</tr>
<tr>
<td>26</td>
<td>4718.1</td>
<td>4898.0</td>
<td>4716.7</td>
<td>4898.1</td>
</tr>
<tr>
<td>27</td>
<td>4724.1</td>
<td>4895.7</td>
<td>4726.2</td>
<td>4895.4</td>
</tr>
<tr>
<td>28</td>
<td>4725.7</td>
<td>4892.7</td>
<td>4732.7</td>
<td>4892.4</td>
</tr>
<tr>
<td>29</td>
<td>4728.5</td>
<td>4887.6</td>
<td>4737.2</td>
<td>4888.6</td>
</tr>
<tr>
<td>30</td>
<td>4733.2</td>
<td>4882.9</td>
<td>4741.1</td>
<td>4884.5</td>
</tr>
<tr>
<td>31</td>
<td>4736.7</td>
<td>4883.0</td>
<td>4744.3</td>
<td>4881.7</td>
</tr>
<tr>
<td>32</td>
<td>4742.4</td>
<td>4881.2</td>
<td>4747.7</td>
<td>4879.4</td>
</tr>
<tr>
<td>33</td>
<td>4746.6</td>
<td>4877.5</td>
<td>4751.1</td>
<td>4876.8</td>
</tr>
<tr>
<td>34</td>
<td>4748.5</td>
<td>4871.9</td>
<td>4753.5</td>
<td>4873.1</td>
</tr>
<tr>
<td>35</td>
<td>4753.7</td>
<td>4870.9</td>
<td>4756.6</td>
<td>4872.3</td>
</tr>
<tr>
<td>36</td>
<td>4757.9</td>
<td>4869.5</td>
<td>4759.8</td>
<td>4868.6</td>
</tr>
<tr>
<td>37</td>
<td>4762.6</td>
<td>4865.4</td>
<td>4763.4</td>
<td>4865.2</td>
</tr>
<tr>
<td>38</td>
<td>4763.4</td>
<td>4859.6</td>
<td>4766.0</td>
<td>4861.3</td>
</tr>
<tr>
<td>39</td>
<td>4767.7</td>
<td>4858.5</td>
<td>4768.9</td>
<td>4858.3</td>
</tr>
<tr>
<td>40</td>
<td>4772.6</td>
<td>4857.0</td>
<td>4772.5</td>
<td>4855.9</td>
</tr>
<tr>
<td>41</td>
<td>4773.2</td>
<td>4851.5</td>
<td>4775.0</td>
<td>4852.4</td>
</tr>
<tr>
<td>42</td>
<td>4700.8</td>
<td>4848.6</td>
<td>4749.8</td>
<td>4849.1</td>
</tr>
<tr>
<td>43</td>
<td>4703.6</td>
<td>4847.3</td>
<td>4730.9</td>
<td>4846.5</td>
</tr>
<tr>
<td>44</td>
<td>4705.9</td>
<td>4844.1</td>
<td>4718.1</td>
<td>4843.7</td>
</tr>
<tr>
<td>45</td>
<td>4712.1</td>
<td>4839.8</td>
<td>4711.6</td>
<td>4840.4</td>
</tr>
<tr>
<td>46</td>
<td>4715.8</td>
<td>4841.6</td>
<td>4720.9</td>
<td>4838.9</td>
</tr>
<tr>
<td>47</td>
<td>4718.3</td>
<td>4832.1</td>
<td>4727.7</td>
<td>4834.7</td>
</tr>
<tr>
<td>48</td>
<td>4802.4</td>
<td>4829.2</td>
<td>4739.3</td>
<td>4830.8</td>
</tr>
<tr>
<td>49</td>
<td>4804.6</td>
<td>4826.9</td>
<td>4765.1</td>
<td>4827.3</td>
</tr>
<tr>
<td>50</td>
<td>4807.8</td>
<td>4824.0</td>
<td>4785.7</td>
<td>4824.0</td>
</tr>
</tbody>
</table>
$Q = 0.01I, R = I$

<table>
<thead>
<tr>
<th>RESIDUE 1</th>
<th>RESIDUE 2</th>
<th>ERROR 1</th>
<th>ERROR 2</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>105538</td>
</tr>
<tr>
<td>1.0</td>
<td>-7.1</td>
<td>4.0</td>
<td>-.26</td>
<td>105539</td>
</tr>
<tr>
<td>1.3</td>
<td>-14.7</td>
<td>5.1</td>
<td>-.54</td>
<td>105540</td>
</tr>
<tr>
<td>1.1</td>
<td>-11.5</td>
<td>5.1</td>
<td>-.42</td>
<td>105541</td>
</tr>
<tr>
<td>1.3</td>
<td>-12.2</td>
<td>4.9</td>
<td>-.45</td>
<td>105542</td>
</tr>
<tr>
<td>8.5</td>
<td>-14.7</td>
<td>3.1</td>
<td>-.54</td>
<td>105543</td>
</tr>
<tr>
<td>11.4</td>
<td>-7.5</td>
<td>4.2</td>
<td>-.28</td>
<td>105544</td>
</tr>
<tr>
<td>7.7</td>
<td>-7.0</td>
<td>2.8</td>
<td>-.26</td>
<td>105545</td>
</tr>
<tr>
<td>1006.0</td>
<td>-6.5</td>
<td>376.9</td>
<td>-2.4</td>
<td>105546</td>
</tr>
<tr>
<td>-422.8</td>
<td>-5.5</td>
<td>-163.3</td>
<td>-2.0</td>
<td>105547</td>
</tr>
<tr>
<td>-322.4</td>
<td>-2.6</td>
<td>-118.9</td>
<td>-1.0</td>
<td>105548</td>
</tr>
<tr>
<td>-228.1</td>
<td>-4.6</td>
<td>-94.1</td>
<td>-1.7</td>
<td>105549</td>
</tr>
<tr>
<td>-138.5</td>
<td>-2.3</td>
<td>-51.1</td>
<td>-.9</td>
<td>105550</td>
</tr>
<tr>
<td>-72.6</td>
<td>4.0</td>
<td>-26.0</td>
<td>1.5</td>
<td>105551</td>
</tr>
<tr>
<td>-31.7</td>
<td>5.5</td>
<td>-11.7</td>
<td>.2</td>
<td>105552</td>
</tr>
<tr>
<td>-1.5</td>
<td>-7.7</td>
<td>-.6</td>
<td>-.3</td>
<td>105553</td>
</tr>
<tr>
<td>-60.6</td>
<td>1.5</td>
<td>-22.4</td>
<td>.6</td>
<td>105554</td>
</tr>
<tr>
<td>-13.8</td>
<td>1.0</td>
<td>-.5.1</td>
<td>.4</td>
<td>105555</td>
</tr>
<tr>
<td>16.6</td>
<td>-2.2</td>
<td>6.1</td>
<td>-.8</td>
<td>105556</td>
</tr>
<tr>
<td>35.1</td>
<td>5.5</td>
<td>12.9</td>
<td>.2</td>
<td>105557</td>
</tr>
<tr>
<td>44.4</td>
<td>2.1</td>
<td>16.4</td>
<td>.8</td>
<td>105558</td>
</tr>
<tr>
<td>128.3</td>
<td>0.8</td>
<td>47.3</td>
<td>.3</td>
<td>105559</td>
</tr>
<tr>
<td>85.9</td>
<td>-2.6</td>
<td>31.7</td>
<td>-1.0</td>
<td>105600</td>
</tr>
<tr>
<td>58.7</td>
<td>1.8</td>
<td>21.6</td>
<td>.7</td>
<td>105601</td>
</tr>
<tr>
<td>31.8</td>
<td>-1.2</td>
<td>11.7</td>
<td>-.4</td>
<td>105602</td>
</tr>
<tr>
<td>10.0</td>
<td>-1.8</td>
<td>3.7</td>
<td>-.7</td>
<td>105603</td>
</tr>
<tr>
<td>2.2</td>
<td>-1.1</td>
<td>.8</td>
<td>-.0</td>
<td>105604</td>
</tr>
<tr>
<td>-3.4</td>
<td>2.0</td>
<td>-1.3</td>
<td>.7</td>
<td>105605</td>
</tr>
<tr>
<td>-11.1</td>
<td>.4</td>
<td>-.4.1</td>
<td>.2</td>
<td>105606</td>
</tr>
<tr>
<td>-13.1</td>
<td>-1.7</td>
<td>-.5.1</td>
<td>-.6</td>
<td>105607</td>
</tr>
<tr>
<td>-12.6</td>
<td>-2.5</td>
<td>-.4.6</td>
<td>-.9</td>
<td>105608</td>
</tr>
<tr>
<td>-12.0</td>
<td>-2.0</td>
<td>-.4.4</td>
<td>.8</td>
<td>105609</td>
</tr>
<tr>
<td>-8.5</td>
<td>2.8</td>
<td>-3.1</td>
<td>1.0</td>
<td>105610</td>
</tr>
<tr>
<td>-7.1</td>
<td>1.2</td>
<td>-2.6</td>
<td>.4</td>
<td>105611</td>
</tr>
<tr>
<td>-7.9</td>
<td>-2.8</td>
<td>-2.9</td>
<td>-.7</td>
<td>105612</td>
</tr>
<tr>
<td>-4.5</td>
<td>1.0</td>
<td>-1.7</td>
<td>.4</td>
<td>105613</td>
</tr>
<tr>
<td>-3.3</td>
<td>2.3</td>
<td>-1.1</td>
<td>.8</td>
<td>105614</td>
</tr>
<tr>
<td>-1.3</td>
<td>-2.2</td>
<td>-.5</td>
<td>.1</td>
<td>105615</td>
</tr>
<tr>
<td>-4.1</td>
<td>-2.8</td>
<td>-1.5</td>
<td>-1.0</td>
<td>105616</td>
</tr>
<tr>
<td>-2.0</td>
<td>.2</td>
<td>-.7</td>
<td>.1</td>
<td>105617</td>
</tr>
<tr>
<td>0.1</td>
<td>1.7</td>
<td>.0</td>
<td>.6</td>
<td>105618</td>
</tr>
<tr>
<td>-2.9</td>
<td>-1.5</td>
<td>-1.1</td>
<td>-.5</td>
<td>105619</td>
</tr>
<tr>
<td>-77.5</td>
<td>-8.1</td>
<td>-28.6</td>
<td>-.3</td>
<td>105620</td>
</tr>
<tr>
<td>-43.3</td>
<td>1.3</td>
<td>-16.0</td>
<td>.5</td>
<td>105621</td>
</tr>
<tr>
<td>-17.8</td>
<td>.6</td>
<td>-6.6</td>
<td>.2</td>
<td>105622</td>
</tr>
<tr>
<td>1.7</td>
<td>-.9</td>
<td>-.6</td>
<td>-.3</td>
<td>105623</td>
</tr>
<tr>
<td>12.3</td>
<td>4.2</td>
<td>4.5</td>
<td>1.6</td>
<td>105624</td>
</tr>
<tr>
<td>16.9</td>
<td>-4.1</td>
<td>6.2</td>
<td>-1.5</td>
<td>105625</td>
</tr>
<tr>
<td>100.0</td>
<td>-2.5</td>
<td>36.9</td>
<td>-.9</td>
<td>105626</td>
</tr>
<tr>
<td>62.6</td>
<td>-6.6</td>
<td>23.1</td>
<td>-.2</td>
<td>105627</td>
</tr>
<tr>
<td>35.1</td>
<td>-.0</td>
<td>12.9</td>
<td>-.0</td>
<td>105628</td>
</tr>
</tbody>
</table>
DIMENSION H1(4,4),Q(4,4),R(2,2),G(4,2),
PHI(4,4),PKK(4,4),PKMM(4,4),EXKK(4,1),EXKKM(4,1)
DIMENSION DEL(4,2),A(4,4),D1(4,2),D1(4,4),D2(4,4)
DIMENSION ZCOR(2,1),ZMOD(2,1),XCOR(4,1)
DIMENSION Z(2,1)
DIMENSION GAMMA(4,2)
DIMENSION IV1(2),IV7(6),BUFFER(2000)
DIMENSION HEADER(4,3),DATA(4),YAXIS(4,2)

80 FORMAT(5X,16,15X,2F5.1)

DATA IV1(1)/"7 /IV1(2)/" /
DATA ((HEADER(J,1),J=1,3),I=1,4)/6HRESIDU,6HE 1 VS,6H TIME,
16HRESIDU,6HE 2 VS,6H TIME,6HERROR ,6H1 VS, 6HTIME , 26HERROR ,6H2 VS, 6HTIME /
DATA ((YAXIS(J,1),J=1,2),I=1,4)/6H RESID,6HUE 1 ,6H RESID,
16HUE 2 ,6H ERR0,6HR 1 ,6H ERR0,6HR 2 /

THIS PROGRAM COMPUTES THE FOLLOWING KALMAN FILTER GAIN AND COVARIANCE EQUATIONS

\[G(K) = P(K/K-1)HT(H*P(K/K-1)*HT+R) \]

\[P(K/K) = (I-G(K)*H)*P(K/K-1) \]

\[P(K/K-1) = PHI*P(K-1/K-1)*PHI^T*Q \]

AND UPDATES THE STATE ESTIMATES BY SOLVING

\[X(K/K) = X(K/K-1)+G(K)*(Z(K)-H*X(K/K-1))=EXKK, WHERE \]

\[X(1,1)=R1 \]
\[X(2,1) = R2 \]
\[X(3,1) = D(R1)/DT \]
\[X(4,1) = D(R2)/DT \]
\[Z(1,1) \text{ IS THE MEASURED (RAW) R1} \]
\[Z(2,1) \text{ IS THE MEASURED (RAW) R2} \]

\[X(K/K-1) = PHI(K/K-1) * X(K-1/K-1) + GAMMA(K/K-1) * W(K-1) = EXKKM1 \]

\[Q(1:J) \text{ DEFINES THE COVARIANCE OF THE PER SAMPLE RANDOM GAUSSIAN} \]
\[\text{EXCITATION OF THE PROCESS} \]

\[R(1:J) \text{ DEFINES THE RANDOM (GAUSSIAN) MEASUREMENT NOISE COVARIANCE} \]
\[\text{WHICH IS ADDED TO THE MEASURED SIGNALS} \]

\[H(1:J) \text{ IS THE IDENTITY MATRIX} \]

\[K \text{ IS THE DISCRETE POINT IN TIME AT WHICH THE STAGE OF THE PROCESS} \]
\[\text{IS BEING CONSIDERED} \]

\[PKK(1:J) = P(K/K) \text{ THE COVARIANCE OF EST ERROR AT TIME } K, \text{ GIVEN } K \text{ SAMPLES} \]

\[PKKM(1:J) = P(K/K-1) \text{ THE COVARIANCE OF ESTIMATION ERROR AT TIME} \]
\[K \text{ GIVEN } K-1 \text{ SAMPLES} \]

\[N = \text{NUMBER OF STATES} \]

\[M = \text{NUMBER OF INPUTS} \]

\[ND \text{ AND MD ARE DIMENSIONS OF READ-IN AND WRITTEN-OUT MATRICES} \]
NN = NUMBER OF ITERATIONS OF FILTER. THIS WILL BE EQUAL TO THE NUMBER
OF DATA POINTS TO BE READ AND FILTERED, AND WILL CHANGE FROM JOB TO JOB.

REWORK 8
READ(5,50)N,H,ND,MD,LD,NN,DT
50 FORMAT(6,I5,F10.4)
WRITE(6,7777)
7777 FORMAT(1HI)
WRITE(6,51)N,H,ND,MD,LD,NN,DT
51 FORMAT(2X,2HN=,15,5X,2HM=,15,5X,3HND=,15,5X,3HMD=,15,5X,3HLD=,
15,5X,3HNN=,15,5X,3HDT=,F10.4)
CALL MREAD(R,H,MD,LD)
WRITE(6,53)
53 FORMAT(1/12H MATRIX R /)
CALL MWRITE(R,H,MD,LD)
CALL MREAD(Q,N,ND,MD)
WRITE(6,54)
54 FORMAT(1/12H MATRIX Q /)
CALL MWRITE(Q,N,ND,MD)
CALL MREAD(PKHM1,N,ND,MD)
C
94
95 THIS IS THE INITIAL VALUE OF P(K/K-1), OR, P(0/-1) FOR K=0.
96
97
C
98
55 FORMAT(1/13H MATRIX PKHM1 /)
55 FORMAT(1/13H MATRIX PKHM1 /)
56 FORMAT(1/13H MATRIX PKHM1 /)
56 FORMAT(1/13H MATRIX PKHM1 /)
CALL MWRITE(PKHM1,N,N,ND,MD)
CALL MWRITE(PKHM1,N,N,ND,MD)
CALL MWRITE(A,N,N,ND,MD)
CALL MWRITE(A,N,N,ND,MD)
WRITE(6,65)
WRITE(6,65)
65 FORMAT(1/13H MATRIX A /)
65 FORMAT(1/13H MATRIX A /)
CALL MWRITE(A,N,N,ND,MD)
CALL MWRITE(A,N,N,ND,MD)
WRITE(6,70)
WRITE(6,70)
70 FORMAT('//13H MATRIX D')
71 CALL MWRITE(D,N,N,ND,LD)
72 CALL PHIDEL(DT,N,M,A,D,PHI,DEL,D1,D2,ND,MD,LD)
73 WRITE(6,58)
74 58 FORMAT('//13H MATRIX PHI')
75 CALL MWRITE(PHI,N,N,ND,MD)
76 WRITE(6,62)
77 62 FORMAT('//13H MATRIX DEL')
78 CALL MWRITE(DEL,N,N,ND,LD)
79 CALL CONST(1,O,DEL,N,M,GAMMA,ND,LD)
80 WRITE(6,64)
81 64 FORMAT('//13H MATRIX GAMMA')
82 CALL MWRITE(GAMMA,N,N,ND,LD)
83 CALL MREAD(H,N,MD)
84 WRITE(6,59)
85 59 FORMAT('//13H MATRIX H')
86 CALL MWRITE(H,N,N,LD,MD)
87 CALL MREAD(HI,N,N,ND,MD)
88 WRITE(6,60)
89 60 FORMAT('//13H MATRIX HI')
90 CALL MWRITE(HI,N,N,ND,MD)
91 WRITE(6,777)
92 C
93 C
94 C
95 C
96 C
97 C
98 C
99 C
100 DO 10 K=0,20
101 CALL GAIN(PK,PKH1,Q,R,PHI,H,N,M,G,HI,ND,MD,LD,K)
102 L=K
103 LHI=K-1
104 WRITE(6,18)K
105 18 FORMAT('//3H K=',I3)
106 11 WRITE(6,99)
99 FORMAT(/13H MATRIX G /
CALL Model(G,N,M,ND,LD)
WRITE(6,21),LH
21 FORMAT(/3H P(1,13),1H/13,1H/1)
CALL Model(PKMM1,N,N,ND,NM)
10 CONTINUE

C COMMENCE THE MAIN ITERATION LOOP; K=0 INITIALIZES;
C ALL RANGES ARE IN METERS; ALL RATES ARE IN METERS PER SECOND.
DO 15 K=0,NN
 IV3=6
 CALL Ion11(V1,16,IV3,IV7,0,IV6)
 IF(IV6,NE.0)GO TO 30
 DECODE(36,80,IV7)TIME,Z(2,1),Z(1,1)
 IF(K).EQ.1,2
 C INITIALIZE THE STATE ESTIMATE XEST(0) = MEANX(0) ESTIMATE, WHICH
 C IN THIS CASE WILL BE THE FIRST MEASUREMENT FOR EXKKM1(1,1) AND (2,1),
 C AND INITIAL VELOCITIES FOR EXKKM1(3,1) AND (4,1).
 FIRST MEASUREMENTS
 EXKKM1(1,1)=Z(1,1)
 EXKKM1(2,1)=Z(2,1)
 C INITIAL VELOCITIES
 EXKKM1(3,1)=-4.
 EXKKM1(4,1)=4.
GO TO 3

ONE STEP PREDICTION XEST(K/K-1)=PHI*XEST(K-1/K-1)+GAMMA*W(K-1)

2 CALL PROD(PHI,EXKK,N,N,1,EXKKM1,ND,MD,1)

UPDATE STATE ESTIMATE XEST(K/K)=XEST(K/K-1)+G(K)*((Z(K)-H*XEST(K/K-1))

3 CALL PROD(H,EXKKM1,M,N,1,ZCOR,LD,ND,1)
 CALL SUB(Z,ZCOR,M,1,ZMOD,LD,1)
 RES1=Z(1,1)-EXKKM1(1,1)
 RES2=Z(2,1)-EXKKM1(2,1)

GATE RANGE MEASUREMENTS TO REDUCE IMPACT OF JITTER (IN MOST
SIGNIFICANT FIGURES) ON COVARIANCE OF MEASUREMENT NOISE, THIS
GATE WILL BE EFFECTIVE FOR SURFACE CRAFT ONLY, AND MUST BE EXPANDED
FOR HIGHER SPEED (AIRCRAFT) TRACKING,

ARES1=ABS(RES1)
ARES2=ABS(RES2)

93 IF(ARES1=50.193,93,125
94 CONTINUE
4 CALL GAIN(PKK,PKK1,Q,R,PHI,H,N,M,G,HI,ND,MD,LD,K)
 CALL PROD(G,ZMOD,N,1,XCOR,ND,LD,1)
 CALL ADD(EXKKM1,XCOR,N,1,EXKK,ND,1)
9 GO TO 12
125 EXKK=EXKKM1
12 CONTINUE
ERR1=EXKK(1,1)-EXKKM1(1,1)
213 EHR2 =EXKK(2,1)-EXKKM(2,1)
214 WRITE(8,K1TIME,RES1,RES2,ERR1,ERR2)
215 IF(K1)7,8,7
216 8 WRITE(6,5)
217 5 FORMAT(IHI,7X,1HK,5X,6HRRAW R1,4X,6HRRAW R2,4X,11HFILTERED R1,4X,
218 -11HFILTERED R2,4X,9HRESIDUE 1,4X,9HRESIDUE 2,4X,7HEROK 1,4X,
219 -7HEROK 2,4X,4HTIME)
220 7 WRITE(6,6)K,Z(1,1),Z(2,1),EXKK(1,1),EXKK(2,1),RES1,RES2,ERR1,
221 -ERR2,ITIME
222 6 FORMAT(5X,14,5X,F6.1,4X,F6.1,5X,F6.1,10X,F6.1,8X,F6.1,
223 -4X,F6.1,8X,F6.1,4X,F6.1,6X,16)
224 15 CONTINUE
225 30 CONTINUE 8
226 8 ENDFILE 8
227 REWIND 8
228 CALL PLOTS (BUFFER,2000,9)
229 CALL PLOT(1,5,5,25,-3)
230 DO 400 I=1,9
231 REWIND 8
232 IFLAG = 0
233 CALL AXIS(0.,0.,6HTIME K,=6,8,0,0,0,10,0,10,)
234 CALL AXIS(0.,4,4AXIS(1,1),12,8,90,-80,-20,,10,)
235 CALL SYMBOL(0,25,4,25,0,5,HEADER(1,1),0,18)
236 DO 410 J=0,NN
237 READ(8,END=430)K1TIME,DATA
238 X=K/10.
239 Y=DATA(1)
240 IF(Y,GT,80.)Y=80.,
241 IF(Y,LT,-80.)Y=-80.,
242 Y=Y/20.
243 IF(K,EQ,80)GO TO 430
244 IF(IFLAG,NE,0)GO TO 440
245 IFLAG=1
246 CALL PLOT (X,Y, 3)
247 440 CALL PLOT (X,Y, 2)
410 CONTINUE
430 CALL PLOT (10., 0., -3)
400 CONTINUE
251 CALL PLOT (10., 0., 999)
252 REWIND 8
253 WRITE(6,94)IV6
254 FORMAT(13H10W STATUS = ,16)
255 STOP
256 END
SUBROUTINE PHIDEL(T,N,M,A,B,PHI,DEL,D1,D2,ND,MD,LD)
DIMENSION A(4,4),D(4,2),PHI(4,4),DEL(4,2),TERM(4,4),
ICOR(4,4),C(4,4),D1(4,4),D2(4,4),TEIL(4,4)
TEST=1.E-7
F=1.
DO 10 IR=1,N
DO 10 IC=1,N
PHI(IR,IC)=0.
PHI(IR,IR)=1.
C(IR,IC)=A(IR,IC)
10 TERM(IR,IC)=T/2.*DO PHI(IR,IC)
10 TERM(IR,IC)=T*PHI(IR,IC)
DO 11 IR=1,N
DO 11 IC=1,N
COR(IR,IC)=T/F*C(IR,IC)
PHI(IR,IC)=PHI(IR,IC)+COR(IR,IC)
10 TERM(IR,IC)=TERM(IR,IC)+T/(F+1.)*COR(IR,IC)
DO 12 IR=1,N
DO 12 IC=1,N
C(IR,IC)=0.
DO 12 K=1,N
12 C(IR,IC)=C(IR,IC)+A(IR,K)*COR(K,IC)
F=F+1.
DO 27 IR=1,N
DO 27 IC=1,N
IF(ABS(COR(IR,IC)) *GT* TEST*ABS(PHI(IR,IC))) GO TO 50
13 CONTINUE
CALL PROD(TERM,D,N,N,M,DEL,ND,MD,LD)
CALL PROD(TEIL,D,N,N,D2,ND,MD,LD)
DO 31 IR=1,N
DO 31 IC=1,M
31 D(IR,IC)=DEL(IR,IC)-D2(IR,IC)
34 RETURN
35 END
SUBROUTINE GAIN(PKK,PKKM1,Q,R,PHI,H,N,M,G,HI,ND,MD,LD,K)

THIS SUBROUTINE COMPUTES THE OPTIMUM GAIN MATRIX AND THE ERROR
COVARIANCE

DIMENSION PKK(4,4),Q(4,4),H(2,4),G(4,2),R(2,2),HI(4,4),HT(4,2),
 TEMP(4,2),TEMP2(2,2),TEMP1(2,2),PHI(4,4),PHIT(4,4),PKKM1(4,4)

DIMENSION TEMP3(4,4),TEMP4(4,4)

IF(K)106,106,105

105 CONTINUE

13 C
14 C
15 C NOTE HERE PKKM1(I,J) = P(K/K-1) WHERE
16 C P(K/K-1) = PHI*P(K-1/K-1)*PHI*Q
17 C
18 C
19 C CALL TRANS(PHI,N,N,PHIT,ND,MD)
20 C CALL PROD(PKK,PHI,N,N,PHIT,ND,MD,ND)
21 C CALL PROD(PHI,TEMP3,N,N,TEMP4,ND,MD,ND)
22 C CALL ADD(TEMP4,Q,N,N,PKKM1,ND,MD)
23 C
24 C 106 CONTINUE
25 C
26 C G(K) = P(K/K-1)*HT*(H*P(K/K-1)*HT + R)
27 C
28 C
29 C CALL TRANS(H,N,N,HT,LD,MD)
30 C CALL PROD(PKHM1,HT,N,N,TEMP,ND,MD,LD)
31 C CALL PROD(H,TEMP,M,N,TEMP1,LD,MD,LD)
32 C CALL ADD(TEMP1,R,M,TEMP1,LD,LD)
33 C CALL RECIP(H,0,0000001,TEMP1,TEMP2,KER,LD)
34 C
IF (Ker=2) 101, 110, 101
110 WRITE(*,111)
111 FORMAT (5Hker=2)
101 CALL PROD(TMP, TEMP2, N, M, G, ND, LD, LD)
C
C NOTE HERE PKK(I,J) = P(K/K) WHERE
C P(K/K) = (1 - G(K)*H)*P(K/K=1)
C
CALL PROD(G, H, N, M, TEMP3, ND, LD, ND)
DO 108 I = 1, N
DO 108 J = 1, N
108 TEMP3(I,J) = TEMP3(I,J)
CALL ADD(H1, TEMP3, N, N, TEMP3, ND, ND)
CALL PROD(TMP3, PKK1, N, N, PKK, ND, MD, ND)
RETURN
END

SUBROUTINE ADD (A, B, N, M, C, ND, MD)
DIMENSION A(ND, MD), B(ND, MD), C(ND, MD)
DO 152 I = 1, N
DO 152 J = 1, M
152 C(I, J) = A(I, J) + B(I, J)
RETURN
END

SUBROUTINE SUB (A, B, N, M, C, ND, MD)
DIMENSION A(ND, MD), B(ND, MD), C(ND, MD)
DO 152 I = 1, N
DO 152 J = 1, M
152 C(I, J) = A(I, J) - B(I, J)
RETURN
END
SUBROUTINE PROD (A, B, N, M, L, C, ND, MD, LD)
DIMENSION A(ND, MD), B(MD, LD), C(ND, LD)
DO 1 I=1, N
DO 1 J=1, L
1 C(I, J)=0
DO 15 I=1, N
DO 15 J=1, L
DO 15 K = 1, M
15 C(I, J) = C(I, J) + A(I, K) * B(K, J)
RETURN
END

SUBROUTINE TRANS(A, N, M, C, ND, MD)
DIMENSION A(ND, MD), C(ND, ND)
DO 153 I=1, N
DO 153 J=1, M
153 C(J, I) = A(I, J)
RETURN
END

SUBROUTINE CONST(Q, A, N, M, C, ND, MD)
DIMENSION A(ND, MD), C(ND, MD)
IF(Q)1, 10, 11
10 DO 100 I=1, N
DO 100 J=1, M
100 C(I, J) = 0.0
RETURN
11 IF(Q-1.0)13, 12, 13
12 DO 120 I=1, N
DO 120 J=1, M
120 C(I, J) = A(I, J)
RETURN
13 IF(Q+1.0)15, 14, 15
14 DO 140 I=1, N
DO 140 J=1, M
160 C(I,J) = -A(I,J)
170 RETURN
180 15 DO 150 I=1,N
190 DO 150 J=1,M
200 150 C(I,J) = Q*A(I,J)
210 RETURN
220 END

SUBROUTINE RECIPN,EP,B,X,KER,M)
DIMENSION A(2,2),X(M,M),B(M,M)
CALL CONST(1*,B,N,N,A,2,2)
DO 1 J=1,M
 DO 1 I=1,M
 1 X(I,J)=0.
 DO 2 K=1,N
 2 X(K,K)=1.
DO 34 L=1,N
 KP=0
 Z=0.
 DO 12 K=L,N
 IF(Z+GE,ABS(A(K,L))) GO TO 12
 11 Z=ABS(A(K,L))
 15 KP=K
 12 CONTINUE
 IF(L+GE,KP) GO TO 20
 DO 14 J=L,N
 13 Z=A(L,J)
 19 A(L,J)=A(KP,J)
 21 A(KP,J)=Z
 DO 15 J=1,N
 14 Z=X(L,J)
 23 X(L,J)=X(KP,J)
 25 X(KP,J)=Z
 15 IF(ABS(A(L,L)) LE,EP) GO TO 50
 20 IF(L+GE,N) GO TO 34
 31 LPI=L+1
DO 36 K=LP1,N
 IF(A(K,L)*EQ.0.) GO TO 36
32 RATIO = A(K,L)/A(L,L)
33 DO 33 J=LP1,N
34 A(K,J)=A(K,J)*RATIO*A(L,J)
35 DO 35 J=1,N
36 X(K,J)=X(K,J)*RATIO*X(L,J)
37 CONTINUE
38 CONTINUE
39 40 DO 43 I=1,N
41 I=I+1
42 S=0,
43 IF(I.GE.N) GO TO 43
44 41 I=I+1
45 DO 42 K=I,LP1,N
46 S=S+A(L,K)*X(K,J)
47 X(I,J)=(X(I,J)-S)/A(I,I)
48 KER=1
49 RETURN
50 KER=2
51 RETURN
52 END
1 SUBROUTINE MREAD(A,N,M,ND,MD)
2 DIMENSION A(ND,MD)
3 DO 10 I=1,N
4 10 READ(5,20)(A(I,J),J=1,M)
5 20 FORMAT(8F10.5)
6 RETURN
7 END
1 SUBROUTINE MWRITE(A,N,M,ND,MD)
2 DIMENSION A(ND,MD)
3 DO 10 I=1,N
4 10 WRITE(6,20)(A(I,J),J=1,M)
5 20 FORMAT(6X,1H1,12,1H1,12,2H0,1PE10.3))
6 RETURN
7 END
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

1. Defense Documentation Center
 Cameron Station
 Alexandria, Virginia 22314
 No. Copies 2

2. Library, Code 0212
 Naval Postgraduate School
 Monterey, California 93940
 No. Copies 2

3. Chairman, Code 52
 Department of Electrical Engineering
 Naval Postgraduate School
 Monterey, California 93940
 No. Copies 1

4. Professor H.A. Titus, Code 52Ts
 Department of Electrical Engineering
 Naval Postgraduate School
 Monterey, California 93940
 No. Copies 18

5. LCDR Benjamin E. Julian
 Puget Sound Naval Shipyard
 Bremerton, Washington 98314
 No. Copies 1

6. Commanding Officer
 Naval Torpedo Station
 Keyport, Washington 98345
 ATTN: Code 70
 No. Copies 2