NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report was submitted by McDonnell Douglas Corporation, under contract F3615-74-C-2016.

The effort was sponsored by the Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson A.F.B., Ohio, under Project No. 3145-30-18, and was under the direction of Paul Lindquist and William Kinzig.

Neil Pierce and Gerry Amies of McDonnell Douglas Corporation were technically responsible for the work.

This report has been reviewed by the Information Office, (ASD/OIP) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.
The hydraulic transient analysis (HYTRAN) computer program has been developed to simulate the response of a hydraulic system to sudden changes in flow demand by the system loads.

For selected component temperatures, pump RPM, and initial steady state conditions, the program will calculate the pressures and flow amplitudes resulting from changes in flow demand or some other controller input.

It will predict transient pressures due to waterhammer and the onset of cavitation due to the opening and closing of valves.
The engineering input data to the program is normally available to a design engineer. When specialized components are required that are not covered by existing subroutines, these may be simulated by adding to the program.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1.0-1</td>
</tr>
<tr>
<td>2.0</td>
<td>TECHNICAL SUMMARY</td>
<td>2.0-1</td>
</tr>
<tr>
<td>3.0</td>
<td>MAIN PROGRAM</td>
<td>3.0-1</td>
</tr>
<tr>
<td>3.1</td>
<td>HYTR</td>
<td>3.1-1</td>
</tr>
<tr>
<td>3.2</td>
<td>BLOCK DATA</td>
<td>3.2-1</td>
</tr>
<tr>
<td>3.3</td>
<td>COMMONS</td>
<td>3.3-1</td>
</tr>
<tr>
<td>3.4</td>
<td>FLUID</td>
<td>3.4-1</td>
</tr>
<tr>
<td>4.0</td>
<td>STEADY STATE SUBROUTINES</td>
<td>4.0-1</td>
</tr>
<tr>
<td>4.1</td>
<td>SSDATA</td>
<td>4.1-1</td>
</tr>
<tr>
<td>4.2</td>
<td>CALC</td>
<td>4.2-1</td>
</tr>
<tr>
<td>4.3</td>
<td>LEGCAL</td>
<td>4.3-1</td>
</tr>
<tr>
<td>5.0</td>
<td>LINE SUBROUTINES</td>
<td>5.0-1</td>
</tr>
<tr>
<td>5.1</td>
<td>LINE</td>
<td>5.1-1</td>
</tr>
<tr>
<td>5.2</td>
<td>FRIC</td>
<td>5.2-1</td>
</tr>
<tr>
<td>5.3</td>
<td>DFRICD</td>
<td>5.3-1</td>
</tr>
<tr>
<td>5.4</td>
<td>CHAR</td>
<td>5.4-1</td>
</tr>
<tr>
<td>6.0</td>
<td>COMPONENT SUBROUTINES</td>
<td>6.0-1</td>
</tr>
<tr>
<td>6.1</td>
<td>COMP</td>
<td>6.1-1</td>
</tr>
<tr>
<td>6.11</td>
<td>BRAN11</td>
<td>6.11-1</td>
</tr>
<tr>
<td>6.21</td>
<td>VALV21</td>
<td>6.21-1</td>
</tr>
<tr>
<td>6.22</td>
<td>VALV22</td>
<td>6.22-1</td>
</tr>
<tr>
<td>6.31</td>
<td>CVAL31</td>
<td>6.31-1</td>
</tr>
<tr>
<td>6.32</td>
<td>CREL32</td>
<td>6.32-1</td>
</tr>
<tr>
<td>6.33</td>
<td>CVAL33</td>
<td>6.33-1</td>
</tr>
<tr>
<td>6.34</td>
<td>CVAL34</td>
<td>6.34-1</td>
</tr>
<tr>
<td>TABLE OF CONTENTS (Continued)</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.41 REST41.</td>
<td>6.41-1</td>
<td></td>
</tr>
<tr>
<td>6.51 PUMP51.</td>
<td>6.51-1</td>
<td></td>
</tr>
<tr>
<td>6.54 PUMP54.</td>
<td>6.54-1</td>
<td></td>
</tr>
<tr>
<td>6.61 RSVR61.</td>
<td>6.61-1</td>
<td></td>
</tr>
<tr>
<td>6.62 RSVR62.</td>
<td>6.62-1</td>
<td></td>
</tr>
<tr>
<td>6.71 ACUM71.</td>
<td>6.71-1</td>
<td></td>
</tr>
<tr>
<td>6.81 FILT81.</td>
<td>6.81-1</td>
<td></td>
</tr>
<tr>
<td>6.82 FILT82.</td>
<td>6.82-1</td>
<td></td>
</tr>
<tr>
<td>6.83 FILT83.</td>
<td>6.83-1</td>
<td></td>
</tr>
<tr>
<td>6.92 CAD92.</td>
<td>6.92-1</td>
<td></td>
</tr>
<tr>
<td>6.93 CAD93.</td>
<td>6.93-1</td>
<td></td>
</tr>
<tr>
<td>6.95 APU95.</td>
<td>6.95-1</td>
<td></td>
</tr>
<tr>
<td>6.98 CAD98.</td>
<td>6.98-1</td>
<td></td>
</tr>
<tr>
<td>6.99 CAD99.</td>
<td>6.99-1</td>
<td></td>
</tr>
<tr>
<td>6.101 ACT101</td>
<td>6.101-1</td>
<td></td>
</tr>
<tr>
<td>6.102 ACT102</td>
<td>6.102-1</td>
<td></td>
</tr>
<tr>
<td>6.103 ACT103</td>
<td>6.103-1</td>
<td></td>
</tr>
<tr>
<td>6.104 ACT104</td>
<td>6.104-1</td>
<td></td>
</tr>
<tr>
<td>6.105 ACT105</td>
<td>6.105-1</td>
<td></td>
</tr>
<tr>
<td>6.106 ACT106</td>
<td>6.106-1</td>
<td></td>
</tr>
<tr>
<td>6.107 ACT107</td>
<td>6.107-1</td>
<td></td>
</tr>
<tr>
<td>7.0 OUTPUT SUBROUTINES</td>
<td>7.0-1</td>
<td></td>
</tr>
<tr>
<td>7.1 STORE</td>
<td>7.1-1</td>
<td></td>
</tr>
<tr>
<td>7.2 GRAPH</td>
<td>7.2-1</td>
<td></td>
</tr>
<tr>
<td>7.3 SCALED.</td>
<td>7.3-1</td>
<td></td>
</tr>
<tr>
<td>Utility Subroutines</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>8.1 INTERP</td>
<td>8.1-1</td>
<td></td>
</tr>
<tr>
<td>8.2 DISER1</td>
<td>8.2-1</td>
<td></td>
</tr>
<tr>
<td>8.3 LAGRAN</td>
<td>8.3-1</td>
<td></td>
</tr>
<tr>
<td>8.4 SIMULT</td>
<td>8.4-1</td>
<td></td>
</tr>
<tr>
<td>8.5 SBRAM</td>
<td>8.5-1</td>
<td></td>
</tr>
<tr>
<td>8.6 XLIMIT</td>
<td>8.6-1</td>
<td></td>
</tr>
<tr>
<td>8.7 TUSTIN/DYNAM</td>
<td>8.7-1</td>
<td></td>
</tr>
<tr>
<td>8.8 LUCUP</td>
<td>8.8-1</td>
<td></td>
</tr>
<tr>
<td>8.9 HYSTLI</td>
<td>8.9-1</td>
<td></td>
</tr>
<tr>
<td>8.10 CFRIC/CFRIC2</td>
<td>8.10-1</td>
<td></td>
</tr>
<tr>
<td>9.0 REFERENCES</td>
<td>9.0-1</td>
<td></td>
</tr>
<tr>
<td>NUMBER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>3.1-1</td>
<td>HYTR FLOW DIAGRAM.</td>
<td>3.1-2</td>
</tr>
<tr>
<td>4.2-1</td>
<td>CALC GENERALIZED FLOW DIAGRAM.</td>
<td>4.2-2</td>
</tr>
<tr>
<td>4.2-2</td>
<td>CALC SUBROUTINE PHASE ONE OPERATION.</td>
<td>4.2-5</td>
</tr>
<tr>
<td>4.2-3</td>
<td>CALC SUBROUTINE PHASE TWO OPERATION.</td>
<td>4.2-6</td>
</tr>
<tr>
<td>4.3-1</td>
<td>LEGCAL ORGANIZATION.</td>
<td>4.3-2</td>
</tr>
<tr>
<td>5.1-1</td>
<td>GRID OF CHARACTERISTICS WITH INTERPOLATION</td>
<td>5.1-3</td>
</tr>
<tr>
<td>5.1-3</td>
<td>LINE SUBROUTINE FLOW DIAGRAM</td>
<td>5.1-6</td>
</tr>
<tr>
<td>5.2-1</td>
<td>FRIC SUBROUTINE FLOW DIAGRAM</td>
<td>5.2-2</td>
</tr>
<tr>
<td>5.3-1</td>
<td>DFRICD FLOW DIAGRAM.</td>
<td>5.3-4</td>
</tr>
<tr>
<td>5.3-2</td>
<td>ENTRY DYFR1 FLOW DIAGRAM</td>
<td>5.3-5</td>
</tr>
<tr>
<td>6.1-1</td>
<td>COMPONENT SUBROUTINE ORGANIZATION.</td>
<td>6.0-2</td>
</tr>
<tr>
<td>6.11-1</td>
<td>BRANCH CONFIGURATIONS.</td>
<td>6.11-1</td>
</tr>
<tr>
<td>6.21-1</td>
<td>TYPE NO. 21 TWO-WAY VALVE.</td>
<td>6.21-1</td>
</tr>
<tr>
<td>6.22-1</td>
<td>FOUR-WAY VALVE SCHEMATIC</td>
<td>6.22-3</td>
</tr>
<tr>
<td>6.22-2</td>
<td>VALV22 MATRIX MODEL.</td>
<td>6.22-3</td>
</tr>
<tr>
<td>6.22-3</td>
<td>EFFECTIVE VALVE AREA CHARACTERISTICS</td>
<td>6.22-5</td>
</tr>
<tr>
<td>6.22-4</td>
<td>VALV22 FLOW DIAGRAM.</td>
<td>6.22-7</td>
</tr>
<tr>
<td>7.31-1</td>
<td>TYPE NO. 31 CHECK VALVE.</td>
<td>6.31-2</td>
</tr>
<tr>
<td>6.31-2</td>
<td>CVAL31 STEADY STATE PRESSURE DROP CHARACTERISTICS.</td>
<td>6.31-2</td>
</tr>
<tr>
<td>6.32-1</td>
<td>TYPE NO. 32 PRIORITY VALVE</td>
<td>6.32-1</td>
</tr>
<tr>
<td>6.33-1</td>
<td>TYPE NO. 33 ONE-WAY RESTRICTOR</td>
<td>6.33-2</td>
</tr>
<tr>
<td>6.33-2</td>
<td>CVAL33 STEADY STATE PRESSURE DROP CHARACTERISTICS FOR AN OPEN POPPET</td>
<td>6.33-2</td>
</tr>
<tr>
<td>6.34-1</td>
<td>TYPE NO. 34 TWO STAGE RELIEF VALVE</td>
<td>6.34-2</td>
</tr>
<tr>
<td>NUMBER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>6.34-2</td>
<td>SCHEMATIC DIAGRAM FOR TYPE NO. 34 TWO STAGE RELIEF VALVE</td>
<td>6.34-2</td>
</tr>
<tr>
<td>6.41-1</td>
<td>TYPE NO. 41 ORIFICE RESTRICTOR</td>
<td>6.41-1</td>
</tr>
<tr>
<td>6.51-1</td>
<td>TYPE NO. 51 PRESSURE REGULATED VARIABLE DISPLACEMENT PUMP</td>
<td>6.51-3</td>
</tr>
<tr>
<td>6.51-2</td>
<td>SCHEMATIC DIAGRAM FOR THE F-15 PUMP MODEL</td>
<td>6.51-4</td>
</tr>
<tr>
<td>6.54-1</td>
<td>TYPE NO. 54 PRESSURE REGULATED VARIABLE DISPLACEMENT PUMP</td>
<td>6.54-3</td>
</tr>
<tr>
<td>6.54-2</td>
<td>SCHEMATIC DIAGRAM FOR THE ORBITER PUMP MODEL</td>
<td>6.54-4</td>
</tr>
<tr>
<td>6.61-1</td>
<td>TYPE NO. 61 CONSTANT PRESSURE RESERVOIR</td>
<td>6.61-1</td>
</tr>
<tr>
<td>6.61-2</td>
<td>STEADY STATE AND 3000 SECTION CALCULATIONS</td>
<td>6.61-4</td>
</tr>
<tr>
<td>6.62-1</td>
<td>TYPE NO. 62 BOOTSTRAP RESERVOIR</td>
<td>6.62-1</td>
</tr>
<tr>
<td>6.62-2</td>
<td>RSVR62 STEADY STATE ORGANIZATION</td>
<td>6.62-3</td>
</tr>
<tr>
<td>6.62-3</td>
<td>RSVR62 STEADY STATE FLOW DIAGRAM</td>
<td>6.62-4</td>
</tr>
<tr>
<td>6.62-4</td>
<td>RSVR62 3000 SECTION FLOW DIAGRAM</td>
<td>6.62-7</td>
</tr>
<tr>
<td>6.71-1</td>
<td>TYPE NO. 71 FREE PISTON ACCUMULATOR</td>
<td>6.71-1</td>
</tr>
<tr>
<td>6.81-1</td>
<td>TYPE NO. 81 F-4 TYPE IN-LINE FILTER</td>
<td>6.81-1</td>
</tr>
<tr>
<td>6.81-2</td>
<td>FILT81 CIRCUIT DIAGRAM</td>
<td>6.81-1</td>
</tr>
<tr>
<td>6.82-1</td>
<td>FILTER MANIFOLD</td>
<td>6.82-1</td>
</tr>
<tr>
<td>6.82-2</td>
<td>FILT82 DIAGRAM</td>
<td>6.82-3</td>
</tr>
<tr>
<td>6.95-1</td>
<td>BLOCK DIAGRAM OF THE APU ANALYTICAL MODEL</td>
<td>6.95-2</td>
</tr>
<tr>
<td>6.101-1</td>
<td>TYPE NO. 101 VALVE CONTROLLED ACTUATOR</td>
<td>6.101-3</td>
</tr>
<tr>
<td>6.102-1</td>
<td>TYPE NO. 102 UTILITY ACTUATOR</td>
<td>6.102-1</td>
</tr>
<tr>
<td>6.102-2</td>
<td>SUBROUTINE ACT102 FLOW CHART</td>
<td>6.102-6</td>
</tr>
<tr>
<td>NUMBER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>6.103-1</td>
<td>ELEVON ACTUATION CONTROL SYSTEM MODEL.</td>
<td>6.103-2</td>
</tr>
<tr>
<td>6.103-2</td>
<td>ELEVON SWITCHING VALVE DIAGRAM</td>
<td>6.103-3</td>
</tr>
<tr>
<td>6.104-1</td>
<td>TYPE NO. 104 SHUTTLE ENGINE CONTROL ACTUATOR</td>
<td>6.104-1</td>
</tr>
<tr>
<td>6.104-2</td>
<td>BLOCK DIAGRAM OF SSME-ENGINE CONTROL ACTUATOR</td>
<td>6.104-3</td>
</tr>
<tr>
<td>6.105-1</td>
<td>ACT105 TVC BLOCK DIAGRAM</td>
<td>6.105-2</td>
</tr>
<tr>
<td>6.105-2</td>
<td>TVC SWITCHING VALVE DIAGRAM</td>
<td>6.105-3</td>
</tr>
<tr>
<td>6.105-3</td>
<td>TVC SWITCHING VALVE MODULE</td>
<td>6.105-9</td>
</tr>
<tr>
<td>6.105-4</td>
<td>TVC SWITCHING VALVE LAYOUT</td>
<td>6.105-10</td>
</tr>
<tr>
<td>6.106-1</td>
<td>BODY FLAP ACT106</td>
<td>6.106-2</td>
</tr>
<tr>
<td>6.107-1</td>
<td>RUDDER/SPEEDBRAKE ACTUATION SUBSYSTEM.</td>
<td>6.107-2</td>
</tr>
<tr>
<td>6.107-2</td>
<td>RUDDER/SPEEDBRAKE ACT107 MODEL</td>
<td>6.107-3</td>
</tr>
<tr>
<td>6.107-3</td>
<td>RUDDER/SPEEDBRAKE FLOW MODEL</td>
<td>6.107-4</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The hydraulic transient analysis (HYTRAN) computer program is intended for use by designers with an interest in the detailed performance of an aircraft hydraulic system or the response of a load, where the supply system is an integral part of that response.

An aircraft hydraulic system is basically a power source connected to several loads. Under steady state conditions, where only the pump and fluid are moving, the flows and pressures at various points in the system can be calculated using non-time dependent formulae. However the unsteady flow conditions which are more normal, cannot be analyzed using simple formulae. The pump is basically a closed loop servo which has a time varying output and responds continuously to system pressure changes. These changes propagate through the system at the speed of sound, which is about 4000 ft/sec. The system components respond to these pressure and flow changes, and to external load and control disturbances.

The program simulates the complete system and calculates the value of all the flows, pressures and state variables throughout the system.

This allows the designer to study the dynamic response of any variable, such as a check valve poppet position, an actuator piston velocity, the pump swash plate acceleration, etc., since all these variables are calculated as part of the system simulation.

The program is composed of five basic parts; input, steady state calculation, line simulation, component simulation, and output.

The designer inputs data describing the lines, components, and system configuration. Since the simulation is only as good as the data, some of the information required for components such as a pump, is very detailed.
Fortunately there are only a few components like this and often these are common to many systems, e.g. DC-10 pumps are used on the 747, L1011 and A300 aircraft.

The steady state section of the program balances the pressures and flows in the system and calculates the initial values for all the system state variables. Once the initial values are established at zero time, the program starts by calculating for a small change in time (delta T), new flows and pressures at the junction between the line segments.

The lines are divided into segments, the length of each segment being greater than or equal to the velocity of sound in the line divided by the time interval delta T. There is a whole number of segments for each line.

Once the new pressures and flows have been established for the line junctions, the program calculates new values for the state variables of all the components, and the flows and pressures at the junctions between the components and the lines.

The program continues to march forward in delta T time intervals, first calculating the line and then the component variables.

The output part of the program selects the variables that are required as output or output plots, at specified time steps, since it is not always necessary to plot every value that was calculated. When the program calculations are completed, the output is then printed and plotted.

The controlling input to the system will usually be a sudden load demand from a surface actuator or some similar load function. This is input as a time dependent valve motion or input demand.

The output is essentially a time history of selected system variables which have been disturbed by the controlling input.
Since the program actually advances in discrete time steps, it can be integrated into other simulations, if the cost of running can be tolerated.

This report is a technical description of the HYTRAN Program, including a detailed listing of the main program and subprograms, and the theoretical basis and assumptions made in the calculations.

Volume 1 of this report is a users manual which describes how the program can be used, the method of inputting data and the interpretation of the output.
2.0 TECHNICAL SUMMARY

The HYTRAN program is intended for use by engineers with different interests. Some will be concerned with the performance of the hydraulic system as a whole, while others will be interested in the detailed performance of individual components.

HYTRAN uses a building block approach which allows the programmer to meet these needs by adding special component subroutines as required to the existing component subroutine library.

The program is supported by a number of specialized utility routines, which have been included to avoid program incompatibility with other computer systems. In the development of HYTRAN, the emphasis was placed on the performance of the hydraulic system as a whole, and its components are considered only to the extent to which they affect the total system response.

The transient analysis is a digital simulation process, which treats the fluid lines with distributed parameters, applying the concepts of wave mechanics, and including the effects of nonlinear friction. The fluid line equations are solved with the help of the method of characteristics. The dynamic equations of the components are either algebraic or ordinary differential equations. These form the boundary conditions of the lines and are solved simultaneously with the associated line characteristic equations. A numerical scheme is used to make the grid of characteristics compatible with the integration techniques used by the components.

The input to the system is normally a valve motion, which causes a disturbance to propagate through the mathematical model. The output of the program is the time histories of pressure and flows at any point in the system and other variables of interest such as actuator positions.
In the simulation of the components, the precision of the model used will depend upon its use. If the user is studying the dynamic stability of a pump system, then an accurate model is required. However, if the user is studying an actuator out at the end of the line system, the pump response could be simulated using a simpler model; hence saving some running costs. In a similar manner, actuator friction has a significant effect on its small amplitude response, but such friction is of little interest if the actuator is being used as large demand load in the study of pump stability.

The dynamics of components such as pumps are very dependent on the dynamic properties of the connecting lines and components; hence it is important in simulations involving these components that an accurate system simulation be used.

The results which are obtained from HYTRAN are solutions of the differential and algebraic equations used to describe the system dynamics. The solutions are obtained by methods of numerical analysis, such as Runge Kutta numerical integration procedures, method of characteristics, and Lagrange interpolations. They are, therefore, subject to the errors which are inherent in numerical methods, but which can be kept small enough to be of no practical influence. Of more importance than the numerical inaccuracies are the underlying assumptions and restrictions imposed upon the basic equations.

A digital simulation has been chosen because of some important advantages over the simulation on an analog computer. These are, in particular, the high accuracy in conjunction with an almost unlimited memory capacity, the reliability, the absence of scaling problems, and the difficulty of modeling wave phenomena on analog computers.

The numerical aspects of digital simulation are described in a variety of textbooks. The concepts of the method of characteristic are explained in Appendix A and in more general terms in the description of the line subroutine.
3.0 MAIN PROGRAM

The main or executive program section of HYTRAN is named HYTR. HYTR controls the flow of the program, and keeps track of the counters for time variables. The BLOCK DATA and FLUID subroutines are also included in this section.

HYTRAN is a program that has evolved over a number of years, with changes being made from time to time to simplify the programming procedures and additions being made to expand its capabilities.

Since the program is still in the development stage, changes and additions will continue to be made whenever significant improvements can be achieved.

Some cost savings can be made by the use of OVERLAYS or SEGMENTS, but it was decided that the use of these devices should be left to the individual user.
3.1 HYTR Program

HYTR is the main or executive program of HYTRAN. The program flow is directed from HYTR, but there are no significant calculations made there. Only general control data is read in HYTR. The main program card is set up to read from a file called DATA. This should be changed to suit the user's own data inputting scheme. Extensive use is made of common and equivalences, so that care is required in modifying variables that are contained therein.

The first section of HYTR reads and prints data from general control cards and calls FLUID to calculate values of bulk modulus, viscosity and density. FLUID subroutine then prints all the calculated data. In event the fluid data is input, FLUID will then just print the input data.

The second section calls LINE which reads line data then calculates constants, initializes variables and writes data to output. Next, COMP is called to read and print component data and to set constants and initialize variables for all components. STORE is called to read all the output data requirements and then SSDATA is called which reads in the system arrangement data and performs steady state calculations.

The third section again calls LINE and COMP to initialize all the system state variables. STORE is then called to store pressures, flows and/or component variables.

The fourth section advances the time step by DELT. LINE and COMP are called to do the transient calculations. This step is repeated until the sum of the time intervals is equal to the input total run time. During this iterative procedure, variables to be plotted are stored by STORE.
READ PROGRAM TITLE

READ AND PRINT GENERAL
CONTROL DATA
CALL FLUID

IENTR = -1
T = 0
ISTEP = 0

CALL LINE
CALL COMP
CALL STORE

CALL SSDATA
IENTR = 0

CALL LINE
CALL COMP
CALL STORE
IENTR = 1

T = T + DELT
ISTEP = ISTEP + 1

CALL LINE
CALL COMP
CALL STORE

NO

IS ISTEP GREATER
THAN IFINAL.

YES

STOP

HYTR FLOW DIAGRAM
FIGURE 3.1-1

3.1-2
When time T exceeds the final time specified in the input, the program stops.

3.1.1 **Math Model.** Not applicable.

3.1.2 **Assumptions.**

The basic assumptions in HYTR are as follows:

- Fluid temperature is assumed constant during the entire run.
- Flow is one-dimensional, that is, the fluid properties are constant across any transverse cross section of the pipe.
- Pipes have circular cross sections.
- Stresses in pipes are always below the elastic limit.
- Pipe geometry is such that the "thin wall" case is valid.
- Pipe and liquid are perfectly elastic (all energy dissipation is due to shearing stresses at the walls).

3.1.3 **Computation Methods.** Not applicable

3.1.4 **Approximations.**

HYTR approximations are those inherent in numerical analysis. They are kept small enough by error control to be of no practical influence.

3.1.5 **Limitations.**

HYTR currently has the following constraints:

- Temperature range ... -65°F to 300°F
- Pressure range ... 0 psia to 5000 psia
- Maximum number of components ... 60
- Maximum number of lines ... 79
- Maximum number of legs ... 70
- Maximum number of nodes ... 50
- Maximum number of plots ... 60
3.1.6 Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>Fluid type indicator</td>
<td></td>
</tr>
<tr>
<td>IFINAL</td>
<td>Number of transient iterations</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>Address = LSTART () + NLPT-1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>PRESS</td>
<td>Working Pressure</td>
<td>PSIA</td>
</tr>
<tr>
<td>X</td>
<td>Updated characteristics</td>
<td>PSI</td>
</tr>
</tbody>
</table>
3.1.7 SUBROUTINE LISTING

PROGRAM HYTR(INPUT,OUTPUT,DATA,TAPE5=DATA,TAPE6=OUTPUT,
1 SDN,TAPE1=SDN,A140CD,TAPE3=A140CD)
C *** REvised AUGUST 5, 1975 ***
CONION: VTOPL,HTOPL,PI,POINT,INPTS,INEL,KNEL,HTOPL,NLPLT(61,3),
1 VSTOLE(6150)
CONION/SU3/PAR(150,9),PH(1500),CH(1500),P(300),Q(300),C(300)
1,Z(300),RHO(20),S2ORHO(20),VISC(20),BULK(20),TEMP(20),PVAP(20)
2,ATPRES,T,DELT,TFINAL,PLTDEL,PI,TITLE(20),LEGN,ICON
3,KTLAP(99),ESTART(150),KLP(150),LTYPE(99),NC(99),INX,INV
4,INST,STEP,NLIVE,NLL,IND,ENTR,ANLINE,ANL,ANLEG,ANNODE,ANPLOT
5,ANLPTES,ADS
C***
READ(5,470)(TITLE(I),I=1,20)
WRITE(6,480) TITLE
ISTLP=0
PI=3.1416
T=0.0
C***
THIS READ STATEMENT INPUTS THE FOLLOWING DATA
C
DELT = DELTA TIME BETWEEN CALCULATIONS SEC
TFINAL=FINAL TIME SEC
PLTDDEL=DELTA TIME BETWEEN PLOT POINTS SEC
C
TEMP = TEMPERATURE OF OIL DEG F
READ(5,450) DELT,TFINAL,PLTDDEL,TEMP(1),DTLP,PRESS,PRESR,ATPRES
WRITE(6,455) TFINAL,DELT,PLTDDEL
IF(DELT.EQ.0.0) GO TO 251
INPTS=1.01+TFINAL/PLTDDEL
IF(POINT=0.5+PLTDDEL/DELT
IF(INPTS=0.5+ TFINAL/DELT
C
 THIS READ STATEMENT INPUTS THE FOLLOWING DATA
C
NLLE = NUMBER OF LIQUIDS
C
IF = FLUID TYPE
C
VISC = FLUID VISCOSITY
C
RHO = FLUID DENSITY
C
BULK = FLUID BULK MODULUS
READ(5,460) NLLE,NLLE,IF,INV,VISC(1),RHO(1),BULK(1),PVAP(1)
C
PRESS IS USED TO ESTABLISH FLUID PROPERTIES PSIG
C
SET SYSTEM PRESSURE TO ITS DEFAULT VALUE
IF(PRESS.EQ.0.0) PRESS=3000.
C
SET RETURN PRESSURE TO ITS DEFAULT VALUE
IF(PRESS.EQ.0.0) PRESR=50.0
C
SET THE VAPOUR PRESSURE TO ITS DEFAULT VALUE:
IF(PVAP(1).LT.0.0) PVAP(1)=2.0
C
SET ATMOSPHERIC PRESSURE TO ITS DEFAULT VALUE
IF(ATPRES.LT.0.0) ATPRES=14.5
C
SET TEMP AND OIL TO THEIR DEFAULT VALUES
IF(TEMP(1).LT.0.0) TEMP(1)=100.
IF(DTLP.LT.0.0)DTLP=10.0
CALL FLUID(TLP,DTLP,PRESS,PRESR,IF,VISC,BULK,RHO,PVAP)
3.1.7 (Continued)

N=20
IF(IF, EQ. 0) N=1
DO 100 I=1, N
100 SORHO(I)=SORT(2./RHO(I))

CALL LINE

CALL SBRAN

CALL SECOND(CPU)
WRITE(5, 9999) CPU

9999 FORMAT(1X, CPU TIME IN SECONDS = , F10.3)
CALL SSDATA
CALL SECOND(CPU)
WRITE(5, 9999) CPU

*** THIS SECTION CALLS LINE AND COMP TO INITIALIZE ALL THE
SYSTEM VARIABLES TO THEIR STEADY STATE VALUES

CALL LINE

CALL COMP

CALL STORE

TRANIENT CALCULATION SECTION

EDITOR=1

150 CONTINUE

T=T+DELT
ISTLP=ISTEP+1
IF(T.GT.9.9) GO TO 251

CALL LINE
CALL SBRAN

DO ELEMENT CALCULATIONS
X=CHARUP(I, T)
CALL COOP
N=1
DO 250 I=1,NL1NE
N=N+2
I=I+1
M=I+NLPT(I)-1
P(I)=P(N)
Q(I)=Q(N+1)

250 CALL STORE

C
C IF (ISTEP.LT.IPINAL) GO TO 150
C
C STOP
251 CONTINUE
STOP 3100

450 FORMAT (3E10.0)
460 FORMAT (4I5,6E10.0)
470 FORMAT (20A4)
480 FORMAT (25X,20A4,//)

485 FORMAT (20X,44H THE TRANSIENT RESPONSE IS FROM T=0.0 TO T= ,
1 F7.3,35H SECONDS AT TIME INTERVALS OF DELT= ,
2 F7.5, //, 30X, 48H WITH OUTPUT POINTS PLOTTED AT INTERVALS OF ,
3 F7.5,9H SECONDS , //)
END
3.2 BLOCK DATA

Block data is used to initialize values in COMMON/SUB/ and COMMON/COMPD/.

The maximum number of various input values in COMMON/SUB/ are established using the following data initialization statement.

```
DATA ONLINE, MNEL,ANLEG, MINNODL,MNPLOT,MNLPTS,MDS + /150,99,70,55,60,1500,4500/
```

Maximum and minimum values for each individual component are initialized in COMMON/COMPD/ as follows:

```
DATA LT/100*0/
DATA L11/0,4,0,4,0,0,4,2,0,0/
DATA L1220/90*0/
DATA L21/24,2,0,5,0,3,2,2,1,0/
DATA L22/32,9,0,7,0,4,4,2,0,0/
DATA L23/24,2,0,5,0,3,2,2,1,0/
DATA L2430/8,12,0,12,0,0,8,8,0,0,60*0/
DATA L31/6,6,0,3,0,1,2,2,1,0/
DATA L32/6,5,0,4,0,0,3,3,1,0/
DATA L33/10,20,0,3,0,1,2,2,1,0/
DATA L34/20,20,0,3,0,2,2,2,1,0/
DATA L3540/60*0/
DATA L41/4,0,0,2,0,1,2,2,1,0/
DATA L4250/90*0/
DATA L51/37,43,0,10,0,5,3,3,1,0/
DATA L52/10*0/
DATA L53/37,31,115,34,0,5,3,3,1,0/
DATA L54/37,43,0,10,0,5,3,3,1,0/
DATA L5560/60*0/
DATA L61/2,0,0,12,0,1,10,1,0,0/
DATA L62/6,10,0,7,0,2,5,2,0,0/
DATA L63/10,13,0,9,0,2,7,2,0,0/
DATA L6470/70*0/
DATA L71/5,11,0,2,0,1,2,2,1,0/
DATA L72/5,11,0,2,0,1,2,1,0,0/
DATA L7380/80*0/
DATA L81/8,8,0,2,0,1,2,2,1,0/
DATA L82/24,25,0,8,0,3,6,6,0,0/
DATA L83/3,8,0,4,0,1,4,2,0,0/
DATA L8490/70*0/
DATA L91/0,1001,0,3,0,0,1,1,0,0/
DATA L9293/91,1,0,5,0,3,0,0,0,0,24,3,0,5,0,3,0,0,0,0/
```
DATA L9495/10*0,112,15,0,7,0,2,0,0,0,0/
DATA L9697/20*0/
DATA L98/81,1,0,13,0,2,0,0,0,0/
DATA L99/0,50,0,12,16*0/
DATA L101/32,20,0,12,0,2,2,2,1,0/
DATA L102/12,15,63,32,0,2,2,2,1,0/
DATA L103/40,100,0,12,0,2,6,2,0,0/
DATA L104/5,13,0,5,0,1,2,2,1,0/
DATA L105/40,100,0,12,0,2,6,2,1,0/
DATA L106/0,16,0,15,0,0,6,6,1,0/
DATA L107/2,13,0,15,0,1,6,6,1,0/
DATA LEND/430*0/
END
3.3 COMMON USAGE

One blank and one labeled common statements are used in HYTR program
to share storage and pass arguments between the various subroutines.

1. Blank Common is used to pass plot and steady state variables
 COMMON NTPL, NTPL, IPT, IPOINT, NPT, ISEL, KSEL, NTOPL, NLPLT(61, 3),
 1 VSTORE(6150)

2. Common SUB is used to pass arguments concerning fluid, time,
 constants, addresses, characteristics, pressures, flows, comp-
 connections and program input limitations
 COMMON/SU3/PAR(150, 9), PH(1500), Q(1500), P(300), Q(300), C(300)
 1, Z(300), RHO(20), S2ORHO(20), VISC(20), BULK(20), TELL(20), PVAP(20)
 2, APRES, T, DELT, TFINAL, PLT(20), PI, T(20), LEGN, ICON
 3, KTEMP(99), LSRTA(150), NLPT(150), LTYP(99), NC(99), INX, INZ
 4, INV, ISTEP, NLINE, NEL, INV, IENTR, ANLINE, ANLEG, GNODE, MNPLOT
 5, MNLPT, MDS

Subroutine COMP uses one labeled common statement.

Common COMPD is used to pass variables used in component calculations
 COMMON/COMP/D(4500), L(1500), LE(99, 4)

The maximum input limits of the program are set forth in BLOCK DATA.
In order to increase any of the limits, the initialized data statement in
BLOCK DATA must be changed.

Note: The maximum number of lines that can be input is equal to the
dimension of the C array divided by 2 minus 2 since array elements MNLINE
and MNLINE-1 are used to store "blanked off" pressure and atmospheric
pressure, respectively.
It should be noted that arrays initially allocate storage for specific data (e.g., PARM(N,1) is input line length for line N), however these arrays, or portions of these arrays are frequently "updated" or used to store entirely different data as the program progresses. This is quite often done when values of an array are needed only for the early phases of the program. In view of this, the following description of Common arrays (and variables) may only apply to first or primary usage.

Array Initialization For Components

<table>
<thead>
<tr>
<th>Array Location</th>
<th>Used In BLKDTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of real data points, D()</td>
</tr>
<tr>
<td>2</td>
<td>Number of temporary variables, DT()</td>
</tr>
<tr>
<td>3</td>
<td>Number of double precision variables, DD()</td>
</tr>
<tr>
<td>4</td>
<td>Number of integer variables, L()</td>
</tr>
<tr>
<td>5</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>Minimum number of data cards</td>
</tr>
<tr>
<td>7</td>
<td>Maximum number of connections</td>
</tr>
<tr>
<td>8</td>
<td>Minimum number of connections</td>
</tr>
<tr>
<td>9</td>
<td>Connection default O=Blocked</td>
</tr>
<tr>
<td></td>
<td>1> Open to Atmosphere</td>
</tr>
<tr>
<td>10</td>
<td>Not used</td>
</tr>
</tbody>
</table>
3.3.1 Variables Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATPRES</td>
<td>Atmospheric Pressure</td>
<td>PSIA</td>
</tr>
<tr>
<td>BULK()</td>
<td>Adiabatic Bulk Modulus of Fluid</td>
<td>PSI</td>
</tr>
<tr>
<td>C()</td>
<td>Characteristic Array</td>
<td>PSI</td>
</tr>
<tr>
<td>D()</td>
<td>Component Real Data Array</td>
<td>--</td>
</tr>
<tr>
<td>DELT</td>
<td>Program Time Step</td>
<td>SEC</td>
</tr>
<tr>
<td>IENTR</td>
<td>Subroutine Entry Point Indicator</td>
<td>--</td>
</tr>
<tr>
<td>IND</td>
<td>Number Assigned to Component by User</td>
<td>--</td>
</tr>
<tr>
<td>INEL</td>
<td>Plot Point Address</td>
<td>--</td>
</tr>
<tr>
<td>INV</td>
<td>Number of Component Active Connections</td>
<td>--</td>
</tr>
<tr>
<td>INX</td>
<td>Counter</td>
<td>--</td>
</tr>
<tr>
<td>INZ</td>
<td>Number of Elements in Leg</td>
<td>--</td>
</tr>
<tr>
<td>IPOINT</td>
<td>Counter for Number of Points Stored</td>
<td>--</td>
</tr>
<tr>
<td>IPT</td>
<td>Counter</td>
<td>--</td>
</tr>
<tr>
<td>KNEL</td>
<td>Plot Number, = 0 When Plots Are Not Required</td>
<td>--</td>
</tr>
<tr>
<td>L()</td>
<td>Component Integer Data Array</td>
<td>--</td>
</tr>
<tr>
<td>LE(N)</td>
<td>Address of Real Data for Component N</td>
<td>--</td>
</tr>
<tr>
<td>LSTART(N)</td>
<td>Address of the First Point of Line N</td>
<td>--</td>
</tr>
<tr>
<td>LTYPE(N)</td>
<td>Component N Type</td>
<td>--</td>
</tr>
<tr>
<td>MNEL</td>
<td>Maximum Number of Components</td>
<td>--</td>
</tr>
<tr>
<td>MNLEG</td>
<td>Maximum Number of Legs</td>
<td>--</td>
</tr>
<tr>
<td>MnLINE</td>
<td>Maximum Number of Lines</td>
<td>--</td>
</tr>
<tr>
<td>MnLPTS</td>
<td>Maximum Number of Line Points</td>
<td>--</td>
</tr>
<tr>
<td>MnNODE</td>
<td>Maximum Number of Nodes</td>
<td>--</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>NNPLOT</td>
<td>Maximum Number of Plots</td>
<td>—</td>
</tr>
<tr>
<td>MPARME</td>
<td>Maximum Number of Component Real Data Values</td>
<td>—</td>
</tr>
<tr>
<td>NC(N,1)</td>
<td>Line Number Attached to Connection I of Component N, and Temporary Storage Area</td>
<td>—</td>
</tr>
<tr>
<td>NEL</td>
<td>Number of Components Input</td>
<td>—</td>
</tr>
<tr>
<td>NLINE</td>
<td>Number of Lines Input</td>
<td>—</td>
</tr>
<tr>
<td>NLPLT(,1)</td>
<td>Address of Pressure or Flow to be Plotted in DM() & QM() or Component Variable in D()</td>
<td>—</td>
</tr>
<tr>
<td>NLPLT(,2)</td>
<td>Line Number from which Pressures and/or Flows are Plotted/or Component Number</td>
<td>—</td>
</tr>
<tr>
<td>NLPLT(,3)</td>
<td>Point of Plots - Distance from Upstream Line End in DELX's/or Component Variable Number</td>
<td>—</td>
</tr>
<tr>
<td>NLPT(N)</td>
<td>Number of Line Points in Line N</td>
<td>—</td>
</tr>
<tr>
<td>NPTS</td>
<td>Number of Plot Points</td>
<td>—</td>
</tr>
<tr>
<td>NTELPL</td>
<td>Number of Element Plots Input by User</td>
<td>—</td>
</tr>
<tr>
<td>NTOLPL</td>
<td>Number of Line Plots</td>
<td>—</td>
</tr>
<tr>
<td>NTOPL</td>
<td>Number of Total Plots</td>
<td>—</td>
</tr>
<tr>
<td>P(·)</td>
<td>Array of Line End Pressures</td>
<td>—</td>
</tr>
<tr>
<td>PARM(N,1)</td>
<td>Length of Line N</td>
<td>IN</td>
</tr>
<tr>
<td>PARM(N,2)</td>
<td>I.D. of Line N</td>
<td>IN</td>
</tr>
<tr>
<td>PARM(N,3)</td>
<td>Wall Thickness of Line N</td>
<td>IN</td>
</tr>
<tr>
<td>PARM(N,4)</td>
<td>Modulus of Elasticity of Line N</td>
<td>PSI</td>
</tr>
<tr>
<td>PARM(N,5)</td>
<td>Length of Characteristic Line Segment for Line N</td>
<td>IN</td>
</tr>
<tr>
<td>PARM(N,6)</td>
<td>Characteristic Impedance of Line N</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>PARM(N,7)</td>
<td>Velocity of Sound in Line N</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>PARM(N,8)</td>
<td>Laminar Flow Constant of Line N for given Diameter, Viscosity and Density</td>
<td>--</td>
</tr>
<tr>
<td>PARM(N,9)</td>
<td>Turbulent Flow Constant of Line N for given Diameter, Viscosity and Density</td>
<td>--</td>
</tr>
<tr>
<td>PI</td>
<td>Constant 3.1416</td>
<td>--</td>
</tr>
<tr>
<td>PLTDEL</td>
<td>Plot Time Interval</td>
<td>SEC</td>
</tr>
<tr>
<td>PM ()</td>
<td>Array of Pressures for Points of all Lines</td>
<td>PSIA</td>
</tr>
<tr>
<td>PVAP</td>
<td>Vapor Pressure</td>
<td>PSIA</td>
</tr>
<tr>
<td>Q ()</td>
<td>Array of Line End Flows</td>
<td>CIS</td>
</tr>
<tr>
<td>QM ()</td>
<td>Array of Flows for Points of all Lines</td>
<td>CIS</td>
</tr>
<tr>
<td>RHO ()</td>
<td>Density Array</td>
<td>LB/SEC^2/IN^4</td>
</tr>
<tr>
<td>S20RHO ()</td>
<td>SQRT(2/RHO) Array</td>
<td>--</td>
</tr>
<tr>
<td>T</td>
<td>Current Main Program Calculation Time</td>
<td>SEC</td>
</tr>
<tr>
<td>TEMP ()</td>
<td>Temperature Array</td>
<td>°F</td>
</tr>
<tr>
<td>TFINAL</td>
<td>Final Calculation Time</td>
<td>SEC</td>
</tr>
<tr>
<td>TITLE ()</td>
<td>Program Run Title Array</td>
<td>--</td>
</tr>
<tr>
<td>VISC ()</td>
<td>Fluid Viscosity Array</td>
<td>IN^2/SEC</td>
</tr>
<tr>
<td>VSTORE ()</td>
<td>Array for Storage of Line and Component Variable Data Required for Plotting</td>
<td>--</td>
</tr>
<tr>
<td>Z ()</td>
<td>Characteristic Impedance Array</td>
<td>PSI/CIS</td>
</tr>
</tbody>
</table>
3.3.2 Variables Equivalenced In Common

These variables which share the same storage as the VSTORE() array, are used in the steady state section of the program.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQLEG()</td>
<td>Real Data Storage for LEGCAL Variables and Formulae</td>
<td></td>
</tr>
<tr>
<td>LCS()</td>
<td>Integer Storage for Steady State and LEGCAL Counters</td>
<td></td>
</tr>
<tr>
<td>ILEP()</td>
<td>Same as above in CALC</td>
<td></td>
</tr>
<tr>
<td>ILEG()</td>
<td>Leg Element Numbers, Arranged in Pairs</td>
<td></td>
</tr>
<tr>
<td>PN()</td>
<td>Calculated Node Pressures</td>
<td>PSI</td>
</tr>
<tr>
<td>P()</td>
<td>Same as above in CALC</td>
<td></td>
</tr>
<tr>
<td>QN()</td>
<td>Overboard Flo. From Nodes</td>
<td>CIS</td>
</tr>
<tr>
<td>QL()</td>
<td>Same as above in CALC</td>
<td></td>
</tr>
<tr>
<td>PEX()</td>
<td>Equivalent External Pressure Node</td>
<td>CIS</td>
</tr>
<tr>
<td>PD()</td>
<td>Leg Constant Pressure Drop (-PQLEG(INEL,5))</td>
<td>CIS</td>
</tr>
<tr>
<td>CALC2()</td>
<td>Array used by CALC to send data to simult. returns with Node Pressures which are not always in the same sequence as the Input Data</td>
<td>PSI</td>
</tr>
<tr>
<td>IP()</td>
<td>Counter Array</td>
<td></td>
</tr>
<tr>
<td>G()</td>
<td>Leg Conductances</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>QNEW()</td>
<td>New Predicted LEG Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>MLEP()</td>
<td>Node Integer Data</td>
<td></td>
</tr>
<tr>
<td>QL()</td>
<td>Leg Flow Guess used for Interation</td>
<td></td>
</tr>
<tr>
<td>CALC1()</td>
<td>Only in the SSDATA Common</td>
<td></td>
</tr>
</tbody>
</table>

Used in CALC and simult. with varying dimensions
3.4 **FLUID SUBROUTINE**

Subroutine FLUID calculates and writes the fluid density, adiabatic bulk modulus, and kinematic viscosity at the fluid steady state temperatures and pressures specified in the main program input data. Data are currently included in FLUID for three hydraulic fluids; MIL-H-5606B, MIL-H-83282, and SKYDROL 500B. FLUID is presently dimensioned to accept data on three additional fluids. Fluid data sources and calculation of properties are discussed in Appendix B, along with tabulations of data presently included in FLUID. Data sources are also contained in the FLUID subroutine itself via comment records. Volume 1 of this report describes the option whereby the user may specify and input his own fluid data to the HSFR program, if the user desires to not use FLUID.

The FLUID subroutine argument requires the input data values for the maximum and temperature steps, maximum and minimum pressures and the fluid type identification number. Also, the argument includes the variable names of the three fluid properties, since they are not in "common". Parameters are then dimensioned for nine input data points and six fluids. Data statements are then used to input the name of each fluid, the nine temperature data points for each fluid, and the bulk modulus and viscosity data corresponding to the nine temperature points for each fluid. Only two points are used for density input data since a straight line interpolation is used over the entire temperature range for density calculations.

Subroutine INTERP is then called to estimate the fluid property value at the actual fluid operating temperature. Viscosity is then converted from metric (centistokes) to English units (newts). Density, bulk modulus, and viscosity values are then corrected to the steady state operating pressure.

Finally FLUID writes the computed properties before returning control to the main program.
3.4.1 **Math Model** - Not applicable.

3.4.3 **Computation Method** - FLUID calls subroutine INTERP (Ref. paragraph 8.3) which derives the fluid property at operating conditions from the tables of FLUID property data.

3.4.4 **Approximations** - Not applicable.

3.4.5 **Limitations** - Not applicable.

3.4.6 **Variable Names**

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>NAME</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Temperature ratio</td>
<td></td>
</tr>
<tr>
<td>ABULK(-,-)</td>
<td>Array for ten adiabatic bulk modulus input data points for six fluids</td>
<td>PSI</td>
</tr>
<tr>
<td>ATEMP(-,-)</td>
<td>Array for ten temperature data points for six fluids</td>
<td>°F</td>
</tr>
<tr>
<td>AVISC(-,-)</td>
<td>Array for ten viscosity input data points for six fluids</td>
<td>CENTISTOKES</td>
</tr>
<tr>
<td>B</td>
<td>Viscosity correction exponent</td>
<td></td>
</tr>
<tr>
<td>BRHO(-,-)</td>
<td>Array for two density input data points for six fluids</td>
<td>LB*SEC**2/IN</td>
</tr>
<tr>
<td>BTEMP(-)</td>
<td>First and next to last temperature input points</td>
<td>°F</td>
</tr>
<tr>
<td>BULK()</td>
<td>Bulk modulus at operating conditions</td>
<td>PSI</td>
</tr>
<tr>
<td>COEFF</td>
<td>Viscosity correction factor</td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>Input data fluid type identification number</td>
<td></td>
</tr>
<tr>
<td>IFLUNM(-,-)</td>
<td>Array for fluid names</td>
<td></td>
</tr>
<tr>
<td>IK</td>
<td>Number of input temperature points</td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td>Error indicator</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Integer counter</td>
<td></td>
</tr>
<tr>
<td>PRESS</td>
<td>Input data fluid operating pressure</td>
<td>PSIG</td>
</tr>
</tbody>
</table>
3.4.6 Variable Names (Cont'd)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>NAME</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHO()</td>
<td>Density at operating conditions</td>
<td>LBS*SEC**2/IN</td>
</tr>
<tr>
<td>TEMP()</td>
<td>Input data fluid operating temperature</td>
<td>°F</td>
</tr>
<tr>
<td>VISC()</td>
<td>Viscosity at operating conditions</td>
<td>IN**2/SEC</td>
</tr>
</tbody>
</table>
3.4.7 Subroutine Listing

SUBROUTINE FLUID(TLM, TLMF, PRESS, PRESS, IF, VISC, BULK, RHO, PVAP)
C**** REVISION SEPT. 3, 1975 ****
DIMENSION ATLM(10, 6), AVISC(10, 6), ABULK(10, 6), ARHO(2, 6),
I3TEMP(2), CORP(6), IFLMUS(3, 6), IX(6)
C, TEMP(20), VISC(20), RHO(20), BULK(20), PVAP(20)
C
SECOND SUBSCRIPT REFERS TO FLUID TYPE (IF PARAMEEL)
DATA IFLMUS/
1 44 61L, 4H-15, 4H606
2 44 6IL, 4H-15, 4H32112
3 4H66L, 4HROL, 4H5003
4 9*4H /
C
DATA ATLM /
1-65., -40., 0., 50., 100., 150., 200., 250., 300., 350.,
2-65., -40., 0., 50., 100., 150., 200., 250., 300., 350.,
3-65., -40., 0., 50., 100., 150., 200., 250., 300., 350.,
430*10. /
C
DATA BTEMP /
1-65., 275. /
C
RHO, BULK AND VISC DATA ARE FOR 0.0 PSIG
C
RHO DATA SOURCE:
1- J.D.C REPORT A2596 DATED 4/74
2- J.D.C REPORT A2686 DATED 4/74
3- ION SANTO DATA SHEET DATED 6/67 (DOUGLAS HAY MACON)
DATA ARHO /
17.575-5, 7.631-5,
17.575-5, 7.361-5,
317.361-5, 7.915-5, 6*10. /
C
BULK DATA SOURCE:
1- LETTER TO J. N. ROOE FROM J. H. NOOAN DATED 11/79
2- TECHNICAL REPORT 170-7-73-51 DATED 4/73
3- LETTER TO J. N. ROOE FROM J. H. NOOAN DATED 11/79
DATA ABULK /
13.4715, 3.2515, 2.9115, 2.4815, 2.0815, 1.7315, 1.4215, 1.1915, 0.9815,
1.9815,
23.4715, 3.2515, 2.9115, 2.4815, 2.0815, 1.7315, 1.4215, 1.1915, 0.9815,
1.9815,
34.2515, 4.0515, 3.6415, 3.1315, 2.7315, 2.2915, 1.9415, 1.6215, 1.3815,
1.3815, 30*10. /
C
VISC DATA SOURCE:
1- J.D.C REPORT A2696 DATED 4/74
2- J.D.C REPORT A2686 DATED 4/74
3- ION SANTO DATA SHEET DATED 6/67 (DOUGLAS HAY MACON)
3.4.7 (Continued)

```
DATA AVISC /
 1.993,5,433,3,134,4,34,85,14,47,7,46,4.58,3,19,2.39,2.39,
 211446.9,2019.3,269.45,48.87,15.95,7.46,4.24,2.83,2.04,2.04,
 333335.5,598.07,10.4,18,27.9,11.7,6.5,4.18,2.89,2.15,2.15,
 A30*10. /
C
DATA IK/3*9,3*10/
DATA COLFF/.335,.33,.42,3*10. /
C
IF(IF.LT.0) GO TO 100
DO 50 J=1,10
  TEMP(J)=TEMP(1)-(J-1)*DTMP
  TEMP(J+10)=TEMP(J)
  I=J
  CALL INTERP(TEMP(J),ATMP(1,IP),AVISC(1,IP),10),IK(IP),
  TBL(1),IND)
  CALL INTERP (TEMP(J),ATMP(1,IP),RHO(1,IP),10,2,
  TBL(1),IND)
  CALL INTERP (TEMP(J),ATMP(1,IP),AVISC(1,IP),11,
  1 IK(IP),TVISC,IND)
  CALL INTERP(TEMP(J),ATMP(1,IP),AVISC(1,IP),12,
  1 IK(IP),COLFF(IP),IND)
C
VISC IS CONVERTED FROM CUBIC STOKES TO HEATS
TVISC=TVISC*1.55E-3
C
DISSIITY, VISC AND BULK ARE ADJUSTED TO PRESSURE * PRES
PRESS=PRESS
GO TO 70
60 T=1+10
PRESS=PRESS
70 CONTINUE
RHO(1)=RHO*(1.+PRES/2.5E5)
BULK(1)=BULK+12.*PRES
A=.560./(TEMP(J)+460.)
B=(COLFF(IP)**A)*PRES*2.3E-4
VISC(1)=VISC*EXP(B)
PVAP(1)=2.9
IF(T.LE.11) GO TO 60
50 CONTINUE
300 WRITE(6,501) (IF(LINK(J,IP),J=1,3),PRESS,PRES,TEMP(1),TEMP(1),
  1 VISC(1),VISC(11),RHO(1),RHO(11),BULK(1),BULK(11),
  2 PVAP(11),TEMP(1)
601 FORMAT(//16X,15HFLUID DATA FOR 3M4,42 AT F7.1,9H PSIG, - ,
  1 F7.1,9H PSIG AND P6.1,7h DGC F ,4H IN ,P6.1,12H DGC F STEPS //,
  2 35X,14H VISCOSITY ,-L19.3,5X,S10.3, 9H,IN**2/SEC ,// ,
  3 35X,14H BULK MODULUS -,L19.3,5X,L10.3,17H(L3-5LC**2)/IN**4.,// ,
  4 35X,14H VAPOR PWS. ,-L19.3,5X,L10.3,3HPSI ,//,
  5 35X,14H PSS.,-L19.3,4H AT ,P6.1,12H DGC F )
GO TO 222
100 CONTINUE
```

3.4.7 (Continued)

IF=5
WRITE(6,602) (IFLUNH(J,6),J=1,3),TEMP(1),VISC(1),RHO(1),BULK(1)
602 FORMAT(/25X,16H FLUID DATA FOR ,3A4,20H AT PSIG AND, F6.1
1 A7H DLE F ,//,35X,
1 14HVISCOSITY =,L10.3,2X,9HIN**2/SEC,/,35X,
2 14HDENSITY =,L10.3,2X,17H(LB-SLC**2)/I.**4,
3 =,35X,14HBULK MODULUS =,L10.3,2X,3HPSI)
22? CONTINUE
RETURN
END
4.0 STEADY STATE SUBROUTINES

The steady state subroutines comprising SSDATA, CALC and LEGCAL provide the transient section with the distribution of pressures and flows in the system.

The steady state programs need to know how each constant flow path is connected, where the flow splits and adds, and where there is a net displacement or overboard flow.

This data is input after the component information. The input data used gives great flexibility and is very easy to modify.

The steady state program can cope with system configurations that are very complex and it is particularly valuable with closed loop systems and intertwined flow paths.
4.1 SUBROUTINE SSDATA

The SSDATA subroutine reads the input data which specifies one or more system configurations. Each system is input and worked on separately.

SSDATA is a simple input routine, with very little calculation. The data storage is divided into two sections; the basic leg data is contained in the LCS array, and the elements in the leg are stored in the ILEG array.

When all the data has been read in, it is written to the output so that a check can be made for errors in each data field.

The subroutine CALC is then called which calculates the steady state conditions throughout the system. After the call to the CALC subroutine, the pressures at the end of any zero flow legs in the system are initialized to the proper pressure.

4.1.1 Math Model - Not applicable.

4.1.2 Assumptions - Not applicable.

4.1.3 Computation Method - The first set of input data to be read in is the number of nodes, NNODE, the number of legs, NLEG, the number of constant pressure nodes, NCPN, the number of zero flow legs, NZFLEG, and the number of systems, NSYST.

Subroutine CALC requires a variable size array with an NNODE x NNODE dimension. The LCS array contains the leg number, the upstream and downstream node numbers, the number of elements in the leg, and the address of the leg element data in ILEG(). Other variables in LCS are used as indicators and counters by LEGCAL.

The LEG element data is stored in ILEG() in data pairs. If the first value is equal to zero the second is the line number. If the first value is nonzero, it is the component number and the second is the connection number. There are LCS (I, 5) pairs of data for each LEG #1 with the first
value stored at LCS (I, 4) in ILEG.

If there are any zero flow legs in the system, the pressures at the leg ends are initialized to the appropriate steady state pressures. The up and downstream pressures and flows are then written into the PM and QM arrays. The components connected to the zero flow legs are also initialized accordingly.

Should there be more than one system, the SSDATA su' routine will read in all the data for the new system and compute the steady state flows and pressures and initialize all the zero flow legs.

4.1.4 Assumptions - Not applicable.

4.1.5 Limitations - The steady state data is essentially a restatement of previously input transient data, in a form that can be followed during the steady state calculations. A sorting routine would eliminate the need for inputing steady state data, by generating it from the data inputed for the system components.

4.1.6 Variable Names

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Do Loop Counter</td>
</tr>
<tr>
<td>II</td>
<td>Do Loop Counter</td>
</tr>
<tr>
<td>JJ</td>
<td>Number of Elements in a LEG</td>
</tr>
<tr>
<td>J</td>
<td>Do Loop Counter</td>
</tr>
<tr>
<td>K</td>
<td>Address Counter</td>
</tr>
<tr>
<td>NCPN</td>
<td>Number of Constant Pressure Nodes</td>
</tr>
<tr>
<td>NLEG</td>
<td>Number of LEGS</td>
</tr>
<tr>
<td>NNODE</td>
<td>Number of Nodes</td>
</tr>
<tr>
<td>NSYST</td>
<td>Number of Systems</td>
</tr>
<tr>
<td>NZFLEG</td>
<td>Number of Zero Flow Legs</td>
</tr>
</tbody>
</table>
4.1.7 Subroutine Listing

SUBROUTINE SSDATA
C**** REVISED AUGUST 5, 1975 ****
COMMON NTELPL,NTOLPL,IPT,IPOINT,NPTS,NILL,KNEL,NTOPL,NLPLT(61,3),
1 POLLEG(90,12),LCS(90,10),ILEG(1400),PN(90),QN(90),PEX(90)
2 ,G(90)
3 ,OL(90),CALC1(55,55)
COMMON/BUY/PARK(150,9),PH(1500),OM(1500),P(300),Q(300),C(300)
1,PL(300),RHO(20),S2RHO(20),VISC(20),BULK(20),TENP(20),PVAP(20)
2,ATPRES,T,DELT,TPFINAL,PLTD,L,RTITLE(26),ICPIN,ICON
3,KTEMP(99),LSSTART(150),NLPT(150),LTYPL(99),NC(99),INX,INZ
4,INV,STEP,PLINE,NEL,IND,ENTR,INLINE,GINL,LENLEG,MNODE,EMPLOT
5,INNPTS,IND
COMMON/COMP/D(4500),L(1500),LE(99,4)
DATA NZ2F/1/
C**** READ THE NUMBER OF NODES,LEGS, AND CONSTANT PRESSURE NODES.
50 CONTINUE
READ(5,60)NNODE,NLEG,4CPK,N2PLEG,NSYST
110 K=0
C**** READ IN DATA FOR EACH LEG
DO 200 II=1,NLEG
READ(5,61)(LCS(II,J),J=1,3),JJ,P(II),POLLEG(II,9),
1 POLLEG(II,10)
LCS(II,7)=1
POLLEG(II,2)=0,0
POLLEG(II,11)=0,0
POLLEG(II,12)=0,0
LCS(II,4)=JJ
JJ=JJ*2
C READ LEG ELEMENT DATA
READ(5,60)(ILLG(K+J),J=1,JJ)
61 FORMAT(415,4F10,0)
LCS(II,5)=K+1
200 X=K+JJ
C**** WRITE OUT THE INPUTED DATA
C IF(N2F.EQ.0) GO TO 55
WRITE(6,70) NNODE,ALLG,4CPN
55 WRITE(6,71)
60 FORMAT(1615)
70 FORMAT(1H1,55X,238STEADY STATE INPUT DATA,/,1
1 30X,NUMBER OF NODES =,13,5X,NUMBER OF LEGS =,13,
2 5X,NUMBER OF CONSTANT PRESSURE NODES =,13,//)
71 FORMAT(45X,25XLEG CONNECTION INPUT DATA,
4 //,10X,6HLEG NO,9X,12HMPST NODE NO,4X,12HDWST NODE NO,4X,
4.1.7 (Continued)

5 14HNO OF ELEMENTS, 5X, 10HFLOW GUESS, 5X, 10HUPST PRESS, 5X, 6 10HUPST PRESS
WRITE(6, 80) ((LCS(I, J), J=1, 4), QL(I), PQLEG(I, 9), 1 PQLEG(I, 10), I=1, NLEG)
80 FORMAT(10X, I5, 10X, I5, 10X, I5, 10X, I5, 10X, I5, 9X, 5X, F10.5, 1 5X, F10.5, 5X, F10.5)
WRITE(6, 90)
90 FORMAT(100, 9X, 3OHLEG NO ELEMENTS IN LEG----)
DO 300 II=1, NLEG
 K=LCS(II, 5)
 JJ=LCS(II, 4)*2-1+K
WRITE(6, 152) II, (ILEG(J), J=K, JJ)
300 CONTINUE
152 FORMAT(10X, I3, 7X, 10(I3, 3H --, I3, 1H), //, 20X, 10(1G13, 3H --, I3, 1H;
 +/, 20X))
154 FORMAT(141, 50X, 314HSTEADY STATE CALCULATION DATA , //, 1 49X, 33HLEG FORMULAE GENERATED BY LEGCAL , //, 2 6X, 46HLEG NUMBER--FLOW GUESS-LOWER LIMIT-UPPER LIMIT ,
 3 59X-CONST DELTP-----Q TERM-2*1.75TLAM----Q**2 TERM
 4 ,//)
IF(NZF.EQ.0) GO TO 380
WRITE(6, 154)
C
CALL CALC(NNODE, NLEG, CALC1, NCP1)
300 IF(NZFLEQ.EQ.0) GO TO 500
IF (NZFLEQ.EQ.0) GO TO 400
NZF=0
WRITE(6, 390) NZFLEG
390 FORMAT(30X, 25HNUMBER OF ZERO FLOW LEGS=, I3)
NZFLEG=NZFLEG
GO TO 110
400 CONTINUE
DO 450 II=1, NZFLEG
 ILEG=II
 PQLEG(ILEG, 1)=0.000001
 PQLEG(ILEG, 2)=1.0
 JJ=LCS(II, 2)
 IF(LTYPE(JJ)/10, NE.1. AND. LTYPE(JJ)*NE.32)WRITE(6, 999)
 IF(LTYPE(JJ)/10, NE.1. AND. LTYPE(JJ)*NE.32) STOP 4105
 JJ=LL(JJ, 2)
 PRES=0(JJ)
 PQLEG(ILEG, 11)=PRES
 PQLEG(ILEG, 12)=PRES
 IF(PRES.EQ.0.0) WRITE(6, 999)
990 FORMAT(10X, 33HPROGRAM STOP IN SUBROUTINE SSDATA)
IF(PRES.EQ.0.0) STOP 4106
JJ=LCS(INEL, 4)
K=LCS(INEL, 5)
J=J+JJ*2-1
DO 450 I=K, J, 2
4.1.7 (Continued)

IND=ILEG(I)
KNEL=ILEG(I+1)
IF(IND.LQ.0) GO TO 430
CALL COPIE
GO TO 450
430 IN1=LSTART(KNELL)
IN2=IN1+NLPT(KNELL)-1
Pd(IN1)=PRES
Pd(IN2)=PRES
QH(IN1)=0.0
QH(IN2)=0.0
450 CONTINUL
500 IF(NSYST.EQ.0) RETURN
NZF=1
GO TO 50
END
4.2 SUBROUTINE CALC

The CALC subroutine is responsible for the steady state calculations in the system. CALC is called from the SSDATA subroutine. The subroutine will compute the pressures at all the system nodes and flows in all the legs, using pressure drop data obtained from LEGCAL. Figure 4.2-1 is a generalized flow diagram of CALC.

On entry into CALC the first phase performed by the subroutine will be to identify any constant pressure nodes input by the user in the data deck. This procedure is necessary to initialize the appropriate calculation arrays. After the initialization, the computation phase begins. All the legs will be assigned conductance values from the LEGCAL subroutine. These conductance values, along with constant factors, will then be inserted into two matrices. The SIMULT subroutine will be called to compute the new pressure values. These pressure values at the nodes are then used to calculate the new flow rates for the legs in the system. When all the flows pass the convergence test, the flows and pressures are written to a labeled common arrays and program control is passed back to SSDATA. If the number of iterations exceeds 50, the subroutine also terminates with the most recent calculated values of flow and pressure.

4.2.1 Math Model - The development of the CALC subroutine to analyze complex flow systems results from the assumption that all resistance factors in a line can temporarily be assumed linear. The net flow around any node can then be written as the sum of all the flows entering and leaving that node or \(Q_{\text{NET}} = 0 \).

If \(R_{12} \) is a resistance factor used to describe a resistance in a leg, then \(R_{12} = \frac{\Delta P_{12}}{Q_{12}} \).
CALLED BY SSDATA

CALC SUBROUTINE

INITIALIZATION PHASE

INITIALIZE ARRAYS FOR ANY CONSTANT PRESSURE NODES

COMPUTATION PHASE

CALL LEGCAL TO COMPUTE CONDUCTANCES FOR ALL LEGS

ASSEMBLE CONDUCTANCES AND CONSTANT FACTORS IN MATRICES

CALL SIMULT TO SOLVE FOR PRESSURES

COMPUTE NEW FLOWS FOR ALL LEGS

ALL FLOWS IN LEGS CONVERGED

NO

YES

STORE FLOWS AND PRESSURES

RETURN TO SSDATA

FIGURE 4.2-1
CALC GENERALIZED FLOW DIAGRAM
where:

\[R_{12} = \text{Resistance from node 1 to node 2 of the leg} \]
\[\Delta P_{12} = \text{Pressure drop from node 1 to node 2 of the leg} \]
\[Q_{12} = \text{Flow in the leg} \]

Conductance is then defined as:

\[G_{12} = \frac{1}{R_{12}} \]

where:

\[G_{12} = \text{Conductance from node 1 to node 2 of the leg} \]

Then:

\[Q_{12} = G_{12} \cdot P_{12} \]

The net flow at any node (where three or more legs come together) must be zero.

Therefore the flow requirement is satisfied if:

\[\sum_{J} G_{IJ} \left(P_I - P_J + \Delta P_{IJ} \right) - E_k + Q_{IK} = 0 \]

Where:

\[P_I = \text{pressure at node } I \]
\[P_J = \text{pressure at node } J \]
\[\Delta P_{IJ} = \text{a pressure rise or loss (from a pump or actuator) in leg } IJ \]
\[Q_{IK} = \text{fixed flow in leg } IK \text{ connected to node } I \]

Equations of the above form are input to a matrix for solution of pressures at nodes. These matrix solution pressures are used in conjunction with the calculated conductance \((G)\) to calculate a new flow guess in each leg. When two successive flow guesses for all legs in the system are within a specific tolerance such as \(0.001\) CIS, the solution has converged. Refer to Appendix A SSFAN Technical Manual, MDC A3059, Vol. II, for a more detailed mathematical development.
4.2.2 CALC Subroutine Description - The CALC subroutine is divided into two phases. The first phase deals directly with the input data for constant pressure node identification. Five arrays are generated which are used in the calculation of node pressures and leg flows in phase two. Specifically, these arrays are NODEX, an array of external constant pressure nodes, EXPRESS, an array of the constant pressure node values, LEGEX, the legs connected to the constant pressure nodes, ISGN, which is set equal to +1 if the constant pressure node is upstream of a leg and -1 if it is downstream, and PEX which is set to a constant value for every external pressure node.

Figure 4.2-2 describes phase one operation. If there are no constant pressure nodes, this phase is omitted, otherwise PQLEG (I, 9) and PQLEG (I, 10) are searched for any constant pressure values. If the constant pressure is in an upstream node, NODEX (J) is set equal to the node number, the pressure value is placed into EXPRESS (J), and ISGN (J) is set equal to 1. Should the constant pressure be in a downstream node the same arrays are filled except ISGN (J) is set to a -1. Also for any constant pressure node found in PQLEG, LEGEX (J) is set to the leg number and a constant value is added to PEX (NODEX (J)). With this sort completed the first phase of CALC is finished.

Phase two operation of the CALC subroutine begins with initializing the conductance matrix - CALCI, and the constant matrix - QN, to zero values. (See Figure 4.2-3 for a flow diagram of the phase two operation.) A call is now made to the subroutine LEGCAL for each leg in the system. The total number of legs is passed through the subroutine argument. LEGCAL will return the value of conductance to the G array in the unlabeled common.

After all the conductance values are calculated for each leg, they must
IF NO CONSTANT PRESSURE NODES
BYPASS PHASE I

J=1
COUNTER FOR ARRAY LOCATION

DO I=1, ML
ML=# OF LEGS

SEARCH PQLEG (I, 9)
AND PQLEG (I, 10)
FOR CONSTANT PRESSURE NODE

IF
CONSTANT
PRESSURE
IN UPSTREAM
NODE

NODEX (J)=NODE #
EXPRESS (J)=PRESSURE
ISGN (J)=1

YES

NO

NODEX (J)=NODE #
EXPRESS (J)=PRESSURE
ISGN (J)=-1

LEGEX (J)=LEG #
PEx=CONSTANT
J=J+1

CONTINUE

FIGURE 4.2-2
CALC SUBROUTINE PHASE ONE OPERATION
Initialize CALC 1 and QN matrices to zero

Call LEGCAL

Assemble conductances and constant factors into the CALC 1 and QN matrices

Solve for pressures

Call SIMULT

Set convergence indicator

Compute new flows

IFAIL=0

DO I=1, ML

ML=NUMBER OF LEGS

FLOW=(PUPSTREAM-PDOWNSTREAM)*G.LEG

Test convergence

IFAIL=1

YES

YES

ABS(Q(IT)-FLOW)

ABS(FLOW)+1.

LE .001

Q(IT)=FLOW

IFAIL=1

Q(IT)=(Q(IT)+FLOW)/2

CONTINUE

NO

50 iterations

YES

CALL LEGCAL TO UPDATE PRESSURES AND FLOWS

RETURN TO SSDATA

NO

NO

FIGURE 4.2-3
CALC SUBROUTINE PHASE TWO OPERATION

4.2-6
be entered into the CALCI matrix. This is accomplished by a simple DO loop. The main diagonal element of CALCI contains the sum of all the leg conductances surrounding a node. Each off-diagonal element equals the sum of all conductances around a node for multiple legs connected to common nodes, and for the remaining legs connected to the same node.

The QN matrix will contain the constant terms of the system of linear equations that describe the model. Constant pressure drops in legs, external flows and constant pressure sources are all inserted into this matrix. Any constant pressure source or pressure drop is multiplied by the conductance of the leg it is associated with. If leg (6) has a pressure drop term -PQLEG(6, 5), then PQLEG(6, 5) will be multiplied by the conductance for leg (6) which is G(6), making the resulting term a flow. Thus, all external flows have no multiplication factor.

With both CALCI and QN filled, the SIMULT subroutine is called to solve for pressures in the system. The answers are returned through the QN matrix and then put into the P array which contains all the system pressures. Now a new flow is calculated for each leg in the system based on the recent calculation of the pressures. The new flow is equal to the difference of pressures between the nodes of the leg plus any constant pressure drops all multiplied by the conductance of the leg.

The solution for flows in all the legs are final when all the previous flows (Q) and the latest calculated flows (FLOW) are within a specified tolerance. For all flows if

$$\frac{\text{ABS}(\text{FLOW}-Q(\text{IT}))}{\text{ABS}(\text{FLOW})+1} < 0.001$$

(1)

then the flows have converged.
If equation (1) is not satisfied in each leg of the system a new value of flow will be computed in each leg by the following equation:

\[Q(IT) = \frac{Q(IT) + \text{FLOW}}{2} \]

These new flows will then be given to LEGCAL for computation of new conductance values for another iteration. If all the legs do not converge after fifty iterations, the cycle will stop and all the current values will be used as the steady-state variables. Before transfer is made back to SSDATA a last call is made to LEGCAL to distribute pressure drops and flows for the steady state conditions.

4.2.3 Computations. The only direct computation made in the solution of the steady state values in CALC is the calculation of FLOW. The purpose of this of course, is to establish an error tolerance in flows that is reduced through iterations to meet the convergence criteria as discussed in the previous section. The majority of the CALC subroutine handles the bookkeeping necessary to manipulate the leg and node numbers to compute system pressures and flows.

4.2.4 Approximations. The coefficients of the CALCI matrix are linearly approximated to represent the system conductances. Inherent approximations exist in some of the constant data in QN.

4.2.5 Limitations. Most limitations exist in the areas of physical discontinuities. CALC was written to solve a flow balance in a system. Any flow discontinuities that occur, such as in a simple unbalanced actuator, must have mathematical formula to describe what happens to the flow. CALC also requires the leg pressure drops to be continuous over a specified flow range. When this does not occur, as in a check valve, the proper input from the check valve subroutine must be feed to CALC so it may respond to the changed
conditions. Please refer to Appendix D SSFAN Technical Manual for a more thorough discussion on the limitations of CALC.

4.2.6 Variable Names

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCI</td>
<td>$M \times M$ matrix of conductances</td>
<td>--</td>
</tr>
<tr>
<td>EXPRESS</td>
<td>Array of constant pressures</td>
<td>PSI</td>
</tr>
<tr>
<td>FLOW</td>
<td>Latest value of leg flow</td>
<td>CIS</td>
</tr>
<tr>
<td>G</td>
<td>Array of conductances</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>IFAIL, IFLAG</td>
<td>Indicators</td>
<td>--</td>
</tr>
<tr>
<td>ILEP</td>
<td>Array of leg numbers with the corresponding pressure on each end</td>
<td>--</td>
</tr>
<tr>
<td>ISGN</td>
<td>Array giving location of constant pressure node in leg</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>$+1$ - upstream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 - downstream</td>
<td></td>
</tr>
<tr>
<td>ITER</td>
<td>Iteration counter</td>
<td>--</td>
</tr>
<tr>
<td>LEGEX</td>
<td>Array of leg numbers connected to constant pressure nodes</td>
<td>--</td>
</tr>
<tr>
<td>M</td>
<td>Number of nodes</td>
<td>--</td>
</tr>
<tr>
<td>ML</td>
<td>Total number of legs</td>
<td>--</td>
</tr>
<tr>
<td>NCPN</td>
<td>Number of constant pressure nodes</td>
<td>--</td>
</tr>
<tr>
<td>NODEX</td>
<td>Array of external pressure nodes</td>
<td>--</td>
</tr>
<tr>
<td>P</td>
<td>Array of node pressures</td>
<td>PSI</td>
</tr>
<tr>
<td>PQLEG (J, 5)</td>
<td>Location of pressure drops or increases</td>
<td>PSI</td>
</tr>
<tr>
<td>PEX</td>
<td>Array of external pressure constants</td>
<td>PSI</td>
</tr>
<tr>
<td>Q</td>
<td>Array of leg flows</td>
<td>CIS</td>
</tr>
<tr>
<td>QN</td>
<td>Flow gain or loss at a pressure node changed to an M matrix of conductances</td>
<td>CIS</td>
</tr>
</tbody>
</table>
4.2.7 Subroutine Listing

SUBROUTINE CALC(*,ML,CALC1,NCPN)

C**** REVISED AUGUST 5, 1974 ****
COMMON NTLEPO,NTOLEP,IPIT,IPOINT,NPTS,INEL,KNEL,NTOPL,NLPLT(61,3),
1 POLEG(90,12),ILEP(90,10),ILEG(1400),P(90),QN(90),PEX(90)
2 G(90),Q(90)
DIAGSTON CALC1(*,a),NODEX(10),EXPRESS(10),LEGLX(10),ISGN(10)
DO 5 I=1,N
P(I)=0.
5 PEX(I)=0.0
J=1
DO 100 I=1,ML
IFLAG=0
IF(POLEG(I,9).GT.0.) GO TO 110
50 IF(POLEG(I,10).LE.0.) GO TO 100
IF(IFLAG.EQ.1) GO TO 100
IFLAG=1
NODEX(J)=ILEP(I,3)
EXPRESS(J)=POLEG(I,10)
ISGN(J)=-1
GO TO 120
110 NODEX(J)=ILEP(I,2)
EXPRESS(J)=POLEG(I,9)
ISGN(J)=1
120 LEGEX(J)=J
PEX(NODEX(J))=100.0+PEX(NODEX(J))
J=J+1
GO TO 50
100 CONTINUE
ITER=1
C INITIALIZE CALC1 AND QN ARRAYS TO ZERO
200 DO 220 L1=1,ML
DO 210 K1=1,ML
210 CALC1(L1,K1)=0.
220 QN(L1)=0.
C COMPUTE G*S FOR CALC ARRAYS
CALL LEGCAL(*L)
DO 310 K=1,ML
I=ILEP(K,2)
J=ILEP(K,3)
CALC1(I,I)=CALC1(I,I)+G(K)
CALC1(J,J)=CALC1(J,J)+G(K)
CALC1(I,J)=CALC1(I,J)-G(K)
CALC1(J,I)=CALC1(I,J)
310 CONTINUE
C BUILD QN ARRAY
DO 400 JX=1,ML
IF(POLEG(JX,5).EQ.0.) GO TO 400
JY=ILEP(JX,2)
QN(JY)=QN(JY)-POLEG(JX,5)*G(JX)
JY=ILEP(JX,3)
4.2-10
4.2.7 (Continued)

\[
Q_N(JY) = Q_N(JY) + PLEG(JX,5) \times G(JX)
\]

CONTINUE

DO 30 I=1,4
CALC1(I,I) = CALC1(I,I) + PEX(I)

30 CONTINUE

WRITE(6,2005)((CALC1(I,J),J=1,4),I=1,4)

WRITE(5,2005)(QN(I),I=1,4)

WRITE(6,2005)(PEX(I),I=1,4)

WRITE(6,2005)(PLEG(I,5),I=1,4)

CONTINUE

CALL CKSOLV(CALC1,QN,4,KS)

DO 500 I=1,4

P(I) = RN(I)

CALCULATE NEW FLOW RATES

WRITE(6,9000)(QN(I),I=1,4)

WRITE(6,9001)

CONTINUE

IF(ABS(FLOW-Q(I))/ABS(FLOW)+1. GT.0.001) GO TO 434

CONTINUE

IF(ABS(FLOW-Q(I) + FLOW)/2. GT.0.001) GO TO 435

CONTINUE

IF(ITER.EQ.50) GO TO 520

IF(IFAIL.EQ.0) GO TO 520

ITER = ITER + 1

GO TO 200

CONTINUE

IF(ITER.EQ.50) WRITE(6,9999)

FORMAT(10X,35X,'EXCLUDED 50 ITERATIONS IN STEADY STATE, + 12H-PROGRAM CONTINUING')

MAKE A LAST CALL TO ALL LEGS TO DISTRIBUTE PRESSURE

DROP AND FLOWS CALCULATED FOR STEADY STATE CONDITIONS

KNE=1

DO 5000 I=1,4

...
4.2.7 (Continued)

5000 ILEP(I,7)=5
CALL LEGCAL(ML)
RETURN
END
4.3 SUBROUTINE LEGCAL

LEGCAL is called by the CALC to obtain a leg conductance and fixed pressure drops for a given flow guess for a particular leg.

The call variable ML is the total number of legs in the system. The constant pressure drop such as that across a check valve, relief valve, actuator, or pump, is passed via PQLEG(NLEG, 5) in common. A positive PQLEG(NLEG, 5) is a pressure rise such as at a pump, a negative is a drop such as across a check valve. The leg conductance is passed via G(NLEG) in common.

LEGCAL has two ways of obtaining these values, the first is by calling all the elements in the leg. The second is by using a formulae generated for the leg previously.

Using the formulae is the most efficient way, but some components which have external references such as actuators and reservoirs require special treatment. An indicator system is set up to determine which method should be used.
CALLED FROM CALC

DO NLEG = 1, ML

IS FORMULA VALID

YES

NO

RESET COUNTERS IN LCS AND VARIABLES IN PQLEG

CALL LEG ELEMENTS TO BUILD A NEW FORMULA

CALCULATE AND STORE CONDUCTANCE AND CONSTANT PRESSURE DROP

CONTINUE

RETURN

FIGURE 4.3-1
LEGAL ORGANIZATION

4.3-2
4.3.1 Theory

LEGCAL calls the elements in a leg to build up a formula for pressure drop for a given flow. The formula takes the form

\[
\text{DELT}_P = -PQ\text{LEG}(\text{NLEG},5) + (PQ\text{LEG}(\text{NLEG},6)\times Q \\
+ PQ\text{LEG}(\text{NLEG},7)\times Q^{1.75} \\
+ PQ\text{LEG}(\text{NLEG},8)\times Q^{2}) \times QS
\]

Q is the absolute value of the flow and QS the sign

PQ\text{LEG}(\text{NLEG},5) is the constant pressure drop (+ve for gain, -ve for loss)

PQ\text{LEG}(\text{NLEG},6) is the constant for flow dependent loss

PQ\text{LEG}(\text{NLEG},7) is the constant for turbulent losses

PQ\text{LEG}(\text{NLEG},8) is the constant for square law losses such as orifices.

The formula is valid for

\[
PQ\text{LEG}(\text{NLEG},4) \geq Q \geq PQ\text{LEG}(\text{NLEG},3)
\]

If LCS(\text{NLEG},6) = QS or ZERO and LCS(\text{NLEG},7) is not equal to 5

The leg conductance (inverse of resistance) is calculated from the leg pressure drop formulae, excluding the constant pressure drop value

\[
G(\text{NLEG}) = QS\times Q/P
\]

where \[P = QS\times (PQ\text{LEG}(\text{NLEG},6)\times Q \\
+ PQ\text{LEG}(\text{NLEG},7)\times Q^{1.75} \\
+ PQ\text{LEG}(\text{NLEG},8)\times Q^{2}) . \]

The Q and QS have been left in for clarity, the conductance is always positive.

Using this formulae, the conductance can be flow dependent, hence it has to be updated whenever the flow guess is changed.
4.3.2 Assumptions

The assumption that the pressure drop can be described using the formulae is generally valid. If for some reason an element in a leg cannot be described in this manner then a pseudo description can be used without loss of accuracy.

This would involve taking the actual pressure drop and dividing by \(Q \), the result, a pseudo resistance, would then be added in to \(PQLEG(\text{NLEG},6) \), as though it were a linear function, with the counters set to prevent re-use of the formulae for a different flow guess.

4.3.3 Computation Method

The variable \(Ql \), the new flow guess is first split into its absolute value and its sign, \(+1.0\). Tests are then made to see if a flow formulae exists or can be used.

The formulae does not exist if \(PQLEG(\text{NLEG},2) = 0.0 \)

and cannot be used if \(LCS(\text{NLEG},7) = 5 \).

Additional tests are if the new flow is within the formulae flow range such that \(PQLEG(\text{NLEG},3) \leq Q \leq PQLEG(\text{NLEG},4) \), and if the flow sign is acceptable such that \(LCS(\text{NLEG},6)\times QS \geq 0.0 \).

If all these test are passed, then the formulae is OK and can be used to calculate a new conductance.

If not, then the formulae must be regenerated.

The first thing that has to be done is to reset the counters and zero the arrays. The new formulae is then built up by calling each element in turn starting at the element connected to the upstream node. When the element is a line, it is taken care of directly without a call statement, all other components are called via their steady state entry.

The variables \(IND \) and \(KNEL \) are the component number and the connection number respectively.
The common variables INZ and INX are set equal to the number of elements in the leg and the actual element that is being calculated respectively. This allows particular component subroutines to determine which end of the leg they are connected to, and hence which node is located at the component.

4.3.4 Approximations

The use of a formulae requires some approximations but these are usually related to approximations in the component model and are an integral part of the component model. In general we think this method is quite good but it could be easily extended to a higher order approximation if it was found desirable.

4.3.5 Limitations

So far we have not found any limitations to the technique used in LEGCAL itself.

However, some of the component subroutines called by LEGCAL such as the bootstrap reservoir pump and actuators, are complicated by the interaction between the flow guesses, flow direction and node pressures.

Some of these subroutines use calculations which, though conforming to the basic calculation technique, do not fall into any simple category and have to be treated individually.
4.3.6 Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELTP</td>
<td>Line Pressure Drop</td>
<td>PSI</td>
</tr>
<tr>
<td>I</td>
<td>Ith Element in a Leg</td>
<td>--</td>
</tr>
<tr>
<td>KNEL</td>
<td>Component Connection Number</td>
<td>--</td>
</tr>
<tr>
<td>IND</td>
<td>Component or Line Number</td>
<td>--</td>
</tr>
<tr>
<td>K</td>
<td>Do Loop Counter</td>
<td>--</td>
</tr>
<tr>
<td>LCS4</td>
<td>Number of Elements in Leg</td>
<td>--</td>
</tr>
<tr>
<td>LCS5</td>
<td>Address of Leg Data in ILEG</td>
<td>--</td>
</tr>
<tr>
<td>ML</td>
<td>Total Number of Legs</td>
<td>--</td>
</tr>
<tr>
<td>NTYPE</td>
<td>Integer of Comp Type #/10</td>
<td>--</td>
</tr>
<tr>
<td>P</td>
<td>Flow Dependent Leg Pressure Drop</td>
<td>PSI</td>
</tr>
<tr>
<td>Q</td>
<td>ABS Value of Leg Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QT</td>
<td>Leg Transition Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QL</td>
<td>Leg Flow Guess</td>
<td>--</td>
</tr>
<tr>
<td>QS</td>
<td>Flow Sign CIS</td>
<td>--</td>
</tr>
</tbody>
</table>

For variables in common refer to Paragraph 3.3.
4.3.7 Subroutine Listing

SUBROUTINE LEGCAL (NL)
C**** REVISED AUGUST 5, 1975 ****
COMMON NTEPL,NTOPL,IP1,P1,IPSI,NPTS,INEL,KNEL,NTOPL,NLPLT(61,3),
1 POLEG(90,12),LCS(90,19),ILEG(1400),PA(90),QN(90),PLEX(90)
2,G(90),OL(90)
COMMON/S3/PAR1(150,9),PA(1500),Q(1500),Q(300),Q(300),C(300)
1,Z(300),RHO(20),Z2ORHO(20),VISC(20),BULX(20),TEMP(20),PVAP(20)
2,ATPRES,T,YL,TFINAL,PTDEL,PI,TITLE(20),LEG,ICOG
3,KEMP(99),LSTART(150),NLPT(150),LTYPE(99),MC(99),INX,INZ
4,INV,ISTEP,NLIN,NE,IND,ENTER,ANLINE,INEL,ANLEG,4\NNODE,4\NPLOT
5,ANLPTS,NDS
C
FIND THE SIGN OF THE FLOW GUESS AND ITS ABSOLUTE VALUE
DO 200 NLEG=1,NL
01=OL(NLEG)
3A=ABS(Q1)
IF(QA.LE.00001)QA=00001
7S=SIGN(1,0,QA)
C
CHECK TO SEE IF THE FORMULA IS VALID
C
IF(POLEG(NLEG,2),.EQ.0.0.OR.LCS(NLEG,7),.EQ.5)
4 GO TO 400
IF(POLEG(NLEG,3),.GT.QA.OR.POLEG(NLEG,4),.LT.QA)GO TO 400
IF(LCS(NLEG,6))5,1000,7
5 IF(QS,LT,0.0)GO TO 1000
GO TO 400
7 IF(QS,GE,0.0)GO TO 1000
C
RESET VARIABLES AND COUNTERS
C
400 CONTINUE
POLEG(NLEG,1)=QA
POLEG(NLEG,2)=QS
POLEG(NLEG,3)=0.0
POLEG(NLEG,4)=1.0L6
DO 401 N=6,9
POLEG(NLEG,N-1)=0.0
401 LCS(NLEG,N)=0
C
CALCULATE THE FORMULAE FOR THE LEG PRESSURE DROP
C
LCS(NLEG,7)=1
INEL=NL
LCS4=LCS(NLEG,4)
LCS5=LCS(NLEG,5)
POLEG(NLEG,11)=PR(LCS(NLEG,2))
POLEG(NLEG,12)=PR(LCS(NLEG,3))
11=LCS4
C
CALL EACH ELEMENT IN THE LEG

BEST AVAILABLE COPY
4.3.7 (Continued)

DO 600 K=1, LCS1
I=LCS5+(K-1)*2
INX=K
IND=ILEG(I)
KNL=ILLEG(I+1)
C IF THE ELEMENT IS A LINE GO TO 500
IF (IND.EQ.0) GO TO 500
CALL COMPE
GO TO 600
C *** THIS SECTION ADDS THE VALUES INTO THE FORMULAL FOR THE LINES
500 CONTINUE
CT=PARA(KNLL,4)
IF (CT.LE.0) GO TO 505
IF (CT.LT.POLEG(NLEG,4)) POLEG(NLEG,4)=CT
POLEG(NLEG,6)=PARA(KNLL,9)+POLEG(NLEG,6)
DELTP=QA*DS*PARA(KNLL,8)
GO TO 593
505 IF (CT.LT.POLEG(NLEG,3)) POLEG(NLEG,3)=CT
POLEG(NLEG,7)=PARA(KNLL,9)+POLEG(NLEG,7)
DELTP=PARA(KNLL,9)*DS*QA**1.75
599 CONTINUE
P1(LSTART(KNLL))=POLEG(NLEG,11)
POLEG(NLEG,11)=POLEG(NLEG,11)-DELTP
P1(LSTART(KNLL)+NLPL(KNLL)-1)=POLEG(NLEG,11)
Q1(LSTART(KNLL))=QA*DS
Q1(LSTART(KNLL)+NLPL(KNLL)-1)=QA*DS
600 CONTINUE
C THE FORMULAE FOR DELTA P CAN BE USED
C 1000 CONTINUE
QA(NLEG)=1.0/(POLEG(NLEG,4)+POLEG(NLEG,7)*QA**.75+POLEG(NLEG,9)*QA)
POLEG(NLEG,1)=QA
POLEG(NLEG,2)=DS
RT6(5,50) NLEG,QL,(POLEG(NLEG,1), I=3,8), C(NLEG)
50 FORMAT(13H1

60 CONTINUE
RETURN
END
5.0 LINE AND ASSOCIATED SUBPROGRAMS

Subroutine LINE and associated subprogram calculates the flow and pressure conditions for all interior points within the line.

The values of the flows and pressures at the ends of the line are calculated in the applicable component subroutine.

Line is called by the main program at the beginning of each new time step and calculates new values of pressures and flows. Line uses FRIC and DFRICD functions to calculate the steady state friction and dynamic friction pressure drops.

The theory of the method of characteristics has been extensively documented, but is often described in terms that are not readily understandable.

For convenience, a summary of the method is given in paragraph 5.1.1. A detailed derivation is given in Appendix A.
5.1 **SUBROUTINE LINE**

LINE divides each line into segments, the length of each segment being greater than or equal to the velocity of sound in fluid multiplied by the time step, DELT. LINE then calculates the flows and pressures for all the interior line points as well as the end point characteristics. These characteristics are subsequently used by component subroutines to calculate pressures and flows at the ends of each line where the lines and components interface.

5.1.1 **Math Model**

The equation of motion and the continuity equation, describing the one-dimensional unsteady flow of a compressible fluid in an elastic fluid line, equations (1) and (2), involve the actual distributed parameters and include the nonlinear viscous terms. These partial differential equations are transformed into total differential equations by use of the method of characteristics. A finite difference method is then used to place the total differential equations in a form suitable for numerical solution on a digital computer.

Basic Equations

The equation of motion is:

\[
\frac{\partial P}{\partial X} + \frac{RHO}{A} \frac{\partial Q}{\partial t} + F(Q) = 0
\]

(1)

The condition of continuity yields:

\[
\frac{\partial Q}{\partial X} + \frac{A}{RHO \cdot a^2} \frac{\partial P}{\partial t} = 0
\]

(2)

where

- \(P \) = Pressure \(\text{psia} \)
- \(Q \) = Flow \(\text{cis} \)
- \(A \) = Flow area of line \(\text{in}^2 \)
- \(t \) = Time \(\text{sec} \)
\(\text{RHO} \) = Fluid mass density \((\text{lb-sec}^2)/\text{in.}^4\)

\(F(Q) \) = Pressure loss as a function of flow \(\text{psi}\)

\(a \) = speed of the wave propagation = \((\text{BULK/RHO})^{1/2}\) \(\text{in./sec}\)

\(\text{BULK} \) = Bulk modulus of the fluid \(\text{psi}\)

\(X \) = Distance along line \(\text{in.}\)

Method of Characteristics

The basic equations (1) and (2) can be transformed into a pair of total differential equations, the validity of which is restricted to certain lines in the \(x-t \) plane called the characteristics. Integration along the characteristics, Fig. 5.1-1, yields the following algebraic equations.

For convenience let

\[Z = \frac{\text{RHO} \times a}{A} \]

(the number, \(Z_c \), is the characteristic impedance of a frictionless line) and let

\[C_{\text{left}}: C_L = P_{vW} - Z^*Q_{vW} + \frac{a \Delta t}{2} [F(Q_{WT}) + F(Q_{vW})] \]

\[C_{\text{right}}: C_R = P_{wX} - Z^*Q_{wX} + \frac{a \Delta t}{2} [F(Q_{WT}) + F(Q_{wX})] \]

then

\[P + ZQ_p - C_R = 0 \]

\[CR = P_{WT} - Z^*Q_{WT} \]

\[PP - ZCQ_P - C_L = 0 \]

\[CL = P_{WT} + Z^*Q_{WT} \]

\[P_{WT} = \frac{CR + CL}{2} \]

\[Q_{WT} = \frac{CL - CR}{2Z} \]
Equations (7) and (8) apply only to the interior sections of the fluid line. Points at the boundary use only one of the characteristic equations to be solved simultaneously with the boundary condition. C_R and C_L are still functions of the unknown, Q_{WT}. Therefore, an iteration is used to calculate Q_{WT}. C_R and C_L are first determined using only a rectangular rule to approximate the friction.

\[
C_L = P_{vW} + Z*Q_{vW} - a*\Delta t*F(Q_{vW}) \quad (3a) \\
C_R = P_{wX} - Z*Q_{wX} + a*\Delta t*F(Q_{wX}) \quad (4a)
\]

This gives a very close approximation of Q_P, which then can be improved by using the trapezoidal rule to evaluate C_R and C_L.

There are two ways to apply these equations to a line system: either one has to modify the wave speeds slightly to make $n = L/(a*\Delta t)$ an integer in each individual line (L is the length of a line), or one has to use the interpolating grid of Fig. 5.1-1 which has been applied in HYTRAN and is discussed in more detail by Streeter and Wylie (5).
5.1.2 Assumptions

1. Transition from laminar to turbulent flow is assumed to occur at a Reynolds number of 1200.

2. Friction factors used are based on circular cross-section, smooth I.D., drawn tubing.

3. See Appendix A for assumptions associated with method of characteristics.

5.1.3 Computation Methods

Section 1000

The type of line N is isolated and the speed of sound and characteristic impedance are calculated

\[
\text{IF}(\text{LDN}(N,1).\text{EQ}.1) \text{ GO to 70}
\]

\[
A = 1.8*(\text{PARM}(N,3)+\text{PARM}(N,2)/2.0)*\text{BULK}(\text{IT})
\]

\[
A = \text{BULK}(\text{IT})/\text{RHO}(\text{IT})*(1.0+A/(\text{PARM}(N,4)*\text{PARM}(N,3))))
\]

\[
\text{GO to 75}
\]

70 \[
\text{BULK} = \text{BULK}(\text{IT})*\text{PARM}(N,4)/((\text{BULK}(\text{IT})+\text{PARM}(N,4))
\]

\[
A = \text{BULK}/\text{RHO}(\text{IT})
\]

75 \[
A=\sqrt{A}
\]

\[
\text{PARM}(N,6) = \text{RHO}(\text{IT})*A*4.0/(\text{PI}^*\text{PARM}(N,2)^*2)
\]
If the speed of sound is not large enough to produce two line points, a fix-up is taken and the percent error in the adjusted speed of sound is printed

\[
\text{CONST} = \frac{\text{PARAM}(N,1)}{\text{DELT}}
\]

\[
\text{IF} (\text{CONST} \geq A) \text{ GO to 78}
\]

\[
\text{PC} = 100. - \text{CONST} \times 100. / A
\]

\[
\text{WRITE}(6,300)N, PC
\]

\[
A = \text{CONST}
\]

78 \text{ PARAM}(N,7) = A

\[
\text{NLPT}(N) = \frac{\text{CONST}}{A + 1.01}
\]

DELX is then calculated

\[
\text{PARAM}(N,5) = \frac{\text{PARAM}(N,1)}{(\text{NLPT}(N)-1)}
\]

Equivalent line length of bends and fittings is calculated for line N

\[
\text{EQUIVL} = \text{PARAM}(N,2) \times (\text{LDN}(N,3) \times 12 + \\
\text{LDN}(N,4) \times 57.0 + \text{LDN}(N,5) / 45 \times \\
4.65 + \text{LDN}(N,6) / 90 \times 7.5)
\]

The equivalent line length is then added to the actual line length and is used to calculate the laminar and turbulent flow constants

\[
\text{PARAM}(N,8) = \frac{128}{\pi} \times \text{VISC} (IT) \times \text{RHIO (IT)} / (\text{DIA}**4.) \\
\times (\text{PARAM}(N,1) + \text{EQUIVL})
\]

\[
\text{PARAM}(N,9) = .213 \times \text{RHIO (IT)} \times (\text{VISC}**.25) / (\text{DIA}**4.75) \\
\times (\text{PARAM}(N,1) + \text{EQUIVL})
\]

The above steps are repeated until the data for all lines are calculated. This data is then printed. A constant for subsequent interpolation calculations, transition flow and address of line points are calculated and stored for each line. Finally, variables used for plugged and open connections are initialized.

Dynamic friction entry DYFRI is called to calculate and store line constants for the dynamic pressure loss equation. The returned value of DYFRI is not used.
READ LINE INPUT DATA.
CALCULATE SPEED OF SOUND (A) AND CHARACTERISTIC IMPEDANCE FOR LINE N.

CALCULATE SPEED OF SOUND (A1) NECESSARY FOR 2 INTERIOR LINE POINTS. STORE WHICHEVER VALUE (A OR A1) IS LARGER. PRINT PERCENT ERROR IN SPEED OF SOUND IF A1 IS USED.

CALCULATE DELX, EQUIVALENT LINE LENGTH, LAMINAR AND TURBULENT FLOW CONSTANTS FOR LINE N. STORE DELX AND FLOW CONSTANTS.

IS N EQUAL TO NLINE? NO

PRINT LINE DATA

IS N EQUAL TO NLINE? NO

CALCULATE AND STORE INTERPOLATION CONSTANT, TRANSITION FLOW AND ADDRESS OF LINE POINTS FOR LINE N.

IS N EQUAL TO NLINE? NO

INITIALIZE VARIABLES FOR OPENED AND CLOSED CONNECTIONS

RETURN

FIGURE 5.1-3 LINE SUBROUTINE FLOW DIAGRAM
Section 2000

INO = 0
INO = INO + 1

UPDATE TURBULENT AND LAMINAR FLOW CONSTANTS TO ALLOW CALCULATION OF FRICTION FOR VELOCITY OF SOUND * DELT LENGTH FOR LINE IND

DIVIDE FLOW AND PRESSURE DIFFERENCE OF LINE IND BY NLPT(IND) - 1

I = 1
I = I + 1

CALCULATE AND STORE PRESSURE AND FLOW FOR INTERIOR POINT I OF LINE IND

IS I EQUAL TO NLPT(IND) - 1?

YES

CALCULATE AND STORE UPSTREAM AND DOWNSTREAM END CHARACTERISTICS FOR LINE IND

IS INO EQUAL TO NLINE?

NO

RETURN

FIGURE 5.1-3 CONT.
Section 3000

Figure 5.1-3 CONT.

1. **INO = 0**
 - **INO = INO + 1**
 - **CALCULATE AND STORE UPSTREAM AND DOWNSTREAM END CHARACTERISTICS FOR LINE IND**
 - **YES**
 - **IS NLPT(INO) EQUAL TO 2?**
 - **NO**
 - **NPT = 2**

2. **INTERPOLATE PRESSURES AND FLOWS ON THE UPSTREAM AND DOWNSTREAM SIDES**
 - **CALL FRIC (PASS UPSTREAM FLOW)**
 - **CALL FRIC (PASS DOWNSTREAM FLOW)**
 - **CALL DYFRICD**
 - **CALCULATE LEFT AND RIGHT RUNNING CHARACTERISTICS**

3. **CALCULATE PRESSURES AND FLOWS FOR POINT NPT**
 - **CALL FRIC (PASS NEW FLOW)**
 - **CALL DYFRICU (PASS DELTA FLOW)**
 - **RECALCULATE CHARACTERISTICS**

4. **RECALCULATE PRESSURES AND FLOWS FOR POINT NPT**
 - **CALL DYFRICU (PASS DELTA FLOW)**
Section 3000 (Cont)

NPT = NPT + 1

IS NPT LESS THAN OR EQUAL TO NPLINE? YES NO

I = 1

I = I + 1

STORE P(I) AND Q(I) IN PM AND QM ARRAYS, RESPECTIVELY

IS I EQUAL TO NPLINE? NO YES

IS I NO EQUAL TO NPLINE? NO YES

RETURN

FIGURE 5.1-3 CONT.
Section 2000

The laminar and turbulent flow constants are updated to allow calculation of pressure drop for velocity of sound * DELT length of each line.

\[\text{PAM(IND,8)} = \text{PAM(IND,8)} \times \text{PAM(IND,7)} \times \text{DELT/ Parm(IND,1)} \]

\[\text{PAM(IND,9)} = \text{PAM(IND,9)} \times \text{PAM(IND,7)} \times \text{DELT/ Parm(IND,1)} \]

The pressure and flow differences for each line are divided by the number of line increments (number of line points -1).

\[\text{DELP} = (\text{PPM1} - \text{PPM2})/(N-1) \]

\[\text{DELQ} = (\text{QQM1} - \text{QQM2})/(N-1) \]

The pressures and flows are next calculated and stored for each interior line point. Pressures and flows on the upstream and downstream sides are interpolated then upstream and downstream end point characteristics are calculated and stored for all lines

\[C(\text{LUP}) = \text{PPI} - ZC \times \text{QP1} + \text{FRIC(QP1)} \]

\[C(\text{LDWN}) = \text{PM1} + ZC \times \text{QM1} - \text{FRIC(QM1)} \]

Section 3000

A DO loop is used to calculate the values for each line.

DO 140 IN. = 1, NLINE

Pressures and flows on the upstream and downstream sides are interpolated.

\[\text{PPI} = \text{PM(M)} - \text{PAM(IND,3)} \times (\text{PM(M)} - \text{PM(M+1)}) \]

\[\text{QP1} = \text{QM(M)} - \text{PAM(IND,3)} \times (\text{QM(M)} - \text{QM(M+1)}) \]

\[\text{PM1} = \text{PM(M+N-1)} - \text{PAM(IND,3)} \times (\text{PM(M+N-1)} - \text{PM(M+N-2)}) \]

\[\text{QM1} = \text{QM(M+N-1)} - \text{PAM(IND,3)} \times (\text{QM(M+N-1)} - \text{QM(M+N-2)}) \]
Upstream and downstream end point characteristics are calculated and stored.

\[C(\text{IND} \times 2 - 1) = PPI - ZC \times QPI + \text{FRIC}(QPI) \]

\[C(\text{IND} \times 2) = PMI + ZC \times QMI - \text{FRIC}(QMI) \]

If there are only 2 points for the given line, control then passes to the end of the DO loop.

IF (N.LE.2) GO to 140

If there are interior points, the flows and pressures at these points are then calculated. Pressures and flows on the upstream and downstream sides of interior point NPT are interpolated and steady state friction for each of these flows is calculated by calling FRIC.

\[\text{FRICM} = \text{FRIC}(QMI) \]

\[\text{FRICP} = \text{FRIC}(QPI) \]

The decayed dynamic friction value is calculated by calling DFRICD.

\[\text{DYFRIC} = \text{DFRICD}(QMI, MPT, JJ, M) \]

The characteristics are now calculated for interior point NPT.

\[C_L = +PMI + ZC \times QMI - \text{FRICM} - \text{DYFRIC} \]

\[C_R = +PPI - ZC \times QPI + \text{FRICP} + \text{DYFRIC} \]

The first approximation of the pressure and flow at point NPT are calculated.

\[P(\text{NPT}) = (CR + CL) / 2. \]

\[Q(\text{NPT}) = (CL - CR) / (2. \times ZC) \]

Friction is recalculated using the new flow.

\[\text{FRICR} = \text{FRIC}(Q(\text{NPT})) \]

Dynamic friction is updated using the difference between new and old flows.

\[\text{DYFRIC} = \text{DFRICU}(\text{DELQ}, MPT, JJ, M) \]
The characteristics are updated using the average of the new and old values of friction along with updated dynamic friction.

\[
CL = CL + (FRICM - FRICR)/2. - DYFRIC
\]

\[
CR = CR + (FRICR - FRICP)/2. + DYFRIC
\]

The pressure, flow and dynamic friction are calculated a final time.

\[
P(NPT) = + (CR + CL)/2
\]

\[
Q(NPT) = (CL - CR)/2. * ZC
\]

\[
DYFRIC = DFRICU(DELQ, MPT, JJ, M)
\]

Once the pressures and flows for all points have been calculated, they are stored in the PM and QM arrays.

\[
DO 130 I = 2, NPLINE
\]

\[
PM(M + I - 1) = P(I)
\]

\[
QM(M + I - 1) = Q(I)
\]

130 CONTINUE

5.1.4 Approximations
See Appendix A

5.1.5 Limitations
See Appendix A

5.1.6 Variable Names

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Velocity of Sound in Fluid</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>BULKH</td>
<td>Equivalent Bulk Modulus of Hose</td>
<td>PSI</td>
</tr>
<tr>
<td>CL</td>
<td>Left Running Characteristic</td>
<td>PSI</td>
</tr>
<tr>
<td>CONST</td>
<td>Constant-Line Length/DELT</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>CR</td>
<td>Right Running Characteristic</td>
<td>PSI</td>
</tr>
<tr>
<td>DELP</td>
<td>Pressure Drop for DELX Length</td>
<td>PSI</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>DELQ</td>
<td>Flow Difference for DELX Length</td>
<td>CIS</td>
</tr>
<tr>
<td>DIA</td>
<td>Line I.D.</td>
<td>IN</td>
</tr>
<tr>
<td>DYFRIC</td>
<td>Dynamic Friction</td>
<td>PSI</td>
</tr>
<tr>
<td>EQUIVL</td>
<td>Equivalent Length of Line</td>
<td>IN</td>
</tr>
<tr>
<td>FRIQM</td>
<td>Pressure Drop for DELX Length Using Flow QMI</td>
<td>PSI</td>
</tr>
<tr>
<td>FRICTP</td>
<td>Pressure Drop for DELX Length Using Flow QPI</td>
<td>PSI</td>
</tr>
<tr>
<td>FRICTR</td>
<td>Pressure Drop for DELX Length Using Flow Q (NPT)</td>
<td>PSI</td>
</tr>
<tr>
<td>l1</td>
<td>Fluid Temp/Pressure Number</td>
<td>--</td>
</tr>
<tr>
<td>INO</td>
<td>Counter</td>
<td>--</td>
</tr>
<tr>
<td>JJ</td>
<td>LSTART(IND)+NLPT(IND)-1</td>
<td>--</td>
</tr>
<tr>
<td>LDWN</td>
<td>Downstream Line End Address</td>
<td>--</td>
</tr>
<tr>
<td>LLPT</td>
<td>NLPT(IND)-1</td>
<td>--</td>
</tr>
<tr>
<td>LUP</td>
<td>Upstream Line End Address</td>
<td>--</td>
</tr>
<tr>
<td>M</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>MPM1</td>
<td>Address of Current Upstream Line Point</td>
<td>--</td>
</tr>
<tr>
<td>MPP1</td>
<td>Address of Current Downstream Line Point</td>
<td>--</td>
</tr>
<tr>
<td>MPT</td>
<td>Address LSTART(IND)+1</td>
<td>--</td>
</tr>
<tr>
<td>N</td>
<td>Counter</td>
<td>--</td>
</tr>
<tr>
<td>NPLINE</td>
<td>NLPT(IND)-1</td>
<td>--</td>
</tr>
<tr>
<td>NPT</td>
<td>Current Interior Line Point</td>
<td>PSI</td>
</tr>
<tr>
<td>PC</td>
<td>Percent Error</td>
<td>--</td>
</tr>
<tr>
<td>PLAST</td>
<td>Past Pressure Value</td>
<td>PSI</td>
</tr>
<tr>
<td>PMI</td>
<td>Interpolated Pressure on the Upstream Side</td>
<td>PSI</td>
</tr>
<tr>
<td>PPI</td>
<td>Interpolated Pressure on the Downstream Side</td>
<td>PSI</td>
</tr>
<tr>
<td>PPM1</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>PPM2</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>CIS</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>QLAST</td>
<td>Past Flow Value</td>
<td>--</td>
</tr>
<tr>
<td>QMI</td>
<td>Interpolated Flow on the Upstream Side</td>
<td>CIS</td>
</tr>
<tr>
<td>QPI</td>
<td>Interpolated Flow on the Downstream Side</td>
<td>CIS</td>
</tr>
<tr>
<td>QQM1</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>QQM2</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>REN</td>
<td>Reynolds Number</td>
<td>--</td>
</tr>
<tr>
<td>ZC</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
</tbody>
</table>
5.1.7 Subroutine Listing

SUBROUTINE LINE
C *** REVISED MAY 1, 1976 ***
COMMON NTPLT, NTOLPL, IPT, IPIONT, MPTS, INEL, KHEL, NTPL, NLPT(61,3),
1 POLEG(90,12), LCS(90,10), LLEG(1400), PN(90), CN(99)
COMMON/ SUB/PARN(150,9), P(1500), Q(1500), P(300), Q(300), C(300)
1, 2(300), RHO(20), S20RHO(20), VISC(20), VULP(20), TEMP(20), PVAP(20)
2, ATRPLS, T, DELT, TFN, PLTDEL, PI, TITL(20), LEGN, ICON
3, KTEP, NLPLT(150), LLLT(150), LYPLT(99), NC(99), INX, INZ
4, INV, LISTP, NLINE, NL, IND, ITRN, NLINE, MIN, ALEEG, MINODE, MINPLOT
5, NNLPTS
C THIS SUBROUTINE SIMULATES LINES AS DISTRIBUTED PARAMETER SYSTEMS
C USING THE METHOD OF CHARACTERISTICS
DIMENSION LDN(150,7), LC(300)
EQUVALENCE (LEG(1), LDN(1)), (C(1), LC(1))
IF (ENTR) 1000, 2000, 3000
1000 CONTINUE
C THIS DO READS LINE DASH NUMBERS(LDN) AND LINE PARAMETERS(PARI)-SEC
C N = INDIVIDUAL LINE NUMBER
C LDN(,1)=LINE TYPE
C LDN(,2)=PERCENTAGE INCREASE IN LINE LOSS
C LDN(,3)=NUMBER OF 45 DEG ELBOWS
C LDN(,4)=NUMBER OF 90 DEG ELBOWS
C LDN(,5)=TOTAL OF BEND ANGLES .LT. 90 DEG DEG
C LDN(,6)=TOTAL OF BEND ANGLES .GE. 90 DEG DEG
C LDN(,7)=FLUID TEMPERATURE/PRESSURE NUMBER
C*** PAR(,1)=LENGTH
C PAR(,2)=LINE OD IN.
C PAR(,3)=WALL THICKNESS/CONSTANT
C PAR(,4)=MODULE OF ELASTICITY PSI/TRANSITION FLOW FOR GIVEN
C REN, DIA + DENSITY IN**3/SEC
DO 1100 I=1, N
READ (5,1300) N,(LDN(N,J), J=1,7),(PARI(N,J), J=1,4)
1300 FORMAT (415,4L10,0)
IF (LDN(N,7)) 10, 20, 30
10 LDN(N,7)=10-LDN(:,7)
GO TO 10
20 LDN(N,7)=1
30 CONTINUE
IF (I.NE.N) *WRITL(6,430) N
1400 FORMAT (43H THE LINE CARDS ARE OUT OF ORDER AT NUMBER , I5)
1100 CONTINUE
C REN =REYNOLD'S NUMBER
C EQUIV=EQVALENT LENGTH
C*** PAR(,5)=DLY
C*** PAR(,6)=CHARACTERISTIC IMPEDANCE
C*** PAR(,7)=VELOCITY OF SOUND IN THE LINE
C PAR(,8)=LAMINAR FLOW CONSTANT FOR GIVEN DIA, VISC + DENSITY
C PAR(,9)=TURBULENT FLOW CONSTANT FOR GIVEN DIA, VISC + DENSITY
C PAR(,10) IS INPUTED AS LINE CD AND CONVERTED TO LINE ID

5.1-15
5.1.7 (Continued)

RE=1200
N=1
DO 80 N=1,NLINE
IT=LDN(N,7)
RN=N**2
LC(I)=1
LC(N)=1
IF(LDN(N,1).LT.10) GO TO 65
LC(N)=-1
LDN(N,1)=LDN(N,1)-10
65 IF(LDN(N,1).EQ.1) GO TO 70
PAR(N,2)=PAR(N,2)-PAR(N,3)*2.0
A=1.8*(PAR(N,3)+PAR(N,2)/2.0)*BULK(IT)
A=BULK(IT)/(RHO(IT)*(1.0+A/(PAR(N,4)*PAR(N,3))))
GO TO 75
70 BULK=BULK(IT)*PAR(N,4)/(BULK(IT)+PAR(N,4))
A=BULK/RHO(IT)
75 A=SORT(A)
PAR(N,6)=RHO(IT)*A*4.0/(PI*PAR(N,2)**2)
CONST=PAR(N,1)/DELT
IF(CONST.GE.A) GO TO 73
PC=100.-CONST*100./A
WRITE(6,300)N,PC
A=CONST
73 PAR(N,7)=A
NLPT(N)=CONST/A+1.01
PAR(N,5)=PAR(N,1)/(NLPT(N)-1)
EQUIV=PAR(N,2)*((LDN(N,3)*12+LDN(N,4)*65.0+LDN(N,5)/45.*4.65+1
LDN(N,6)/90.**7.5)+PAR(N,1)*LDN(N,2)/100
DIA=PAR(N,2)
PAR(N,3)=129./PI*VISC(IT)*RHO(IT)/(DIA**4.)*(PAR(N,1)+EQUIV)
PAR(N,0)=.213*RSC(IT)*(VISC(IT)**.25)/(DIA**.75)*(PAR(N,1)
1+EQUIV)
90 CONTINUE
WRITE(6,349)
WRITE(6,350)((I),(PAR(I,J),J=1,7),I=1,NLINE)
M=1
LSTART(1)=1
DO 90 N=1,NLINE
IT=LDN(N,7)
PAR(N,3)=PAR(N,7)*DELT/PAR(N,5)
PAR(N,4)=.7354*RE*PAR(N,2)*VISC(IT)
M=M+1
90 IF(LSTART(N)+NLPT(N).LT.NLPTS-2) GO TO 252
LSTART(N+1)=NLPT(N)+LSTART(N)
DPI=DFRI(DLGO,IT,I,7)
Z(J)=PAR(N,J)
Z(M)=Z(J)
Z(M+1)=Z(M)
990 CONTINUE
C***

ST AVAILABLE COPY
5.1.7 (Continue)

C INITIALIZE VARIABLES USED FOR PLUGGED AND OPEN CONNECTIONS, (MNLINE)=PLUGGED, (MNLINE-1)=OPEN
LSTRT(MNLINE)=MNLPTS-1
NLFT(MNLINE)=2
N=MNLINE*2
C(N)=0.0
C(N-1)=ATPRES
Z(N)=1.0E25
Z(N-1)=1.0E-10
**JUNK WILL BE STORED IN PA(MNLPTS-4) THRU Pa(MNLPTS-1)
**LIKEWISE FOR QM()
IF(MNLINE.GT.MNLINE-1) GO TO 252
RETURN
252 WRITE(6,475) NLINE,LSTRT(NLINE),NLFT(NLINE)
WRITE(6,999)
999 FORMAT(1X,31,P) STOP IN SUBROUTINE LINE)
STOP 5101
475 FORMAT(5X,6ERROR #5 ,3110)

DO 2000 IND=1,NLINE
IND=IND
PARX(IND,3)=PARX(IND,8)*PARX(IND,7)*DELT/PARX(IND,1)
PARX(IND,9)=PARX(IND,9)*PARX(IND,7)*DELT/PARX(IND,1)
ZC=PARX(IND,5)
N=NLFT(IND)
I=LSTRT(IND)
PP:1=P:1(I)
PP:2=P:2(m-1+N)
DELT=(PP:1-PP:2)/(N-1)
QQ:1=0.1(i)
QQ:2=0.1(i-1+N)
DELT=(QQ:1-QQ:2)/(N-1)
LLFT=N-1
DO 2010 I=2,LLFT
PP:1=PP:1-DELT
QQ:1=QQ:1-DELT
P(I-1+I)=PP:1
QQ:1=QQ:1
2010 CONTINUE
LUP=IND*2-1
LDM=IND*2
P(LUP)=P(I)
P(LDM)=0.0(i)
P(LUP)=P(I+1)
P(LDM)=P(I+2)
C***CALCULATE CR FOR UPSTREAM LUMPPOINT
PPI=P(I)-PARX(IND,3)*(P(I)-P(I+1))
QPI=QQ(I)-PARX(IND,3)*(QQ(I)-QQ(I+1))
PNI=P(I+n+N-1)-PARX(IND,3)*(P(I+n+N-1)-P(I+n+N-2))
5.1.7 (Continued)

\[Q_{i+1} = Q_m (2 + 3 - 1) - P_{Pl} (i + 1) \times 3\times (Q_{i+1} - Q_m (4 \times 3 - 1)) \]

\[P_{Pl} = P_{Pl} (i + 1) - P_{Pl} (i + 1) \times 3\times (P_{Pl} (i + 1) - P_{Pl} (i + 1)) \]

C CALCULATE CL FOR DOWNSTREAM END POINT

\[C (L_{Dn}) = P_{Pl} (i + 1) - P_{Pl} (i + 1) + C (O_{Pl}) \]

2020 CONTINUE
RETURN

3000 CONTINUE

DO 140 IND = 1, NLINE

IND = IND + 1

ZC = PARM(IND, 6)

N = NLPT(IND)

I = LSTART(IND)

JJ = M + 1

NPLINE = N - 1

C CALCULATE CR FOR UPSTREAM ENDPOINT

\[P_{Pl} = P_{Pl} (i + 1) - P_{Pl} (i + 1) \times 3\times (P_{Pl} (i + 1) - P_{Pl} (i + 1)) \]

\[P_{Pl} = P_{Pl} (i + 1) - P_{Pl} (i + 1) \times 3\times (P_{Pl} (i + 1) - P_{Pl} (i + 1)) \]

\[P_{Pl} = P_{Pl} (i + 1) - P_{Pl} (i + 1) \times 3\times (P_{Pl} (i + 1) - P_{Pl} (i + 1)) \]

C (IND + 1) = PPI - ZC * OPI + FRIC (OPI)

C CALCULATE CL FOR DOWNSTREAM END POINT

\[C (IND + 1) = P_{Pl} (i + 1) - P_{Pl} (i + 1) + C (O_{Pl}) \]

IF (NPLINE) 2 GO TO 140

C ALGORITHM FOR INTERIOR POINTS OF LINES

NPT = 2

NPT = NPT + 1

100 CONTINUE

APPT = APPT + 1

APTI = APPT - 1

C INTERPOLATION ROUTINE

C PPI - INTERPOLATED PRESSURE ON THE PLUS (DOWNSTREAM) SIDE

C PII - INTERPOLATED PRESSURE ON THE MINUS (UPSTREAM) SIDE

C SIMILAR NOTATION IS USED FOR FLOWS

\[O_{Pl} = O_{Pl} (i + 1) - P_{Pl} (i + 1) \times 3\times (O_{Pl} (i + 1) - O_{Pl} (i + 1)) \]

\[P_{Pl} = P_{Pl} (i + 1) - P_{Pl} (i + 1) \times 3\times (P_{Pl} (i + 1) - P_{Pl} (i + 1)) \]

\[P_{Pl} = P_{Pl} (i + 1) - P_{Pl} (i + 1) \times 3\times (P_{Pl} (i + 1) - P_{Pl} (i + 1)) \]

C FIRST APPROXIMATE CL + CR

\[FRII = FRII (O_{Pl}) \]

\[FRI = FRI (O_{Pl}) \]

\[DYFRIC = DYFRIC (O_{Pl}, NPT, JJ, 4) \]

\[C = P_{Pl} - ZC * O_{Pl} + FRII + DYFRIC \]

\[C = P_{Pl} - ZC * O_{Pl} + FRII + DYFRIC \]

C CALCULATE PRESSURE (P) AND FLOW (Q) USING THE ABOVE APPROXIMATIONS

\[P \times (NPT) = -(C + CL) / 2. \]

\[Q \times (NPT) = (C - CL) / (2 * ZC) \]

FRICR = FRIIC (Q \times (NPT))

DILLO = Q \times (NPT) - Q \times (APPT)

DYFRIC = DFRICU (DILLO, NPT, JJ, 4)
C PLAST=P(NPT)
QLAST=Q(NPT)
C RECALCULATE CL + CR USING PREVIOUS ESTIMATE OF Q
CL=CL-(FRIC-PRICR)/2.+DYFRIC
CR=CR-(FRICP-PRICR)/2.-DYFRIC
C RECALCULATE P + Q USING IMPROVED CL + CR
P(NPT)= -(CR+CL)/2.
Q(NPT)= (CR-CL)/(2.*ZC)
DELQ=Q(NPT)-QLAST
DYFRIC=DFRICU(DELQ, NPT, JJ, 1)
NPT =NPT+1
NPT=NPT+1
IF(NPT.LE.NPLINE) GO TO 100
C AFTER FINDING P + Q FOR THE WHOLE LINE, PUT THESE VALUES INTO P1 +
DO 130 I=2,NPLINE
P(I)(I-1)=P(I)
Q(I)(I-1)=Q(I)
130 CONTINUE
140 CONTINUE
300 FORMAT(1X,15,1219,344HFIX-UP TAKEN AT LINE 19,VEL OF SOUND IN LINE,14,4X,12HIS,F8.1,171PER CENT IN ERROR)
340 FORMAT(12HLINE DATA,1HLINE NO.,3X,6HLENGTH,9X,8HINTERNAL
1,7X,4HWALL,11X,10HMODULUS OF,5X,4HDELX,11X,14HCHARACTERISTIC,
21H VELOCITY OF ,32X,
33HDIA,12X,9HTHICKNESS,6X,19HELASTICITY,20X,9HIMPEDEANCE
4,11H SOUND)
350 FORMAT(1X,15,13X,8.4,7X,F8.4,7X,F8.4,7X, 610.3,5X,F8.4,7X,F3.4,
16X,F11.4)
360 FORMAT(1X,5X,15,6E12.5)
RETURN
END
5.2 **SUBROUTINE FRIC**

FRIC is a function subroutine that is used to calculate steady state pressure drops for laminar and turbulent flows.

5.2.1 Math Model

Steady state pressure drops are computed using the Darcy-Weisbach equations:

- For laminar flow:

 \[\text{FRIC} = Q \times 1.28 \times \text{VISC(IT)} \times \text{RHO(IT)} \times \text{PARM(IND,1)} / (P1^2 \times \text{DIA}^4) \]

- For turbulent flow:

 \[\text{FRIC} = Q \times 0.75 \times 2.13 \times \text{RHO(IT)} \times \text{VISC(IT)}^{0.25} \times \text{PARM(IND,1)} / \text{DIA}^{4.75} \]

Note: The equations assume a Reynolds number of 1200. Since in each equation all variables except flow are actually constants for a given line and fluid, laminar and turbulent flow constants \(\text{PARM(IND,8)} \) and \(\text{PARM(IND,9)} \) are calculated in the 1000 section of LINE subroutine for use in this subroutine. The transition flow for each line \(\text{PARM(IND,4)} \) is also calculated in LINE's 1000 section.

The pressure drop equation can then be written:

- For laminar flow:

 \[\text{FRIC} = Q \times \text{PARM(IND,8)} \]

- For turbulent flow:

 \[\text{FRIC} = Q \times Q^{0.75} \times \text{PARM(IND,9)} \]

5.2.2 Assumptions

1. Transition from laminar to turbulent flow is assumed to occur at a Reynolds number of 1200. Flows having a Reynolds number greater than 1200 are considered turbulent while flows having a Reynolds of 1200 or less are assumed laminar.

2. The friction factors used are based on circular cross-section, smooth I.D., drawn tub ing.

5.2.3 Computation Methods

Not applicable.
5.2.4 **Approximations**

Pressure drops calculated for flows in the Reynolds number range of 1200 to 3000 are approximate since a transition flow equation was not developed. The turbulent equation is used in this range.

5.2.5 **Limitations**

FRIC should not be used to calculate pressure drops across non-circular cross section passages or across rough I.D. tubing.

5.2.6 **Variable Names**

| Variable | Description | Units
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Fluid Flow</td>
<td>IN(^3/SEC)</td>
</tr>
<tr>
<td>Q1</td>
<td>Absolute Value of Fluid Flow</td>
<td>IN(^3/SEC)</td>
</tr>
<tr>
<td>FRIC</td>
<td>Pressure Drop</td>
<td>PSI or PSI/Length (depending on the form of the constant)</td>
</tr>
</tbody>
</table>

![Figure 3.2-1 FRIC SUBROUTINE FLOW DIAGRAM](image-url)
5.2.7 Subroutine Listing

FUNCTION FRIC(QA)
C *** REVISED AUGUST 5, 1975 ***
COMMON/SUB/PARM(150,9), PN(1500), QA(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), S2ORHO(20), VIS(20), BULK(20), TEMP(20), PVAP(20)
2, ATPRES,T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LEGN,ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTEP, NLINE, NEL, IENTR, MNLINE, MNEL, MLLEG, ANNODE, HNPLT
5, HNLPTS, ADS
Q1=ABS(QA)
IF(Q1.GT.PARM(IND,4)) GO TO 10
FRIC=QA*PARM(IND,9)
RETURN
10 FRIC=QA*Q1**.75*PARM(IND,9)
RETURN
END
5.3 **SUBROUTINE DFRICD**

Function DFRICD is used by LINE to calculate pressure loss due to dynamic friction caused by local fluid acceleration. The theory used (see Reference paragraph 9.4) provides an efficient method for determining dynamic friction that gives close correlation with experimental results.

5.3.1 **Math Model**

The theory used for the basis of this subroutine is described in the paper noted in Reference paragraph 9.4. Equation (29) of the referenced paper is the expression used to describe the combined steady state and dynamic pressure losses under laminar flow conditions.

\[f(t+\Delta t) = \frac{8\rho v}{2a} v(t) + \frac{4\rho v}{2} (y_1 + y_2 + y_3) \]

Substituting equation (35) into equation (33) produces the following expressions for \(y_1, y_2 \) and \(y_3 \)

\[
\begin{align*}
 y_1(t + \Delta t) &= y_1(t) * e^{-8000*\Delta t*v/a^2} + 40.4 (V(t + \Delta t) - V(t)) \\
 y_2(t + \Delta t) &= y_2(t) * e^{-200*\Delta t*v/a^2} + 8.1 (V(t + \Delta t) - V(t)) \\
 y_3(t + \Delta t) &= y_3(t) * e^{-26.4*\Delta t*v/a^2} + (V(t + \Delta t) - V(t)).
\end{align*}
\]

Each expression for \(y \) at time \(t + \Delta t \) contains a decayed pressure at \(t \) added to a pressure loss caused by a change in fluid velocity.

Converting velocity to volumetric flow rate and I.R. to I.D. yields
\[
\begin{align*}
f(t+\Delta t) &= \frac{128 \ast \rho \ast \nu \ast Q(t)}{\pi \ast D^4} + \frac{16 \ast \rho \ast \nu}{D^2} \\
\quad + [y_1(t) \ast e] -8000 \ast \Delta t \ast \nu \ast 4/D^2 \\
\quad + [y_2(t) \ast e] -200 \ast \Delta t \ast \nu \ast 4/D^2 \\
\quad + [y_3(t) \ast e] -26.4 \ast \Delta t \ast \nu \ast 4/D^2 \\
\quad + \frac{4}{\pi D^2} \ast (Q(t + \Delta t) - Q(t)) \Bigg]
\end{align*}
\]

Since the first term in the equation is steady state pressure drop for laminar flow, it is omitted in this subroutine. The dynamic pressure drop equation can then be written

\[
f(t+\Delta t) = \frac{16 \ast \rho \ast \nu}{D^2} \ast y_1(t) \ast e -8000 \ast \Delta t \ast \nu \ast 4/D^2 \\
\quad + \frac{16 \ast 160}{\pi D^4} \ast (Q(t + \Delta t) - Q(t)) \\
\quad + \frac{16 \ast \rho \ast \nu}{D^2} \ast y_2(t) \ast e -200 \ast \Delta t \ast \nu \ast 4/D^2 \\
\quad + \frac{16 \ast 32}{\pi D^4} \ast (Q(t + \Delta t) - Q(t)) \\
\quad + \frac{16 \ast \rho \ast \nu}{D^2} \ast y_3(t) \ast e -26.4 \ast \Delta t \ast \nu \ast 4/D^2 \\
\quad + \frac{4}{\pi D^2} \ast (Q(t + \Delta t) - Q(t))
\]

This equation is used to calculate turbulent as well as laminar flow pressure drops under dynamic conditions since little is known about the effects of dynamic friction under turbulent flow conditions.

In the subroutine, pressure loss at time \(T \) to be decayed is expressed by:
\[\frac{16*\pi*Y}{D^2} * Y_{1,2,3} \], and

is actually the latest \(Y \) value calculated by entry DFRICU. The first time through the 3000 section of Line (i.e., \(T = \text{DELT} \)), the decayed pressure values are set to zero.

5.3.2 Assumptions

See Reference (4).

5.3.3 Computation Methods

Entry DYFRI is called from the 2000 section of LINE. The purpose of this entry is to calculate and store the dynamic pressure loss equation constants for all LINES. The value returned to LINE, \(Y(1) \), is not actually used.

DFRICD is next called from the 3000 section of LINE. New \(Y \) values are calculated using past \(Y \) values multiplied by their decay factors. \(Y_1, Y_2 \) and \(Y_3 \) are summed and set equal to \(Y_{\text{TOTAL}} \). This decayed value of pressure loss, \(Y_{\text{TOTAL}} \), at program time \(T = \text{DELT} \) is returned to LINE which uses it in the first iteration of each time step to calculate flows and pressures at a given interior line point. DFRICU entry is made from the 3000 section of LINE and is used to update the \(Y \) values of DFRICD using changes in flow. \(Y_{\text{TOTAL}} \) is set equal to \(Y_{\text{OLD}} \) and all \(Y \) values are updated. \(Y_1, Y_2 \) and \(Y_3 \) are next summed and set to \(Y_{\text{TOTAL}} \). \(Y_{\text{OLD}} \) is subtracted from \(Y_{\text{TOTAL}} \) and the resulting value is returned to LINE.

5.3.4 Approximations

This method of calculating frequency dependent friction is in itself an approximation of the exact expression. The method was chosen to conserve computer core and computation time.

5.3.5 Limitations

See Reference (4).
DFRICD

CALCULATE DECAYED VALUE OF PRESSURE LOSS FOR Y1, Y2 AND Y3. SET YTOTAL EQUAL TO SUM OF Y1, Y2 AND Y3

DFRICD = YTOTAL

RETURN

ENTRY DFRICU

YOLD = YTOTAL

CALCULATE UPDATED Y VALUES USING DELTA FLOWS. SET YTOTAL EQUAL TO SUM OF Y1, Y2 AND Y3

DFRICD = YTOTAL - YOLD

RETURN

DFRICD FLOW DIAGRAM
FIGURE 5.3-1
ENTRY DYFRI

ENTRY DYFRI FLOW DIAGRAM
FIGURE 5.3-2
5.3.6 Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONST</td>
<td>Constant in dynamic pressure loss equation</td>
<td>--</td>
</tr>
<tr>
<td>DELQ</td>
<td>New flow - Old flow</td>
<td>CIS</td>
</tr>
<tr>
<td>DFR1CD</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DIA</td>
<td>I.D. of tube</td>
<td>IN</td>
</tr>
<tr>
<td>EX1</td>
<td>Constant in dynamic pressure loss equation</td>
<td>--</td>
</tr>
<tr>
<td>EX2</td>
<td>Constant in dynamic pressure loss equation</td>
<td>--</td>
</tr>
<tr>
<td>EX3</td>
<td>Constant in dynamic pressure loss equation</td>
<td>--</td>
</tr>
<tr>
<td>JJ</td>
<td>Address LSTART(N) + NLPT(N) -1</td>
<td>--</td>
</tr>
<tr>
<td>M</td>
<td>Address LSTART(N)</td>
<td>--</td>
</tr>
<tr>
<td>MM</td>
<td>Address LSTART(N)</td>
<td>--</td>
</tr>
<tr>
<td>MPT</td>
<td>Address LSTART(N) + 1</td>
<td>--</td>
</tr>
<tr>
<td>M</td>
<td>Counter indicating assigned line number</td>
<td>--</td>
</tr>
<tr>
<td>YOLD</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>YTOTAL</td>
<td>Decayed value of pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>Y1 ()</td>
<td>Array for Y1 valves</td>
<td>--</td>
</tr>
<tr>
<td>Y2 ()</td>
<td>Array for Y2 values</td>
<td>--</td>
</tr>
<tr>
<td>Y3 ()</td>
<td>Array for Y3 values</td>
<td>--</td>
</tr>
</tbody>
</table>
5.3.7 Subroutine Listing

FUNCTION DRIFICH(Delta, JPT, JJ, I)

C *** REVISED AUGUST 5, 1975 ***

COMMON/SUS/PAR(150,9),PS(1500),Q(1500),P(300),Q(300),C(300)
1,Z(300),RHO(20),S20RIO(20),VISC(20),BULK(20),TEMP(20),PVAP(20)
2,ATRES,T,DEL,TFINAL,PLTDEL,PL,TITLE(20),LECN,ICON
3,KE,CP(99),LSRT(150),NLPT(150),LTYP(99),NC(99),INX,INZ
4,INV,ISTEP,UNIL,ALL,IND,IRETR,MLINE,MNEL,MNLEG,NNNODE,MNPLOT
5,CHANGE,IND

DIMENSION Y1(1500),Y2(1500),Y3(1500)
DATA Y1,Y2,Y3/4500*0.0/

Y1(JPT)=Y1(JPT)+DEL*Y1(JJ)
Y2(JPT)=Y2(JPT)+DEL*Y2(JJ)
Y3(JPT)=Y3(JPT)+DEL*Y3(JJ)

YTOTAL=Y1(JPT)+Y2(JPT)+Y3(JPT)

DRIFICH=YTOTAL
RETURN

ENTRY DRIFICH

YOLD=YTOTAL
Y1(JPT)=Y1(JPT)+DEL*Y1(JJ)
Y2(JPT)=Y2(JPT)+DEL*Y2(JJ)
Y3(JPT)=Y3(JPT)+DEL*Y3(JJ)

YTOTAL=Y1(JPT)+Y2(JPT)+Y3(JPT)

DRIFICH=YTOTAL-YOLD
RETURN

ENTRY SYRRI

C IZ = 350 - ZERO Y1,Y2,Y3 ARRAYS HERE
RAD=PARAM(1,2)/2.0
A=LSRT(I)
JJ=A+NLPT(I)-1
CONST=PARAM(4,7)*DEL*RHO(JPT)*VISC(JPT)/(PI*RAD**4.)
Y1(JJ)=160.*CONST
Y2(JJ)=32.4*CONST
Y3(JJ)=4.*CONST

C0=DEL*VISC(JPT)/RAD**2.
LX1=-8000.*C0
LX2=-200.*C0
LX3=26.4*C0

Y1(JJ)=EXP(LX1)
Y2(JJ)=EXP(LX2)
Y3(JJ)=EXP(LX3)

DRIFICH=Y1(1)
RETURN

END
5.4 **SUBROUTINE CHAR**

The function subroutine CHAR was set up to obtain interpolated values of the line characteristics, CU() and CD() between TIME = T - DELTA and T.

The interpolations are required by subroutines using integration, such as PUMP51, which require evaluation of the line characteristics at time intervals smaller than DELT.

The subroutine is divided into three parts, using two entry points.

ENTRY CUARIN which is called from the 2000 section of the component subroutine sets up the address system, for the number of active connections, and returns the storage addresses to the calling routine.

ENTRY CHARUP is called from HYTR after the call to LINE and before the call to COMP. This call adds the latest characteristic values and calculates the interpolation formula constants ready for use.

Function CHAR calls obtains interpolated values of the line characteristic for TIME where TIM = 0.0 when TIME = T-DELTA and TIM = 1.0 when TIME = T, using the constants derived in the call to ENTRY CHARUP in the interpolation formulas.

5.4.1 **Theory**

The Lagrange Interpolation formula was taken from Reference (3) Chapter 3. A second order interpolation was used which requires the solution of the formula:

\[Y(X) = \sum_{k=0}^{4} L_k(X) \times Y(X_k) \]

where

\[L_k(X) = \frac{(X - X_0) \cdots (X - X_{i-1}) (X - X_{i+1}) \cdots (X - X_n)}{[(X_1 - X_0) \cdots (X_{i-1} - X_{i-1}) (X_{i+1} - X_{i+1}) \cdots (X_i - X_n)]} \]
and \(y(X_k) \) is the value of \(Y \) at time \(X \).

for \(i = -1, 0, \) and +1 this becomes

\[
L(-1)(X) = \frac{(X + 0)(X - 1)}{(-1-0)(-1-1)} = \frac{(X^2 - X)}{2}
\]

\[
L(0)(X) = \frac{(X + 1)(X-1)}{(0+1)(0-1)} = \frac{(X^2 -1)}{-1}
\]

\[
L(1)(X) = \frac{(X+1)(X+0)}{(1+1)(1-0)} = \frac{(X^2 +X)}{2}
\]

\[
Y(X) = X^2 \frac{Y(-1)/2 - Y(0) + Y(1)/2}{2} + X \frac{(-Y(-1)/2 + Y(1)/2)}{2} + Y(0)
\]

This formula is then used to obtain an interpolated value of \(Y \) between \(X = 0 \) and \(X = 1 \).

The fixed time system was chosen to simplify the calculations.

5.4.2 Assumptions

The Lagrange interpolation technique has limitations when applied to rapidly changing functions, in that it tends to produce overshoot. Since there is no pre-determined function that can be used and the interpolation is always using the last piece of data, any interpolation routine be it first, second or third order will suffer from some deficiencies. Hence the choice of technique has to be based on the advantages and disadvantages of each method.
5.4.3 **Computation**

The function subroutine uses the entries to initialize and update the data, to avoid time consuming tests in the running portion of the program. The initialization section under ENTRY CHARIN is called from the 2000 section of the calling subroutine. The CUCD() array is initialized to the steady value of the line characteristic and the line number is stored in the NCUCD() array. It will be -ve if its the upstream end of the line. The number of connections for each component is passed to the subroutine via the common variable INX. The address of the first line connection is returned to the subroutine by the value of CHAR, which is then converted to an integer address in the calling program.

5.4.4 **Approximations**

Not applicable.

5.4.5 **Limitations**

The Lagrange interpolation technique does not produce a smooth curve from one time interval to the next, however the typical characteristic data form a relatively smooth curve so the interpolation error is not very great.

5.4.6 **Variable Names**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAR</td>
<td>Valve returned to calling routine or integer address</td>
<td>PSI</td>
</tr>
<tr>
<td>CUCD()</td>
<td>Array of characteristic values and formula for interpolation</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>DO loop counter</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Line number +ve or -ve</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NCUCD</td>
<td>Storage for N values</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>Rotating addresses</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>Rotating addresses</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>Rotating addresses</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>Rotating addresses</td>
<td></td>
</tr>
<tr>
<td>TIM</td>
<td>No. dimensional time</td>
<td></td>
</tr>
</tbody>
</table>
5.4.7 Subroutine Listing

FUNCTION CHAR (J,TIME)

**** REVISED AUGUST 5, 1975 ****
COMMON/SUB/PARA(150,9), PR(1500), QN(1500), P(300), Q(300), C(300)
1, 2(300), RHO(20), SQORHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATRES, T, DELT, TFINAL, PLTOL, PI, TITLE(20), LEND, ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYP(99), NC(99), INX, INE
4, INV, ISTEP, NLIN, NEL, IND, IENTR, ANLIN, ANEL, ANLEG, ANNODE, NPLOT
5, NLPT, HIDS
DIMENSION CUCD(4,99), NCUCD(99)
COMMON /CODDP/D(4500), LE(99,4)
DATA I, N1, N2, N3, N4/1, 1, 2, 3, 4/
DATA NCUCD(1)/1/
TIA=1.0-(T-TIME)/DELT
CHAR=CUCD(N2,J)+CUCD(4,J)*TIA+CUCD(N3,J)*TIA**2
RETURN
ENTRY CHARUP
IF(I.EQ.1) RETURN
N4=N3
N3=N2
N2=N1
N1=1
DO 300 I=1,KCD
N=CUCD(I)
CUCD(N1,I)=C(N)
CUCD(4,I)=CUCD(N1,I)/2-CUCD(N3,I)/2
CUCD(N3,I)=CUCD(N1,I)/2-CUCD(N2,I)+CUCD(N3,I)/2
300 CONTINUE
CHAR=KCD+.91
RETURN
ENTRY CHARIN
CHAR=1+.91
DO 20 K=1,INX
N=LL(J,4)+K-1
CUCD(1,I)=C(N)
CUCD(2,I)=C(N)
CUCD(3,I)=C(N)
NCUCD(I)=I
KCD=I
I=I+1
20 CONTINUE
RETURN
END
6.0 COMPONENT SUBROUTINES

The components modeled vary from the simple restrictor to a very fast response pump. Each model is broken down into its most basic equations of motion and flow, the sum total of all these equations can be very complex, but individually they are usually simple.

New subroutines can be added without difficulty and, if the computer system can tolerate unsatisfied external references that are not called during execution then component subroutines not in use, can be omitted from the input deck or file when not required.

In working with the program it is necessary to get a good grasp of the fundamentals involved in the simulation, even the most carefully checked routine can have traps built in which are not always found until the output data is carefully examined by someone who knows what it should look like.
FIGURE 6.1-1

COMPONENT SUBROUTINE ORGANIZATION
6.1 **SUBROUTINE COMP**

Subroutine COMP which is called by HYTR, reads and prints all component input data, sorts out connection data for all components, and calls each individual component in the order in which it was input.

6.1.1 **Math Model**

Not applicable.

6.1.2 **Assumptions**

Not applicable.

6.1.3 **Computation Methods**

Section 1000

A component integer card is read and its data is printed. Connection data for the component is sorted out and stored. The real data cards for the component are then read and printed, if any exists. Next, the addresses of the component's real data, temporary, double precision and integer variables are established. Finally, the individual component subroutine is called passing as arguments its starting address in the real data, temporary, double precision and integer arrays. This process is repeated until all input components have been called.

Section 2000

This section consists of a DO loop that ranges from 1 to the number of input components. Within the loop a component group type is isolated by taking its type number, dividing by 10 and forcing truncation (due to the use of integers). This truncated value is then used in a computed GO TO statement to direct control to a statement or section that calls the specific component. If there is more than one component of that group type, specific component isolation is accomplished by subtracting the group component type number from the individual component type number and using the
resulting value in a computed GO TO statement. This GO TO statement then directs control to a statement that calls the component. COMP isolates and calls each component in a simple and straightforward manner aiding in the running of the overall program since every component has to be called each time step in the transient calculations.

6.1.4 Approximations
Not applicable.

6.1.5 Limitations
Not applicable.
6.1.6 Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>Dummy Variable for L4</td>
<td></td>
</tr>
<tr>
<td>KTYPE</td>
<td>Dummy Variable for LTYPE()</td>
<td></td>
</tr>
<tr>
<td>LDATA C</td>
<td>Number of Element Real Data Cards</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Data value 1</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>Data value 1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>NCI</td>
<td>Number of Last Active Connection</td>
<td></td>
</tr>
<tr>
<td>NDATAC</td>
<td>LDATA C/1000</td>
<td></td>
</tr>
<tr>
<td>NLIM</td>
<td>Number of Real Data Fields</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>Dummy Variable Representing Maximum Number of Component Connections</td>
<td></td>
</tr>
<tr>
<td>NTYPE</td>
<td>Group Type Number</td>
<td></td>
</tr>
<tr>
<td>NX</td>
<td>Data Value 2</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>Dummy Variable Representing Max Number of Real Data Fields for a Given Component</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>Dummy Variable Representing Max Number of Temporary Variables for a Given Component</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>Dummy Variable Representing Max Number of Double Precision Variables for a Given Component</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>Dummy Variable Representing Max Number of Integer Variables for a Given Component</td>
<td></td>
</tr>
</tbody>
</table>
6.1.7 Subroutine Listing

SUBROUTINE C0MP
C *** REVISED AUGUST 5, 1975 ***
DOUBLE PRECISION DO
COMMON 6KTEPL, WOTOLP, IFR, IPOINT, NPTS, INEL, KNEL, WTOP, NLPL(61, 3),
1 POLE(90, 12), ND(150, 10)
COMMON SUB/PAR(150, 9), PII(1500), Qn(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), SIGMA(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATTR, T, DELT, OFINAL, PTDEL, PI, TITLE(20), LEGN, ICON
3, KTYPE, I0, LSTART(150), NLPT, LTYPE(99), NC(99), INX, INZ,
4, IIV, ISTEP, XLINE, YLINE, INL, IND, INTR, INLNE, INL, INLEG, ANODE, INPLOT
5, INLPTS, IADS
COMMON CD(4500), L(1500), LE(99, 4)
DIMENSION DO(1499), LT(10, 150), L(1)
EQUIVALENCE (L(1), LT(1, 1)), (I(I), QD(1)), (C(1), LC(1))
DATA LI, L4, XX/1, 1, 2/
INH= 1
IF(INTR) 1000, 2000
1000 CONTINUE
DO 1001 I=1, 10
DO 1002 J=1, 150
1002 II(J, I)=LT(I, J)
1001 CONTINUE
1063 CONTINUE
NCI=0
C THIS READ STATEMENT INPUTS THE FOLLOWING DATA
C I = INDIVIDUAL COMPONENT NUMBER
C LTYPE = COMPONENT TYPE
C READ (5, 170) I, LTYPE(I), LDATAC, (L(I4-1+J), J=1, 12), KTEMP(I)
C READ (5, 500) I, I, LTYPE(I), LDATAC, (L(I4-1+J), J=1, 12), KTEMP(I)
C LDATAC=LDATAC*1000
C LDATAC=LDATAC-NDATAC*1000
C IF(KTEMP(I)) 11, 12, 13
11 KTEMP(I)=10-KTEMP(I)
GO TO 13
12 KTEMP(I)=1
GO TO 13
13 CONTINUE
NCI=LDATAC/5
C*** LDATAC EQUALS THE NUMBER OF ELMA LAT REAL DATA CARDS
C KTYPE=LTYPE(1)
C NC(I)=NC(KTYPE, 7)
C IF/(NC(I), EQ, 0) GO TO 7
C X=LI
C X=L4+NC(I)-1
C DO 4 X=X, X
C IF(I(X)) 1, 2, 3
C 1 L(I)=4-L(I)*2-1
C LC(L(I))=7
C NC=NCI+1
GO TO 4
2 L(I)=5*L11111*2-ND(KTYPE, 0)

6.1-4
GO TO 4
3 L(N)=L(N)*2
 LC(L(N))=0
 NCI=NCI+1
4 CONTINUE
5 IF(L(N))=LT.AN1NL*2-1) GO TO 6
 NC(I)=NC(I)-1
 NN=NN-1
 NC=NC+1
5 CONTINUE
6 INZ=NC
 IF(NCI.NL,NC(I))AND.ND(KTYPE,10).NE.0) GO TO 420
 IF(NC(I).LT.ND(KTYPE,8)) NC(I)=ND(KTYPE,8)
7 N1=ND(KTYPE,1)
 N2=ND(KTYPE,2)
 N3=ND(KTYPE,3)
 N4=ND(KTYPE,4)
 IF(NLIM.EQ.0) GO TO 15
 READ(5,450) (L(I)+N-1),N=1,NLIM
 IF(IND.NE.1) GO TO 410
 NN=L1
 GO TO kk,1,LDATA
 QLITE(6,519)kk,(D(NN+N-1),N=1,3)
 GO TO 40
5 CONTINUE
10 INX=0
15 IF(NDATA.NL.0) GO TO 20
 IF(LDATA.GT.ND(KTYPE,6)) N1=NLIM
 LE(I,1)=L1
 LE(I,2)=L1+N1
 GO TO 30
20 CONTINUE
 LE(I,1)=LE(NDATAC,1)
 LE(I,2)=L1
 INX=1
30 IF(NX*N3.LE.1) GO TO 40
 LE(I,3)=(LE(I,2)+N2+1)/2
 L1=(LE(I,3)+N3)*2+1
 GO TO 50
40 LE(I,3)=LE(I,2)+N2
 L1=LE(I,3)+N3
50 LE(I,4)=L4
 L4=L4+N4
 ENTRY COMPL
2000 CONTINUE
 KTYPE=KTYPE(IND)
 KTYPE =KTYPE/10
 N1=LE(IND,1)
 N2=LE(IND,2)
 N3=LE(IND,3)
6.1.7 (Continued)

N4=LW(IND, 4)
GO TO (210, 220, 230, 240, 250, 260, 270, 280, 290, 300), KTYPE
C 360 GO TO 400
210 CONTINUE
 CALL BRAMII (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
220 CONTINUE
 KTYPE=KTYPE-20
 GO TO (221, 222, 223, 224), KTYPE
221 CALL VALV21 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
222 CALL VALV22 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
223 CALL VALV23(D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
224 CALL VALV24(D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
230 CONTINUE
 KTYPE=KTYPE-30
 GO TO (231, 232, 233, 234), KTYPE
231 CALL CVAL31 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
232 CALL CVAL32 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
233 CALL CVAL33(D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
234 CALL CVAL34(D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
240 CONTINUE
 CALL RLST41 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
250 CONTINUE
 KTYPE=KTYPE-50
 GO TO (251, 252, 253, 254, 400), KTYPE
251 CALL PUMP51 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
252 CALL PUMP52 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
253 CALL PUMP53 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
254 CALL PUMP54 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
260 CONTINUE
 KTYPE=KTYPE-50
 GO TO (261, 262, 263), KTYPE
261 CALL PVR61 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
262 CALL PVR62 (D(N1), D(N2), DD(N3), L(N4))
 GO TO 400
263 CALL PVR63 (D(N1), D(N2), DD(N3), L(N4))

BEST AVAILABLE COPY

6.1-6
6.1.7 (Continued)

GO TO 400
270 KTYPE=KTYPL-70
GO TO (271,272,400),KTYPL
271 CALL ACDU71(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
272 CALL ACDU72(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
280 CONTINUE
KTYPL=KTYPE-90
GO TO (281,282,283,400),KTYPL
281 CALL FILT31(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
282 CALL FILT32(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
283 CALL FILT33(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
290 CONTINUE
KTYPE=KTYPE-90
GO TO (291,292,293,294,295,296,297,298,299),KTYPL
291 CALL TESTQ1(D(N1),D(N2),DD(N3),L(N4))
C291 CONTINUE
GO TO 400
292 CALL CAD92(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
293 CALL CAD93(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
294 CONTINUE
GO TO 400
295 CALL APQ95(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
296 GO TO 400
297 GO TO 400
298 CALL CAD98(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
299 CALL CAD99(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
300 CONTINUE
KTYPL=KTYPL-100
GO TO (301,302,303,304,305,306,307,400),KTYPL
301 CALL ACT101(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
302 CALL ACT102(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
303 CALL ACT103(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
304 CALL ACT104(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
305 CALL ACT105(D(N1),D(N2),DD(N3),L(N4))
GO TO 400
306 CALL ACT106(D(N1),D(N2),DD(N3),L(N4))

BEST AVAILABLE COPY
6.1.7 (Continued)

GO TO 400
307 CALL ACT107 (D(N1),D(N2),D(N3),L(N4))
400 CONTINUE
 IF(IN1L.NE.0.OR.IND.GE.NEL) RETURN
 IND=IND+1
 IF(IN1ATR) 1003,2000,2000
410 WRITE (6,190)
 WRITE(6,990)
990 FORMAT(10X,31HPROGRAM STOP IN SUBROUTINE COMP)
 STOP 6001
420 WRITE(6,190)IND
190 FORMAT(5X,42H THERE ARE MISSING CONNECTIONS IN COMP NO. ,I5)
 WRITE(6,990)
 STOP 6001
170 FORMAT (16I5)
180 FORMAT (35H THE ELEMENT CARDS ARE OUT OF ORDER)
450 FORMAT (9E10.0)
500 FORMAT(180,5X,6HCOMP#,I5,2X,12HINTEGER DATA,2X,16I5,)
510 FORMAT(/,5X,14HREAL DATA CARD # ,I5,2X,8E13.4)
END
6.11 **SUBROUTINE BRAN11**

The branch subroutine describes a simple lossless junction in the system, which can have any of the configurations shown in Figure 6.11-1.

The program is generalized so that there can be any combination of upstream and downstream connections.

![Junction Diagram](image)

FIGURE 6.11-1
BRANCH CONFIGURATIONS
6.11.1 Math Model

Starting with the basic line equations
\[P + z(I) \times Q(I) - C(I) = 0 \] (1)

where \(C(I) \) is the Ith line characteristic
\(Z(I) \) is the line characteristic
and \(Q(I) \) is the flow out of the line into the branch junction (positive flow is into the junction).

Rearranging (1) we get
\[Q(I) = \frac{P X}{Z(I)} + \frac{C(I)}{Z(I)} \] (2)

If \(\sum Q(I) = 0 \) (3)
\(I = 1, N \).

\[P X \sum \frac{1}{Z(I)} = \sum \frac{C(I)}{Z(I)} \] (4)

Let \(DT(3) \sum \frac{1}{Z(I)} \) (5)
\(I = 1, N \).

\[C N = \sum \frac{C(I)}{Z(I)} \] (6)

\[P X = \frac{C N}{DT(3)} \] (7)

which is the solution for the pressure at the flow junction.

\[Q(I) = \frac{(C(I) - P X)}{Z(I)} \] (8)

for cavitation conditions.

If \(P X < P V A P \) or if \(DT(V C A V) > 0 \) \(P X = P V A P \)
\[Q(I) = \frac{(C(I) - P V A P)}{Z(I)} \]
\[Q_{N E W} = \text{Net flow away from the junction} \]
\[DT(V C A V) = D(V C A V) - Q_{N E W} \]
\[DT(Q C A V) = Q_{N E W} \]

6.11-2
6.11.2 Assumptions

The math model does not incorporate any of the losses which normally occur at junctions which have changes in diameter, flow direction, or flow division.

Line losses due to steady state friction are incorporated into the values of C(1) but are not corrected for the average flow in that line segment. This will tend to give rise to inaccurate pressure losses during flow acceleration, but under steady or pseudo steady conditions there will be no error.

6.11.3 Computation Method

Section 1000

This section calculates the variable D(3) for each connection.

Section 2000

Section 2000 initializes DT(VCAV) and DT(QCAV) to zero.

Section 3000

This section retrieves values for Z(I) @ C(I), and sums C(I)/Z(I). From this PX is calculated and then the pressures and flows are returned to the line ends in P(I) and Q(I) if the pressure is greater than the vapor pressure or if there is no cavitation bubble present signified by DT(VCAV)=0.0.

If cavitation condition exists, the flows are calculated using PVAP at the junction instead of PX. The net flow at the junction, QNEW is then calculated and added to the old cavity volume DT(VCAV).

The values of DT(QCAV) and DT(VCAV) are stored for use next time and the cavitation model will continue to control the pressure at the junction until the pressure rises again and a series of negative QNEWS refill the cavity, and then the simulation returns to normal.

6.11.4 Approximations

The only computation approximation is the use of pseudo Z and C for an unassigned connection # which is less than the number of connections to
the branch such as blanked off connection will be most unusual in practice
and the error will not be noticed.

6.11.5 **Limitations**

The limitations of this subroutine are due to the pressure drop errors. It is recommended that a series of special type branch subroutines be added so that these losses can be taken into account. This particular subroutine being fast and simple and should be kept until the other subroutines are added. Additional losses can be simulated by adding a pseudo 90 degree elbow or bend, to the appropriate line.

6.11.6 **Variable Names**

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>Temporary Variable</td>
<td>CIS</td>
</tr>
<tr>
<td>I</td>
<td>Integer Counter</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Integer Counter</td>
<td></td>
</tr>
<tr>
<td>NCI</td>
<td>Number of Line Connections</td>
<td></td>
</tr>
<tr>
<td>PX</td>
<td>Branch Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(QCAV)</td>
<td>Previous cavity flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QNEW</td>
<td>Net cavity flow toward the junction</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(VCAV)</td>
<td>Cavity Volume</td>
<td>IN**3</td>
</tr>
</tbody>
</table>

For variables in common refer to Para. 3.3.
Subroutine Listing

SUBLITNE BRANII (D, DT, DD, L)

REVISED AUGUST 5, 1975

DOUBLE PRECISION DD

COMMON DL1, DT1, TL1, PL1, PT1, NL1, NL11, S1

COMMON/ SUB/ PAR1(150, 9), P1(150), D1(150), P(300), D(300), C(300)

1, S(300), RHO(20), Z20, RHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)

ATPRES, DEBT, TFINAL, PL11, PI, TITLE(20), LCMP, ICON

3, LTEST(99), LSTART(150), NFL1(150), LTYPE(99), NC(99), INX, I1Z

4, INV, ISTEP, ML11, MEL, MEL, M1, M11, MN11, M111, M11, M211, M21, M21

5, N1111, AD1

INTEGER VCAV, QCAV

DATA VCAV, CCAV/1, 2/

IF(INTR)1000, 2000, 3000

1000 CONTINUE

IF(INEL, NL, 0) GO TO 1500

DT(3) = 0.0

DT(VCAV) = 0.0

NC1 = NC(IN11)

DO 1001 I = 1, NC1

1001 DT(3) = DT(3) + 1.0/Z(L(I))

RETURN

1500 DT(VCAV) = POLEG(INEL, 11)

RETURN

2000 DT(VCAV) = 0.0

DT(CCAV) = 0.0

RETURN

3000 NC1 = NC(IN11)

C2 = 0.0

DO 3010 I = 1, NC1

C1 = C(L(I)) / Z(L(I)) + C2

3010 CONTINUE

PX = C1 / DT(3)

C

C * CHECK TO SEE IF PX IS LT PVAP OR A BUBBLE IS PRESENT**

C

IF (PX LT PVAP(KTEMP(KIND)) OR DT(VCAV) GT 0.0) GO TO 3025

C

DO 3020 I = 1, NC1

P(L(I)) = PX

3020 Q(L(I)) = (C(L(I)) - PX) / Z(L(I))

RETURN

3025 NC1 = 0.0

DO 3030 I = 1, NC1

P(L(I)) = PVAP(KTEMP(KIND))

Q(L(I)) = (C(L(I)) - PVAP(KTEMP(KIND))) / Z(L(I))

3030 QNEW = QNEW + Q(L(I))

C * CALCULATE THE BUBBLE SIZE**

DT(VCAV) = DT(VCAV) - QNEW

IF(DT(VCAV) LT 0.0) DT(VCAV) = 0.0

DT(CCAV) = QNEW

RETURN

END
6.21 SUBROUTINE VALV21

VALV21 simulates a simple two-way valve, with an input valve position time history. Its main purpose is in simulations associated with test rigs where a fast or slow, opening or closing valve is used to generate system transients. It can be used to simulate directly operated solenoid valves, or balanced poppet valves, but not those which have displacement characteristics such as two stage solenoid valves and unbalanced poppet valves.

A typical valve is shown in Figure 6.21-1.

![Diagram of Type No. 21 Two-Way Valve]

FIGURE 6.21-1
TYPE NO. 21 TWO-WAY VALVE
6.21.1 Math Model

The basic equation for flow through an orifice

\[Q = \text{AREA} \times \text{Cd} \times \left(2\times\frac{(P_1-P_2)}{\text{RHO}}\right)^{1/2} \]
\[(1) \]

where \(\text{AREA} \) = area of the valve orifice in \(\text{in}^2 \)
\(\text{Cd} \) = valve discharge coefficient
\(\text{RHO} \) = fluid density \(\text{lbs sec}^2/\text{in}^4 \)
\(Q \) = flow in CIS
\(P_1 \) = inlet pressure PSI
\(P_2 \) = outlet pressure PSI

From the line equations

\[P_1 = -Z_1Q_1 + C_1 \]
\[(2) \]
\[P_2 = Z_2Q_2 + C_2 \]
\[(3) \]

using a +ve flow convention from 1 to 2

where \(C_1 \) = Con #1 line characteristic
and \(Z_1 \) = Con #1 line characteristic impedance

Assuming no flow loss,
\[Q = Q_1 = Q_2 \]
\[(4) \]

Substituting 2 and 3 in 1 we get

\[Q^2 = \text{VFAC}(-Z_1Q_1 + C_1 - Z_2Q_2 - C_2) \]
\[(5) \]

where \(\text{VFAC} = (\text{AREA} \times \text{Cd})^{2} \times 2/\text{RHO} \)

Equating the flows we get

\[Q^2 + Q^2(Z_1 + Z_2) \times \text{VFAC} - (C_1 - C_2) \times \text{VFAC} = 0 \]
\[(6) \]
\[Q^2 + Q \times \text{VB} + \text{VC} = 0 \]
\[(7) \]

where

\[\text{VB} = (Z_1 + Z_2) \times \text{VFAC} \]
\[(8a) \]
\[\text{VC} = (C_2 - C_1) \times \text{VFAC} \]
\[(8b) \]
The restrictions on the solution are

when \(V_c = 0 \) \(Q = 0 \)

which gives

\[Q = \frac{(-VB + (VB^2 - 4*VC)^{0.5})}{2} \]

6.21.2 Assumptions

The math model assumes a square law characteristic and a constant discharge coefficient for the complete flow range, which in practice is not correct. At very low flows the pressure drop tends toward a linear characteristic, and the discharge coefficient varies.

In addition, most valves have inlet and outlet passages and fittings which add to the pressure drop and hence modify its overall characteristics. These can of course be lumped together to obtain an approximate overall square law but the resulting characteristic would not fit very well over the complete range of flows and valve openings.

To avoid these errors a more complex math model is required, and this should be implemented in another subroutine.

6.21.3 Computation Method

A call to INTERP is made to derive the valve opening from the input data which includes a table of valve positions versus time. A first order interpolation is used in this derivation, second or higher order interpolations will cause unintended valve motion.

Once the valve opening is established, the valve area is calculated, and then the flow.
Since this is a direct calculation there is no difference between the math model and the calculation technique until very small valve openings are reached. To avoid division by zero, valve openings of less than 0.00001 are ignored and the flow is assumed to be zero.

6.21.4 **Assumptions** - To be added later.

6.21.5 **Limitations**

The computation is limited to a linear valve area versus position relationship. This apparent limitation can be overcome by inputting a non-linear valve position versus time relationship which can produce any desired area versus time.

The constant discharge coefficient is also a limitation but since the changes in discharge coefficients depend on the particular valve configuration; this limitation is not easily overcome.

If the valve slot width and discharge coefficient are input as 1.0 then the valve position table becomes a table of the product of valve area, times the discharge coefficient, versus time.

The combined effects of area and discharge coefficient can then be inputted, but this will still leave out the effects of changes in the orifice characteristic with differential pressure.
Variable Names

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>DIMENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>SS. VALVE AREA</td>
<td>IN**2</td>
</tr>
<tr>
<td>CONST</td>
<td>SS. VALVE CONSTANT</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>DELTP</td>
<td>SS. VALVE PRESSURE DROP</td>
<td>PSI</td>
</tr>
<tr>
<td>DIFF</td>
<td>CHARACTERISTIC DIFFERENCE</td>
<td>PSI</td>
</tr>
<tr>
<td>IOD</td>
<td>ERROR INDICATOR</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>DUMMY VARIABLE</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>DUMMY VARIABLE</td>
<td></td>
</tr>
<tr>
<td>QX</td>
<td>VALVE FLOW</td>
<td>CIS</td>
</tr>
<tr>
<td>SGN</td>
<td>SIGN OF FLOW</td>
<td></td>
</tr>
<tr>
<td>VALY</td>
<td>VALVE POSITION</td>
<td>IN</td>
</tr>
<tr>
<td>VFAC</td>
<td>VALVE FLOW CONSTANT</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>VYNAC</td>
<td>ABSOLUTE VALUE VALVE POSITION</td>
<td>IN</td>
</tr>
</tbody>
</table>

For variables in common refer to Para. 3.3
SUBROUTINE VALV21 (D, DT, DD, L)

C *** REVISED AUGUST 5, 1975 ***

DOUBLE PRECISION DD

COMMON NTIELPL, NTOLPL, IPT, IPOINT, NPTS, INEL, KNEL, NTOLPL, NLPLT(61, 3),
1 PQLEG(90, 12), LCS(90, 10), ILEG(1400), PN(90), QN(90)
DIMENSION D(24), DT(2), DD(1), L(5)
COMMON/SUB/PARM(150, 9), PH(1500), QM(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), S2ORHO(20), VISC(20), BULK(20), TEM(20), PVAP(20)
2, ATRES, T, DELT, PLTDEL, PI, TITL(20), LGEN, ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTEP, NLINE, NEL, IND, IENTR, MNLINE, INLEG, MNODE, MNPLOT
5, MNLPTS, MDS
IF (IENTR) 1000, 2000, 3000

1000 CONTINUE
1IF(INEL.NE.0) GO TO 1500
L(3) = 9
L(4) = 9 + (L(11) + 7)/8*8
D(3) = (D(1)*D(2))**2/2/RHOS(KTEMP(IND))
L(5) = L(11)
D(4) = (Z(L(1)) + Z(L(2)))/2.
D(5) = 1.0/D(4)**2
VALY = D(L(4))
IF(VALY.EQ.0.0) GO TO 1100
DT(1) = RHO(KTEMP(IND))/2.0*(D(1)*VALY*D(2))**2
DT(2) = 0.0
RETURN
1100 DT(1) = 0.0
DT(2) = 10.0
RETURN

C

C**** STEADY STATE SECTION ****

C

1500 PQLEG(INEL, 8) = PQLEG(INEL, 8) + DT(1)
QX = PQLEG(INEL, 1)
PQLEG(INEL, 6) = PQLEG(INEL, 6) + DT(2)
PQLEG(INEL, 11) = PQLEG(INEL, 11) - (PQLEG(INEL, 2)*QX*(DT(2) + QX*DT(1))
RETURN

2000 CONTINUE
DT(1) = 0.0
DT(2) = 0.0
RETURN

3000 CONTINUE
L1 = L(1)
L2 = L(2)
CALL INTERP (T, D(L(3)), D(L(4)), 10, L(5), VALY, IOD)
VYMAG = ABS(VALY)
DIFF = C(L1) - C(L2)
IF(DT(1) + DT(2), GT, 0.0) GO TO 3300
IF(VYMAG.LT.0.00001) GO TO 3100
VFAC = D(3)*VALY**2

VFAC = D(3)*VALY**2
QX = \text{SIGN}(\text{VFAC} \times D(4) \times (\sqrt{1 + \text{ABS}(\text{DIFF})/\text{VFAC} \times D(5)}) - 1), \text{DIFF})

P(L1) = C(L1) - Z(L1) \times QX

P(L2) = C(L2) - Z(L2) \times (-QX)

Q(L1) = QX

Q(L2) = -QX

GO TO 3200

3100 CONTINUE

P(L1) = C(L1)

P(L2) = C(L2)

Q(L1) = 0.0

Q(L2) = 0.0

3200 IF (P(L1) \geq \text{PVAP}(I)) .AND. P(L2) \geq \text{PVAP}(I)) \text{RETURN}

IF(P(L1) \lt \text{PVAP}(I)) \text{GO TO} 3220

IF(P(L2) \lt \text{PVAP}(I)) \text{GO TO} 3230

3210 P2 = \text{PVAP}(I)

ZT = Z(L1)

P1 = C(L1)

IF(C(L1) \lt \text{PVAP}(I)) \text{GO TO} 3500

P1 = \text{PVAP}(I)

GO TO 3600

3220 P1 = \text{PVAP}(I)

ZT = Z(L2)

P2 = C(L2)

IF(C(L2) \lt \text{PVAP}(I)) \text{GO TO} 3500

P2 = \text{PVAP}(I)

GO TO 3600

3230 IF(P(L1) - P(L2)) \geq 3210, 3400, 3220

3300 IF(DT(1) \lt 0.0) .AND. DT(2) \lt 0.0) \text{GO TO} 3400

IF(DT(1) \lt 0.0) \text{GO TO} 3220

GO TO 3210

3400 P1 = \text{PVAP}(I)

P2 = \text{PVAP}(I)

GO TO 3600

3500 IF(VY \lt 0.0) \text{GO TO} 3600

\text{VFAC} = D(3) \times \text{VALY}^{2}

QV = \text{VFAC} \times ZT/2.0 \times (\sqrt{1.0 + 4.0 \times \text{ABS}(P1-P2)/(\text{VFAC} \times ZT^{2})}) - 1.0

QV = \text{SIGN}(QV, P1-P2)

IF(P1 \lt \text{PVAP}(I)) \text{GO TO} 3700

GO TO 3800

3600 QV = 0.0

GO TO 3750

3700 P(L1) = C(L1) - QV \times Z(L1)

Q(L1) = QV

3750 Q(L2) = (C(L2) - P2)/Z(L2)

P(L2) = P2

DT(2) = DT(2) - QV - Q(L2)

IF(QV \lt 0.0) \text{GO TO} 3850

RETURN

3800 P(L2) = C(L2) - QV \times Z(L2)
6.21.7 (Continued)

Q(L2)=QV

3850 Q(L1)=(C(L1)-P1)/Z(L1)
P(L1)=P1
DT(1)=DT(1)+QV-Q(L1)
RETURN
END
6.22 SUBROUTINE VALV22

Subroutine VALV22 describes a generalized four-way valve which can be a segment of a servo actuator (connected to it by lines) or control any servo or utility type function.

The valve position is derived from input data, tabulated versus time. The actual position is obtained using linear interpolation between the nearest two data inputs.

The valve orifice areas are derived using a variable law which can effectively describe leakage, open center, underlap and overlap conditions, with various pressure gains.

The valve calculations are treated somewhat differently to other components. Pressures at the valve ports are obtained using a matrix technique with an iterative solution. This method can easily be extended to include other flow paths such as the first stage flow for an electro-hydraulic servo valve.

VALV22 will also be expanded in the future to include the effects of cavitation at all four ports, since fast openings or closing valves are a common source of cavitation at return and load ports, and even at the supply port under high flow, low pressure conditions.

6.22.1 Math Model

CALCULATION OF ORIFICE AREAS

Spool and sleeve type servo valves can have a variety of orifice configurations, the commonest of which are round holes and square or rectangular slots.

Because of radial clearances between the spool and sleeve, there is usually a leakage flow when the orifice is completely covered.
This leakage tends to round the ends of what would otherwise be a linear flow versus spool position characteristic. In order to simplify the flow calculations, we have assumed that the valve area is an equivalent area which allows the orifice equations to be used at all times.

The orifice equation

\[Q = \text{AREA}\times\text{Cd}\times\sqrt{2\times(\text{P}_1-\text{P}_2)/\text{RHO}} \times \text{SIGN} (\text{P}_1-\text{P}_2) \]

is used in the form

\[Q_{\text{NEW}} = \text{VA}(I)\times\text{SQRABS}(\text{CALC2}(I)-\text{CALC2}(N5)) \]

where \(\text{VA}(I) = \text{AREA}\times\text{Cd}\times\sqrt{2/\text{RHO}} \times X \)

and \(\text{CALC2}() \) are the pressures at the valve connections.

To obtain the valve area, for a given valve position, a characteristic curve is generated based on the projected cut-off position, the projected max open position and the max valve area.

The maximum valve area is combined with the discharge coefficient and the \(\sqrt{2/\text{RHO}} \) to give an orifice resistance. The formula used to generate the characteristic curve is

\[X = (0.5 + \text{XT}/(1 + \text{ABS} (\text{XT}\times 2)^\text{Y})^{1/\text{Y}}) \]

where \(0 \leq X \leq 1.0 \) for all values of XT.

when \(\text{Y} \) is large ie. \(64 \), the characteristic curve is almost a straight line between projected cut-off and projected maximum opening.

Family of curves for different values of \(\text{Y} \) is shown in Figure 6.22-3.
FIGURE 6.22-1

TYPE NO. 22 FOUR-WAY VALVE

FIGURE 6.22.2
VALV22 MATRIX MODEL
CALCULATION OF PORT PRESSURES

A pseudo linear admittance $G(I)$ for each valve port is calculated from the pressure across the port and the flow through it.

$$G(I) = \frac{\Delta P}{Q(I)}$$

with all the valve admittances evaluated, the circuit shown in Figure 6.22-3 is solved using a matrix method to obtain the pressures at $P(I)$. The calculated pressures are then used to obtain updated values of $Q(I)$ and the iteration is repeated until the changes in flows becomes negligible.

6.22.2 Assumptions

The technique used to solve the group of equations does not have any significant problems but may have some stability problems when the cavitation model is added.

The pseudo linearization of the orifice coefficients is valid since it is updated by the latest flow guess.

6.22.3 Computations

1000 Section

A test is made to determine if a port is not dimensioned, which can happen if it is a 3-way or 2-way valve. If the area is zero or XT is zero, XT is set to .0001 to prevent the computation blowing up when XT is used in the denominator.

There is no need for a 2000 section since it is not necessary to initialize any parameters.
REVERSE CURVE D = 8.0
B = -0.4

PROJECTED CUTOFF POSITION, A = 0.0
PROJECTED MAX OPENING POSITION, B = 0.5
MAXIMUM EFFECTIVE VALVE AREA, C = 1.0
CHARACTERISTIC CURVATURE COEF.

D = 2.0
= 2.7
= 4.0
= 8.0
= 32.0

EFFECTIVE VALVE AREA CHARACTERISTICS
1500 SECTION

The steady state section is straightforward; the valve impedance is added to the leg PQLEG (INEL,8) for each call to a particular connection, and the pressure drop across the particular valve port is subtracted from PQLEG (INEL, 11).

Note: When some parts are closed during steady state, it is not essential to have them in a leg as an element. If the connection is not called it will only add a small transient flow when the transient section is started.

3000 SECTION

Figure 6.22-2 shows a simplified flow diagram of the 3000 section.

The first computation is a call to INTERP, to find the valve position.

In the call statement D(L(5)) is the start of the time table, D(L(6)) is the start of the valve position table and L(7) is the number of tabulated values in each of the tables, a first order interpolation is used. XV the valve position at time T is returned.

In the next section a DO loop is used to calculate XT and the value of VA().

In the next section QNEW, the new flows, are calculated using the old pressures which were loaded into CALC2().

The calculated flow is compared with the previous flow value, if the absolute value of the difference exceeds .01, an error indicator N is set to 1.

Using an average of the new and old flow, G() is calculated.

A test is then made for too many iterations or if N = 0, if so the calculation is considered complete. The iteration limit is not normally needed.

If both tests fail, the next section loads the CALC1() and CALC2()
CALL INTERP TO FIND VALVE POSITION

CALCULATE VALVE PORT COEFFICIENTS, \(VA(\) \), AND SET GCAV(\) EQUAL TO ZERO FOR EACH PORT

\[K = 0 \]

CALCULATE LEG ADMITTANCES FOR EACH PORT

LOAD CALC1 AND CALC2 ARRAYS

CALL SIMULT

\[N = 0 \]
\[K = K + 1 \]

FOR EACH PORT, CALCULATE NEW FLOWS AND AVG WITH OLD FLOWS. SET \(N = 1 \) IF THE DIFFERENCE BETWEEN FLOWS EXCEED ALLOWABLE ERROR. SET GCAV(\) TO ZERO.

IF \(\text{CALC2}(\) \)\(\leq \text{PVAP} \) SET GCAV(\) = 10. E10

IS \(N = 0 \) OR \(K > 20 \) ?

\[\text{NO} \]

\[\text{YES} \]

CALCULATE AND STORE PRESSURES AND FLOWS AT LINE CONNECTIONS

RETURN

VALV22 LOW DIAGRAM
FIGURE 6.22-4

6.22-7
arrays and calls SIMULT to obtain new values for the pressures at the valve
ports and restarts the calculation. The last section stores the flows and
pressures at the line junctions before returning.

6.22.4 Approximations - Not applicable.

6.22.5 Limitations

The current limitation of VALV22 is the possible need for a variable
orifice coefficient, particularly in the overlap region.

An undesirable feature is the need for up to four nodes at the
junctions with the lines when all the parts have a significant flow.

The extra four nodes require a significant amount of computation and
extra storage space in the CALC1() array of SSDATA.

6.22.6 Variable Names

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALC1()</td>
<td>Solution array</td>
<td></td>
</tr>
<tr>
<td>CALC2()</td>
<td>Solution array</td>
<td></td>
</tr>
<tr>
<td>G()</td>
<td>Leg admittances</td>
<td>CIS/PST</td>
</tr>
<tr>
<td>GCAV()</td>
<td>Pseudo Cavity Impedance</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Integer counter</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Integer counter</td>
<td></td>
</tr>
<tr>
<td>LEI</td>
<td>Data address in PARME</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Integer counter</td>
<td></td>
</tr>
</tbody>
</table>
Variable Names (cont'd)

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>Address variables which are rolled during calculation</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDELTAP</td>
<td>Leg pressure drop</td>
<td>PSI</td>
</tr>
<tr>
<td>QCAV()</td>
<td>Cavitation flow (not used)</td>
<td>CIS</td>
</tr>
<tr>
<td>QNEW</td>
<td>Leg flow</td>
<td>CIS</td>
</tr>
<tr>
<td>VA()</td>
<td>Valve orifice impedance array</td>
<td>CIS/PSI^{1/2}</td>
</tr>
<tr>
<td>XT</td>
<td>valve position</td>
<td>IN</td>
</tr>
<tr>
<td>XV</td>
<td>Temporary variable</td>
<td></td>
</tr>
</tbody>
</table>
SUBROUTINE VALV22 (D,DT,DD,L)

C**** REVISION AUGUST 5, 1975 ****
DOUBLE PRECISION DD
COMMON NTOLPL,NTOLPU,IPT,IPOINT,KPTS,INEL,KNLL,NTOPL,NLPLT(61,3),
1 PLEG(90,12),LCG(90,10),ILEG(1400),PHN(90),QN(90)
COMMON/SUS/PAH(150,2),PH(1500),QN(1500),P(300),Q(300),C(300)
1,2(300),RHO(20),S2ORHO(20),VISC(20),BULK(20),TEMP(20),PVAL(20)
2,ATPRES,T,DELT,TINIT,PTITLE,M,L,P,TITLE(20),LEG,ICON
3,KTEK(99),LSTART(150),NLPLT(150),LTYPE(99),NC(99),INX,IN
4,INV,ISTEP,PLINE,INEL,IND,ENTR,INLINE,INELL,LINDL,INOC,LPLT
5,NLPLT,LDS
DIMENSION CALC1(4,4),CALC2(4,4),VA(4),G(4),QCAV(4),GCAV(4)

DATA N1,2,3,4/1,2,3,4/
DATA CALC2,QCAV/8*0.0/
IF (ENTR) 1000,2000,3000
C *** INITIALIZE COMPONENT CONSTANTS
1000 CONTINUE
IF (INEL.NE.0) GO TO 1500
LI=LI+1
L(6)=17+LI
L(5)=17
L(7)=L(11)
L*3=L(6)

SET UP VALVL CONSTANTS FOR STEADY STATE

DO 1004 I=1,4

N=4*I-3

D(N+2)=D(N+2)*S2ORHO(XTENX(I))/XTENX(I)*.65

D(4)=D(4)+D(N+1)/2.

IF (D(N+2).LE.0.0) D(N+2)=0.0001

D(N+1)=D(N+3)

XT=(L*3-D(N))/D(N+1)

IF(D(N+2). LE.0.0) D(N+3)=2.0

1**2=(1.0+3.02**2)**2

1004 DT(I)=.0.0

RETURN

C

C****STEADY STATE SECTION ****
C
1500 CONTINUE

PDELT=PLEG(INEL,2)*(PLEG(INEL,1)/DT(KSL+4))**2

PLEG(INEL,11)=PLEG(INEL,11)-PDELT

PLEG(INEL,5)=PLEG(INEL,8)+1.9/DT(KSL+1)**2

DT(KSL)=PLEG(INEL,1)*PLEG(INEL,2)

RETURN

BESTAVAILABLECOPY
6.22.7 (Continued)

C
2000 DO 2002 I=5,3
2002 DT(I)=0.0
RETURN
C
*** TRANSIENT CALCULATION SECTION
C
3000 CONTINUE
C
*** CALL INTERP TO FIND VALVE POSITION
CALL INTERP(T,D(L(5)),D(L(6)),10,L(7),XV,N)
C
*** SET UP VALVE ARLAS AND GLT VALUES FOR C AND Z
C
DO 3100 I=1,4
N=4*I-3
XT=(XV-D(N))/D(N+1)
VA(I)=D(N+2)*(.5*XT/(1+ABS(XT*2.))*D(N+3))
1 **(1.0/D(N+3)))+.00001
SCAV(I)=0.0
3100 CONTINUE
K=0
GO TO 3240
3150 N=K+1
C
*** CALCULATE NEW FLOWS AND SET COUNTER FOR TOO LARGE AN ERROR
C
*** CALCULATE VALUES FOR ORIFICES ADMITTANCES
C
DO 3290 I=1,4
N5=I+1
IF(N5.EQ.5) N5=1
QNEW=VA(I)*SQRABS(CALC2(I)-CALC2(N5))
DT(I)=DT(I)*.3+QNEW*.7
IF(ABS(DT(I)-ONLY).GT.0.301/(ABS(QNEW)+1.0)) N=1
SCAV(I)=0.0
IF(CALC2(I).LE.PVAP(HTEMP(I-40)).OR.DT(I+4).GT.0.0) SCAV(I)=10.03
3290 CONTINUE
C
*** CHECK ERROR INDICATOR OR TOO MANY IERATIONS
C
IF(N.EQ.0.OR.K.GT.20) GO TO 3400
3240 DO 3250 I=1,4
3250 G(I)=VA(I)**2/(ABS(DT(I)+.00001))
C
*** LOAD CALC1 AND 2 ARRAYS
C
DO 3300 I=1,4
IF(DT(I+4).GT.0.0) SCAV(I)=10.03
CALC1(I,N1)=1.0/Z(L(I))+3(N4)+G(N1)+SCAV(I)
CALC1(I,N2)=-G(N1)

BEST AVAILABLE COPY
6.22.7 (Continued)

CALC1(I,N4)=0.0
CALC1(I,N4)=-G(N4)
CALC2(I)=C(L(I))/Z(L(I))+PVAP(KTEMP(I:W))*GCAV(I)
N5=N1
N1=N2
N2=N3
N3=N4
N4=N5

3300 CONTINUE

C *** CALL SIMULT TO CALCULATE VALVE PORT PRESSURES
C
CALL SIMULT(CALC1,CALC2,4,N5)
GO TO 3150

3400 CONTINUE

C *** RETURN PRESSURES AND FLOWS TO THE LINE ADDRESSES
C
DO 3500 I=1,4
LI=L(I)
P(LI)=CALC2(I)
Q(LI)=(C(LI)-CALC2(I))/Z(LI)
VAP=PVAP(KTEMP(I:W))
IF(P(LI).GT.VAP.AND.DT(I+1).LT.0.0) GO TO 3500
N5=I+1
IF(N5.EQ.5) N5=1
DT(I+4)=DT(I+4)-Q(LI)-DT(I)+DT(N5)
IF(DT(I+4).LT.0.0) DT(I+4)=0.0

C3450 WRITE(6,2) N,C(LI),CALC2(I),C(LI),Z(LI),DT(I)
C 2 FORMAT(1X,I5,5L12.5)

3500 CONTINUE
RETURN
END
6.31 **SUBROUTINE CVAL31**

Subroutine CVAL31 models a simple undamped check valve shown in Figure 6.31-1, which is typical of the many check valves in use in industry and on aircraft. Although the actual mechanical configurations vary greatly the basic method of operation stays about the same.

The subroutine is not limited, and can be used for any number of check valves, within the limits of the common storage.

6.31.1 **Math Model**

The check valve is assumed to have a variable orifice characteristic between the fully open and fully closed positions.

Reverse flow can take place transiently until the valve closes.

No effort has been made to include the effects of flow forces on the poppet since these are not very well defined theoretically, and depend upon the actual valve geometry.

The model used to calculate the steady state pressure drop assumes a straight line flow/pressure drop characteristic between the cracking pressure and the fully open position. The cracking pressure drop is set equal to the inlet area divided by the spring preload and the slope, DT(5), is set to the change in pressure required to fully open the poppet divided by the flow at that condition which is

\[
DT(4) = \frac{D(1) \times CV \times S2ORHO}{\sqrt{DT(2)}}
\]

where D(1) is considered to be the maximum valve area.

The orifice resistance at the fully open position DT(10), is used when the flow exceeds DT(4). Figure 6.31-2 shows graphically how this is done.

In the transient analysis the flow through the valve is calculated using
FIGURE 6.31-1
TYPE NO. 31 CHECK VALVE

FIGURE 6.31-2
CVAL 31 STEADY STATE PRESSURE DROP CHARACTERISTICS
the normal valve equations, with the valve orifice area being proportional to
the valve displacement.

The valve position is calculated using an iterative procedure.
The flow is first calculated using the last position of the valve, and
the latest values of the line characteristics.

\[QA = \text{SIGN}(CA \times (-1 + \sqrt{1 + CB \times \text{ABS}(CDIF)})) \times CDIF \]

Where: \(CDIF = C(L(1)) - C(L(2)) \)
\(CA = DT(1) \times XNEW^2 \)
\(CB = DT(2) / XNEW^2 \)
\(DT(1) = CA \times (Z(L(1)) + Z(L(2))) \)
\(DT(2) = 2.0 / (CA \times (Z(L/1) + Z(L/2)))^2 \)

Where the temporary variable \(CA \) is
\(CA = (CV \times D(1) / D(5))^2 / \rho \)

With \(Q \) known the two pressures can be calculated:
\[P_1 = C(L(1)) - QA \times Z(L(1)) \]
\[P_2 = C(L(2)) + QA \times Z(L(2)) \]

These values of pressure at either side of the valve are then used to calculate
the force on the valve poppet.

\[F = (P_1 - P_2) \times D(1) - D(6) - D(4) \times XNEW - 0.05 \times VNEW \]

Where: \(D(1) \) = Poppet area
\(D(4) \) = Spring rate
\(D(6) \) = Spring preload

The .05 term is a damping factor.

The poppet acceleration:
\[ANEW = F / D(3) \]
\[= \text{FORCE} / \text{Poppet mass} \]

The velocity and position:
\[VNEW = VLST + (ALST + ANEW) / 2 \times \text{DELT} \]
\[XNFW = XLST + (VLST + VNEW) / 2 \times \text{DELT} \]
XNEW, the new calculated position, has to be tested for position limits. A lower limit of 0.00001 inches is used to allow some leakage and to prevent division by zero in the computation.

6.31.2 Limitations

The model does not account for displacement flow due to poppet motion, for the variations in orifice characteristics with poppet position, for secondary pressure drops due to other flow restrictions and for flow forces on the poppet.

The simple integration method which was chosen to save computation time and cost will not give very good results for very fast transients but since the poppet will normally be fully open or closed for the majority of the time, the above limitations were considered to be acceptable for a component that could be used many times in a system.

6.31.3 Computations

1000 Section - In the 1000 section, the steady state valve characteristics are calculated, ready for use in the steady state entry, since simple characteristics are assumed. The computation mainly consists of calculating and storing the temporary variables.

1500 Section - This section is called from LEGCAL via COMFE using either CON #1, if the check valve is connected so that the free flow direction is the same as the positive flow in the leg, or CON #2 if the valve is in backwards.

When the valve is closed,

IENTR = 1 & Q5 = -1 or IENTR = 2 Q8 = 1.

The valve impedance is set at 1.0E8, which is essentially open circuit.
When the valve is fully open (IENTR = 1, QS = 1, or IENTR = 2, QS = -1) plus Q > DT(4), the valve orifice impedance DT(10) is added into the Q**2 term of LEGCAL formulae.

With the same basic conditions but with Q > DT(4) the valve characteristics are assumed to be a constant pressure differential, plus a linear flow/pressure gain.

When the flow guess is negative for CON #2 the constant differential becomes a pressure rise.

The three modes of the check valve, closed, partially open and fully open will show up in the leg constants particularly when a negative flow guess is tried, there will be a sudden increase in the formulae 'Q' constant.

2000 Section - In the 2000 section new variables are calculated for use in the transient section in order to cut down on running time.

3000 Section - The calculations for Q, P1 and P2, and PISTON acceleration follow the theory discussed in 6.31.2 above.

An iterative procedure is used to improve the calculation using an iteration limit of six, or an error of less than .001 inches between successive values of XNEW, to terminate the iteration.

Under normal operation, the valve will be either fully open or fully closed, so that there will be no iterations.

The calculated value of XNEW is checked and if it is at a stroke limit, and if the calculated acceleration or velocity are in the limit direction they are set to zero.
These limits are not applied when the acceleration or velocity are away from the end of stroke.

6.31.4 Assumptions

The assumptions made are associated with the valve orifice calculations and the lack of flow force effects. These assumptions speed the computation but can be a source of inaccuracy.

6.31.5 Limitations

The main limitation is the lack of a cavitation simulation which can cause large inaccuracies when the pressures drop below vapor pressure.

6.31.6 Variable Names

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALST</td>
<td>Last poppet acceleration</td>
<td>IN/SEC**2</td>
</tr>
<tr>
<td>ANEW</td>
<td>Latest poppet acceleration</td>
<td>IN/SEC**2</td>
</tr>
<tr>
<td>CA</td>
<td>Orifice variable</td>
<td>--</td>
</tr>
<tr>
<td>CB</td>
<td>Orifice variable</td>
<td>--</td>
</tr>
<tr>
<td>CDIF</td>
<td>Characteristic difference</td>
<td>PSI</td>
</tr>
<tr>
<td>CV</td>
<td>Discharge coefficient</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>F</td>
<td>Force on valve poppet</td>
<td>LBS</td>
</tr>
<tr>
<td>MM</td>
<td>Iteration DO loop counter</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Con #1 pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>P2</td>
<td>Con #2 pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>QA</td>
<td>Valve flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QS</td>
<td>Leg flow sign</td>
<td></td>
</tr>
<tr>
<td>VLST</td>
<td>Last poppet velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>VNEW</td>
<td>New poppet velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>XLST</td>
<td>Last poppet position</td>
<td>IN</td>
</tr>
<tr>
<td>XNEW</td>
<td>New poppet position</td>
<td>IN</td>
</tr>
<tr>
<td>XPREV</td>
<td>Iteration poppet position</td>
<td>IN</td>
</tr>
</tbody>
</table>
SUBROUTINE CV31 (D, DT, DD, L)

DOUBLE PRECISION D

DIMENSION D(1), DT(1), DD(1), L(1)

C ** REVISED AUGUST 5, 1975 **

DOUBLE PRECISION

COMMON NTCLPL, NTCLPL, IPT, IPOINT, NPTS, INLL, KNEL, NTCLPL, NLPLT(61, 3),
1 P066(90, 12), LCS(90, 12), ILE(1400), PH(90), ON(90)

COMMON/SUB/P, (150, 9), PN(1500), ON(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), S2ORH(20), VISC(20), SULK(20), TLMP(20), PVAP(20)
2, ATMP, DELT, TOPL, PLDEL, PI, TITLE(20), LEGN, ICOS
3, TET, (99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTEP, ONLINE, NEL, IND, INTR, ONLINE, KNEL, NLEG, NODE, NLPLT
5, NLPTS, NDS

C(1) = INTERNAL DIAMETER (INLET)
C(2) = INTERNAL DIAMETER (OUTLET) NOT IN USE
C(3) = POPPET MASS
C(4) = SPRING CONSTANT
C(5) = MAX POPPET DISPLACEMENT
C(6) = SPRING PRELOAD
C(7) = CONSTANT STORAGE
C(8) = CONSTANT STORAGE
C(9) = STORAGE FOR FULL Y OPEN ORIFICE COEF.
C(10) = STORAGE FOR PREVIOUS POPPET VELOCITY
C(11) = STORAGE FOR PREVIOUS POPPET ACCELERATION
C(12) = STORAGE FOR PREVIOUS POPPET POSITION

100 CONTINUE

IF(INLL) 120, 1010, 1500
1000 CV = 0.65
1010 D(1) = D(1)**2.*PI/4.
1020 DT(1) = D(6)/D(1)

DT(2) = D(4)*D(5)/D(1)+DT(1)
DT(3) = (P066(KLPLP(IND))/2.0)/(D(1)*CV)**2
DT(4) = D(1)*CV*SORT(DT(2)) * S2ORH(KLPLP(IND))
DT(5) = (DT(2)-DT(1))/DT(4)

RETURN

C SECTION FOR STOCHASTIC CALCULATION

1500 CONTINUE

M = PO66(INLL, 1)
N = PO66(INLL, 2)
LC = INLL, 6

IF(L(3).EQ.1.) GO TO 1550

THE VALVE IS CONVECTED CONVOLUTIONAL

IF(L(3).NE.0) GO TO 1000

IF(OS.LT.1.0) GO TO 1700

GO TO 1650

C THE VALVE IS CONVECTED BACKWARDS

1550 PO66(INLL, 6) = 1.065+PO66(INLL, 6)

BEST AVAILABLE COPY
6.31.7 (Continued)

PQLEG(INEL,11)=PQLEG(INEL,11)-QA*OS*1.0LES
RETURN

1700 IF (QA.LE.DT(4)) GO TO 1800
C THE VALVE IS FULLY OPEN
IF(PQLEG(INEL,3).LT.DT(4)) PQLEG(INEL,3)=DT(4)
DT(6)=D(5)
PQLEG(INEL,8)=DT(3)+PQLEG(INEL,8)
PQLEG(INEL,11)=PQLEG(INEL,11)-OS*QA**2*DT(3)
RETURN
C THE FLOW IS LESS THAN THE 'FULL OPEN FLOW'

1370 PQLEG(INEL,11)=PQLEG(INEL,11)-DT(1)*OS
1 -QA*OS*DT(5)
DT(6)=((DT(5)*QA)/DT(2))*D(5)
IF(PQLEG(INEL,4).GT.DT(4)) PQLEG(INEL,4)=DT(4)
PQLEG(INEL,5)=PQLEG(INEL,5)-DT(1)*OS
PQLEG(INEL,6)=PQLEG(INEL,6)+DT(5)
RETURN

C****ILLEGAL INPUT DATA TERMINATES PROGRAM:*****

1900 WRITE(6,999)
999 FORMAT(10X,33X)PROGRAM STOP IN SUBROUTINE CVALE31)
STOP 1511

2000 CONTINUE
D(2)=D(1)/D(5)/(1.0+O(5))
CA=((CD*O(1))/D(5))**2/1000*E(K,L)(K,L))
DT(1)=CA*(Z(L(1))+Z(L(2)))*O(4)
DT(2)=2.0/(CA*(Z(L(1))+Z(L(2)))*O(2)
DT(4)=0.
DT(5)=0.
RETURN

3000 CONTINUE
CDIF=C(L(1))-C(L(2))
XLST=DT(6)
VLST=DT(4)
ALST=DT(5)
XSLN=XLST
VALN=VLST
GO TO 3100

3100 A=1.0
XPREV=XNEX
IF(XNEX.LT.0.0) GO TO 3050
XSQ=(XNEX+.0001)**2
CD=DT(2)/XSQ
CA=DT(1)*XSQ
QA=SIGN(CA*(-1+SIGN(1+CA*ABS(CDIF))))*CDIF
GO TO 3060

3050 QA=0.0

3050 P1=C(L(1))-OA*Z(L(1))
P2=C(L(2))+CA*Z(L(2))
P=(P1-P2)*O(1)-O(6)-O(4)*XNEX-.05*VNLG
C P1=+.43*(P1-P2)*O(2)*XLST/(1.+XLST)
C P1=2.*CV*ABS(P1-P2)*O(2)*XLST/(1.+XLST)
6.31.7 (Continued)

C P=P-P1
 ANEW=F/D(3)
 VNEW=VLST+(ANEW+ALST)/2*DELT
 XNEW=XLST+(VNEW+VLST)/2*DELT
 IF(XNEW.LT.0.00001) XNEW=0.0
 IF(XNEW.GT.D(5)) XNEW=D(5)
 IF(ABS(XNEW-XPREV).LT.0.001) GO TO 3150

3100 CONTINUE
C WRITE(6,999) P1,P2,P,OA,Z(L(1)),Z(L(2)),C(L(1)),C(L(2))
999 FORMAT(10X,8F12.4)
 IF(XNEW.GT.0.0) GO TO 3200
 IF(ANEW.LT.0.0) DT(5)=0.0
 IF(VNEW.LT.0.0) DT(4)=0.0
 GO TO 3500

3200 IF(XNEW.LT.D(5)) GO TO 3400
 IF(ANEW.GT.0.0) DT(5)=0.0
 IF(VNEW.GT.0.0) DT(4)=0.0
 GO TO 3500

3400 DT(4)=VNEW
 DT(5)=ANEW
 DT(6)=XNEW
 P(L(1))=P1
 P(L(2))=P2
 C(L(1))=OA
 C(L(2))=-OA
 RETURN
 END
Subroutine CREL32 models a priority valve shown in Figure 6.32-1.

The subroutine models the priority valve as a combination check and relief valve. The check and relief valve are considered to be arranged in parallel between connection #1 and #2. The relief valve cracking pressure is referenced between connections #2 and #3. When the relief valve is closed, flow is allowed in only one direction from connection #1 to connection #2 through the check valve which prevents flow in the opposite direction. When the relief valve is open, flow is allowed in both directions between connections #1 and #2.
6.32.1 **Math Model**

The priority valve has several modes of operation depending upon the pressure differential between connections #2 and #3 and connections #1 and #2.

1) $P_2 - P_3 >$ relief valve cracking pressure

 The relief valve is open and flow is allowed in either direction between connections #1 and #2.

2) $P_2 - P_3 >$ relief valve cracking pressure and $P_2 - P_3 >$ relief valve reseat pressure.

 If the relief valve is open, flow is allowed in both directions.

 If the relief valve is closed and $P_1 - P_2 >$ check valve cracking pressure there is leakage flow through the relief valve.

 If the relief valve is closed and $P_1 - P_2 >$ check valve cracking pressure there is flow through the check valve from connection #1 to connection #2.

3) $P_2 - P_3 <$ relief valve reseat pressure

 $P_1 - P_2 <$ check valve cracking pressure, the relief valve and check valve are closed and there is leakage flow through the relief valve.

 $P_1 - P_2 >$ check valve cracking pressure, the relief valve is closed and there is flow through the check valve from connection #1 to connection #2.

For steady state calculations the relief valve is assumed to be open.

A linear relationship between flow and pressure is assumed to calculate the pressure drop through the valve.

$$PQLEG(TNEL,6) = D(TZREL) + PQLEG(INEL,6)$$

$$Q1 = PQLEG(INEL,1)$$

$$PQLEG(INEL,11) = PQLEG(INEL,11) - D(TZREL) \times Q1 \times PQLEG(INEL,2)$$

where, $PQLEG(INEL,6)$ is the total impedance of the leg.
D(TZREL) is the impedance through the relief valve
Q1 and PQLEG(INEL,1) is the flow through the leg.
PQLEG(INEL,11) is the upstream pressure of the leg.

In the transient calculations the pressure differential between
connections #2 and #3, and #1 and #2 are compared with given cracking
and reseat pressures for the relief valve and the check valve to
determine which of the flow conditions described above exist at that
particular time step. Once the flow condition is established an impedance
based on this condition is selected and used to calculate the pressures
and flows at connections #1, #2 and #3.

\[
Q(L1) = \frac{(C(L1) - C(L2))/(Z(L1) + Z(L2) + ZI)}
\]

\[
Q(L2) = -Q(L1)
\]

\[
Q(L3) = 0.0
\]

\[
P(L1) = C(L1) - Q(L1) * Z(L1)
\]

\[
P(L2) = C(L2) - Q(L2) * Z(L2)
\]

\[
P(L3) = C(C3)
\]

where:

\[
Q(L1), Q(L2), Q(L3) \text{ are the flows at connections 1, 2 and 3,}
\]

\[
Z(L1) \text{ and } Z(L2) \text{ are the impedance at connections 1 and 2,}
\]

\[
ZI \text{ is the impedance of the valve.}
\]

\[
P(L1), P(L2) \text{ and } P(L3) \text{ are the pressures at connections 1, 2 and 3.}
\]

6.32.2 Assumptions

The relief valve is assumed to be open during the steady state
calculations to allow the flows and pressures to balance with the rest of
the system.

The check valve is assumed to open and close instantaneously.
The reseat pressure for the check valve is assumed to be equal to the cracking pressure.

6.32.3 Computation

1500 Section - In the 1500 section the impedance for the valve is added to the impedance for the leg, PQLEG (INEL,6). A new upstream pressure PQLEG,(INEL,11), is calculated using the impedance of the open relief valve.

3000 Section - In the 3000 section an impedance for flow through the valve is selected depending upon the pressure differentials between connections #2 and #3 and connections #1 and #2. This impedance is used to calculate the flows at pressures at each of the connections.

6.32.4 Approximations

None

6.32.5 Limitations

The CREL32 subroutine does not include the effects of inertia or damping on the valve components. Therefore, use of the CREL32 subroutine where these effects may be significant may give erroneous results.

6.32.6 Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(CLOS)</td>
<td>Relief Valve Reseat Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DELP1</td>
<td>Pressure Drop Across Connect. 2 and 3</td>
<td>PSI</td>
</tr>
<tr>
<td>DELP2</td>
<td>Pressure Drop Across Connect. 1 and 2</td>
<td>PSI</td>
</tr>
<tr>
<td>D(IPCH)</td>
<td>Check Valve Cracking Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(IPREL)</td>
<td>Relief Valve Cracking Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(IZCH)</td>
<td>Check Valve Impedance</td>
<td>PSI/CIS</td>
</tr>
</tbody>
</table>

6.32-4
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(IZLK)</td>
<td>Relief Valve Leakage Impedance</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>D(IZREL)</td>
<td>Relief Valve Impedance</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>L1</td>
<td>Connection No. 1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>Connection No. 2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Connection No. 3</td>
<td></td>
</tr>
<tr>
<td>NPOSCK</td>
<td>Temporary Variable</td>
<td></td>
</tr>
<tr>
<td>NPOS1</td>
<td>Temporary Variable</td>
<td></td>
</tr>
<tr>
<td>NPOS2</td>
<td>Temporary Variable</td>
<td></td>
</tr>
<tr>
<td>DT(POSO)</td>
<td>Valve Position Indicator</td>
<td></td>
</tr>
<tr>
<td>DT(P1)</td>
<td>Pressure at connection #1</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(P2)</td>
<td>Pressure at connection #2</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(P3)</td>
<td>Pressure at connection #3</td>
<td>PSI</td>
</tr>
<tr>
<td>ZI</td>
<td>Temporary Variable</td>
<td></td>
</tr>
<tr>
<td>ZV</td>
<td>Impedance of the Valve</td>
<td>PSI/CIS</td>
</tr>
</tbody>
</table>
6.32.7 Subroutine Listing

SUBROUTINE CRR3L32 (D, OT, DD, L)
C *** REVISED AUGUST 5, 1975 ***
DOUBLE PRECISION D
DIMENSION D(6), OT(5), DD(1), L(4)
COMMON WTEPL, WTCPP, IPT, IPTINT, NPTS, INEL, KEL, WCOPL, MLPL, (61, 3),
1 POLEG(90, 12), LCS(90, 10), ILLEG(140), PN(90), QN(90), PLX(90)
COMMON/SUB-PARM/(150, 9), PN(1500), QN(1500), P(300), C(300), D(300)
1, Z(300), RHO(20), S2RHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATRES, T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LGSP, ICON
COMMON/CEMPL/P(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INK, INH
4, INV, LSTEP, LINL, ULL, INDD, IENTR, ANLINL, MLNL, MLLEG, INNACL, INPLOT
5, NNEPTS, NDS
INTEGER POSO, CLOS, P1, P2, P3, ZV
DATA IPREL/1, CLOS/2, IRREL/3, IZCH/4, IZLK/5, IPCH/6, POSO/1/
1, P1/2, P2/3, P3/4, ZV/5/
IF(INENTR) 1900, 2000, 3000
1000 CONTINUE
DT(POSO)=1.0
IF(INEL.NE.0) GO TO 1500
IF(L(4).EQ.0) GO TO 1060
IF(INV) 1030, 1050, 1040
1030 IF(INVL.25.0) GO TO 1045
GO TO 1050
1040 IF(INVL.25.0) GO TO 1050
1045 L(4)=1
GO TO 1050
1050 L(4)=0
1060 CONTINUE
RETURN
C
C STEADY STATE SECTION
1500 IF (KREL-2) 1600, 1700, 1700
1509 D1P=D(IZREL)
IF(L(4).NE.0) GO TO 1510
D1P=D(IZLK)
DT(POSO)=-1.0
N=LCS(INEL, 3)
PLX/(4)=20.
QN(4)=D(CLOS)*40.-POLEG(INEL, 1)*POLEG(I-4, 2)
LCS(INEL, 7)=5
1510 POLEG(I-4, 6)=D1P+POLEG(INEL, 6)
DI=POLEG(INEL, 1)
DT(P1)=POLEG(INEL, 11)
POLEG(INEL, 11)=POLEG(I-4, 11)-DIAP*DI*POLEG(INEL, 2)
DT(P2)=POLEG(INEL, 11)
DT(ZV)=DIAP
LCS(INEL, 7)=5
1700 RETURN
2000 CONTINUE
RETURN
3000 CONTINUE
6.32.7 (Continued)

L1 = L(1)
L2 = L(2)
L3 = L(3)
\(\gamma(L3) = 0.0 \)
P(L3) = C(L3)
DT(P3) = P(L3)
DELP1 = DT(P2) - DT(P3)
DELP2 = DT(P1) - DT(P2)
NPOS1 = DELP1/D(IPREL)
NPOS2 = DELP1/D(CLPL)
NPOSCK = DELP2/D(IPCCH)
IF(DT(POSO)) 3100, 3300, 3320
3100 IF(NPOS1) 3200, 3130, 3120
3120 ZI = SORT(DT(ZV))
DT(POSO) = 1.0
GO TO 3400
3130 DT(POSO) = -1.0
IF(NPOSCK) 3140, 3140, 3150
3140 ZI = D(I4L)
GO TO 3400
3150 ZI = D(I4CH)
GO TO 3400
3200 WRITE(6, 999)
999 FORMAT(10X, 33HPROGRAM: STOP IN SUBROUTIN CPLL32)

STOP 32
3300 IF(NPOS1) 3290, 3320, 3310
3310 ZI = D(I4RLL)
DT(POSO) = 1.0
GO TO 3400
3320 IF(NPOS2) 3290, 3340, 3330
3330 ZI = SORT(DT(ZV))
IF(ZI.LT.2.92) ZI = 2.92
DT(POSO) = 1.0
GO TO 3400
3340 ZI = DT(ZV)**2.
DT(POSO) = 1.0
IF(ZI.GT.1100.) DT(POSO) = -1.0
GO TO 3400
3400 \(\gamma(L1) = (C(L1) - C(L2)) / (Z(L1) + Z(L2) + ZI) \)
\(\gamma(L2) = -\gamma(L1) \)
P(L1) = C(L1) - \gamma(L1)*Z(L1)
P(L2) = C(L2) - \gamma(L2)*Z(L2)
DT(P1) = P(L1)
DT(P2) = P(L2)
DT(P3) = P(L3)
DT(ZV) = ZI
C WRITE(6, 4010) XPOS1, XPOS2, XPOSCK, DT(POSO), DELP1, DELP2
C4010 FOR, I = 1, 4, \(X \), 6, I4, 14, 2X, 3L(12.4)
C WRITE(6, 4000) P(L1), \(?(L1) \), P(L2), \(?(L2) \), ZI, C(L1), C(L2), C(L3)
C4000 FOR, I = 1, 4, 12.4
RETURN
END
6.33 SUBROUTINE CVAL33

Subroutine CVAL33 models a simple undamped one-way restrictor shown in Figure 6.33-1, which is typical of the many restrictors in use in industry and on aircraft. Although the actual mechanical configurations vary greatly, the basic method of operation stays about the same.

The subroutine is not limited, and can be used for any number of one-way restrictors, within the limits of the common storage.

6.33.1 Math Model

The one-way restrictor is assumed to have a variable orifice characteristic between the fully open and fully closed positions.

Reverse flow can take place transiently through the variable orifice when the valve is closing.

The model used to calculate the steady state pressure drop assumes a straight line flow/pressure drop characteristic between the cracking pressure and the fully open position. The cracking pressure drop is set equal to the inlet area divided by the spring preload. The slope, DT(DPSQ) equals the change in pressure required to fully open the poppet divided by the flow at that condition which is

\[DT(INITQ) = D(DIAIN) \times CV \times SQRT(DT(INITDP)) \times S2ORHO(KTEMP(INK)) \]

where D(DIAIN) is considered to be the maximum valve area.

The orifice resistance at the fully open position DT(LDSA), is used when the flow exceeds DT(INITQ). Figure 5.33-2 shows graphically how this is done.

In the transient analysis the flow through the one-way restrictor is calculated using two orifices in parallel, with the valve orifice area being proportional to the valve displacement.

The valve position is calculated using an iterative procedure.
FIGURE 6.33-1

TYPE NO. 33 ONE-WAY RESTRICTOR

FIGURE 6.33-2

CVAL 33 STEADY STATE PRESSURE DROP CHARACTERISTICS FOR AN OPEN POPPET
The flow is first calculated using the last position of the valve, and the latest values of the line characteristics.

\[DT(QT) = X \times (-1. + \text{SQRT}(1. + \text{ABS}(Y)) \times \text{SIGN}(1., Y)) \]

Where:
\[X = ((\bar{Z}(L1) + \bar{Z}(L2)) \times \text{CKT}**2.)/2. \]
\[Y = 4.\times(C(L1) - C(L2))/(\text{CKT} \times (\bar{Z}(L1) + \bar{Z}(L2)))**2 \]

\text{CKT} is equal to the sum of the two orifice coefficients.

With \(Q \) known the two pressures can be calculated:

\[P1 = C(L(1)) - DT(QT) \times Z(L(1)) \]
\[P2 = C(L(2)) + DT(QT) \times Z(L(2)) \]

The values of pressure at either side of the valve are then used to calculate the force on the valve poppet.

\[F = (P1 - P2) \times D(DIAIN) - D(LOAD) - D(SPRING) \times XNEW - .05 \times VNEW \]

Where:
\[D(SPRING) = \text{Spring rate} \]
\[D(LOAD) = \text{Spring preload} \]

The .05 term is a damping factor.

The axial flow forces on the poppet in the one-way restrictor are equated with the net change of momentum as

\[F1 = 2. \times CV \times \text{ABS}(P1-P2) \times DT(ARFAC) \]

Where:
\[CV = \text{Valve discharge coefficient (.65 assumed)} \]
\[P1-P2 = \text{Pressure drop across the poppet} \]
\[DT(ARFAC) = \text{Area factor dependent on poppet position} \]

The total force on the poppet is then

\[F = F-F1 \]

The poppet acceleration:

\[ANEW = F/D(MASS) \]
\[= \text{FORCE/Poppet mass} \]
The velocity and position:

\[
\begin{align*}
V_{\text{NEW}} &= V_{\text{LST}} + (A_{\text{LST}} + A_{\text{NEW}})/2 \times \text{DELT} \\
X_{\text{NEW}} &= X_{\text{LST}} + (V_{\text{LST}} + V_{\text{NEW}})/2 \times \text{DELT}
\end{align*}
\]

\(X_{\text{NEW}}\), the new calculated position, has to be tested for position limits. A lower limit of 0.001 inches is used to allow some leakage and to prevent division by zero in the computation.

6.33.2 Assumptions

The model does not account for displacement flow due to poppet motion, for the variations in orifice characteristics with poppet position and for secondary pressure drops due to other flow restrictions.

The simplest integration method, which was chosen to save computation time and cost, will not give very good results for very fast transients but since the poppet will normally be fully open or closed for the majority of the time, the above limitations were considered to be acceptable for a component that could be used many times in a system.

6.33.3 Computations

1000 Section - In the 1000 section, the steady state valve characteristics are calculated, ready for use in the steady state entry, since simple characteristics are assumed. The computation mainly consists of calculating and storing the temporary variables.

1500 Section - This section is called from LEGCAL via COMPE. If the one-way restrictor is connected so that the free flow direction is the same as the positive flow in the leg, \(L(3)\) equals zero. \(L(3)\) equals one if the valve is in backwards. When the valve is closed, the steady state pressure drop comes from the restrictor orifice.
When the one-way restrictor is fully open plus $Q > DT(INITQ)$, the valve orifice impedance $DT(TK2)$ is added into the $Q^{*}2$ term of the LEGCAL formulae.

With the same basic conditions but with $Q < DT(INITQ)$ the valve characteristics are assumed to be a constant pressure differential, plus a linear flow/pressure gain.

When the flow guess is negative for CON #2 the constant differential becomes a pressure rise.

The three modes of the restrictor, closed, partially open and fully open will show up in the leg constants particularly when a negative flow guess is tried, there will be a sudden increase in the formulae 'Q' constant.

2000 Section - In the 2000 section new variables are calculated for use in the transient section in order to cut down on running time.

3000 Section - The calculations for $DT(QT)$, $P1$ and $P2$, and poppet acceleration follow the theory discussed in 6.33.2 above.

An iterative procedure is used to improve the calculation. When an error of less than .001 inches between successive values of $XNEW$ is reached the iteration is terminated.

Under normal operation, the one-way restrictor will be either fully open or fully closed, so that there will be no iterations.

The calculated value of $XNEW$ is checked and if it is at a stroke limit, and if the calculated acceleration or velocity are in the limit direction they are set to zero.

These limits are not applied when the acceleration or velocity are away from the end of stroke.

6.33.4 Approximations

The approximations made are associated with the valve orifice calculations. These approximations speed the computation but can be a source of inaccuracy.
6.33.5 Limitations

The main limitation is the lack of a cavitation simulation which can cause large inaccuracies when the pressures drop below vapor pressure.

6.33.6 Variable Names

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT(ALST)</td>
<td>Last poppet acceleration</td>
<td>IN/SEC**2</td>
</tr>
<tr>
<td>DT(ARFAC)</td>
<td>Area factor</td>
<td>IN**2</td>
</tr>
<tr>
<td>ANEW</td>
<td>Latest poppet acceleration</td>
<td>IN/SEC**2</td>
</tr>
<tr>
<td>D(LOEF)</td>
<td>Orifice discharge coefficient</td>
<td>-</td>
</tr>
<tr>
<td>CV</td>
<td>Discharge coefficient</td>
<td>-</td>
</tr>
<tr>
<td>D(DIAIN)</td>
<td>Inlet diameter</td>
<td>IN</td>
</tr>
<tr>
<td>D(DIAOT)</td>
<td>Outlet diameter</td>
<td>IN</td>
</tr>
<tr>
<td>D(DIAOR)</td>
<td>Orifice diameter</td>
<td>IN</td>
</tr>
<tr>
<td>DIS</td>
<td>Poppet displacement</td>
<td>IN</td>
</tr>
<tr>
<td>DT(DPSQ)</td>
<td>ΔP divided by flow</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>F</td>
<td>Force on valve poppet</td>
<td>LBS</td>
</tr>
<tr>
<td>F1</td>
<td>Axial flow force on poppet</td>
<td>LBS</td>
</tr>
<tr>
<td>DT(IN1TP)</td>
<td>Initial valve ΔP</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(IN1TQ)</td>
<td>Initial flow</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(K1)</td>
<td>Orifice constant</td>
<td>-</td>
</tr>
<tr>
<td>DT(K2)</td>
<td>Orifice constant</td>
<td>-</td>
</tr>
<tr>
<td>DT(LDSA)</td>
<td>Spring preload divided by inlet area</td>
<td>PSI</td>
</tr>
<tr>
<td>D(LOAD)</td>
<td>Spring payload</td>
<td>LBS</td>
</tr>
<tr>
<td>D(MASS)</td>
<td>Poppet mass</td>
<td>LB-SEC**2/IN</td>
</tr>
</tbody>
</table>

6.33-6
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(POPDIS)</td>
<td>Max. poppet displacement</td>
<td>IN</td>
</tr>
<tr>
<td>P1</td>
<td>Con #1 pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>P2</td>
<td>Con #2 pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>QA</td>
<td>Valve flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QS</td>
<td>Leg flow sign</td>
<td>-</td>
</tr>
<tr>
<td>DT(QT)</td>
<td>Total valve flow</td>
<td>CIS</td>
</tr>
<tr>
<td>D(SPRING)</td>
<td>Spring constant</td>
<td>LB/IN</td>
</tr>
<tr>
<td>DT(TK2)</td>
<td>Orifice constant</td>
<td>-</td>
</tr>
<tr>
<td>DT(VLST)</td>
<td>Last poppet velocity</td>
<td>LN/SEC</td>
</tr>
<tr>
<td>VNEW</td>
<td>New poppet velocity</td>
<td>LN/SEC</td>
</tr>
<tr>
<td>DT(XLST)</td>
<td>Last poppet position</td>
<td>IN</td>
</tr>
<tr>
<td>XNEW</td>
<td>New poppet position</td>
<td>IN</td>
</tr>
<tr>
<td>XPREV</td>
<td>Iteration poppet position</td>
<td>IN</td>
</tr>
</tbody>
</table>
6.33.7 Subroutine Listing

SUBROUTINE CVAL33 (D, DT, DD, L)
C**** REVISED AUGUST 5, 1975 ****
C
DOUBLE PRECISION DD
DIMENSION D(1), DT(1), DD(1), L(1)
COMMON NTEL, NTOP, NPS, NPT, INEL, INELM, NELPLT(61,3),
1 NPLS(99,12), LCS(99,10), LLEG(1400), PH(90), PD(90)
COMMON/SUB/PARN(150,150,150,150,300,300,300)
1,3(300), RHO(20), S2ORHO(20), VISC(20), 8ULX(20), TLP(20), PVAP(20)
2, ATPS, T, DELT, TFIPL, PLPEL, PI, TITLE(20), LGFL, ICON
3, KTLPL(99), LSTART(150), NLPT(150), LTYPL(99), NA(99), INX, INT
4, INT, MPNL, NLTL, INT, INEL, INT, ONEL, INELM, INT, NELPLT, NPLS
5, NELPLT, NPS
INTEGER DIAM, DIAL, SPRING, POPDIS, COPF, DIAT, DPS, TAFAC,
+ TK2, T, NPD, VST, ALST, XST, DELP, SUB
C
**** D - ARRAY ****
DATA DIAM/1/, DIA/2/, MASS/3/, SPRING/4/, POPDIS/5/
+ LOAD/6/, DIA/7/, COPF/8/
**** DT - ARRAY ****
DATA TR2/1/, DT/2/, COLL/3/, VST/4/, ALST/5/, XST/6/, DELP/7/
+ X1/8/, X2/9/, INITOP/10/, DPS/11/, LPS/12/, INIT/13/
+ TAFAC/14/, SUB/15/
D(1)=INTERNAL DIAMETER (INLET)
D(2)=INTERNAL DIAMETER (OUTLET)
D(3)=POPDIS MASS
D(4)=SPRING CONSTANT
D(5)=AX POPDIS DISPLACEMENT
D(6)=SPRING PRELOAD
D(7)=ORIFICE DIAMETER
D(8)=DISCHARGE COEFFICIENT
DT(1)=STORAGE FOR PREVIOUS POPDIS VELOCITY
DT(5)=STORAGE FOR PREVIOUS POPDIS ACCELERATION
DT(6)=STORAGE FOR PREVIOUS POPDIS POSITION
IF(INEL) 1000, 2000, 3000
1000 CONTINUE
IF(INEL) 1020, 1010, 1500
1010 CONTINUE
CV=.65
D(DIAM)=D(DIAM)*.2,*PI/4.
D(DIAT)=D(DIAT)*.2,*PI/4.
D(DIAO)=D(DIAO)*.2,*PI/4.
DT(SUB)=D(DIAM)-D(DIAM)
1020 DT(K1)=(2.*RHO*(KTLPL*INT))/2.)/((D(DIAM)*CV)**2
DT(K2)=RHO*(KTLPL*INT)/2.)/(D(DIAM)*CV)**2
DT(AFAC)=(RHO*(KTLPL*INT))/2.)/(D(DIAM)*CPL)**2
DT(LCS)=D(LCS)/(D(DIAM))
DT(IN1P)=(S SPRING)*PODIS/(D(DIAM))+2.(LPS)
DT(IN2P)=D(DIAM)*CPL*BT(DFHTP)*(2.)*S1ORHO*(KTLPL*INT)
DT(OP2)=(S SPRING)*PODIS/(D(DIAM))
RETURN

633.8
6.33.7 (Continued)

C SECTION FOR STEADY STATE CALCULATION

1500 CONTINUE
C MA=POLEG(INEL,1)
Q5=POLEG(INEL,2)
DT(OLD)=QA*QS
LCS(INEL,5)=QS
IF(L(3).EQ.1)GO TO 1600
C THE VALVE IS CONNECTED CONVOLUTIONAL
IF(L(3).NE.0)GO TO 1900
IF(QS.LT.1.) GO TO 1700
GO TO 1550
C THE VALVE IS CONNECTED BACKWARDS
1600 IF(L(3).NE.1)GO TO 1900
IF(QS.LT.1.) GO TO 1700
C THE VALVE IS CLOSED
1650 POLEG(INEL,8)=DT(ARFAC)+POLEG(INEL,3)
POLEG(INEL,11)=POLEG(INEL,11)-QS*QA**2*DT(ARFAC)
DT(XLST)=0.0
RETURN
1700 IF(QALE.EQ(INITI)) GO TO 1800
C THE VALVE IS FULLY OPEN
IF(POLEG(INEL,3).LT.DT(INITI)) POLEG(INEL,3)=DT(INITI)
DT(XLST)=DT(OPS)
POLEG(INEL,3)=DT(TK2)+POLEG(INEL,8)
POLEG(INEL,11)=POLEG(INEL,11)-QS*QA**2*DT(TK2)
RETURN
C THE FLOW IS LESS THAN THE 'FULL OPEN FLOW'
1800 POLEG(INEL,11)=POLEG(INEL,11)-DT(LOSA)*QS
1 -QA*QS*DT(OPS)
DT(XLST)=((DT(OPS)*QA)/DT(INITI))**2*(PODIS)
IF(POLEG(INEL,4).LT.DT(INITI)) POLEG(INEL,4)=DT(INITI)
POLEG(INEL,5)=POLEG(INEL,5)-DT(LOSA)*QS
POLEG(INEL,6)=POLEG(INEL,6)+DT(OPS)
RETURN
C*****ILLEGAL INPUT DATA TERMINATES PROGRAM*****
1900 WRITE(6,999)
999 FORMAT(1X,33,IPROGRA... STOP IN SUBROUTINE CVAL33)
STOP 1531
2000 CONTINUE
C DT(HELP)=(D(DIADV)-D(DIYOR))/(D(PODIS)/(1.+D(PODIS)))
DT(K2)=(2./PODIS(HELP))**.5*D(COLP)
DT(VLST)=0.0
DT(XLST)=0.0
RETURN
3000 CONTINUE
ITER1=1
L1=L(1)
L2=L(2)
XSI=DT(XLST)
VILN=DT(VLST)
6.33.7 (Continued)

\[\text{ANLW} = \text{DT(ALST)} \]
\[\text{DIS} = \text{XNEW}/D(\text{POPDIS}) \]
\[\text{DT(ARFAC)} = \text{DIS} \times \text{DT(SUB)} \]
\[\text{DT(TK2)} = \text{DT(K2)} \times \text{DT(ARFAC)} \]
\[\text{XPREV} = \text{XNEW} \]
\[\text{CKT} = \text{DT(K1)} + \text{DT(TK2)} \]
\[\text{X} = (2(L1)+2(L2)) \times \text{CKT} \times 2./2. \]
\[\text{Y} = 4. \times (C(L1)-C(L2))/(\text{CKT} \times (2(L1)+2(L2))) \times 2 \]
\[\text{SPAC} = 1. + \text{ABS}(Y) \]
\[\text{DT(QT)} = X \times (-1. + \text{SIGN}(1.,Y)) \]

3150 CONTINUE
\[\text{P1} = C(L1) - \text{DT(\text{TT})} \times Z(L1) \]
\[\text{P2} = C(L2) + \text{DT(\text{TT})} \times Z(L2) \]
\[\text{F} = (\text{P1} - \text{P2}) \times D(\text{DATA}) - D(\text{LOAD}) - C(\text{SPLY}) \times \text{XNEW} - 0.05 \times \text{VNLW} \]
\[\text{F1} = 2. \times \text{CV} \times \text{ABS}(\text{P1} - \text{P2}) \times \text{DT(ARFAC)} \]
\[\text{C} = \text{F1} = 2. \times \text{CV} \times \text{ABS}(\text{P1} - \text{P2}) \times \text{DT(DLPL)} \times \text{DT(XLST)} / (1. + \text{DT(XLST)}) \]
\[\text{F} = \text{F} - \text{F1} \]
\[\text{ANLW} = \text{F} / D(\text{CVASS}) \]
\[\text{VNLW} = \text{DT(VLST)} + (\text{XNEW} + \text{DT(ALST)}) / 2 \times \text{DELT} \]
\[\text{XNEW} = \text{DT(XLST)} + (\text{VNLW} + \text{DT(VLST)}) / 2 \times \text{DELT} \]
\[\text{IF} (\text{XNEW} \leq 0.0) \text{XNEW} = 0.0 \]
\[\text{IF} (\text{XNEW} \text{GT} D(\text{POPDIS})) \text{XNEW} = D(\text{POPDIS}) \]
\[\text{IF} (\text{ABS}(\text{XNEW} - \text{XPREV}) \text{LT} 0.001) \text{GO TO 3150} \]
\[\text{IF} (\text{ITER1} \text{GE} 25) \text{WRITE(5,910)} \text{XNEW, XPREV} \]

300 CONTINUE
\[\text{FORMAT(10X,*,XNEW = *,2F40.10)} \]
\[\text{IF} (\text{ITLAX.EQ.25}) \text{GO TO 3150} \]
\[\text{ITLAX} = \text{ITLAX} + 1 \]
\[\text{XPREV} = \text{XNEW} \]
\[\text{DIS} = \text{XNEW} / D(\text{POPDIS}) \]
\[\text{DT(ARFAC)} = \text{DIS} \times \text{DT(SUB)} \]
\[\text{GO TO 3060} \]

3160 IF (XNEW LT 0.0) GO TO 3200
\[\text{IF} (\text{ANLW} \text{LT} 0.0) \text{DT(ALST) = 0.0} \]
\[\text{IF} (\text{VNLW} \text{LT} 0.0) \text{DT(VLST) = 0.0} \]
\[\text{GO TO 3500} \]

3200 IF (XNEW LT 0.0) GO TO 3400
\[\text{IF} (\text{ANLW} \text{LT} 0.0) \text{DT(ALST) = 0.0} \]
\[\text{IF} (\text{VNLW} \text{LT} 0.0) \text{DT(VLST) = 0.0} \]
\[\text{GO TO 3500} \]

3400 \[\text{DT(VLST) = VNLW} \]
\[\text{DT(ALST) = ANLW} \]
3500 \[\text{DT(XLST) = XNEW} \]
\[\text{P(1) = P1} \]
\[\text{P(2) = P2} \]
\[\text{C(L1) = DT(TT)} \]
\[\text{C(L2) = -DT(QT)} \]
\[\text{RETURN} \]
\[\text{END} \]
6.34 SUBROUTINE CVAL34

Subroutine CVAL34 models a two stage relief valve of the type shown in Figure 6.34-1. This is a high response device used to limit pressure surges and to compensate for slow pump pressure controls. The subroutine can be used for any number of relief valves within the limits of the common storage.

6.34-1 Math Model

The relief valve is assumed to have a variable orifice characteristic between the fully open and fully closed positions. The effects of flow forces on the poppet are not included since these are not very well defined theoretically and depend upon the actual valve geometry.

In the steady state section the relief valve is assumed to be closed with no pilot flow.

In the transient analysis the flow through the valve is computed with the normal valve equations. The poppet position is predicted from the previous time step and is used to compute the valve orifice area.

The relief flow is first calculated using the predicted position of the valve, and the latest values of the line characteristics.

\[Q_1 = \text{SIGN}(CA \times \sqrt{1 + CB \times \text{ABS}(CDIFF)}) - 1, \ CDIFF \]

where: \[CDIFF = C(L1) - C(L2) \]

\[\text{where:} \quad \begin{align*}
CA &= ((\text{ARREL}F\times CV)^{2}\times(Z(L1)+Z(L2))/\text{RHO}(K\ \text{TEMP}(\text{IND}))) \\
CB &= 2 \times \text{RHO}(K\text{TEMP}(\text{IND}))/((\text{ARREL}F\times CV)^{2}\times(Z(L1)+Z(L2))^{2}) \\
CV &= \text{Discharge Coefficient} \\
\text{ARREL}F &= \text{Valve orifice area open to return pressure} \\
\text{if the predicted poppet position is zero, the flow calculation is bypassed and the element pressures are set to the up and downstream characteristic pressures.}
\]
FIGURE 6.34-1
TYPE NO. 34 TWO STAGE RELIEF VALVE

FIGURE 6.34-2
SCHEMATIC DIAGRAM FOR TYPE NO. 34 TWO STAGE RELIEF VALVE
With QI known the two pressures can be calculated:

\[
P(L1) = C(L1) - Z(L1) * QI
\]

\[
P(L2) = C(L2) - Z(L2) * QI
\]

When the valve is open or the difference in \(P(L1) - P(L2)\) is greater than the relief pressure, the latest position of the poppet is computed.

A force balance on the poppet yields equation (1).

\[
\text{FORCE}_{\text{poppet}} = (P(L1) - DT(PCA) \times D(ARPOP) - DT(PXPOS) \times D(KSPOP))
\]

\[- D(KZPOP) \]

where

\[
\begin{align*}
DT(PCA) & \text{- Cavity pressure behind the poppet} \\
D(ARPOP) & \text{- Poppet area} \\
DT(PXPOS) & \text{- Predicted poppet position} \\
D(KSPOP) & \text{- Spring constant for poppet spring} \\
D(KZPOP) & \text{- Poppet spring preload}
\end{align*}
\]

An equivalent circuit schematic in Figure 6.34-2 can be drawn modeling the operation of the two stage relief valve.

The force on the poppet in Equation (1) can be set to the velocity of the poppet times a damping factor.

\[
\text{FORCE}_{\text{poppet}} = V_{\text{NEW}} \times D(\text{DAMP}) = \frac{Q_{\text{cavity}}}{D(ARPOP)} \times D(\text{DAMP}) \]

(2)

Equating the right hand side of equation (2) to equation (1) yields an expression for flow in the relief valve cavity-\(Q_{\text{cavity}}\):

\[
Q_{\text{cavity}} = (P(L1) - DT(PCA) \times D(ARPOP)^2 - DT(PXPOS) \times D(KSPOP) \times D(ARPOP))
\]

\[- D(KZPOP) \times D(\text{DAMP}) \]

(3)

6.34-3
The leakage flow \(Q_1 \) from the high pressure side of the poppet to the cavity is

\[
Q_1 = \frac{P(L1) - DT(PCAV)}{D(COELKP)}
\]

(4)

where

\[
D(COELKP) = \text{Pin leakage coefficient at poppet}
\]

The pressure drop from the cavity to return pressure is:

\[
DT(PCAV) - P(L2) = \frac{Q_2}{D(COELKS)} + \frac{Q_2^2}{DT(COEFS)}
\]

(5)

where

- \(Q_2 \) - Flow from cavity to return through the seat
- \(D(COELKS) \) - Pin leakage coefficient at seat
- \(DT(COEFS) \) - Constant based on open orifice area of pin and seat

The flow balance from Figure 6.34-2 gives

\[
Q_2 = Q_1 - Q_{\text{cavity}}
\]

(6)

Equations (3) and (4) are substituted into (6) to yield an equation with two unknowns - \(Q_2 \) and \(DT(PCAV) \). Equation (5) gives \(DT(PCAV) \) in terms of \(Q_2 \) and this substitution yields the following equation:

\[
Q_2^2 = \frac{DT(COEF)}{DT(COEFS)} + Q_2 \left(\frac{DT(COEF)}{D(COELKS)} + 1 \right)
\]

\[
[DT(COEF) * (P(L1) - P(L2) + \frac{D(ARPOP)}{D(DAMP)} * DT(PXPOS) * D(KSPOP) + D(KZPOP))] = 0
\]

(7)

After solving for \(Q_2 \) in equation (7) the pressure in the cavity \(DT(PCAV) \) is determined from equation (5). \(Q_1 \) can now be solved for in equation (4) and the flow into the cavity \((Q_{\text{cavity}}) \) is easily computed. The poppet velocity is

\[
V_{\text{NEW}} = \frac{(Q_1 - Q_2)}{D(ARPOP)}
\]

(8)

The position is determined by a simple integration

\[
X_{\text{NEW}} = DT(XPOS) + (V_{\text{NEW}} + DT(VLST))/2. * \text{DELT}
\]

(9)
where

\begin{align*}
DT(XPOS) & \quad \text{previous poppet position} \\
DT(VLST) & \quad \text{previous poppet velocity} \\
DELT & \quad \text{Time step}
\end{align*}

XNEW, the new calculated position, is then tested to determine if the poppet is at a limit. A predicted position is computed for the next time step and the calculation is finished.

6.34.2 Assumptions

It is assumed that there are no variations in orifice characteristics with poppet position, and the flow forces on the poppet are negligible.

The simple integration method was chosen to save time and cost. Some errors will be obtained for very fast transients but this is considered acceptable for a component that could be used many times in a system.

6.34.3 Computations

1000 Section - In the 1000 section, temporary variables are calculated and stored in the \(D \) and \(DT \) arrays.

1500 Section - In the 1500 section the steady state values used in the computation of leg flow are computed and returned to the PQLEG array.

2000 Section - The poppet position and velocity are initialized in the 2000 section.

3000 Section - The calculations for \(Q, P(1.1), P(1.2) \) and poppet velocity follow the theory discussed in 6.31.2 above.

The velocity of the poppet and hence its position is computed if the difference in \(P(1.1) \) and \(P(1.2) \) is greater than the relief pressure or the predicted poppet position is greater than zero.
The calculated value of XNEW is checked to determine if it is at a stroke limit, and if the calculated velocity is in the limit direction. Should these conditions occur the limit subroutine will set the velocity (VNEW) and position (XNEW) to zero. These limits do not apply away from the end of the stroke.

From the computed value of XNEW a new poppet position is then predicted for the next time step.

6.34.4 Approximations

The approximations made are associated with the valve orifice calculations and the absence of flow force effects. These approximations speed the computation but are a source of inaccuracy.

6.34.5 Limitations

The main limitation is the lack of a cavitation simulation. This can yield erroneous results whenever the pressures drop below vapor pressure.

6.34.6 Variable Names

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>DIMENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHIA</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>D(ARPIN)</td>
<td>Pin rod end area</td>
<td>IN**2</td>
</tr>
<tr>
<td>D(ARPOP)</td>
<td>Poppet area</td>
<td>IN**2</td>
</tr>
<tr>
<td>ARREL</td>
<td>Computed relief area</td>
<td>IN**2</td>
</tr>
<tr>
<td>D(ARSRP)</td>
<td>Area of seat relief port</td>
<td>IN**2</td>
</tr>
<tr>
<td>BETA</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>CA</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>CB</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>CDIFF</td>
<td>Difference in characteristic pressures</td>
<td>PSI</td>
</tr>
<tr>
<td>NAME</td>
<td>DESCRIPTION</td>
<td>DIMENSION</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>CHI</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(COEF)</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(COEFS)</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>D(COELKP)</td>
<td>Pin leakage coefficient at poppet</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>D(COELKS)</td>
<td>Pin leakage coefficient at seat</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>CV</td>
<td>Discharge coefficient</td>
<td>--</td>
</tr>
<tr>
<td>D(DAMP)</td>
<td>Poppet damping factor</td>
<td>LB/IN/SEC</td>
</tr>
<tr>
<td>DT(DIA1)</td>
<td>Computed relief diameter</td>
<td>IN</td>
</tr>
<tr>
<td>DT(DIA2)</td>
<td>Computed seat relief diameter</td>
<td>IN</td>
</tr>
<tr>
<td>DT(GAMMA)</td>
<td>Angle of relief flow relative to poppet</td>
<td>DEG</td>
</tr>
<tr>
<td>D(KSPIN)</td>
<td>Pin spring constant</td>
<td>LB/IN</td>
</tr>
<tr>
<td>D(KSPOP)</td>
<td>Poppet spring constant</td>
<td>LB/IN</td>
</tr>
<tr>
<td>D(KZPIN)</td>
<td>Pin spring preload</td>
<td>LB</td>
</tr>
<tr>
<td>D(KZPOP)</td>
<td>Poppet spring preload</td>
<td>LB</td>
</tr>
<tr>
<td>DT(PCAV)</td>
<td>Pressure in poppet cavity</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PXPOS)</td>
<td>Predicted poppet position</td>
<td>IN</td>
</tr>
<tr>
<td>Q1</td>
<td>Relief flow</td>
<td>CIS</td>
</tr>
<tr>
<td>Q1</td>
<td>Leakage flow through poppet and pin</td>
<td>CIS</td>
</tr>
<tr>
<td>Q2</td>
<td>Leakage flow through seat and pin</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(VLST)</td>
<td>Previous poppet velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>VNEW</td>
<td>Poppet velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>D(XMAX)</td>
<td>Maximum poppet travel</td>
<td>IN</td>
</tr>
<tr>
<td>XNEW</td>
<td>Latest poppet position</td>
<td>IN</td>
</tr>
<tr>
<td>DT(XPOS)</td>
<td>Poppet position</td>
<td>IN</td>
</tr>
<tr>
<td>XPOS1N</td>
<td>Pin position</td>
<td>IN</td>
</tr>
</tbody>
</table>

6.34-7
Subtitle Listing

SUBROUTINE CVAL34 (D, DT, DD, L)

C *** REVISED AUGUST 5, 1975 ***

DIMENSION D(1), DT(1), DD(1), L(1)

COMMON NLPL, NLPL, DPI, DPO, NPTS, INEL, MEL, IT0PL, NLPL(61,3),
1 POLEG(90,12), LCS(90,10), ILRG(1400), PH(90), ON(90)

**COMMON/SUBPAR(150,9), P1(1500), Q1(1500), P(300), Q(300), C(300)
1, Z(300), RH(20), SORRO(20), VISC(20), BULK(20), TEAP(20), PVAP(20)

2, ATPRES, DLT, TFINAL, PLTDEL, PI, TITLE(20), LEGN, ICOR:
3, KTEMP(99), LSTART(150), RLPT(150), LTYPE(99), IC(99), INX, INZ
4, INV, ISTEP, NLINE, NEL, IND, IENTR, INLINE, INEL, INLEG, ANODE, ANPLOT
5, NLPLTS, PDS

INTEGER ARP0P, XMAX, PRELF, COELKP, COLKS, COLF, COEP, PECAY, SCAY,
1 ARSR0, APTR, DIA1, DIA2, PXPOS, XPO5, VLIST, DAPI, CIAYA, COLFA

C ****** D - ARRAY INPUT VARIABLES ******

DATA ARPOP/1/, XMAX/2/, KEPPO/3/, KEPPO/4/, PEPF/5/, COELKP/6/,
1 COLKS/7/, ARSRP/8/, APTR/9/, KSPIN/10/, DAPI/11/,
2 GAIAY/12/

C ****** DT - COMPUTED VARIABLES ******

DATA AT1/1/, DIA2/2/, COEP/3/, PXPOS/4/, XPOS/5/, VLIST/6/,
1 IPBST/7/, COEP/3/, PECAY/9/, SCAY/10/, SCAY/11/

IF (1ENTR) 1900, 2000, 3000

1500 **CONTINUE**

IF (INEL, NL.0) **GO TO** 1500

DT(DIA1)=D(APOP)

D(APOP) = (D(APOP)**2)*PI/4.

DT(DIA2)=D(ASSP)

D(ASSP) = (D(ASSP)**2)*PI/4.

D(APTR) = (D(APTR)**2)*PI/4.

C(IMP) = D(ima)**2*3/100.

C(IMP) = SIN(D(IMP))

DT(IMP) = D(IMP)/D(KSPIN)

CV = 0.65

RETURN

C ****** STEADY STATE SECTION ******

1500 **CONTINUE**

IF (INEL, NL.0) **RETURN**

P0LEG(INEL, 5) = 3.06 + POLG(INEL, 6)

D1 = POLG(INEL, 1)

POLG(INEL, 11) = POLG(INEL, 11) - 3.06*31*POLG(INEL, 2)

RETURN

2000 **CONTINUE**

DT(CAV) = 0.0

DT(CLR) = 0.0

DT(VCAY) = P(L(1))

DT(PXPOS) = 0.0

DT(XPOS) = 0.0

ASign = 0.0

DT(VLIST) = 0.0

DT(COEP) = 1/D(COELKP)-D(APOP)**2/D(DAPI)

DT(COLFA) = D(DAPPO)/D(DAPI)
6.34.7 (Continued)

WRITE(6,900) DT(COLF), DT(COLPA)
RETURN

3000 CONTINUE
L1=L(1)
L2=L(2)
D(1)=0.0
IF(DT(CAV).GT.0.0)GO TO 3110
IF(DT(PXPOS).EQ.0.0)GO TO 3100
ARREL=(DT(DIA)+D(CAV)*DT(PXPOS))**2*PI/4.-D(ARPDP)
CA=((ARREL*CV)**2*(Z(L1)+Z(L2)))/RHO(KTLEP(IND))
C3=2.*RHO(KTLEP(IND))/((ARREL*CV)**2*(Z(L1)+Z(L2))**2)
CDIFF=C(L1)-C(L2)
D(1)=SIGN(CA*(SQRT(1.+C3*ABS(CDIFF)))-1.), CDIFF

3100 CONTINUE
P(L1)=C(L1)-Z(L1)*D(1)
P(L2)=C(L2)+Z(L2)*D(1)
Q(L1)=D(1)
Q(L2)=-D(1)
P2=P(L2)
IF(P2.GT.PVAP(KTLEP(IND)))GO TO 3150

3110 CONTINUE
IF(DT(PXPOS).EQ.0.0)GO TO 3120
ARREL=(DT(DIA)+D(CAV))**2*PI/4.-D(ARPDP)
CA=((ARREL*CV)**2*(Z(L1)+Z(L2)))/RHO(KTLEP(IND))
C3=2.*RHO(KTLEP(IND))/((ARREL*CV)**2*(Z(L1)+Z(L2))**2)
CDIFF=C(L1)-C(L2)
D(1)=SIGN(CA*(SQRT(1.+C3*ABS(CDIFF)))-1.), CDIFF

3120 CONTINUE
P(L1)=C(L1)-Z(L1)*D(1)
P(L2)=PVAP(KTLEP(IND))
P2=P(L2)
Q(L1)=D(1)
Q(L2)=(C(L2)-P(L2))/Z(L2)
DT(CAV)=DT(CAV)-(Q(L2)+D(1))
IF(DT(CAV).LT.0.0)DT(CAV)=0.0

3150 CONTINUE
WRITE(6,900) P(L1), P(L2), D(PRELF), C(L1), C(L2)
900 FORMAT(1X,10E12.5)
IP((P(L1)-P2)*L1.*D(PRELF)).AND.DT(PXPOS).LT.0.0)RETURN
XPON=-(P(L1)-P2-D(PRELF))**2*DT(IMP)
XPON=-(P(L1)-P2-D(PRELF))**2/DT(IMP)
IF(XPON.LT.0.0)GO TO 3200
ARREL=(DT(DIA)-D(CAV)*XPON)**2*PI/4.-D(ARPDP)
ARREL=0.0.

ARREL=0.0.
DT(COLF)=2.*(CV*ARREL)**2/RHO(KTLEP(IND))
ALPHA=DT(COLF)/DT(COLFS)
BLTA=1.+DT(COLF)/D(COLFS)
CHI=DT(COLFS)*(DT(PXPOS)*D(KSPOP)+D(KSPOP))
CHI=CHI+DT(COLF)*(P(L1)-P2)
CHI=CHI
P2=(-ALPHA+SORT(BLTA**2-4.*ALPHA**2*ABS(CHI)))/(2.*ALPHA)
Q2=SIN(C2,CHI)
6.34.7 (Continued)

GO TO 3300

3200 Q2=0.0

3300 CONTINUE

DT(PCAV)=Q2/D(COELKS)+Q2**2/DT(COEPS)+P2
Q1=(P(L1)-DT(PCAV))/D(COELKP)
VNEW=(Q2-Q1)/D(APPOP)
XNEW=DT(XPOS)+(VNEW+DT(VLST))/2.*DELT
CALL XLIMIT(XNEW, VNEW, ASIGN, 0.0, D(XMAX))
DT(VLST)=VNEW
DT(XPOS)=2.*XNEW-XT(XPOS)
IF(XNEW.EQ.0.0) DT(XPOS)=0.0
DT(XPOS)=XNEW
WRITE(6,910)T

910 FORMAT(10X,* DATA CALCULATED AT TIME =*,F12.5)
WRITE(6,900)XNEW, VNEW, Q1, Q2, ALPHA, BLTA, CHI, XPOSIN, ARRLF, DI
RETURN
END
6.41 SUBROUTINE REST41

REST41 simulates a fixed, two-way, orifice restrictor with two connections. The coefficient of discharge is assumed the same for flow in either direction so that the unit can be installed backwards i.e., either end can be called connection #1.

FIGURE 6.41-1
TYPE NO. 41 ORIFICE RESTRICTOR
6.41.1 Math Model

The basic equation for flow through an orifice is

\[Q = AV \cdot CV \cdot \left(\frac{2(P1-P2)}{RHO} \right)^{\frac{1}{2}} \]

where

- \(AV \) = area of the valve orifice in \(\text{in}^2 \)
- \(CV \) = discharge coefficient
- \(RHO \) = fluid density in lbs sec\(^2\)/in\(^4\)
- \(Q \) = flow in CIS
- \(P1 \) = inlet pressure in PSI
- \(P2 \) = outlet pressure in PSI.

From the line equations

\[P1 = -Z1 \cdot Q1 + C1 \]

\[P2 = Z2 \cdot Q2 + C2 \]

using a +ve flow convention from \(P1 \) to \(P2 \)

where

- \(C1 \) = Con \#1 line characteristic
- \(Z1 \) = Con \#1 line characteristic impedance
- \(C2 \) = Con \#2 line characteristic
- \(Z2 \) = Con \#2 line characteristic impedance.

Assuming no flow loss

\[Q = Q1 = Q2 \]

Substituting equations (2) and (3) in (1)

\[Q^2 = (-Z1 \cdot Q1 \cdot C1 - Z2 \cdot Q2 - C2) \cdot CV^2 \cdot AV^2 \cdot 2/RHO() \]

The solution to this equation is

\[Q = \text{SIGN}(CA \cdot \text{SQRT}(1 + CB \cdot \text{ABS(CDIFF)))} - 1), CDIFF) \]

where

- \(CA = (Z1 + Z2) \cdot CV^2 \cdot AV^2 \cdot 2/RHO() \)
- \(CDIFF = C1 - C2 \)
\[C_b = \frac{2 \cdot \rho \cdot \phi}{(A_V \cdot C_V^2) \cdot (Z_1 + Z_2)^2}. \]

P1 and P2 are then calculated using the Q value.

\[P_1 = C_1 - Z_1 \cdot Q \]
\[P_2 = C_2 + Z_2 \cdot Q \]

6.41.2 Assumptions

1. It is assumed that the restrictor does not have any ancillary parts and that the oil volume is sufficiently small so that integration is not required.

2. The discharge coefficient is considered the same in either flow direction.

6.41.3 Computation Methods

SECTION 1000

Input orifice diameter, \(D_1 \), is converted to area

\[D_1 = D_1 \cdot \phi \cdot \rho / 4. \]

The steady state orifice equation constant is calculated using the formula:

\[D(3) = \rho / (D(2) \cdot D(1)) \cdot 2 \cdot P_1. \]

SECTION 1500

Leg constant for \(Q^2 \) is updated and pressure at outlet connection is calculated and stored.
SECTION 2000

Constants for the dynamic orifice equation are calculated.

\[D(3) = \frac{((D(1) \times D(2))^{2} \times (Z(L(1)) + Z(L(2))))}{\text{RHO}(\)} \]

\[D(4) = \frac{Z \times \text{RHO}(\)}{((D(1) \times D(2))^{2}) \times (Z(L(1)) + Z(L(2)))^{2}} \]

SECTION 3000

Flow is calculated using the equation.

\[QI = \text{SIGN}(D(3) \times (\text{SQRT}(1 + D(4) \times \text{ABS}(\text{CDIFF})) - 1), \text{CDIFF}) \]

This flow is used to calculate pressures \(P_1 \) and \(P_2 \).

\[P(L(1)) = C(L(1)) - Z(L(1)) \times QI \]

\[P(L(2)) = C(L(2)) + QI \times Z(L(2)) \]

6.41.4 Approximations

None

6.41.5 Limitations

Subroutine is limited to fixed two way restrictors having the same discharge coefficient for flow in either direction.

6.41.6 Variable Names

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDIFF</td>
<td>Characteristic Difference</td>
<td>PSI</td>
</tr>
<tr>
<td>D(1)</td>
<td>Orifice Diameter</td>
<td>IN</td>
</tr>
<tr>
<td>D(2)</td>
<td>Orifice Discharge Coefficient</td>
<td>--</td>
</tr>
<tr>
<td>D(3){</td>
<td>Orifice Equation Constants</td>
<td>--</td>
</tr>
<tr>
<td>D(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI</td>
<td>Flow</td>
<td>CIS</td>
</tr>
</tbody>
</table>
SUBROUTINE REST41 (D, DT, DD, L)

C *** REVISED AUGUST 5, 1975 ***
Dblc PRECISION DC
DIMENSION D(4), DT(1), DD(1), L(2)
COMMON NTLLPL, NTPLP, IPT, IPOINT, NPTS, I1NL, K1NL, NTPLT(61, 3),
1 POLG(90, 12), LCS(90, 10), ILEG(1400), PN(90), ON(90)
COMMON/ SUB/PARI(150, 9), PA(1500), QA(1500), QA(300), QA(300), QA(300)
1, Z(300), RHO(20), SORHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATRES, T, DELT, TPINAL, PLTOEL, PI, TITLE(20), LEGN, ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INY
4, INV, ISTEP, NLINL, INL, IND, IENTR, ANLINL, ANL, ANLEG, NNODE, NNPLOT
5, LNLPNTS, ADS
IF (IENTR) 1000, 2000, 3000
1000 CONTINUE
IF (INNL, NL, 0) GO TO 1500
D(1) = D(1)**2*PI/4.
D(3) = RHO(KTEMP(IND))/((D(2)*C(1))**2*2.)
RETURN
C
C steady state section
1500 CONTINUE
POLG(INNL, 0) = D(3) + POLG(INNL, 0)
C = POLG(INNL, 1)
POLG(INNL, 1) = POLG(INNL, 1) - D(3)*C**2*POLG(INNL, 2)
RETURN
2000 CONTINUE
D(3) = ((D(1)*D(2))**2*(Z(L(1)) + Z(L(2)))) / RHO(KTEMP(IND))
D(4) = 2*RHO(KTEMP(IND)) / ((D(1)*D(2))**2) * (Z(L(1)) + Z(L(2)))**2
RETURN
3000 CONTINUE
CDIFF = C(L(1)) - C(L(2))
C1 = SIGN(D(3)*(SIGN(1, +D(4))*ABS(CDIFF)) - 1), CDIFF
P(L(1)) = C(L(1)) - Z(L(1)) * C1
P(L(2)) = C(L(2)) + C1*Z(L(2))
C(L(1)) = C1
C(L(2)) = - C1
RETURN
END
6.5.1 **SUBROUTINE PUMP51**

Subroutine PUMP51 was set up to model an F15 pump, which is basically a simple in line piston pump, though it incorporates many mechanical refinements and sophisticated design features. The model is intended for use by system designers and is primarily aimed at the study of pump system stability under dynamic loading conditions.

The model incorporates the effects of case drain dynamics, since the F15 pump output pressure is referenced to case and the actuator discharges to the case, and displaces case volume when it is moving. The treatment of leakage and damping characteristics are rudimentary.

The dynamics of the hanger are complex. For the model the effects of the dynamic forces on the actuator are included. These forces push the pump to maximum flow, the hanger spring provides this force on start-up.

In addition the hanger offset creates a negative flow at the pump inlet and outlet when the hanger is moving toward maximum flow, and this has a destabilizing effect, when the hanger response is very fast.

Some of the hanger forces are oscillatory but no attempt has been made to describe this effect, except that the magnitude is sufficient to keep the hanger in motion, so the effects of static friction is ignored. This is an assumption that helps the simulation by keeping the integration of the hanger velocity a continuous function, between its mechanical stops.

The compensator valve dynamics are a significant part of the model. The forces on the valve are a combination of the outlet pressure force pushing against the case pressure and spring forces, with damping and flow forces acting in either direction.

The damping and flow forces are estimates using classical formulae.
Under certain conditions, the pump compensator valve responds to the oscillatory pressures caused by the pump pulsations. While no attempt has been made to describe how these are generated, provisions have been added so that their effect on the compensator can be determined.

The compensator valve on the F15 is overlapped, but under certain conditions the pulsations can cause the valve to dither, reducing the effect of the overlap and changing the response characteristics of the pump.

The damping and flow forces are included because of the fast response of this particular valve.

6.51.1 Math Model

A simplified diagram of the pressure regulated variable displacement pump is shown in Figure 6.51-1.

An equivalent circuit schematic diagram for the pump model is shown in Figure 6.51-2.

Pump Displacement Flow

For the pump inlet the displacement flow is computed as follows:

\[Q_{PUMP} = D(DISP) \times DT(PRPM) \times (DISACT) \]

if \(D(DISAM) > DT(DISACT) > D(DISAM) \)

or \(Q_{PUMP} = Q_{INET} + QCASIN \)

if \(PINET \geq PMIN \)

Actuator Pressure

The actuator pressure is based on the contributions of the spring force, case pressure, outlet pressure and pump rpm, plus the reaction force due to velocity damping which is generated when the hanger is moving. The input data establishing actuator pressure pump operating conditions is modified to give a simpler algorithm for the transient calculations.

6.51-2
Valve Plate Shown Rotated by 90° Pump
Outlet

FIGURE 6.51-1
TYPE NO. 51 PRESSURE REGULATED VARIABLE DISPLACEMENT PUMP
SCHEMATIC DIAGRAM FOR T-15 PUMP MODEL.
The input data gives the actuator pressure due to the spring force at maximum flow, \(D(PSPRIM) \) and at zero flow, \(D(PSPRIZ) \). \(P(PZRPM) \) is input as the pressure at zero actuator displacement and 3600 rpm. It is then modified to give the pressure at zero rpm by subtracting from it the slope of the pressure versus rpm curve, which is input as \(D(PSLRPM) \).

Using the F-15 pump experimental data and the actuator pressure predictions generated by the HSFR program, a formula was derived which related actuator pressure to the output pressure/bulk modulus ratio.

The test data collected at different fluid temperatures showed a need for temperature correction which was obtained via the bulk modulus. A correction factor \(DT(BULKO)/DT(POULT) \) is used where

\[
DT(BULKO) = BULK(KTEMP(IND)) \times D(DPVOA)/223000
\]

\(D(DPVOA) \) is the reference pressure and 223000 is the reference bulk modulus of MIL-H-5606B at 3000 psi and 130°F.

The reference actuator pressure for this time step is then computed as

\[
PACTUR = D(PSPRIZ) + PDISA \times D(PSPRIN) - VOLD \times D(INERT)
+ PDISA \times (D(PACCP) \times DT(PRPM) \times 2 + D(PDISAC))
+ DT(PCASE) + (D(PZRPM) + D(PSLRPM) \times DT(PRPM))
\times DT(BULKO)/DT(POULT)
\]

where

\[
PDISA = PREDICTED ACTUATOR POSITION BASED ON THE PREVIOUS POSITION AND VELOCITY
\]

\[
(=DT(DISACT)+DT(VELACT) \times DELT)
\]

\[
VOLD = ACTUATOR VELOCITY (IN/SEC)
\]

\[
D(PACCP) = D(PACCP)/(D(DISA) \times 3600**2)
\]

\(D(PACCP) \) is input as the pressure due to piston acceleration at 3600 rpm and maximum stroke.
\[D(PSPRIM) = \frac{(D(PSPRIM) - D(PSPRIZ))}{D(DISAM)} \]

\(D(PSPRIM) \) is input as actuator pressure due to spring force at maximum pump displacement.

\[D(PDISAC) = \frac{(D(PDISAC) - D(PZRPM))}{D(DISAM)} \]

\(D(PDISAC) \) is input as actuator pressure at 3600 RPM and maximum pump displacement.

\[D(PZRPM) = D(PSRPM) - D(PSLRPM) \times 3600 \]

\(D(PZRPM) \) is input as actuator pressure at 3600 RPM and zero pump displacement.

The actuator pressure and damping characteristics are important variables since they govern how fast the pump goes from zero to full flow. No easy way exists to obtain these values accurately from purely dimensional data. The HSFR program is able to get within 30% of the measured actuator pressure and gives reasonable predictions of the variations with temperature and rpm. Measurements of actuator pressure and damping characteristics require a complex set of instrumentation and analysis of the data, to extract the variables would require inspired judgement. Therefore a reasonable initial actuator pressure \(D(PZRPM) \) which includes estimated values for the contributions of the spring is 800 psi. Other contributions to actuator pressure are input as zero.

Compensator Valve

The compensator valve position is assumed to be directly proportional to the differential pressure between outlet and case. The lag, due to the valve damping and hanger inertia is included in the computation of the actuator pressure as shown in the INERT and DAMP terms of Figure 6.51-2.

The valve spring rate \(D(INPSSI) \) is input in lbs/in and converted to in/psi.

6.51-6
\[D(\text{INPPSI}) = D(\text{ARCOM})/D(\text{INPPSI}) \]

The differential pressure at which the valve opens from outlet to actuator \(D(\text{DPVOA}) \) is used to determine the valve position. Two pressures \(\text{POUTMX} \) and \(\text{POUTMI} \) are derived, \(\text{POUTMX} \) is the maximum outlet pressure that can be obtained assuming zero flow from the outlet to the actuator.

\[
\text{POUTMX} = (c_2/Z(L2) + Q\text{PUMP} + DT(\text{PCASE}) \times D(\text{COEPLK})) \times Z\text{OUT}
\]

where

\[
Z\text{OUT} = Z(L2)/(1.0 + Z(L2) \times D(\text{COEPLK}) + Z(L2) \times D(\text{OLOUT}))
\]

\[
Q\text{PUMP} = DT(\text{QINLET}) + QC\text{ASIN} + Q\text{OSIN}
\]

The \(Z\text{OUT} \) term includes the impedance of the outlet volume.

The minimum pressure, \(\text{POUTMI} \), which is the outlet pressure when the valve is just about to open is computed as:

\[
\text{POUTMI} = D(\text{DPVOA}) + DT(\text{PPCASE})
\]

where \(DT(\text{PPCASE}) \) is the predicted case pressure for the current time step.

The actual outlet pressure lies between these limits and is obtained by iteration. The valve orifice area is calculated for any position of the valve and the inlet port. The valve displacement for \(\text{POUTMX} > \text{POUTMI} \) is

\[
\text{DIS} = (DT(\text{POUTLT}) - \text{POUTMI}) \times D(\text{INPPSI})/(D(\text{FLOFRC}) \times (DT(\text{POUTLT}) - DT(\text{PACTU})) + 1.0)
\]

where

\[
D(\text{FLOFRC}) = 2 \times D(\text{WIDTH}) \times D(\text{INPPSI}) \times (D(\text{COEVL}) \times 2) \times 3.8/D(\text{ARCOM})
\]

The orifice area is easily computed since the F-15 pump has square metering ports.

6.51-7
When the valve is within the overlap region, the valve flow is set to zero. No allowance is made for leakage due to diametrical clearance within the valve.

Since the F-15 pump is essentially a closed loop servo, a gain term was calculated as:

\[GAIN = \frac{0.7}{(1 + 20 \cdot DT(COEV1) \cdot D(INPSSI) \cdot Z(L(2)))} \]

where

\[DT(COEV1) = D(COEVL1) \cdot S20RH0(KTEMP(IND)) \cdot D(WIDTH) \]

For the initial guess of outlet pressure \(DT(POULT) \) is computed at

\[DT(ITUP) \cdot POUTMX + DT(MITUP) \cdot POUTMI \cdot (DT(ITUP) \cdot GAIN, DT(MITUP) = 1 - GAIN) \]

This pressure is used to compute the valve position, area, and flow, \(DT(QACTU) \), into the actuator. The actuator flow is then used to recompute the pressure

\[TPOUT = POUTMX - DT(QACTU) \cdot AZOUT \]

A check is made to see if the recomputed flow is within .05 psi of the pressure valve and if it is not, the outlet pressure is updated by

\[DT(POULT) = DT(POULT) \cdot DT(MITUP) + TPOUT \cdot DT(ITUP) \]

The choice of the \(DT(MITUP)/DT(ITUP) \) ratio and the initial guess ratio of \(DT(ITUP)/DT(MITUP) \) was made using an actual closed loop gain for the F-15 pump. For other pumps, adjustments of these ratios could reduce the number of iterations required to achieve a balance. The tolerance of .05 psi could also be increased with little penalty.

Flow From Actuator Piston to Case

When \(POUTMI > POUTMX \) the valve is either closed or open from actuator to case. \(POUTMI \) is changed to

\[POUTMI = D(DPVAC) + DT(PPCASE) \]

and if \(POUTMI \) is still greater than \(POUTMX \), the valve is open allowing flow out of the actuator so that the pump flow, \(QPUMP \) increases. The valve
displacement area and flow (DT(QACTC)) are recalculated. Since the flow does not affect outlet pressure, no iteration is necessary.

The actuator leakage to case is assumed to be laminar since the passage is small around the actuator barrel. The actuator leakage is computed as

\[Q_{ACTKL} = C_{ELKA} \times (DT(PACTU) - DT(PCASE)) \]

with all the actuator flows known, the actuator velocity is calculated

\[DT(VELACT) = -\frac{Q_{NET}}{u(A\text{CT})} \]

where

\[Q_{NET} = DT(QACTU) - DT(QACTC) - Q_{ACTLK} - (DT(PACTU) - PACTU_0) \times DT(BULKA) \]

The difference in the new and old actuator pressures times DT(BULKA) accounts for the compressible fluid flow in the actuator. The new actuator position is then

\[DT(DISACT) = DT(DISACT) + (VOLD + DT(VELACT)) \times \Delta L/2. \]

A check is made to determine if the actuator is at the stroke limits. If it is the actuator flow must be recalculated. If the actuator is at maximum stroke (fully retracted with the pump at full stroke) then the actuator pressure drops to case pressure and DT(QACTC) is set to zero.

If the actuator is at minimum stroke (with the pump outlet flow negative), then DT(QACTU) and DT(PACTU) have to be recalculated so that the actuator leakage flow can be determined.

Pump Outlet Pressure and Flow

After the actuator pressure flows and valve outlet pressure DT(POUTLT) are computed, pump outlet flow is calculated as:

\[Q(1,2) = -(Q_{PUMP} - Q_{LEAK} - DT(QACTU) - (DT(POUTLT) - O_{OUT}) \times D(VO_{OUT})) \]

Actual pump output pressure is then

\[P(1,2) = C(1,2) - Q(1,2) \times Z(L2) \]
Pump Case Outlet Pressure and Flow

The case outlet flow is determined using the schematic of Figure 6.51-2 to write a second degree equation for case drain flow:

\[DT(\text{COECAS}) \times Q(L3)^2 + (Z(L3) + DT(\text{BULK}) \times Q(L3) \]

\[-(DT(\text{PCASE}) + QCASD \times DT(\text{BULK}) - C(L3)) = 0 \]

where \(DT(\text{PCASE}) \) is the previous time step value of case pressure.

The above equation is solved for \(Q(L3) \) and the case pressure is computed as

\[DT(\text{PCASE}) = DT(\text{PCASE}) + (QCASD + Q(L3)) \times DT(\text{BULK}) \]

The outlet case pressure is then

\[P(L3) = C(L3) - Q(L3) \times Z(L3) \]
6.51.2 Assumptions

The assumptions in a model of this nature are almost too many to enumerate. By its very nature the pump is a complex piece of equipment with multiple leak paths across the port plate, down the side of the piston and out of the shoes. This whole set of leak paths have been linearized and assumed to be constant for a constant output pressure, which is no doubt rather hard to accept. The alternative would be to go into very detailed calculations with the leakage dependent on the piston load, hanger angle, RPM and anything else one could add. Unfortunately this too would probably be inaccurate so instead of an inaccurate complex leakage model we choose a simple leakage model, which could be improved when more data is available from the verification tests.

The forces on the hanger are not taken into account as it rotates only the hanger inertia. Flow and leakage are all treated as though the pump had a continuous output rather than the individual pumping pistons.

A model which includes the dynamics of each individual piston would by necessity be considerably more complex and consume much more computer time, but is an alternative to what we have done here.

In all the calculations the bulk modulus is treated as a constant for the high pressure (output) side and as a different constant for the low pressure (inlet) side, the elastic expansion of the volume cavities is included.

Friction effects have not been included primarily because of the cost of putting them in, but in actual fact the forces on the hanger have an oscillatory content which tend to keep it in motion. The pulsations of the outlet also tend to keep the valve in motion so that friction effects would not normally be significant.
6.51.3 Computation

The pump subroutine is set up using the HYTRAN program commons, plus
the D, DT, DD, and L arrays.

1000 SECTION

In the 1000 section the constants are initialized where desirable for
more efficient computation.

The remaining part of Section 1000 deals with the calculations of the
steady state pump characteristics.

In order to balance the pump at some steady state condition, it is first
necessary to establish what the pump characteristics are, over the maximum
range of pump flow.

To help in this it was assumed that these characteristics could be
approximated by a straight line interpolation between the pump conditions
at maximum and minimum flows which correspond to zero and maximum actuator
displacement respectively.

A chain of interdependent calculations are needed to derive the maximum
and minimum conditions. We have to establish:

DT(PACTU) = Actuator pressure
DT(QACTC) = Flow from actuator to case
DT(QACTU) = Flow from outlet to actuator through the valve
ACASDR = Case drain flow
QACTLK = Flow into the actuator due to leakage
DT(DISVLV) = Valve displacement
DT(POUTLT) = Valve chamber pressure which is the same as outlet pressure

The actuator pressure is dependent on the outlet pressure due to the
pumping offset, and the valve flow is dependent on the difference between
outlet pressure and actuator pressure.
The initial flows (QACTU and QACTC) are computed at the appropriate valve positions and this information is used in the steady state portion of the program.

1500 SECTION

Steady State Calculations

The pump which has three connections, has a node located at the inlet.

The leg which has the inlet connection receives the pump inlet pressure from the steady state routine.

For the leg which has the outlet connection as its first element, a value of the output flow ratio is computed as

\[\text{DT(DISVLV)} = \frac{O\text{GUESS-}DT(Q\text{OUTLT})}{DT(Q\text{INLET})-DT(Q\text{OUTLT})} \]

The ratio is calculated to determine the percentage of actuator flow that is actual leakage flow (QACTLK) into the pump case.

The output pressure is determined by the computed maximum outlet pressure at maximum valve displacement DT(POUTM) plus the pressure drop from case to inlet, DT(DELP13).

The outlet pressure is added to PQLEG(INEL, 5) and the output impedance (.00001) is added to PQLPG(INEL, 6).

DT(POULT) is initialized to DT(POUTM) + DT(DELP13).

And the outlet pressure PQLEG (INEL, 11) is also increased by DT(POUTM) + DT(DELP13).

LCS(INCL, 7) is set to 5 which means that the LEG formulae must be recalculated for every iteration because of the variation in inlet pressure.

The call for CON #3, the case drain, first gets the value of the flow guess for the case drain flow and then calculates the actuator leakage based

6.51-13
on the outlet flow ratio.

\[\text{QACTLK} = \text{DT(DISVLV)} \times (\text{DT(QACTC)} - \text{DT(QACTU)}) + \text{DT(QACTU)} \]

The pressure rise from inlet to case, \(\text{DT(DELPl3)} \) is then calculated using the sum of the leakage flows divided by the coefficient of case to inlet leakage, \(D(\text{COECIN}) \). Since \(\text{DT(DELPl3)} \) is based on a case drain flow, \(\text{QCASDR}/D(\text{COECIN}) \) is added along with \(\text{DT(DELPl3)} \) to \(\text{PQLEG (INEL, 5)} \) for the constant pressure rise temperature.

\(1/D(\text{COECIN}) \), the case drain impedance is added to \(\text{PQLEG(INEL, 6)} \) and \(\text{LCS (INEL, 7)} \) is set to 5 so that the leg must be recalled each iteration since the leakage is dependent on the outlet pressure and/or updated \(\text{DT(PINLET)} \) is required by the other CON #2 calculation.

\(\text{PQLEG (INEL, 11)} \) is increased by \(\text{DT(DELPl3)} \) and \(\text{DT(PCASE)} \) is initialized to \(\text{PQLEG (INEL, 11)} \).

A test at the start of both the case drain and outlet calculations checks to see if \(\text{INX} = 1 \) which can only be true if CON 2 and 3 are the first or only elements in this leg.

The calculation method was two interdependent pressure rises in two separate legs which is unfortunately necessary since the variables are not easily separated.

2000 SECTION

With the completion of the steady state calculations, where \(\text{DT(PCASE)} \), \(\text{DT(POUTLT)} \) and \(\text{DT(PINLET)} \) are initialized and a value for \(\text{DT(DISVLV)} \) is calculated, the pump state variables can be initialized, ready for the transient simulation.

The ratio \(\text{DT(DISVLV)} \) is used to initialize \(\text{DT(DISACT)} \) and \(\text{DT(QACTU)} \). Actuator velocity, \(\text{DT(VELACT)} \), valve displacement, \(\text{DT(DISVLV)} \), and \(\text{DT(QACTC)} \) are set to zero. \(\text{DT(POUTM)} \) is set equal to the pump outlet pressure, \(\text{DT(POUTLT)} \).
3000 SECTION

The 3000 section starts with a computation predicting the actuator displacement for the current time step. This value is used in the computation of the actuator pressure.

The pump inlet pressure is determined from the input impedance, \(Z(1.1) \), a pump inlet to case coefficient and pump flow as shown in the equivalent schematic diagram of the pump inlet model, Figure 6.51-2.

The next step is to determine the minimum (\(P_{OUTMI} \)) and maximum (\(P_{OUTMX} \)) pump output pressure range. The compensator valve displacement is then computed using an iterative technique as explained in the math model section. Once the valve position is known the actuator pressure and flow is computed along with the pump outlet pressure and flow.

The position of the valve determines whether the actuator flow is going from the outlet to the actuator or from the actuator to case. The two equivalent circuit schematics used in the solution process are shown in Figure 6.51-2.

Figure 6.51-2 also shows the schematic for computing the case drain output pressure and flow. \(QCASDR \) is the sum of all flows into and out of the case:

\[
QCASDR = Q_{PLEAK} + Q_{ACTLK} + DT(Q_{ACTC}) - D(ARACT)*DT(VELACT)
- QCASIN - QOSIN*2.
\]

\(DT(BULK) \) is the impedance of the case. It is computed as the fluid bulk modulus times \(DELT \) divided by the case volume.

The final values of outlet and case drain pressures and flows are passed to the appropriate \(P \) and \(Q \) arrays. The pump output horsepower is computed as:

\[6.51-15 \]
\[\text{POWER} = -Q(L2) \cdot (P(L2) - P(L1))/6600.0 \]

and is added to the previous value in \(\text{DT(POWER)} \).

A case pressure is computed using a simple integration.

\[\text{DT(PPCASE)} = 2 \cdot \text{DT(PCASE)} - \text{DT(PPCASE)} \]

where

\(\text{DT(PCASE)} \) - LATEST CASE PRESSURE

\(\text{DT(PPCASE)} \) - PREDICTED CASE PRESSURE

If the pump inlet pressure is less than the minimum pump inlet pressure, a message is printed that gives the time at which pump cavitation occurs.
6.51.4 Approximations

The approximation used in the program is the rather gross linearization between maximum and minimum flows used in the steady state calculations.

The remaining calculations follow the math model which is itself a large approximation.

6.51.5 Limitations

The current pump subroutine does not attempt to describe the true cavitation effects that can be caused by improper filling of the pistons. The effect on hanger angle and RPM vary greatly from pump to pump.

However, it is also a condition which the designer should avoid, by improving the pump inlet supply system, to prevent the inlet pressure dropping to the point where cavitation effects are a concern.

A current limitation, is the correct steady state prediction of pump outlet pressure, when the system flow exceeds the pump capacity. The transient section will limit the flows, but flow limitation is not included in the steady state section.
6.51.6 Variable Names

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Leakage coefficient from actuator to case</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Computation constant</td>
<td>--</td>
</tr>
<tr>
<td>D(ARACT)</td>
<td>Actuator area</td>
<td>IN**2</td>
</tr>
<tr>
<td>D(ARCOM)</td>
<td>Compensator valve area</td>
<td>IN**2</td>
</tr>
<tr>
<td>B,BETA</td>
<td>Computation constants</td>
<td>--</td>
</tr>
<tr>
<td>DT(BULKA)</td>
<td>Impedance of actuator volume</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>DT(BULKC)</td>
<td>Impedance of case volume</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>DT(BULKO)</td>
<td>Bulk modulus</td>
<td>PSI</td>
</tr>
<tr>
<td>C,CHI</td>
<td>Computation constants</td>
<td>--</td>
</tr>
<tr>
<td>D(COEALK)</td>
<td>Coefficient of actuator leakage at zero pump displacement</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>D(COEALM)</td>
<td>Coefficient of actuator leakage at maximum pump displacement</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(COEALS)</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(COEALZ)</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(COECAS)</td>
<td>Constant term use to determine case outlet pressure drop</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>D(COECIN)</td>
<td>Coefficient of flow from case to inlet</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>COELKA</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>D(COEOSO)</td>
<td>Coefficient of outlet flow due to actuator motion</td>
<td>CIS/(IN/SEC)</td>
</tr>
<tr>
<td>D(COEP1.K)</td>
<td>Coefficient of pump leakage (outlet to case)</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>D(COEVL1)</td>
<td>Discharge coefficient outlet to actuator</td>
<td>--</td>
</tr>
<tr>
<td>D(COEVL2)</td>
<td>Discharge coefficient actuator to case</td>
<td>--</td>
</tr>
<tr>
<td>DT(COEVL1)</td>
<td>Constant term used to determine outlet to actuator pressure drop</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>DT(COEV2)</td>
<td>Constant term used to determine actuator to case pressure drop</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>CONA, CONB</td>
<td>Dummy variables</td>
<td>--</td>
</tr>
<tr>
<td>C1</td>
<td>Inlet characteristic pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>C2</td>
<td>Outlet characteristic pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>C3</td>
<td>Case drain characteristic pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(DELP13)</td>
<td>Pressure drop from case to inlet</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(DELP23)</td>
<td>Pressure drop from outlet to case</td>
<td>PSI</td>
</tr>
<tr>
<td>DIS</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(DISACT)</td>
<td>Actuator displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(DISAM)</td>
<td>Actuator Position at maximum pump displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(DISAMI)</td>
<td>Actuator position at minimum pump displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(DISP)</td>
<td>Theoretical maximum pump displacement changed to IN**3/IN/RPM</td>
<td>IN**3/REV</td>
</tr>
<tr>
<td>DT(DISVLV)</td>
<td>Valve displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(DISVM)</td>
<td>Maximum valve displacement</td>
<td>IN</td>
</tr>
<tr>
<td>DPDAMP</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>D(DPVAC)</td>
<td>Pressure at which valve is open from outlet to actuator</td>
<td>PSI</td>
</tr>
<tr>
<td>D(DPVOA)</td>
<td>Pressure at which valve starts to open from outlet to actuator</td>
<td>PSI</td>
</tr>
<tr>
<td>DP1, DP2</td>
<td>Dummy variables</td>
<td>--</td>
</tr>
<tr>
<td>D(FLOFRC)</td>
<td>Flow force on valve spool</td>
<td>--</td>
</tr>
<tr>
<td>GAIN</td>
<td>Closed loop pump gain</td>
<td>--</td>
</tr>
<tr>
<td>D(INERT)</td>
<td>Hanger inertia</td>
<td>LBS-SEC**2/IN</td>
</tr>
<tr>
<td>D(INPPSI)</td>
<td>Spring rate of spool changed to IN/PSI</td>
<td>LB/IN</td>
</tr>
<tr>
<td>DT(ITUP), DT/MITUP</td>
<td>Iteration constants</td>
<td>--</td>
</tr>
</tbody>
</table>

6.51-19
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPOUT</td>
<td>Previous value of outlet pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PACCP)</td>
<td>Actuator pressure due to piston acceleration at 3600 rpm & maximum pump displacement</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PACTU)</td>
<td>Actuator pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>PACTUO</td>
<td>Previous value of actuator pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>PACTUR</td>
<td>Reference actuator pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PCASE)</td>
<td>Case pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PDAMP)</td>
<td>Hanger damping</td>
<td>PSI/IN/SEC</td>
</tr>
<tr>
<td>PDISA</td>
<td>Predicted actuator displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(PDISAC)</td>
<td>Pressure at 3600 RPM and maximum pump displacement: changed to rate of change of pressure with actuator position</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PINLET)</td>
<td>Inlet pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PINMIM)</td>
<td>Minimum inlet pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(POUTLT)</td>
<td>Outlet pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>POUTM, POUTMI, POUTMX</td>
<td>Dummy variables</td>
<td>--</td>
</tr>
<tr>
<td>POWER</td>
<td>Pump output horsepower</td>
<td>HP</td>
</tr>
<tr>
<td>DT(PPCASE)</td>
<td>Predicted case pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PPOWER)</td>
<td>Cumulative output horsepower</td>
<td>HP</td>
</tr>
<tr>
<td>DT(PRPM)</td>
<td>Pump operating speed</td>
<td>RPM</td>
</tr>
<tr>
<td>D(PSLRPM)</td>
<td>Slope of pressure vs RPM curve</td>
<td>PSI/RPM</td>
</tr>
<tr>
<td>D(PSPEED)</td>
<td>Pump operating speed</td>
<td>RPM</td>
</tr>
<tr>
<td>D(PSPRIM)</td>
<td>Actuator pressure due to spring force at maximum pump displacement adjusted to slope PSI/IN</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PSPRIZ)</td>
<td>Actuator pressure due to spring force at zero pump displacement</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PZRPM)</td>
<td>Actuator pressure inputed at 3600 RPM and zero pump displacement; adjusted to zero RPM</td>
<td>PSI</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>DT(QACTC)</td>
<td>Actuator flow with valve is open from actuator to case</td>
<td>CIS</td>
</tr>
<tr>
<td>QACTLK</td>
<td>Leakage flow from actuator to case</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(QACTU)</td>
<td>Actuator flow when valve is open from outlet to actuator</td>
<td>CIS</td>
</tr>
<tr>
<td>QCASDR</td>
<td>Sum of all flows into and out of the case</td>
<td>CIS</td>
</tr>
<tr>
<td>QCASIN</td>
<td>Flow from case to inlet</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(QINLET)</td>
<td>Inlet flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QNET</td>
<td>Net actuator flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QOSIN</td>
<td>Outlet flow due to actuator motion</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(QOUTLT)</td>
<td>Outlet flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QPLEAK</td>
<td>Pump leakage flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QPUMP</td>
<td>Pump flow</td>
<td>CIS</td>
</tr>
<tr>
<td>TP OUT</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(VELACT)</td>
<td>Actuator velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>D(VLVOL)</td>
<td>Valve overlap</td>
<td>IN</td>
</tr>
<tr>
<td>D(VOLACT)</td>
<td>Actuator volume</td>
<td>IN**3</td>
</tr>
<tr>
<td>D(VOLCAS)</td>
<td>Case volume</td>
<td>IN**3</td>
</tr>
<tr>
<td>VOLD</td>
<td>Previous actuator velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>D(VOLOUT)</td>
<td>Outlet volume</td>
<td>IN**3</td>
</tr>
<tr>
<td>D(WIDTH)</td>
<td>Slot width</td>
<td>IN</td>
</tr>
<tr>
<td>ZOUT</td>
<td>Outlet impedance</td>
<td>PSI/CIS</td>
</tr>
</tbody>
</table>

6.51-21
6.51.7 Subroutine Listing

SUBROUTINE PULS51 (D,DT,DO,L)

C **** REVISER MARCH 25, 1976 ****

C X VERSION OF THE YPULS54 SUBROUTINE 7 APR 73

C COMMON DL,STELPT,STELPL,XT,P,POINT,NTES,INEL,κEL,VELEL,VELPL,(13,3)
1 P(ELEG(90,12),LCS(90,10),ILEG(1400),PN(90),DX(90)
C COMMON /SUB/AR(LC(150,9),P(1500),C(1500),P(300),C(300),C(300)
1.2(300),RHO(20),S2ORHO(20),VISCI(20),BULK(20),TEMP(20),PVAF(20)
C ATRES,TD,LINAL,PLDEL,PI,TITL(20),LEGA,ICON
3,KTEMP(99),LSTART(150),NYPLT(150),NLTYPL(99),ALNL,INZ
4,INV,ISTEP,INLINE,ALL,IND,IDENT,TLINE,NEL,ANDLG,...INODE,ARPLT
5,INLETS,IDS

DIMENSION D(37),DT(43),DD(1),L(10)

INTEGER ARCON*,MOTH,FLOP,F,COVLL,COVLL2,ARACT,PSPRIZ,PSPRIM,
C PACCP,PSRIP,PSLPP,PDISA,PDIP,DISP,DPVAO,DPVAC,
2 DISAK,DISA,I,COLAL,COLAL2,COLPL,COELCH,VELC,PIIN,
3 PSPEL,PSRIP,PSRIPF,FLAG,ACTU,ACTD,ACTC,POUTL,
4 PCASE,PIHLT,COVL,COVL2,BULK,CVACT,DISC,DISVLV,
5 COEALS,COEAL2,DELPL13,DELPL23,COELAS,POUTS,Bulk,COLO,
6,OUTLET,COUTL,DISV1,VLVOL,VLACT,ACTB,BULK,VLOUT,PCASE

C () ARRAY ****

DATA DPVAC/1/, INPSI/2/, ARCON/3/, MOTH/4/, FLOP,F/5/, VLVOL/6/,
1 COVL1/7/, COVL2/9/, ARACT/11/, P(SPRIZ/17/, P(SPRIM/11/,
2 PACCP/12/, P(SRIP/13/, P(DSAC/14/, PSLIP/15/, PLAP/15/,
3 DISP/17/, DISA/19/, DISA/I/19/, COLAL/29/, COLAL/21/,
4 COEPL/27/, COELCH/23/, VOLCAS/24/, PI INT/25/, PSLAP/26/,
5 COELOS/27/, DISVL/39/, P(DPVAO/39/, NP/L/31/, VOLCAS/32/,
6 OUTLET/35/, PI OUT/32/, PI OUT/35/)

C () ARRAY ****

DATA P(SRIP/1/, P(SRIP/3/, FLAG/3/, ACTU/4/, ACTC/5/,
1 PACTU/7/, POUTL/5/, P(V(SL/7/, PINT/10/, COVL/11/, COVL2/12/,
2 BULK/13/, V(LACT/14/, DISC/19/, DISVLV/15/, PEP/17/, COEAL/15/,
3 COEAL/19/, COEAL2/29/, POUTL/21/, DELP13/22/, DELP23/23/, BULK/24/,
4 OUTLET/25/, POUTL/26/, ITUP/27/, ITUP/28/, BULK/29/, PCASE/30/)

C

C

C

C *** 1000 SECTION

1000 CONTINUE

1000 IF ((INEL,ILU.0) GO TO 1500
DO 1001 I=1,29
1001 10(I)=0.0

C IF(*,LT,11) = 4+10

C .00343=VISC FOR MOL=3-3298 AT 100 F
POWER=VISC(N)/.00343
DT(BULK)=BULK(T)*DELT/9(VOLCAS)
DT(BULK)=BULK(T)*DELT/(VOLCAS)
DT(VOLCAS)=VOLCAS()/VOLCAS()
DT(VOLCAS)=VOLCAS()/DELV(1)*DELV(1)
DT(SIM)=SIM(I)*S2O866(KTEMP(I))<DELV(1)*DELV(1)
DT(SIM)=SIM(I)*S2O866(KTEMP(I))<DELV(1)*DELV(1)
DT(SIM)=1.4142135/((.023362*.33880(KTEMP(I)))*2)

BEST AVAILABLE COPY 6.51-22
6.51.7 (Continued)

\[\text{DT(COLALZ)} = D(COLALK) \times \text{POWER} \]
\[\text{DT(COLALS)} = D(COLAL1) \times \text{POWER} \]
\[\text{DT(INERT)} = D(INERT)/(D(DELT \times (A(RACT))) \]
\[\text{IF}(D\text{FLOPRC).} \text{NL.} 0, 0) \text{GO TO 1250} \]
\[\text{DT(COLALS)} = (\text{DT(COLALS)} - \text{DT(COLALZ)}) \times D(DISAN) \]
\[\text{DT(INPSSI)} = D(ARCOC) / D(INPSSI) \]
\[\text{D(FLOPRC)} = 2.0 \times (\text{SWITH}) \times D(INPSSI) \times D(COLVL1) \times 359 / D(ARCOC) \]
\[\text{DT(DPVC)} = D(DPVOA) - D(VLVOL) / D(INPSSI) \]
\[\text{DT(DISP)} = D(DISP) / 50. / D(DISAN) \]
\[\text{D(PSPRI)} = D(PSPRI) - D(PSPRI2) / D(DISAN) \]
\[\text{D(PACCP)} = D(PACCP) / (D(DISAN) \times 300. \times 2) \]
\[\text{DT(DPSAC)} = D(DPSAC) - D(DPSAC) / D(DISAN) \]
\[\text{DT(PZP)} = D(PZP) - D(PZP) / D(DISAN) \times 300. \]

1250
\[\text{DT}(\text{PRPA}) = D(\text{PSREL}) \]
\[\text{DT}(\text{BULKO}) = D(\text{BULK}) / D(\text{IND}) \times D(\text{DPVOA}) / 232.000 \]

C*** THIS SECTION CALCULATES THE STEADY STATE CHARACTERISTICS

C OF THE PUMP OUTPUT PRESSURE VERSUS FLOW.

\[\text{COLKA} = \text{DT(COLALZ)} \]
\[\text{DT}(\text{POUTLT}) = D(\text{DPVOA}) + 2.0 \]

1260
\[\text{DT}(\text{PACTC}) = \text{DT}(\text{PACTU}) \]

1270
\[\text{DT}(\text{PACTU}) = L(\text{PSPRI}) + \text{DT}(\text{DISACT}) \times D(\text{PSPRI}) + \text{DT}(\text{PCASL}) \]
\[1 + \text{DT}(\text{DISACT}) \times D(\text{PCAS}) \times D(\text{PACCP}) \times \text{DT}(\text{PRPA}) \times 2 \times \text{D}(\text{PDISAC}) \]
\[2 \times (\text{D}(\text{PSPRI}) + \text{D}(\text{PSPRI2}) \times \text{DT}(\text{PRPA}) \times \text{DT}(\text{DISAC}) \]
\[\text{IF}(\text{LENT}, 0, 0) \text{RETURN} \]
\[\text{DT}(\text{PACTC}) = \text{COLKA} \times \text{DT}(\text{PACTU}) \]
\[\text{DT}(\text{DISACT}) = D(\text{DISAN}) \]
\[\text{COLKA} = \text{DT}(\text{COLALZ}) + \text{DT}(\text{DISACT}) \times \text{DT}(\text{COLALS}) \]
\[\text{IF}(\text{DT}(\text{PACTC}), 0, 0) \text{GO TO 1260} \]
\[\text{DT}(\text{POUTL}) = \text{DT}(\text{POUTLT}) \]
\[\text{DT}(\text{INULT}) = D(\text{DISAN}). \times \text{DT}(\text{PRPA}) \times D(\text{DISAN}) \times \text{DT}(\text{POUTL}) \times D(\text{COPPL}) \]
\[1 \times \text{DT}(\text{PACTU}) \]
\[\text{DT}(\text{POUTL}) = D(\text{COPPL}) \times (\text{DT}(\text{POUTL}) - \text{DT}(\text{PACTC}) \]
\[\text{DT}(\text{DELPT}) = \text{DT}(\text{POUTL}) / (\text{DT}(\text{INULT}) - \text{DT}(\text{POUTLT})) \]
\[\text{DT}(\text{VLV}) = 0.5 \]
\[\text{DT}(\text{DELPT}) = 11. \]
\[\text{DT}(\text{DPT}) = 0.7 / (1. + \text{DT}(\text{COLVL1}) \times D(\text{INPSSI}) \times D(\text{LZ}) \]
\[\text{DT}(\text{UP}) = \text{GAIN} \]
\[\text{DT}(\text{LUP}) = 1. \times \text{GAIN} \]
\[\text{RETURN} \]

C STEADY STATE CALCULATION SECTION

C IN=EQUIPMENT E, XLNL=COORDINATION 4, INL=LUG 4
C CO=1=INLET, CO=2=OUTLET, CO=3=CASE OUT
C THE INLET IS A NODEAL POINT IN THE SYSTEM

1500
\[\text{IF}(\text{XWALL}=2) \times 1510, 1530, 1520 \]
\[1510 \text{ DT}(\text{INULT}) = \text{PDLG}(\text{INL, 11}) \]
\[\text{GO TO 1500} \]
\[1520 \text{ IF}(\text{XW, NL, 1}) \text{ GO TO 1700} \]
\[\text{CASE} = \text{PDLG}(\text{INL, 1}) \times \text{PDLG}(\text{INL, 2}) \]
6.51.7 (Continued)

DT(5) = QCASDR
QCACLK = DT(DISVLY) * (DT(QACTC) - DT(QACTU)) + DT(QACTU)
DT(DELP13) = (DT(POUTLT) * D(COEPLK) + QCACLK - QCASDR) / D(COCLIN)
PQLEG(INEL, 5) = PQLEG(INEL, 5) + DT(DELP13) + QCASDR / D(COCLIN)
PQLEG(INEL, 6) = PQLEG(INEL, 5) + 1.0 / D(COCLIN)
LCS(INEL, 7) = 5
PQLEG(INEL, 11) = PQLEG(INEL, 11) + DT(DELP13)
DT(PCASL) = PQLEG(INEL, 11)
PQLEG(INEL, 8) = PQLEG(INEL, 8) + DT(COLCAS)
PQLEG(INEL, 11) = PQLEG(INEL, 11) - DT(COLCAS) * (QCASDR**2)
GO TO 1500
1539 IF(INX, INL, 1) GO TO 1700
DT(DISVLY) = PQLEG(INEL, 1) * PQLEG(INEL, 2) - DT(QOUTLT)
DT(DISVLY) = DT(DISVLY) / (DT(CIALET) - DT(QOUTLT))
* IF(DT(DISVLY), LT, 0.0) DT(DISVLY) = 0.0
IF(DT(DISVLY), GT, 1.0) DT(DISVLY) = 1.0
PQLEG(INEL, 5) = PQLEG(INEL, 5) + DT(POUTLT) + DT(DELP13)
PQLEG(INEL, 6) = PQLEG(INEL, 6) + 0.0001
PQLEG(INEL, 11) = PQLEG(INEL, 11) + DT(POUTLT) + DT(DELP13)
DT(POUTLT) = PQLEG(INEL, 11)
LCS(INEL, 7) = 5
1600 RETURN
1700 WRITE(6, 1900) IND, NULL, INL
1900 FORMAT(5Y, 464) CALL SEQUENC, ERROR DETECTED IN CONCEPT NO ,
1 IS, 14H CONNECTION NO, 15, 74 MSG NO, 15)
WRITE(6, 243)
243 FORMAT(10X, 33HPROGRAM STOP IN SUBROUTINE, PUMP51)

STOP 6354

C *** 2000 SECTION
2000 CONTINUE
DT(DISACT) = DT(DISVLY) * D(DISA0)
DT(QACTC) = DT(DISVLY) * (DT(QACTC) - DT(QACTU)) + DT(QACTU)
DT(QACTU) = 0.0
DT(DISVLY) = 0.0
DT(PCASL) = DT(PCASL)
GO TO 1273

C *** 3000 SECTION
3000 CONTINUE
ICOUNT = 0

C CALCULATE TRANSIENT RESPONSE OF PUMP

POWER = 0.0
L1 = L(1)
L2 = L(2)
L3 = L(3)
C1 = C(1)
C2 = C(2)
6.51.7 (Continued)

C3=C(L3)
VOLD=DT(VELACT)
FPDA.IP=DPDAP
DPDA.P=DP(AACT)/(CPDA.IP+D(INERT))
DT(PACU)=0.0
DT(PACTC)=0.0
PACTU=DT(PACTU)
PDISA=DT(DISACT)+DT(VELACT)*DELT
PACTUR=D(PSPRI)+PDISA*D(PSPRI)+VOLD*D(INERT)
1+PDISA*0(D(PACSA)*DT(PACSA)+2+D(PDISA))DT(PPCASL)
2+(D(PSPRA)+D(PSLRP))DT(PPRSA)*DT(BULK)/DT(POUTLT)
COSIN=-VOLD*D(COGOSO)
COPUP=D(PDISA*D(DISP)*DT(PRP,t)+COSIN
DT(PINLET)=(C/(2(L1)+DT(PPCASL))*D(COLCIN)-COPUP)
1/(1,0+Z(L1)+D(COLCIN))
IF((DT(PINLET,LT,2(PMININ)),DT(PINLET)=D(PMININ)
DT(PINLET)=(C1-DT(PINLET))/Z(L1)
3CASIN=(DT(PPCASL)-DT(PINLET))*D(COLCIN)
COPUP=D(T(PINLET)+3CASIN+COSIN
COLK=DT(COLALS)+PDISA*DT(COLALS)
ZOUT=Z(L2)/(1.0+Z(L2)*D(COLPL)+Z(L2)*D(VOLOUT))
COPUT=DT(POUTLT)
C=1/(DPDA.I+/DT(SULK)+COKLA)
DP1=(DT(PPCASL)*COLK+PACTUR*DT(SULK)+PACTUR*DPDAP)*3
DP2=3*(PACTUR*DPDAP+PACTUR*DT(SULK)+DT(PPCASL)*(COKLA-1,3))
3200 POUTLT=(C2/2(L2)+COPU+D*DP1*DP2*DT(PPCASL)+Z(VOLOUT)*COPUT)*ZOUT
POUTLT=DT(POUTLT)
0=1/(DPDA.I+/DT(SULK)+COKLA)
DP1=(DT(PPCASL)*COLK+PACTUR*DT(SULK)+PACTUR*DPDAP)*3
DP2=3*(PACTUR*DPDAP+PACTUR*DT(SULK)+DT(PPCASL)*(COKLA-1,3))
3219 POUTLT=POUTLT*DT(1,ITUP)+POUTLT*DT(1,ITUP)
3210 DT(POUTLT)=POUTLT*DT(1,ITUP)*POUTLT*DT(1,ITUP)
DIS=DIS/((DPDAP*DT(PPCASL)+PACTUR*DPDAP)*3
DIS=DIS/*DT(DPFRIC)*((DT(POUTLT)-DT(PACTU))+1.0)
DIS=(DIS*DT(DISP))DIS=D(DISP)
3215 IF((POUTLT.GT.SI2.5))GO TO 3216
COIN=(DIS*DT(PVOL1))*2/(2.5*COKLA)
CON2=2.*AS(DT(POUTLT)-DT(PPCASL))COKLA/COKLA*CON2
DT(PACTU)=CON2*(5*DT(1.5+COKLA)-1.0)
ARTL8,POUTLT,DT(PVOL1),DT(PCCASL),DT(PPCASL),DT(COLV1),DT(POUTLT)
997 FOR AT(3X,4,21,2.5)
3216 CONTINUE
L=DIS*DT(COLV1)
DT(PACTU)=-3*A**2/2.+1/2.*DT((4.3)**2+1*(DT(POUTLT)-DP1))
DT(PACTU)=DT(POUTLT)-(DT(PACTU)/A)**2
3217 TOUT=POUTLT*DT(PACTU)*ZOUT
IF((ABS(TOUT-0.4(POLW)),LT,0,05))GO TO 3220
DT(POUTLT)=DT(POUTLT)*DT(1,ITUP)+TOUT*DT(1,ITUP)
ICOUNT=ICOUNT+1
3220 IF(LOC,0,25)WRITE(6,221)ICOUNT
IF(LOC,0,25)WRITE(6,223)DT(POUTLT),ZOUT,POUTLT,POUTLT
992 FORM(10X,4F20.5)
IF (ICOUNT.EQ.25) GO TO 3230
999 FORMAT (1X, 13HEXCODED ITER, 10)
 GO TO 3210
C
 FLOW FROM ACTUATOR PISTON TO CASL
3220 POUTM = D(PVAC) + DT(PCASE)
 IF (OUTM.GE. POUTM) GO TO 3230
 DIS = (OUTM - OUTM) * (INPPSI)
 DIS = DIS / ((DT(PACTU) - DT(PCASE)) * (FLOFC + 1.0))
 IF (DIS.GT.D(DISY)) DIS = D(DISY)
3226 CONTINUE
 A = DIS * DT(COL)
 DT(PACTC) = -(A**2/2. + A/2. * SQR((A**2 + 4.*DP2))
 DT(PACTU) = DT(PCASE) + (DT(PACTC)/A)**2
3230 IF (POWER.LE.0.0) GO TO 3250
 DT(T) = (DISP) * DT(PRIL) * DT(DISY)
 DISP = 0.0
3240 IF (POWER, EQ, -1.0) GO TO 3290
 DT(PACTC) = 0.0
 DT(PACTU) = DT(PCASE)
 CASL = 0.0
 GO TO 3300
3250 DT(PACTU) = DT(PCASE) + (TMACTU) / COLIN
 CASL = DT(DACTU)
3300 P(LI) = DT(PINTL)
 T(LI) = DT(TINTL)
 DPPLIK = (DT(PVUL) - DT(PCASE)) * (OPLIK)
 T(L2) = -(TOUTL - OPLIK - DT(PACTU) - (T(PVULT) - TOUTL) * S(VUL)
 DT(TSYLV) = (DT(PVUL) - DT(PCASE) - D(DPVCA)) * D(INPPSI)
 DT(PVULTL) = C(L2) - T(L2)*Z(L2)
 DT(T) = PCASE
 PCASDR = OPLIK + PACTL + TMACTC - (TMACT) * DT(VULT) - PCASI - 2021 - 2.
 DT(T) = PCASDR
 ALPHA = DT(COLCA)
 BETA = Z(L3) + DT(BULC)
 COUT = DT(PCASE) + PCASDR * DT(BULC) - C(L3)
 T(L3) = -(BETA + SQR((BETA**2 + 4.*ALPHA**ABS(CHI))) / (2.*ALPHA)
 T(L3) = SGN(T(L3)) * CHI
 DT(PCASE) = DT(PCASE) + (T(L3) + P(L3)) * DT(BULC)
 P(L3) = C(L3) - T(L3)*Z(L3)
6.51.7 (Continued)

\[DT(PPCASE) = 2 \cdot DT(PCASE) - DT(PCASE) \]

\[C \]

\[POWER = -Q(L2) \cdot (P(L2) - P(L1)) / 6600.0 \]

\[DT(PPower) = POWER + DT(PPower) \]

\[IF(DT(PINLET) \leq DT(PINJIN)) \text{ WRITE}(6, 3310) T \]

RETURN

3310 FORMAT(2X, 36!) ******** PUMP CAVITATION ONSET AT T = ,E12.5)

END
SUBROUTINE PUMP54

Subroutine PUMP54 was set up to model the space shuttle (F-14) pump, which is basically a simple in line piston pump, though it incorporates many mechanical refinements and sophisticated design features. This model is intended for use by system designers and is primarily aimed at the study of pump system stability under dynamic loading conditions.

The model incorporates the effects of case drain dynamics, since the shuttle pump output pressure is referenced to case and the actuator discharges to the case, and displaces case volume when it is moving.

The treatment of leakage and damping characteristics are rudimentary.

The dynamics of the swash plate, yoke or hanger, are complex. For the model the effects of the dynamic forces on the actuator are included. These forces push the pump to maximum flow, the hanger spring provides this force on startup.

In addition the hanger offset creates a negative flow at the pump inlet and outlet when the hanger is moving toward maximum flow, and this has a destabilizing effect, when the swash response is very fast.

Some of the hanger forces are oscillatory but no attempt has been made to describe this effect, except that the magnitude is sufficient to keep the hanger in motion, so we have ignored the effects of static friction. This is an assumption that helps the simulation by keeping the integration of the hanger velocity a continuous function, between its mechanical stops.

The compensator valve flow characteristics are a significant part of the model. The forces on the valve are a combination of the outlet pressure forces pushing against the case pressure and spring forces, with damping and flow forces acting in either direction.
The damping and flow forces are not included because of the low flow levels of this particular valve.

6.54.1 Math Model

A simplified diagram of the pressure regulated variable displacement pump is shown in Figure 6.54-1.

An equivalent circuit schematic diagram for the pump model is shown in Figure 6.54-2.

Pump Displacement Flow

For the pump inlet the displacement flow is computed as follows:

\[Q_{PUMP} = D(DISP) \times DT(PRPM) \times DT(DISACT) \]

if \(D(DISAMI) < DT(DISACT) < D(DISAM) \)

or \(Q_{PUMP} = Q_{INLET} + QCASIN \)

if \(PINLET < PINMIN \)

Actuator Pressure

The actuator pressure is based on the contributions of the spring force, case pressure, outlet pressure and pump rpm, plus the reaction force due to velocity damping which is generated when the hanger is moving. The input data establishing actuator pressure for pump operating conditions is modified to give a simpler algorithm for the transient calculations.

The input data gives the actuator pressure due to the spring force at maximum flow, \(D(PSPRIM) \) and at zero flow, \(D(PSPRIZ) \). \(P(PZPRM) \) is input as the pressure at zero actuator displacement and 3600 rpm. It is then modified to give the pressure at zero rpm by subtracting from it the slope of the pressure versus rpm curve, which is input as \(D(PSPRPM) \).

Using the F-15 pump experimental data and the actuator pressure predictions generated by the HSFR program, a formula was derived which related actuator pressure to the output pressure/bulk modulus ratio.

The test data collected at different fluid temperatures showed a need for temperature correction which was obtained via the bulk modulus.
Figure 6.54-1

TYPE NO. 54 PRESSURE REGULATED VARIABLE
DISPLACEMENT PUMP
Valve Open Outlet to Actuator

Valve Open Actuator to Case

QASDR - Sum of All Flows into and out of Case
correction factor \(\frac{DT(BULKO)}{DT(POUTLT)} \) is used where

\[
DT(BULKO) = \frac{BULK(KTEMP(IND)) \times D(DPVOA)}{223000}
\]

\(D(DPVOA) \) is the reference pressure and 223000 is the reference bulk modulus of MIL-H-5606B at 3000 psi and 130°F.

The actuator pressure is then computed as

\[
DT(PACTU) = \frac{DT(POUTLT)}{DT(BULKO)} \times \frac{D(PSPRIZ) + PDISA \times D(PSRIM) - VOLD \times D(PDAMP)}{VOLD} + \frac{PDISA \times (D(PACCP) \times DT(PITPM)^2 + D(PDISAC))}{D(PCASE) + (D(PZRPM) + D(PSLRPM) \times DT(PPRPM))} + \frac{DT(PCASE) + (D(PZRPM) + D(PSLRPM) \times DT(PPRPM))}{D(PZRPM) + D(PSLRPM) \times 3600}
\]

where

\(PDISA = \text{PREDICTED ACTUATOR POSITION BASED ON THE PREVIOUS POSITION AND VELOCITY} \)

\(= DT(\text{DISACT}) + DT(\text{VELACT}) \times \text{DELT} \)

\(VOLD = \text{ACTUATOR VELOCITY (IN/SEC)} \)

\(D(PACCP) = \frac{D(PACCP)}{(D(DISAM) \times 3600)^2} \)

\(D(PACCP) \) is input as the pressure due to piston acceleration at 3600 RPM and maximum stroke

\(D(PSPRIM) = \frac{(D(PSPRIM) - D(PSPRIZ))/D(DISAM)}{D(DISAM)} \)

\(D(PSPRIM) \) is input as the actuator pressure due to spring force at maximum pump displacement

\(D(PDISAC) = \frac{(D(PDISAC) - D(PSRPM))/D(DISAM)}{D(DISAM)} \)

\(D(PDISAC) \) is input as the actuator pressure at 3600 RPM and maximum pump displacement

\(D(PZRPM) = \frac{D(\text{Z/RPM}) - D(PSLRPM) \times 3600}{D(PSLRPM) \times 3600} \)

\(D(PZRPM) \) is input as the actuator pressure at 3600 RPM and zero pump displacement.
The actuator pressure and damping characteristics are important variables since they govern how fast the pump goes from zero to full flow. No easy way exists to obtain these values accurately from purely dimensional data. The HSFR program is able to get within 30% of the measured actuator pressure and gives reasonable predictions of the variations with temperature and rpm. Measurements of actuator pressure and damping characteristics require a complex set of instrumentation and analysis of the data to extract the variables would require inspired judgement. Therefore a reasonable initial actuator pressure \(D(PZRH) \) which includes estimated values for the contributions of the spring is 800 psi. Other contributions to actuator pressure are input as zero.

Compensator Valve

The compensator valve position is assumed to be directly proportional to the differential pressure between outlet and case. The lag, due to the valve damping and inertia, is very small compared to the response of the hanger and is ignored.

The valve spring rate \(D(INPPSI) \) is input in lbs/in and converted to in/psi,

\[
D(INPPSI) = \frac{D(ARGOM)}{D(INPPSI)}
\]

The differential pressure at which the valve opens from outlet to actuator \(D(DPVOA) \) is used to determine the valve position. Two pressures \(POUTMX \) and \(POUTMI \) are derived, \(POUTMX \) is the maximum outlet pressure that can be obtained assuming zero flow from the outlet to the actuator.

\[
POUTMX = \left(\frac{C2}{Z(L2)} + QPUMP + DT(PCASE)*D(COEPLK)\right)*ZOUT
\]

where

\[
ZOUT = \frac{Z(L2)}{1.0 + Z(L2)*D(COEPLK)}
\]

\[
QPUMP = DT(QINLET) + QCASIN + QOSIN
\]

6.54-6
The minimum pressure, POUTMI, which is the outlet pressure when the valve is just about to open is computed as:

\[POUTMI = D(DPVOA) + DT(PCASE) \]

The actual outlet pressure lies between these limits and is obtained by iteration. The valve orifice area is calculated using the trigonometric formula for round port orifices. The valve displacement for \(POUTMX \geq POUTMI \) is

\[\text{DIS} = (DT(POUTLT) - POUTMI) \times \text{D(INFPSI)} \]

The orifice area is computed as

\[\text{AREA} = D(SRAD) \times \text{ACOS}(B/D(RAD)) - B \times \text{SQRT}(D(SRAD) - B^2) \]

where

\[B = D(RAD) - \text{DIS} \]

\[D(RAD) = \text{RADIUS OF METERING HOLE} \]

\[D(SRAD) = D(RAD)^2 \]

This area calculation works within the limits of the port diameter. For the computation, two ports diametrically opposite are assumed. When the valve is within the overlap region, the valve flow is set to zero. No allowance is made for leakage due to diametrical clearance within the valve.

For the initial guess of outlet pressure \(DT(POUTLT) \) is computed at \(.75 \times POUTMX + .25 \times POUTMI \). This pressure is used to compute the valve position, area, and flow into the actuator \(DT(QACTU) \). The actuator flow is then used to recompute the pressure.

\[TPOUT = POUTMX - DT(QACTU) \times ZOUT \]

A check is made to see if the recomputed flow is within .05 psi of the pressure valve and if it is not, the outlet pressure is updated by

\[DT(POUTLT) = DT(POUTLT) \times .15 + TPOUT \times .85 \]
The choice of the .15/85 ratio and the initial guess ratio of .75/25 was made using the actual area, displacement and load impedance data which is applicable to its installation in the space shuttle. For other installations adjustments of these ratios could reduce the number of iterations required to achieve a balance. The tolerance of .05 psi could also be increased with little penalty.

Flow From Actuator Piston to Case

When POUTMI > POUTMX the valve is either closed or open from actuator to case. POUTMI is changed to

POUTMI = D(DPVAC) + DT(PCASE)

and if POUTMI is still greater than POUTMX, the valve is open allowing flow out of the actuator so that the pump flow QPUMP increases. The valve displacement area and flow (DT(QACTC)) are recalculated. Since the flow does not affect outlet pressure, no iteration is necessary.

The actuator leakage to case is assumed to be laminar since the passage is small around the actuator barrel. The actuator leakage is computed as

QACTLK = COELKA*(DT(PACTU) - DT(PCASE))

with all the actuator flows known, the actuator velocity is calculated

DT(VELACT) = -QNET/D(ARACT)

where

QNET = DT(QACTU) - DT(QACTC) - QACTLK

The new actuator position is then

DT(DISACT) = DT(DISACT) + (VOLD + DT(VELACT)) * DELT / 2.

A check is made to determine if the actuator is at the stroke limits. If it is the actuator flow must be recalculated. If the actuator is at maximum stroke (fully retracted with the pump at full stroke) then the actuator pressure drops to case pressure and DT(QACTC) is set to zero.
If the actuator is at minimum stroke (with the pump outlet flow negative), then DT(QACTU) and DT(PACTU) have to be recalculated so that the actuator leakage flow can be determined.

Pump Outlet Pressure and Flow

After the actuator pressure, flows and valve outlet pressure DT(POUTLT) are computed, pump outlet flow is calculated as:

\[Q(L2) = -(QPUMP) - QPLEAK - DT(QACTU)) \]

actual pump output pressure is then

\[P(L2) = C(L2) - Q(L2)*Z(L2) \]

Pump Case Outlet Pressure and Flow

The case outlet flow is determined using the schematic of Figure 6.54-2 to write a linear equation in flow:

\[QCASDR = (QCASDR*DT(BULKC)-C3+DT(PCASE)/(Z(L3)+DT(BULKC))) \]

\[Q(L3) = -QCASDR \]

The outlet case pressure is

\[P(L3) = C(L3)+QCASDR*Z(L3) \]
6.54.2 Assumptions

The assumptions in a model of this nature are almost too many to enumerate. By its very nature the pump is a complex piece of equipment with multiple leak paths across the port plate, down the side of the piston and out of the shoes. This whole set of leak paths have been linearized and assumed to be constant for a constant output pressure, which is no doubt rather hard to accept. The alternative would be go into very detailed calculations with the leakage dependent on the piston load, swash angle, RPM and anything else one could add. Unfortunately this too would probably be inaccurate so instead of an inaccurate complex leakage model we choose a simple leakage model, which could be improved when more data is available from the verification tests.

The forces on the swash plate are not taken into account as it rotates. Flow and leakage, are all treated as though the pump had a continuous output rather than the individual pumping pistons.

A model which includes the dynamics of each individual piston would by necessity be considerably more complex and consume much more computer time, but is is an alternative to what we have done here.

In all the calculations the bulk modulus is treated as a constant for the high pressure (output) side and as a different constant for the low pressure (inlet) side, the elastic expansion of the volume cavities is not included though a correction factor can be included in the model by increasing inputted volumes above their actual values.

Friction effects have not been included primarily because of the cost of putting them in, but in actual fact the forces on the swash plate have an
oscillatory content which tend to keep it in motion. The pulsations of the outlet also tend to keep the valve in motion so that friction effects would not normally be significant.
6.54.3 Computation

The pump subroutine is set up using the HYTRAN program commons, plus the D, DT, DD, and L arrays.

1000 SECTION

In the 1000 section the constants are initialized where desirable for more efficient computation. The variables are initialized depending on whether the pump is in a pressurized or depressurized operating mode.

The remaining part of Section 1000 deals with the calculations of the steady state pump characteristics.

In order to balance the pump at some steady state condition, it is first necessary to establish what the pump characteristics are, over the maximum range of pump flow.

To help in this it was assumed that these characteristics could be approximated by a straight line interpolation between the pump conditions at maximum and minimum flows which correspond to zero and maximum actuator displacement respectively.

A chain of interdependent calculations are needed to derive the maximum and minimum conditions. We have to establish:

DT(PACTU) = Actuator pressure
DT(QACTC) = Flow from actuator to case
DT(QAC'TL) = Flow from outlet to actuator through the valve
QCASDR = Case drain flow
QACTLK = Flow into the actuator due to leakage
DT(DISVLV) = Valve displacement
DT(POULT) = Valve chamber pressure which is the same as outlet pressure

The actuator pressure is dependent on the outlet pressure due to the pumping offset, and the valve flow is dependent on the difference between
outlet pressure and actuator pressure.

The initial flows (QACTU and QACTC) are computed at the appropriate valve positions and this information is used in the steady state portion of the program.

1500 SECTION

Steady State Calculations

The pump which has three connections, has a node located at the inlet. The leg which has the inlet connection receives the pump inlet pressure from the steady state routine.

For the leg which has the outlet connection as its first element, a value of the output flow ratio is computed as

\[
\text{DT(DISVLY)} = \frac{Q\text{GUESS}-\text{DT(QOUTLT)}}{\text{DT(QINLET)}-\text{DT(QOUTLT)}}
\]

The ratio is calculated to determine the percentage of actuator flow that is actual leakage flow (QACTLK) into the pump case.

The output pressure is determined by the computed maximum outlet pressure at maximum valve displacement DT(POUTM) plus the pressure drop from case to inlet, DT(DELP13).

The outlet pressure is added to PQLEG(INEL, 5) and the output impedance (.00001) is added to PQLEG(INEL, 6).

DT(POUTLT) is initialized to DT(POUTM) + DT(DELP13).

And the outlet pressure PQLEG (INEL, 11) is also increased by DT(POUTM) + DT(DELP13).

LCS(INCL, 7) is set to 5 which means that the LEG formulae must be recalculated for every iteration because of the variation in inlet pressure.

The call for CON #3, the case drain, first gets the value of the flow guess for the case drain flow and then calculates the actuator leakage based
on the outlet flow ratio.

\[\text{QACTLK} = DT(\text{DISVLV}) \times (DT(QACTC) - DT(QACTU)) + DT(QACTU) \]

The pressure rise from inlet to case, \(DT(\text{DELP13}) \) is then calculated using the sum of the leakage flows divided by the coefficient of case to inlet leakage, \(D(\text{COECIN}) \). Since \(DT(\text{DELP13}) \) is based on a case drain flow, \(QCASDR/D(\text{COECIN}) \) is added along with \(DT(\text{DELP13}) \) to \(\text{PQLEG(INEL, 5)} \) for the constant pressure rise temperature.

\(1/D(\text{COECIN}) \), the case drain impedance is added to \(\text{PQLEG(INEL, 6)} \) and \(\text{LCS(INEL, 7)} \) is set to 5 so that the leg must be recalled each iteration since the leakage is dependent on the outlet pressure and/or updated \(DT(\text{PINLET}) \) is required by the other CON #2 calculation.

\(\text{PQLEG(INEL, 11)} \) is increased by \(DT(\text{DELP13}) \) and \(DT(\text{PCASE}) \) is initialized to \(\text{PQLEG(INEL, 11)} \).

A test at the start of both the case drain and outlet calculations checks to see if \(\text{INX} = 1 \) which can only be true if CON 2 and 3 are the first or only elements in this leg.

The calculation method was two interdependent pressure rises in two separate legs which is unfortunately necessary since the variables are not easily separated.

2000 SECTION

With the completion of the steady state calculations, where \(DT(\text{PCASE}) \), \(DT(\text{POULT}) \) and \(DT(\text{PINLET}) \) are initialized and a value for \(DT(\text{DISVLV}) \) is calculated, the pump state variables can be initialized, ready for the transient simulation.

The ratio \(DT(\text{DISVLV}) \) is used to initialize \(DT(\text{DISACT}) \) and \(DT(\text{QACTU}) \). Actuator velocity, \(DT(\text{VELACT}) \), valve displacement, \(DT(\text{DISVLV}) \), and \(DT(\text{QACTC}) \) are set to zero. \(DT(\text{POUTM}) \) is set equal to the pump outlet pressure, \(DT(\text{POULT}) \).
3000 SECTION

The 3000 section starts with a computation predicting the actuator displacement for the current time step. This value is used in the computation of the actuator pressure.

The pump inlet pressure is determined from the input impedance, $Z(L_1)$, a pump inlet to case coefficient and pump flow as shown in the equivalent schematic diagram of the pump inlet model, Figure 6.54-2.

The next step is to determine the minimum (P_{OUTMI}) and maximum (P_{OUTMX}) pump output pressure range. The compensator valve displacement is then computed using an iterative technique as explained in the math model section. Once the valve position is known the actuator pressure and flow is computed along with the pump outlet pressure and flow.

The position of the valve determines whether the actuator flow is going from the outlet to the actuator or from the actuator to case. The two equivalent circuit schematics used in the solution process are shown in Figure 6.54-2.

Figure 6.54-2 also shows the schematic for computing the case drain output pressure and flow. $QCASDR$ is the sum of all flows into and out of the case:

$$QCASDR = Q_{PLEAK} + Q_{ACTLK} + DT(Q_{ACTC}) - D(ARACT) * DT(VELACT) - QCASIN - QOSIN*2.$$

$DT(BULKC)$ is the impedance of the case. It is computed as the fluid bulk modulus times $DELT$ divided by the case volume.

The final values of outlet and case drain pressures and flows are passed to the appropriate P and Q arrays. The pump output horsepower is computed as:

6.54-15
\[\text{POWER} = - Q(L2) \times (P(L2) - P(L1)) / 6600.0 \]

and is added to the previous value in DT(PPOWER).

Should the pump be depressurized at this time step the above calculations are bypassed and the pump output pressure is set to \(800 + \text{DT}(ext{PCASE}) \) and the appropriate outlet and case drain pressures and flows are computed.

If the pump inlet pressure is less than the minimum pump inlet pressure, a message is printed that gives the time at which pump cavitation occurs.
6.54.4 **Approximations**

The approximations used in the program, are the formula used to generate the compensator valve flow areas, and the rather gross linearization between maximum and minimum flows used in the steady state calculations.

The remaining calculations follow the math model which is itself a large approximation.

6.54.5 **Limitations**

The current pump subroutine does not attempt to describe the true cavitation effects that can be caused by improper filling of the pistons. The effect on swash angle and RPM vary greatly from pump to pump.

However, it is also a condition which the designer should avoid, by improving the pump inlet supply system, to prevent the inlet pressure dropping to the point where cavitation effects are a concern.

A current limitation, is the correct steady state prediction of pump outlet pressure, when the system flow exceeds the pump capacity. The transient section will limit the flows, but flow limitation is not included in the steady state section.
Variable Names

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(ARACT)</td>
<td>Actuator area</td>
<td>IN**2</td>
</tr>
<tr>
<td>D(ARCOM)</td>
<td>Compensator valve area</td>
<td>IN**2</td>
</tr>
<tr>
<td>AREA</td>
<td>Valve opening area</td>
<td>IN**2</td>
</tr>
<tr>
<td>BULK</td>
<td>Impedance of actuator volume</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>DT(BULKC)</td>
<td>Impedance of case volume</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>DT(BULKO)</td>
<td>Oil bulk modulus</td>
<td>PSI</td>
</tr>
<tr>
<td>C</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>D(COEALK)</td>
<td>Coefficient of actuator leakage at zero pump displacement</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>D(COEALM)</td>
<td>Coefficient of actuator leakage at maximum pump displacement</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(COEALS)</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(COEALZ)</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>D(COECIN)</td>
<td>Coefficient of flow from case to inlet</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>COELKA</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>D(COEOSO)</td>
<td>Coefficient of outlet flow due to actuator motion</td>
<td>CIS/(IN/SEC)</td>
</tr>
<tr>
<td>D(COEPLK)</td>
<td>Coefficient of pump leakage (outlet to case)</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>D(COEVL1)</td>
<td>Discharge coefficient outlet to actuator</td>
<td>--</td>
</tr>
<tr>
<td>D(COEVL2)</td>
<td>Discharge coefficient actuator to case</td>
<td>--</td>
</tr>
<tr>
<td>DT(COEV1)</td>
<td>Constant term used to determine outlet to actuator pressure drop</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>DT(COEV2)</td>
<td>Constant term used to determine actuator to case pressure drop</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>CONA,CONB</td>
<td>Dummy variables</td>
<td>--</td>
</tr>
<tr>
<td>C1</td>
<td>Inlet characteristic pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>C2</td>
<td>Outlet characteristic pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>C3</td>
<td>Case drain characteristic pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(DELP13)</td>
<td>Pressure drop from case to inlet</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(DELP23)</td>
<td>Pressure drop from outlet to case</td>
<td>PSI</td>
</tr>
<tr>
<td>DIS</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(DISACT)</td>
<td>Actuator displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(DISAM)</td>
<td>Actuator position at maximum pump displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(DISAMI)</td>
<td>Actuator position at minimum pump displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(DISP)</td>
<td>Theoretical maximum pump displacement changed to IN**3/IN/RPM</td>
<td>IN**3/REV</td>
</tr>
<tr>
<td>DT(DISVLV)</td>
<td>Valve displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(DISVM)</td>
<td>Maximum valve displacement</td>
<td>IN</td>
</tr>
<tr>
<td>DPDAMP</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>D(DPVAC)</td>
<td>Pressure at which valve is open from outlet to actuator</td>
<td>PSI</td>
</tr>
<tr>
<td>D(DPVOA)</td>
<td>Pressure at which valve starts to open from outlet to actuator</td>
<td>PSI</td>
</tr>
<tr>
<td>D(INPPS1)</td>
<td>Spring rate of spool changed to IN/PSI</td>
<td>LB/IN</td>
</tr>
<tr>
<td>DT(ISYS)</td>
<td>System number</td>
<td>--</td>
</tr>
<tr>
<td>D(KTIME)</td>
<td>Pressurization/depressurization time</td>
<td>SEC</td>
</tr>
<tr>
<td>D(PACCP)</td>
<td>Actuator pressure due to piston acceleration at 3600 RPM and maximum pump displacement</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PACTU)</td>
<td>Actuator pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PCASE)</td>
<td>Case pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PDAMP)</td>
<td>Hanger damping</td>
<td>PSI/IN/SEC</td>
</tr>
<tr>
<td>PDISA</td>
<td>Predicted actuator displacement</td>
<td>IN</td>
</tr>
</tbody>
</table>

6.54-19
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(PDISAC)</td>
<td>Pressure at 3600 RPM and maximum pump displacement; changed to rate of change of pressure with actuator position</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PINLET)</td>
<td>Inlet pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PINMIM)</td>
<td>Minimum inlet pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(POULT)</td>
<td>Outlet pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>POUTM, POUTM1, POUTN, POUTZ</td>
<td>Dummy variables</td>
<td>--</td>
</tr>
<tr>
<td>POWER</td>
<td>Pump output horsepower</td>
<td>HP</td>
</tr>
<tr>
<td>DT(PPOWER)</td>
<td>Cumulative output horsepower</td>
<td>HP</td>
</tr>
<tr>
<td>DT(PRPM)</td>
<td>Pump operating speed</td>
<td>RPM</td>
</tr>
<tr>
<td>D(PSLRPM)</td>
<td>Slope of pressure vs RPM curve</td>
<td>PSI/RPM</td>
</tr>
<tr>
<td>D(PSPEED)</td>
<td>Pump operating speed</td>
<td>RPM</td>
</tr>
<tr>
<td>D(PSPRIM)</td>
<td>Actuator pressure due to spring force at maximum pump displacement adjusted to slope PSI/IN</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PSPRIZ)</td>
<td>Actuator pressure due to spring force at zero pump displacement</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PZPRM)</td>
<td>Actuator pressure inputted at 3600 RPM and zero pump displacement; adjusted to zero RPM</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(QACTC)</td>
<td>Actuator flow with valve is open from actuator to case</td>
<td>CIS</td>
</tr>
<tr>
<td>QACTLK</td>
<td>Leakage flow from actuator to case</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(QACTU)</td>
<td>Actuator flow when valve is open from outlet to actuator</td>
<td>CIS</td>
</tr>
<tr>
<td>QCASIDR</td>
<td>Sum of all flows into and out of the case</td>
<td>CIS</td>
</tr>
<tr>
<td>QCASIN</td>
<td>Flow from case to inlet</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(QINLET)</td>
<td>Inlet flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QNET</td>
<td>Net actuator flow</td>
<td>CIS</td>
</tr>
</tbody>
</table>

6.54-20
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>QOSIN</td>
<td>Outlet flow due to actuator motion</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(QOUTLT)</td>
<td>Outlet flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QPLEAK</td>
<td>Pump leakage flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QPUMP</td>
<td>Pump flow</td>
<td>CIS</td>
</tr>
<tr>
<td>D(RAD)</td>
<td>Radius of valve port</td>
<td>IN</td>
</tr>
<tr>
<td>D(SRAD)</td>
<td>Initial radius squared</td>
<td>IN**2</td>
</tr>
<tr>
<td>OPOUT</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(VELACT)</td>
<td>Actuator velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>D(VLVOL)</td>
<td>Valve overlap</td>
<td>IN</td>
</tr>
<tr>
<td>D(VOLACT)</td>
<td>Actuator volume</td>
<td>IN**3</td>
</tr>
<tr>
<td>D(VOLCAS)</td>
<td>Case volume</td>
<td>IN**3</td>
</tr>
<tr>
<td>VOLD</td>
<td>Previous actuator velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>ZOUT</td>
<td>Outlet impedance</td>
<td>PSI/CIS</td>
</tr>
</tbody>
</table>
SUBROUTINE PUMP54 (D, DT, DD, L)

C **** REVISED JUNE 25, 1976 ****

DIMENSION D(37), DT(43), DD(1), L(10)
COMMON XTELML, NTELML, IPT, IPONET, NPTS, INEL, KMLL, STOPL, MLPLT(51, 3),
1 POLES(90,12), LCS(90,10), LLEG(1400), PN(90), P(90)
COMMON/SUB/PARA(150,0), F(1500), P(300), L(300), P(300), C(300)
1, L(300), RHC(20), S20RHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, APPRES, D, DELT, TPINAL, PLTDEL, PI, TITLE(20), LEGH, ICON
3, KTI, P(99), LSTART(150), MLPT(150), LTYPE(99), RC(99), INX, INZ
4, INV, ISTEP, NLTME, REL, ION, IENT, IRNL, MLCC, XNODE, IMPLOT
5, ARITPS, DTS
INTEGER ARCHG, RAG, SRAD, COLVL, COLV2, ARACT, PSPIZ, PSPIR,
1 PACC', PPB', PSLP', PDISAC, POAP', DISP, DPVOA, DPVAC,
2 DISA', DDISA', CCALK, COLAL, COPLK, COCIN, VOLCAS, PLMIN,
3 PSPEED, PR3', PPOW', PACTU, PACTC, PACTU, POUTL,
4 PCASE, PINLET, COLV1, COLV2, BULK, VLLACT, DISACT, DISVLV,
5 COLAL, COLAL, DLP13, POUT, POUR, BULK, COLGO
6, QINLET, QOUTL, VVOL
D() ARRAY ****
DATA DPVAC/1/, IMPSI/2/, ARCHG/3/, RAD/4/, SRAD/5/, VVOL/6/,
1 COLVL/7/, COLV2/8/, ARACT/9/, PSPIZ/10/, PSPIR/11/,
2 PACC'/12/, PPB'/13/, PDISAC/14/, PSLOW/15/, PR3'/16/,
3 DISA'/17/, DDISA'/18/, CCALK/19/, COLAL/20/, COPLK/21/,
4 COCIN/22/, VOLCAS/24/, PLMIN/25/, PSPEED/26/,
5 COLGO/27/, DPVAC/28/, VTIL/29/
C DT() ARRAY ****
DATA PRB'/1/, PPOW'/2/, PACTU/4/, PACTC/5/,
1 PACTU/7/, POUTL/8/, PCASL/9/, PINLET/10/, COLVL/11/, COLV2/12/,
2 BULK/13/, VLLACT/14/, DISACT/15/, DISVLV/16/, RC/17/, COLAL/18/,
3 COLAL/19/, POUT/20/, POUT/21/, DLP13/22/, BULK/23/,
4 QINLET/24/, QOUTL/25/, ITS/4/

C

C IF(INTK) 120C, 2000, 3000
C *** 1000 SECTION
1000 CONTINU
IF (INL..LT.0) GO TO 1000
C('POW')=.0
N=MLPLP('I')
C IF(I..LT.11) N=N+10
C .024=R/VISC OF ML-4-55903 AT 100 F
POW(')=VISC(')/.024
DT('BULK')=BULK(')*DLP13(2)*VOLCAS
DT(COLVL)=2.0*(COLVL)*S20RHO(PT(MLPLE))
DT(COLV2)=2.0*(COLV2)*S20RHO(MLPLE)
DT(COLAL)=D(COLAL)*POW
C(COLAL)=(DT(COLAL)-DT(COLAL))/D(DISA,
DT(6)=.0
IF(D(SRAD),NL..0.) GO TO 1250

DI AVAILABLE COPY
6.54.7 (Continued)

\[
\begin{align*}
D(BRAD) &= D(RAD)^2 \\
D(INPSSI) &= D(ARCC/) / D(INPSSI) \\
D(DPVA) &= D(DPVA) - D(VLVL) / D(INPSSI) \\
D(DISP) &= D(DISP) / 60. / D(DISA) \\
D(PSPRI.) &= D(PSPRI.) - D(PSPRI.) / D(DISA) \\
D(PACC) &= D(PACC) / D(DISA) * 3600. ** 2 \\
D(DISAC) &= D(DISAC) - D(PSPRI.) / D(DISA) \\
D(PBPR.) &= D(PBPR.) - D(PBPR.) * 3600. \\
1250 & D(BPR.) = D(BPR.) \\
D(BULK) &= D(BULK) * D(DPVA) / 22300. \\
C** & THIS SECTION CALCULATES THE STEADY STATE CHARACTERISTICS
C
\end{align*}
\]

\[
\begin{align*}
D(POUTLT) &= D(DPVA) + 55.9 \\
\text{IF}(D(KTIL.E). LT. 0.0) D(KTIL.E) &= 10000. \\
\text{IF}(\text{INV}) &= 1020, 1040, 1030 \\
1020 & \text{IF}(L(ISYS). NE. -INV) \text{GO TO 1040} \\
& \text{GO TO 1035} \\
1030 & \text{IF}(L(ISYS). EQ. INV) \text{GO TO 1040} \\
1035 & D(KTIL.E) = D(KTIL.E) \\
1040 & \text{IF}(D(KTIL.E). LT. 0.0) D(POUTLT) &= 800. \\
& L(ISYS) = 0 \\
& \text{IF}(D(KTIL.E). LT. 0.0) L(ISYS) &= 2 \\
& D(T(POUT)) &= D(POUTLT) \\
& D(VLACT) &= D(POUTLT) * D(COUPLK) \\
& D(T(INL)) &= D(DIS) * D(T(PAC)) * D(DISA) - D(VLACT) \\
& D(POUTL) &= -D(VLACT) \\
& D(T(CACT)) &= 0.0 \\
& D(T(CACT)) &= 0.0 \\
& D(T(ISVLV)) &= 0.5 \\
& D(T(PCAS)) &= 0.0 \\
& D(THEP) &= 10.0 \\
& \text{IF}(D(KTIL.E). LT. 0.0) \text{RETURN} \\
& D(T(DISACT)) &= 0.0 \\
& \text{CSEL} = D(T(COLXL)) \\
1270 & \text{CONTINUE} \\
& D(T(CACT)) &= D(PCAS) + D(PSPRI.) + D(DISACT) * D(PSPRI.) \\
1 & + D(T(PAC)) * (D(PAC) + D(PAC) * D(PAC) * D(PAC) ** 2) \\
2 & + D(PBPR.) * D(PBPR.) * D(PBPR.) * D(PBPR.) \\
& D(ILATY. EQ. 0) \text{RETURN} \\
& D(T(CACT)) &= D(T(CACT)) + D(COLXL) \\
& \text{IF}(D(TACCC). LT. 0.0) \text{GO TO 1285} \\
& D(T(CACT)) &= D(T(CACT)) \\
& D(T(DISACT)) &= D(DISA) \\
& \text{CSEL} = D(T(COLXL)) + D(T(COLXL) * D(COLXL) \\
& \text{GO TO 1270} \\
1285 & D(T(INL)) &= D(INL) - D(CACT) \\
& D(T(POUTL)) &= D(T(POUTL)) - D(T(CACT)) \text{RETURN}
\end{align*}
\]

C STEADY STATE CALCULATION SECTION
6.54.7 (Continued)

C IND=COMPONENT, INEL=CONNECTION, I, INEL=LLG I
C COI #1= INLET, COI #2=OUTLET, COI #3=CASE DRAIN
C THE INLET IS A MODAL POINT IN THE SYSTEM
C
1500 IF(KINL-2) 1510, 1530, 1520
1510 DT(INLET)=POLEG(INEL,11)
 GO TO 1600
1520 IF(INX NEL.1) GO TO 1700
 DCASDR=POLEG(INEL,1)*POLEG(INEL,2)
 TACTLX=DT(DISVLY)*DT (VACT)-DT (VACT)+DT (VACT)
 DT (DELP13)=(DT (VACT)+TACTLX-DCASDR)/D (COLCIN)
 POLEG(INEL,5)=POLEG(INEL,5)+DT(DELP13)+DCASDR/D (COLCIN)
 POLEG(INEL,6)=POLEG(INEL,6)+1.0/D (COLCIN)
 LCS(INEL,7)=5
 POLEG(INEL,11)=POLEG(INEL,11)+DT(DELP13)
 DT (CASE)=POLEG(INEL,11)
 GO TO 1600
1530 IF(INX.NEL.1) GO TO 1700
 DT (DISVLY)=POLEG(INEL,1)*POLEG(INEL,2)-DT (OUTLT)
 DT (DISVLY)=DT (DISVLY)/DT (INLET)-DT (OUTLT)
 IF (DT (DISVLY).LT.0.0) DT (DISVLY)=0.0
 IF (DT (DISVLY).LT.1.0) DT (DISVLY)=1.0
 POLEG(INEL,5)=POLEG(INEL,5)+DT (OUTLT)+DT (DELP13)
 POLEG(INEL,6)=POLEG(INEL,6)*0.0001
 POLEG(INEL,11)=POLEG(INEL,11)+DT (OUTLT)+DT (DELP13)
 DT (POUTLT)=POLEG(INEL,11)
 LCS(INEL,7)=5
1550 RETURN
1700 ARTI16(6,1900) IND, INEL, INEL
1800 FORMAT (5X,16H CALL SUBROUTINE ERROR DETECTED IN COMPONENT NO
 1 IS, 143 CONNECTION NO ,15,76 LLG NO ,I5)
 ARTI16(6,999)
999 FORMAT (1K1,33) PROGRAM STOP IN SUBROUTINE PULP54
 STOP 6954
C *** 2900 SECTION
2900 CONTINUE
 DT (DISACT)=DT (DISVLY)*D (DISM)
 DT (VACT)=0.0
 DT (VACTU)=DT (DISVLY)*(DT (VACT)-DT (ACTU))+DT (VACT)
 DT (VACTC)=0.0
 DT (DISVLY)=0.0
 DT (POUTLT)=DT (POULTLT)
 GO TO 1270
C
C *** 3000 SECTION
3000 CONTINUE
C
C CALCULATE TRANSIENT RESPONSE OF PULP

POULP=0.0
L1=L(1)
L2=L(2)
L3=L(3)
C1=C(L1)
C2=C(L2)
C3=C(L3)
VOL3=DT(VELACT)
DT(FACTC)=1.0
DT(CNCTC)=1.0
D(TINL) = D(KTINL) + DELT*L(ISYS)
IF(T, CT, D(KTINL)) GO TO 4000
PDISA=DT(DISACT) + DT(VELACT)*DELT
DT(PACTU)=D(PSPRI) + PDISA*D(PSPRI) - VOL0*D(PDA.P)
1 + PDISA*D(PACCL) + DT(PREA)**2 + D(PDASD) + DT(PCASL)
2 + D(PSPRI) + D(PSPRI) + DT(PREA)) * DT(BUL30)/DT(POUTLT)
COSIN=VOL0*D(COEOSO)
PUMP=PDISA*D(DISR) + DT(PPMI) + COSIN
DT(PINL)=D(CL/L(L1)) + DT(PCASL) + D(COLCIN) - PUMP
1 / (1.0 + Z(L))
IF(DT(PINL), LT, (PINL)) DT(PINL) = D(PINL)
DT(CNLT) = 1.0 + (DT(PINL))/Z(L)
CASA=D(D PCASL) - DT(PINL)) * D(COLCIN)
PUMP=DT(PINLT) + D(COLCIN + TOSI)
CCOLK=DT(COLALT) + PDISA*D(COLALT)
ZOUT = Z(L2)/(1.0 + Z(L2) * D(COLCIN))
3200 POUT=Z(L2) + POUTP + DT(PCASL) * D(COLCIN) * ZOUT
POUT=0.0
IF(OUT, POUT, N OUT) GO TO 3220
DT(POUTLT) = POUT + 0.75 + POUT* 0.25
3210 DIS=DT(POUTLT) - POUT*1.0
3215 AREA=0.0
3216 IF(POUTLT, EQ, 0.0) GO TO 3216
CON=S(2)/D(RAD) - 2*SORT(2.0 + CONA) - 1.0
3217 DT(FACTU)=CONA*D(PUCLV) + D(PSACTL) - DT(PUCLV) - DT(PACTC)
3218 POUT=POUTLT - DT(FACTU) * ZOUT
IF(ABS(POUTLT - POUTLT)), LT, 0.05) GO TO 3220
DT(POUTLT) = POUTLT + 0.15 + POUTLT* 0.25
GOTO 3210
C
C FLOW GAC: ACTUATOR PISTON TO CASE
3220 POUT=Z(DPVC) + DT(PCASL)
IF(POUT*0.9, LT, POUT) GO TO 3220
DIS=(POUT - POUT) * D(INPSE)
6.54.7 (Continued)

```plaintext
B=90(RAD)-DIS
IF(3.LT.-90(RAD)) GO TO 3225
AREA=90(RAD)*ACOS(3/90(RAD))-3*SQR(D(3(RAD))-3**2)
GO TO 3225
3225 AREA=90(RAD)*PI
3226 DT(QACTC)=DT(COLTV)*AREA*SQR(DT(PACTU)-DT(PCASE))
3230 IF(POWER.NE.0.0) GO TO 3250
C

TEST PISTON DISPLACEMENT AGAINST MAXIMUM STROK
QACTK=(DT(PACTU)-DT(PCASE))*COLLKA
QNET=DT(DCTU)-QACTK-3T(QACTC)
DT(VLACT)=QNET/D(AFAC)
DT(DISACT)=DT(DISACT)+(VCLD+DT(VLACT))/2.*DLT
CALL YLQF(I,DT(DISACT),DT(VLACT),POWER,D(DISAT),D(DIJA:))
IF(POWER.EQ.0.0) GO TO 3300
IF(DT(P1+L5),L3,D(P1+L4)) GO TO 3240
DPLAP=D(DISP)*DT(PRI:)*DT(DISACT)
COST=0.0
3240 IF(POWER.EQ.-1.0) GO TO 3290
DT(PACTU)=0.0
DT(PACTU)=DT(PCASE)
QACTK=0.0
GO TO 3300
3250 DT(PACTU)=DT(PCASE)+DT(QACTU)/COLLKA
QACTK=DT(DCTU)
3300 DPLEAK=(DT(POULTL)-DT(PCASE))*D(COPLK)
^L2=-(DPUAP-DPLEAK-DT(QACTU))
DT(DISVLV)=DIS
CASDR=DPLEAK+QACTK+DT(QACTC)-D(AFAC)*DT(VLACT)-QCASE+QDSI.*2.
QCASE=(QCASE+DT(BULK)-C3+DT(PCASE))/(Z(L3)+5N(BULK))
DT(6)=AREA
3400 P(L1)=DT(PI:LET)
^L1=DT(PI:LET)
DT(POULTL)=C(L2)-Q(L2)*Z(L2)
P(L2)=DT(POULTL)
^L3=-QCASE
DT(PCASE)=C(L3)+QCASE*Z(L3)
P(L3)=DT(PCASE)
C
POWER=C(L2)*(P(L2)-P(L1))/6600.0
DT(PPO:ER)=POWER+DT(PPO:ER)
IF(DT(PI:LET),LE.0(D(PI:LET)) WRITE(6,3310) T
RETURN;
C

DEPRESSURIZED CALCULATIONS
4000 DPLAP=D(DISP)*D(DISAT)*DT(PRI:)
QCASE=300.*D(COPLK)-(DT(PCASE)-DT(POULTL))*D(COPLK)
DT(POULTL)=DT(PCASE)+300.
IF(C2.CT.3T(POULTL)) DT(POULTL)=C?
^L2=(C2-CT(POULTL))/Z(L2)
```

Regarding the text, there is a redacted section (marked as "COPY") towards the end of the natural text representation. It appears to be a placeholder or a mark indicating a specific area that might be intended for a different context or content. If the original content is meant to be preserved, it would require the redacted section to be properly restored or clarified. However, without additional context, it's challenging to provide a meaningful interpretation for this redacted part.
IF(Q(L2).LT.-QPUMP) Q(L2)=-QPUMP
DT(QINLET)=QCASDR-Q(L2)
DT(PINLET)=CL-DT(QINLET)*2(L1)
DT(DISACT)=D(DISAI)*(S002-D(COEPLK)-Q(L2))/QPUMP
DT(PACTU)=0.0
DT(VELACT)=0.0
GO TO 3400
3310 FORMAT(2X,36H****** PUMP CAVITATION ONSET AT T= E12.5)
END
6.61 SUBROUTINE RSVR61

RSVR61 is a simulation of a hypothetical constant pressure reservoir that can be used in test simulation work. The input pressure is maintained without fluctuation while the flow(s) are adjusted to the line requirements. A maximum of four connections can be used.

FIGURE 6.61-1
TYPE NO. 61 CONSTANT PRESSURE RESERVOIR
6.61.1 **Math Model**

SECTION 3000

Flow at each active connection based upon the input constant pressure, PRES, is calculated using the algebraic equation

\[Q(N) = (C(N) - D(1)) / Z(N). \]

6.61.2 **Assumptions**

The reservoir is assumed to have an infinitely large gas volume so that pressure remains unchanged.

6.61.3 **Computation Methods**

SECTION 1000

Counter, L(5), and steady state flow variable, D(2), are set to zero. Variable, INV is stored in L(6).

SECTION 1500

Section 1500 sums flows into and/or out of the reservoir as the entry is called for each active connection. Counter, L(5), is incremented by 1 each time the entry is made until the counter is equal to the number of active connections, L(6). The counter is then reset to zero. Each entry determines if the flow is into or out of the reservoir and makes any necessary adjustments in the flow sign. The flow is added to the old net flow

\[1600 \ D(2) = D(2) + QR \]

once the total net flow has been determined, QN(N) is calculated

\[QN(N) = D(1) * 20. - D(2) \]

Net flow is then reset to zero.

\[D(2) = 0.0 \]
SECTION 3000

Flow at each active connection is calculated using a DO loop. The flow is calculated for each connection and stored in the Q array. Input pressure, D(l), is stored in the P array.

\[Q(N) = \frac{(C(N) - D(l))}{Z(N)} \]
\[P(N) = D(l) \]

6.61.4 Approximations
Not applicable.

6.61.5 Limitations
No applicable.

6.61.6 Variable Name

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(l)</td>
<td>Reservoir Pressure</td>
<td>PSIA</td>
</tr>
<tr>
<td>l</td>
<td>Counter</td>
<td>--</td>
</tr>
<tr>
<td>N</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>NCI</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>QA</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>QR</td>
<td>Steady State Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QS</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
</tbody>
</table>
SECTION 1500

DETERMINE WHETHER RESERVOIR NODE IS UPSTREAM OR DOWNSTREAM FOR THIS FLOW AND ADD FLOW TO OLD NET FLOW

IS THIS LAST ACTIVE CONNECTION?

YES

CALCULATE OVERBOARD FLOW, QN(N). SET D(2) = 0.0
L(5) = 0 EQUAL TO ZERO

RETURN

SECTION 3000

I = 0

I = I+1

CALCULATE FLOW FOR CONNECTION #I

STORE FLOW AND PRESSURE FOR CONNECTION #I

IS I EQUAL TO MAX. NO. OF ACTIVE CONNECTIONS, NC(IND)?

NO

YES

RETURN

STEADY STATE AND 3000 SECTION CALCULATIONS

FIGURE 6.61-2

6.61-4
Subroutine Listing

```plaintext
SUBROUTINE RSVRG1 (D, DT, DN, L)

C *** REVISED AUGUST 5, 1975 ***

DOUBLE PRECISION D0
COMMON/STORP,LSTORP,IPS,IPV,IPS,INL,MM,LSLLS,STORP,NLSTP(61,3),
1 POLC(99,12),LSC(99,10),ILSC(1400),PN(93),NI(26),PLX(99)
COMMON/SUB/PAR(150,3),RH(1500),OM(1500),P(300),O(300),C(300)
1,2(300),KNO(20),SDQH(20),VISC(20),BULK(20),TEP(20),PVAP(20)
2,ATPOL,CT,DEL,T,PHAS,POPOL,PI,TITLE(20),LECN,LC
3,ST,TP(99),LSTRT(150),NLPT(150),LTYP(99),TCC(99),INK,IND
4,INV,ST,ET,TV,NL,INV,INTR,INLIAL,INL,LNLG,ANNODE,CPLOT
5,INLPTS,LPD
DIMENSION D(1),DT(1),DN(1),L(1)

1000 CONTINUE
   IF(INL.NE.0)GO TO 1500
   D(2)=0.0
   L(11)=0
   L(12)=1
   RETURN
1500 CONTINUE
   L(11)=L(11)+1
   LCS(INL,7)=5
   NA=POLC(1,IND,1)
   NC=POLC(IND,2)
   NR=NC*NA
   N=LCS(INL,7)
   IF(INV.NE.1)GO TO 1900
   NR=0
   N=LCS(INL,2)
1600 D(2)=D(2)+NR
   IF(L(11).NE.L(12))RETURN
   D(1)=D(1)+.5*29.0-23.0
   PLX(1)=29.0
   D(2)=0.0
   L(11)=0
   RETURN
2000 CONTINUE
   RETURN
3000 CONTINUE
   IC1=IC(INC)
   IF(3193 I=1, IC1
   D=L(1)
   D(1)=D(1)-IC(1)/IC(3)
3100 D(1)=D(1)
   RETURN
   END
```

6.61.7
6.62 SUBROUTINE RSVR62

RSVR62 subroutine is a simulation of a bootstrap reservoir. The subroutine can accommodate up to 4 low pressure lines along with the high pressure (bootstrap) line. The high pressure source does not have to be part of the low pressure system and can be completely independent.

TYPE NO. 62 BOOTSTRAP RESERVOIR

FIGURE 6.62-1
6.62.1 Math Model

Section 1500

The steady state high and low reservoir pressures are determined as follows.

A sign convention is established such that flow into the low pressure end is positive. A pseudo leg (see Figure 6.62-2) that terminates at low pressure node N is established. The pressure at the external end of this leg is set as the average of the pressure at node N \(P_N(N) \) and pressure calculated for node N using the piston area ratio times pressure at node M, \(P_{MN} \) where:

\[
P_{MN} = P_N(M) \cdot DT(NAREAR) + DT(EXPRES)
\]

Any difference in \(P_{MN} \) and \(P_N(N) \) will produce flow in the pseudo leg and hence an unbalanced system. As LEGCAL balances the flows at all system nodes, the pseudo leg flow is forced to zero which in turn forces \(P_{MN} \) and \(P_N(N) \) pressures to be equal.

\[
\frac{P_{MN} + P_N(N)}{2}
\]

(Pseudo Leg)
RSVR LOW PRESSURE NODE (N)
RSVR HIGH PRESSURE NODE (M)
CON #2
CON #3
CON #4
CON #5
PN(N)
PN(M)
CON #1
DT(QNET)
DT(QNET) \ast \frac{D(\text{AREA 2})}{D(\text{AREA 1})}

Figure 6.62-2

RSVR62 STEADY STATE ORGANIZATION
The high pressure line impedance may be expressed in terms of the low pressure impedances through an easily derived expression.

\[DT(NZ1) = Z(L(1)) \cdot DT(NAREAR)^2 \]

Therefore the total impedance of the reservoir volume is simply the sum of \(DT(NZ1) \) and the impedances of the lines connected to the low pressure side. The high pressure characteristic is also modified to a low pressure characteristic.

\[CL1 = C(L1) \cdot DT(NAREAR) + DT(EXPRES) \]

Since there is no flow between the high and low pressure areas, volume and pressure is:

\[DT(P2) = CN/DT(NGZ) \]

where:

\[CN = CL1/DT(NZ1) + C(L(J))/Z(L(1)) \]

The net flow into or out of the reservoir is then:

\[Q1 = (DT(P2) - CL1)/DT(NZ1) \]

The flow out the high pressure side is simply:

\[Q(L1) = -Q1 \cdot DT(NAREAR) \]

and the pressure is:

\[P(L1) = C(L1) - Q(L1) * Z(L1) \]

The net change in flow volume into or out of volume \(l \) is computed and a test is made to determine if the piston is at a limit condition.

The flow at each active connection is then calculated using the algebraic equation:
\[Q(LI) = \frac{(C(LI) - P(LI))}{Z(LI)} \]

where

- \(Q(LI) \) = fluid flow
- \(P(LI) \) = fluid pressure
- \(C(LI) \) = characteristic
- \(Z(LI) \) = characteristic impedance
- LI = connection number

6.62.2 Assumptions

The seal friction is zero.

6.62.3 Computation Methods

Section 1000

Variables \(DT(IQV) \), \(DT(MINIQV) \), \(DT(MAXIQV) \), \(DT(QNET) \) are initialized.

The piston force generated by atmospheric pressure is calculated using:

\[DT(EXPRES) = ATPRES \times \frac{(P(AREA) - D(AREA))}{D(AREA)} \]

Section 1500

This section sums the flows into and/or out of the low pressure chamber as the entry is called for each active connection. It also determines overboard flow at the high pressure node (M) and low pressure node (N).

Section 2000

\(DT(QNET) \) is initialized and the volume impedance is computed.
1500 SECTION

YES

IS CONNECTION NO. EQUAL TO ONE?

NO

DETERMINE WHETHER HIGH PRESSURE NODE IS UPSTREAM OR DOWNSTREAM. ASSIGN DUMMY VARIABLE TO NODE NO.

DETERMINE WHETHER LOW PRESSURE RSVR NODE IS UPSTREAM OR DOWNSTREAM. ASSIGN DUMMY VARIABLE TO NODE NO.

SUM FLOWS TO ARRIVE AT NET RSVR FLOW

IS THIS LAST ACTIVE CONNECTION?

NO

YES

DETERMINE OVERBOARD FLOWS AT HIGH AND LOW PRESSURE NODES. SET DT(QNET)=0

RETURN

RSVR62 STEADY STATE FLOW DIAGRAM
Figure 6.62-3

6.62-5
Section 3000

The characteristics are then calculated and subsequently used to calculate the flows.

\[CL1 = CL1/DT(NZ1) + C(LCI)/2(LCI) \]

\[Q1 = DT(PZ) - CL1/DT(NZ1) \]

Note: These equations are used to calculate high pressure flow.

Next, the flow is summed using the new flows.

Tests are then performed to determine piston position and direction of travel. If the piston is on a stop and the motion is in the direction of the stop, velocity is set to zero.

Computations are then performed to determine the appropriate pressures and flows. The net flow, DT(QNET) is then updated for the next time step.

6.62.4 Approximations

The elasticity of the reservoir walls and the resulting change in volume for any piston movement is ignored as well as the compressibility effects of the oil.

6.62.5 Limitations

1. RSVRb2 is limited to four low pressure connection and one high pressure connection.
Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(AREA1)</td>
<td>Low Pressure Piston Area</td>
<td>(\text{IN}^2)</td>
</tr>
<tr>
<td>D(AREA2)</td>
<td>High Pressure Piston Area</td>
<td>(\text{IN}^2)</td>
</tr>
<tr>
<td>CLI</td>
<td>High Pressure Characteristic</td>
<td>PSI</td>
</tr>
<tr>
<td>CN</td>
<td>Characteristic of Low Pressure Connection</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(EXPRES)</td>
<td>Atmospheric Pressure Contribution to Piston Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(IQV)</td>
<td>Integral of Flow in Volume 1</td>
<td>(\text{CIS})</td>
</tr>
<tr>
<td>DT(MAXIQV)</td>
<td>Integral of Flow in Volume 1 at Maximum Piston Stroke</td>
<td>(\text{CIS})</td>
</tr>
<tr>
<td>DT(MINIQV)</td>
<td>Integral of Flow in Volume 1 at Minimum Piston Stroke</td>
<td>(\text{CIS})</td>
</tr>
<tr>
<td>DT(NAREAR)</td>
<td>Piston Area Ratio</td>
<td>--</td>
</tr>
<tr>
<td>NC1</td>
<td>Number of Connections</td>
<td>--</td>
</tr>
<tr>
<td>DT(NG2)</td>
<td>Conductance of Volume 1</td>
<td>(\text{CIS/PSI})</td>
</tr>
<tr>
<td>DT(NZ1)</td>
<td>Equivalent Volume 1 Impedance of the High Pressure Volume</td>
<td>PSI, (\text{CIS})</td>
</tr>
<tr>
<td>DT(QNET)</td>
<td>Net Flow in Volume 1</td>
<td>(\text{CIS})</td>
</tr>
<tr>
<td>D(STROK)</td>
<td>Maximum Piston Stroke</td>
<td>(\text{IN})</td>
</tr>
<tr>
<td>D(VOLL)</td>
<td>Reservoir Oil Volume</td>
<td>(\text{IN}^3)</td>
</tr>
<tr>
<td>D(VOL2)</td>
<td>Bootstrap Oil Volume</td>
<td>(\text{IN}^3)</td>
</tr>
</tbody>
</table>
Subroutine Listing

```plaintext
SUBROUTINE GSVRG2 (D, DT, DD, L)
C*** REVISION JANUARY 24, 1976 ***
DOUBLE PRECISION
COMMON METL, NL, POL, I, IPOINT, NPTS, ISEL, INEL, HOLEL, NLPLT(61,3),
1 POLE(90,12), LCS(90,10), ILEG(100), PN(90), QN(90), PNLX(90)
COMMON/SUB/PIH(150,9), PI(1500), WI(1500), P(300), P(300), C(300)
1, Z(300), RHO(20), S2O(20), VIS(20), BULK(20), TEMP(20), PVAP(20)
2, ATR1, E, D, D, T, TITLE, NPT, TITLE, NPT, T, TITLE, NPT, T, TITLE, NPT, T
3, KTEL(20), KTEL(20), KTEL(20), KTEL(20), KTEL(20), KTEL(20), KTEL(20)
4, INV(20), INV(20), INV(20), INV(20), INV(20), INV(20), INV(20)
5, NNLPTS, NLPTS, NLPTS, NLPTS, NLPTS, NLPTS, NLPTS
DIMENSION D(6), DT(10), DD(1), L(7)
INTEGER AREA1, AREA2, VOL1, VOL2, STROKE, QNLX, EXPRES, P2, DL,
DATA AREA1/1/, AREA2/2/, VOL1/3/, VOL2/4/, STROKE/5/, INPOS/6/
1, DT/1/, EXPRES/2/, MINOV/3/
2, MAXIOV/4/, IQV/5/, NARBAR/6/, NZ1/7/, NCE/8/, P2/9/, DUM/10/
IF(NENTR) 1000, 2000, 3000
1000 CONTIN
IF(INEL, JEL, J) GO TO 1500
DT(IQV)=D(INPOS)*D(AREA2)+D(VOL2)*2.0/DELT
DT(MINOV)=D(VOL2)*2.0/DELT
DT(MAXIOV)=D(STROKE)*D(AREA2)+2.0/DELT+DT(MINOV)
L(7)=0
DT(QNLX)=0.0
DT(NARBAR)=D(AREA1)/D(AREA2)
DT(EXPRES)=ATPRES*(D(AREA1)-D(AREA2))/D(AREA2)
RETURN
C***STeady State Section***
C
1500 CONTIN
C
C 1 IS THE HIGHPRESSURE NODE, 0 IS THE LOW PRESSURE NODE
L(7)=L(7)+1
LCS(INEL, 7)=5
QX=POLEG(INEL, 1)
QX=POLESG(INEL, 2)
IF(NSELELCOME, 1) GO TO 1500
3=LCS(INEL, 3)
IF(NSEL, JEL, 1) GO TO 1300
3=LCS(INEL, 2)
GO TO 1500
1600 QR=QX*25
3=LCS(INEL, 3)
IF(NSEL, JEL, 1) GO TO 1700
3=QR
3=LCS(INEL, 2)
1700 DT(QU)=DT(QU)+QR
1900 IF(L(7), JEL, NCE(IND)) RETURN
IF(N, IGO, 8) WRITE(6, 1900)
```

6.62.8
6.62.7 (Continued)

L(7)=0
DT(NZ1)=DT(QNET)
IF(PN(N)=EQ.0.0) PN(N)=3000.
IF(PN(N)=EQ.0.0) PN(N)=PN(N)*DT(NAREAR)+DT(EXPR)
PN=PN(N)*DT(NAREAR)+DT(EXPR)
QN(N)=((PN+PN(N))*20.)/2.-DT(QNET)
QN(N)=DT(QNET)*DT(NAREAR)
DT(P2)=PN(N)
PLX(N)=20.
DT(QNET)=0.0
1900 FORMAT(5X,45HRRVR62 REQUIRES TWO NODES FOR BOOTSTRAP FLOW)
RETURN
2000 CONTINUE
DT(QNET)=DT(NZ1)
DT(NZ1)=2*(L(I))**2*DT(NAREAR)**2
DT(NGZ)=1.0/DT(NZ1)
NCI=NC(I)
DO 2100 I=2,NCI
2100 DT(NGZ)=DT(NGZ)+1.0/2*(L(I))
RETURN
3000 CONTINUE
NCI=NC(I)
LI=L(I)
CL1=C(LI)*DT(NAREAR)+DT(EXPR)
C0=CL1/DT(NZ1)
DO 3100 I=2,NCI
3100 CN=CN+C(L(I))/2*(L(I))
DT(P2)=C0/DT(NGZ)
Q1=(DT(P2)-CL1)/DT(NZ1)
Q1=Q1*DT(NAREAR)
C1=C(L1)-Q1*Z(L1)
DT(IV)=DT(IV)+DT(QNET)+Q1
CALL XLMIV(DT(IV),Q1,CN,DT(MXIV),DT(MAVIV))
IF(CN.EQ.0.0,A,ND,CL,0.0) GO TO 3500
C1=1.0
ZN=0.0
DO 3400 I=2,NCI
LI=L(I)
ZN=ZN+1.0/2*(L(I))
3400 CN=CN+C(LI)/2*(L(I))
DT(P2)=C1/Z
C0=C(L1)
C(L1)=0.0
3500 CONTINUE
DO 3600 I=2,NCI
LI=L(I)
P(L1)=DT(P2)
3600 Q(L1)=(C(L1)-P(L1))/Z(L1)
DT(QNET)=Q1
DT(DT)=DT(IV)*DELT/2.
RETURN
END
6.71 SUBROUTINE ACUM71

Subroutine ACUM71 models a simple gas charged piston type accumulator that can be used as a system accumulator or as a source of supply for transient simulations.

When used as a system accumulator, the initial volume of oil in the accumulator is determined by the steady state pressure.

When used as a source of supply a constant pressure node must be used to determine the initial volume of oil in the accumulator.

Two connections are provided, both of which are assumed to be at the same pressure. When a single connection is used, the other is blanked off automatically.

Since it is basically a passive device, its response is entirely dependent on line flow and pressure changes.

No attempt has been made to include the true gas dynamics which involve not only a varying gas constant, but also the heat transfer characteristics between the gas and accumulator walls. Figure 6.71-1 shows a typical accumulator layout.
6.71 Math Model

The ACUM71 model calculates transient pressures and flows based on three different conditions within the accumulator.

The calculation of transient pressures and flows in the ACUM71 model depends upon whether the accumulator is empty, full or within the working range.

Conductances are calculated for the lines connected to the accumulator and volume of oil in the accumulator.

\[
\begin{align*}
G_{\text{line}} &= \frac{1}{Z(L1)} + \frac{1}{Z(L2)} \\
G_{\text{vol}} &= \frac{V\text{OLO}}{B\text{ULK} \cdot \text{DELT}}
\end{align*}
\]

where,

- \(G_{\text{line}}\) is the conductance of the lines to the accumulator,
- \(G_{\text{vol}}\) is the conductance of the accumulator oil volume,
- \(Z\) is the impedance of the line,
- \(B\text{ULK}\) is the bulk modulus of the oil,
- \(V\text{OLO}\) is the volume of the oil,
- \(\text{DELT}\) is the calculation time step.

If the accumulator is empty the pressure of the oil in the accumulator is given by:

\[
P_O = \frac{(Q1 + Q2)}{(G_{\text{line}})}
\]

where,

- \(P_O\) is the pressure of the oil in the accumulator,
- \(Q1\) and \(Q2\) are the flows into connections 1 and 2 respectively.
If the accumulator is full the pressure of the oil in the accumulator is given by:

\[P_0 = \frac{(q_1+q_2)P_{OA}/G_{vol}}{(G_{line} + G_{vol})} \]

where,

- \(P_{OA} \) is equal to the current pressure of the oil in the accumulator.

If the accumulator is within its working range the change in the gas pressure is,

\[D_PG = \frac{(P_{PG}*(q_1+q_2))/(MAVOLG-TVOLI + MIVOLO)}{\Delta T/2} \]

where,

- \(D_PG \) is the rate of change of the gas pressure,
- \(P_{PG} \) is the gas pressure,
- MAVOLG is the maximum gas volume,
- TVOLI is the current oil volume,
- MIVOLO is the minimum oil volume.

The pressure of the gas is given by

\[P_G = PG \times (D_PGS+D_PG) \times \Delta T/2 \]

where,

- \(D_PGS \) is the rate of change of the gas pressure calculated in the previous time step. The flows and pressures at the connections are then calculated using \(P_0 \).

\[P(L_1) = P_0 \]

\[Q(L_1) = (C-P_0)/Z \]

where,

- \(P \) is the pressure at the connection,
- \(Q \) is the flow at the connection,
- \(C \) is the characteristic line pressure,
- \(Z \) is the characteristic line impedance.
6.71.2 Assumptions

The true gas dynamics and the frictional and inertial effects of the piston have been ignored in this simulation to avoid complicating what is essentially a simple component model. Entry and exit pressure drops have also been ignored.

6.71.3 Computation

SECTION 1000

The precharge pressure, input for 100°F, is corrected for the working pressure of the fluid using the ideal gas formula.

\[DT(PRESIPS) = D(PRESI)*T(TEMP(KTEMP(IND)))+460)/520 \]

SECTION 1500

The pressure of the oil in the accumulator, DT(PO), is set equal to the upstream pressure of the leg.

\[DT(PO) = PQLEG(INEL, 1) \]

SECTION 2000

The conductance of the two lines is calculated.

\[DT(NZ) = 1.0/Z(L(1))+L.0(Z(L(2)) \]

The steady state volume of oil in the accumulator is then calculated.

\[DT(IVOLO) = D(MIVOLO)+(D(MAVOLG)-(DT(PRESIPS)*D(MAVOLG))/DT(PG) \]

If the steady state oil pressure is less than the precharge pressure, then the steady state volume is set equal to the minimum oil volume and the gas pressure, DT(PG), is set equal to the precharge pressure.

The impedance of the maximum oil volume is then calculated and, after conversion to a conductance, is summed with the line conductances.

\[IF(DT(PRESIPS),Lt,DT(PG))GO TO 2100 \]

\[DT(IVOLO) = D(MIVOLO) \]

\[DT(PG) = DT(PRESIPS) \]

2100 \[DT(KBULK) = BULK(KTEMP(IND))DT(NDELT)D(MAVOLG) \]

\[DT(NVZ) = DT(NZ)+1.0/DT(KBULK) \]
SECTION 3000

The net flow into the accumulator is calculated using the oil pressure calculated in the previous time step. The volume of oil in the accumulator is then calculated.

\[
Q(L1) = \frac{(C(L1)-DT(PO))/Z(L1)}{Q(L2) = \frac{(C(L2)-DT(PO))/Z(L2)}{TQV = Q(L1)+Q(L2)}
\]

\[
TVOLO = DT(TVOLO) + (DT(TQV)+TQV)*DT(NDELT)
\]

A test is made to determine if the volume of oil in the accumulator is less than the minimum oil volume, \(D(MIVOLO)\), greater than the maximum oil volume, \(D(MAVOLO)\), or within the working range of the accumulator.

If the volume is less than the minimum oil volume the volume is set equal to \(D(MIVOLO)\), the change in the gas pressure and the net oil flow are set to zero and the pressure of the oil is calculated.

\[
TVOLO = D(MIVOLO)
\]

\[
TDPG = 0.0
TQV = 0.0
DT(PO) = \frac{(C(L1)/Z(L1)+C(L2))}{DT(NZ)}
\]

If the volume of oil is greater than the maximum oil volume the volume is set equal to \(D(MAVOLO)\), the change in oil pressure and volume are set to zero, and the oil pressure is calculated.

\[
DT(PO) = \frac{C(L1)/Z(L1)+C(L2)/Z(L2)+DT(PO)}{DT(KBULK)}
\]

\[
DT(PO) = DT(PO)/DT(NVZ)
\]

If the volume of oil is within the working range of the accumulator the change in gas pressure due to the change in oil volume is calculated, a new gas pressure is calculated and the oil pressure is set equal to the gas pressure.

\[
TDPG = DT(PG)*TQV/(D(MAVOLO)-TVOLO+D(MIVOLO))
\]

\[
DT(PG) = DT(PG)+(DT(DPG)+TDPG)*DT(NDELT)
\]

\[
3250 \quad DT(PO) = DT(PG)
\]
The pressure and flows at the accumulator connections are then calculated using the oil pressure calculated above.

6.71.4 Approximations

Leaving out static friction from the simulation gives poor low amplitude results but helps the simulation by avoiding the nonlinear effects. Leaving out the inertial effects of the piston may reduce the accuracy of the results at very high frequencies but reduces the cost of using the accumulator subroutine.

6.71.5 Limitations

The current model can be used for rapid small amplitude discharge transients where heat transfer is not a problem.

For very small amplitudes where frictional effects become significant, or very high frequencies where inertia effects may become significant this model should not be used.
6.71.6 Variable Names

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT(DPC)</td>
<td>Rate of change of gas pressure</td>
<td>PSI/Sec</td>
</tr>
<tr>
<td>DT(DPO)</td>
<td>Rate of change of oil pressure</td>
<td>PSI/Sec</td>
</tr>
<tr>
<td>DT(1QV)</td>
<td>Rate of change of oil volume</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(TVOLO)</td>
<td>Volume of oil in accumulator</td>
<td>in³</td>
</tr>
<tr>
<td>DT(KBULK)</td>
<td>Conductance of oil volume</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>L1</td>
<td>Dummy variable</td>
<td>-</td>
</tr>
<tr>
<td>L2</td>
<td>Dummy variable</td>
<td>-</td>
</tr>
<tr>
<td>D(MAVOLG)</td>
<td>Maximum gas volume</td>
<td>in³</td>
</tr>
<tr>
<td>D(MAVOLO)</td>
<td>Maximum oil volume</td>
<td>in³</td>
</tr>
<tr>
<td>D(MIVOLC)</td>
<td>Minimum gas volume</td>
<td>in³</td>
</tr>
<tr>
<td>DT(NDELT)</td>
<td>Calculation time step</td>
<td>sec</td>
</tr>
<tr>
<td>DT(NVZ)</td>
<td>Sum of line and volume conductance</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(NZ)</td>
<td>Sum of line conductances</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(PC)</td>
<td>Gas pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PO)</td>
<td>Oil pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PRES)</td>
<td>Precharge gas pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PRESPS)</td>
<td>Corrected precharge gas pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>TPDC</td>
<td>Temporary rate of change of gas pressure</td>
<td>PSI/Sec</td>
</tr>
<tr>
<td>TVV</td>
<td>Temporary value for rate of change of oil volume</td>
<td>CIS</td>
</tr>
<tr>
<td>TVOLO</td>
<td>Temporary volume of oil</td>
<td>in³</td>
</tr>
</tbody>
</table>
6.71.7 Subroutine Listing

SUBROUTINE ACUM71 (D, DT, DD, L)

C**** RENAMED DECLARER 5, 1975 ****
C
A SIMPLE ACCUMULATOR MODEL WHICH NEGLECTS PISTON FRICTION
C
PISTON MASS, AND THE TRUE GAS DYNAMICS
DOUBLE PRECISION DO
COMMON INTCLPL, INTDPL, IPT, IPOINT, NPTS, INEL, KNEL, INTPL, HLPLT(61,3),
1 POLEX(90), LGS(90,12), LGS(30,11), LGS(90,12), PSN(90), QN(90)
COMMON/SUB/PAL(150,9), PA(1500), PS(1500), P(300), C(300), C(300)
1, L(300), PA(20), D20R(20), VIS(20), BULK(20), TEMP(20), PVAP(20)
2, A(150,30, T, DLT, TFINAL, TVTDEL, PI, TITLE(20), LGSN, ICON
3, XTEMP(99), LSTX0(150), HLPLT(150), LTYPE(99), NC(99), WZ, IRZ
4, NVL, NISTDP, NOLP, NLL, INEL, TNL, TNLX, TNLX, KNEL, RELE, TNLG, INODE, HLPLT
5, NPLT, NDS
DIMENSION DD(1), L(2), D(5), DT(10)
INTEGER PRES, PRSPS, N1, D2, P, PEG, PS
DATA IVOLO/1/, AVOLC/2/, TVTDEL/3/, PRES/4/,
1 PRSPS/1/, N1LLT/2/, D20/3/, P/4/, D20/5/, P/6/,
2 PIVOL/7/, N1LPE/8/, WZ/9/, XTEMP/10/, NVL/11/
IN(1500) 1900, 2000, 3000
1000 CONTINUE
IF(LN.3E.0) GO TO 1500
C
THE GAS RELATIONSHIP IS USED TO ADJUST PRECHARGE PRESS
DT(PRESL) = (PRESL)*(TEMP(KTEMP(NIC))+ITE.)/520.
RETURN
1500 IF(KNEL.EQ.2) GO TO 1500
DT(PIVOL) = POLEX(INEL, 1)*POLEX(INEL, 2)
DT(PR) = POLEX(INEL, 11)
RETURN
1400 DT(N1L) = POLEX(INEL, 11)
RETURN
2000 CONTINUE
DT(N1L) = 1.0/Z(L(1)) + 1.0/Z(L(2))
IF(C(LC(.EQ.1)) GO TO 2050
DT(N1L) = 0.0
DT(P) = (DT(PC) + DT(N1L))/2.0
2050 DT(N1L) = 0.0
DT(N1L) = 0.5*DELT
DT(PC) = DT(PC)
DT(AVOL) = D(AVOL) - D(AVOL) + D(AVOL)
DT(AVOL) = D(AVOL) + D(AVOL) - (DT(PRES) + D(AVOL))/DT(PC)
IF(DT(PRES) LT. TP3) GO TO 2100
DT(P) = D(AVOL)
DT(PC) = DT(PRES)
2100 DT(N1L) = 30K(XTEMP(INEL))*DT(N1L)/D(AVOL)
DT(N1L) = DT(N1L) + 1.0/DT(F30L)
RETURN
3000 CONTINUE
L1 = L(1)
L2 = L(2)
6.71.7 (Continued)

\[Q(L1) = (C(L1) - DT(PO))/Z(L1) \]
\[Q(L2) = (C(L2) - DT(PO))/Z(L2) \]
\[TV0 = Q(L1) + Q(L2) \]
\[TVOLO = DT(IVILO) + (DT(IVU) + TVU) \times DT(NDLT) \]
\[IF(TVOLO . GT. (IVILO)) \AND \AND (DT(PO) . GT. DT(PO)) \GO TO 3100 \]

C

THE ACCUMULATOR IS EMPTY

\[TVOLO = D(IVILO) \]
\[TOP = 0.0 \]
\[TVV = 0.0 \]
\[DT(PO) = (C(L1)/Z(L1) + C(L2)/Z(L2))/DT(IVU) \]
\[IF(DT(PO) . LT. DT(PO)) \GO TO 3300 \]
\[TVOLO = D(IVILO) + .001 \]
\[GO TO 3250 \]

3100 IF(TVOLO . LT. D(IVILO)) \GO TO 3200

C

THE ACCUMULATOR IS FULL

\[TVOLO = D(IVILO) \]
\[TOP = 0.0 \]
\[TVV = 0.0 \]
\[DT(PO) = (C(L1)/Z(L1) + C(L2)/Z(L2)) / DT(IVU) \]
\[IF(DT(PO) . LT. DT(PO)) \GO TO 3300 \]
\[TVOLO = D(IVILO) + .001 \]
\[GO TO 3250 \]

C

THE ACCUMULATOR IS WITHIN IT'S WORKING RANGE

3200 TOPC = DT(PO) * TVV / (D(IVILO) - TVOLO + D(IVILO))
\[DT(PO) = DT(PO) + (DT(PO) + TOPS) \times DT(NDLT) \]
3250 TVV(PO) = DT(PO)

3300 P(L1) = DT(PO)
\[Q(L1) = (C(L1) - DT(PO))/Z(L1) \]
\[Q(L2) = (C(L2) - DT(PO))/Z(L2) \]
\[P(L2) = DT(PO) \]
\[DT(IVU) = TVV \]
\[DT(IVILO) = TVOLO \]
\[DT(PO) = TOPS \]
RETURN

END
6.81 SUBROUTINE FILT81

FILT81 is a simulation of an inline, non-bypass filter with no moving parts, using standard cleanable elements.

FIGURE 6.81-1
TYPE NO. 81 F-4 TYPE IN-LINE FILTER

FIGURE 6.81-2
FILT81 DIAGRAM
6.81.1 **Math Model**

Subroutine FILT81 uses a simple model to describe the pressure and flow characteristics of a filter under transient conditions. FILT81 Diagram, figure 6.81.2, schematically describes the model where PB and PE, the bowl and element pressures, are to be determined. The past values of the bowl and element pressures, PBL and PEL, are shown at the ends of pseudo passages along with their conductances respectively.

The conductances G1 and G2 are calculated using the equation

\[
G_{vol} = \frac{VOL}{(BULK \cdot DELT)}
\]

where

- \(G_{vol} \) = conductance
- BULK = fluid bulk modulus
- VOL = volume of oil in bowl or element section
- DELT = time step of program

The conductances of the lines connected to the filter is simply the reciprocal of the line impedance

\[
G_{line} = \frac{1}{Z_{line}}
\]

where

- \(Z_{line} \) = impedance of the line.

With all the conductances calculated, flows are summed about PB and PE resulting in the following equations.

\[
(C1-PB)G1+(PBL-PB)G3 - QE = 0 \quad 6.81.1
\]

\[
QE + (PEL-PE)G4 - (PE-C2)G2 = 0 \quad 6.81.2
\]

where

- G1 & G2 the line characteristic pressure
- QE the flow across the element

6.81-2
The pressure drop between PB and PE is

\[PB - PE = Q_2 K_2 + Q E K_1 \]

where \(K_1 \) is the linear pressure drop coefficient

\(K_2 \) is the \(Q_2 \) pressure drop coefficient

This equation is solved for \(Q_2 \) in terms of PB and PE using the quadratic formula. The result is substituted into equations 6.81.1 and 6.81.2. The substitution for \(Q_2 \) results in a set of two equations and two unknowns, \(PB \) and \(PE \). The equations are solved simultaneously to give \(PB \) and \(PE \).

The inlet and outlet flows, \(Q_1 \) and \(Q_2 \), are then calculated.

\[Q_1 = \frac{(C_1 - PB)/Z_1}{Z_1} \]
\[Q_2 = \frac{(C_2 - PE)/Z_2}{Z_2} \]

6.81.2 Assumptions - Not applicable.

6.81.3 Computational Methods

SECTION 1000

Pseudo conductances for the bowl and element sections are calculated and the filter element constant, \(D(\text{CONSEL}) \), is adjusted for fluid other than MIL-H-5606 and/or temperature other than 100°F.

\[D(\text{VOLIN}) = D(\text{VOLIN})/\Delta T/\text{BULK}(L1) \]
\[D(\text{VOLEX}) = D(\text{VOLEX})/\Delta T/\text{BULK}(L1) \]
\[D(\text{CONSEL}) = \text{VISC}(L1)\times\text{RHO}(L1)/(.028\times8.26-5)\times D(\text{CONSEL}) \]

SECTION 1500

The leg constants for \(Q \) and \(Q^2 \) are updated and the outlet pressure is calculated and stored. The bowl and element pressures, \(DT(PBL) \) and \(DT(PBL) \), are initialized.

SECTION 2000

Pseudo conductances \(DT(\text{GIN}) \), \(DT(\text{GOUT}) \) and \(DT(\text{GTOT}) \) are calculated for use in the transient calculation section.
\begin{align*}
DT(GIN) &= 1.0/Z(L(1)) + D(VOLIN) \\
DT(GOUT) &= 1.0/Z(L(2)) + D(VOLEX) \\
DT(GTOT) &= (DT(GIN)+DT(GOUT))/(DT(GIN)*DT(GOUT)) \\
DT(GTOT) &= DT(GTOT) + D(CONSEL)
\end{align*}

\textbf{SECTION 3000}

The values of DT(PBL) and DT(PEL) are calculated.

\begin{align*}
DPIN &= (C(L1)/Z(L1) + D(VOLIN)*DT(PBL))/DT(GIN) \\
DPOUT &= (C(L2)/Z(L2) + D(VOLEX)*DT(PEL))/DT(GOUT) \\
QE &= SQRT(DT(GTOT)**2 + 4.*D(CONE2)*ABS(DPIN-DPOUT)) \\
QE &= ((QE-DT(GTOT))/(2.*D(CONE2),DPOUT) \\
DT(PBL) &= DPIN - QE/DT(GIN) \\
DT(PEL) &= DPOUT + QE/DT(GOUT)
\end{align*}

The pressures and flows at each of the connections are then calculated using DT(PBL) and DT(PEL).

\begin{align*}
Q(L1) &= (C(L1) - DT(PBL))/Z(L1) \\
P(L1) &= DT(PBL) \\
Q(L2) &= (C(L2) - DT(PEL))/Z(L2) \\
P(L2) &= DT(PEL)
\end{align*}

\textbf{6.81.4 Approximations}

Non-linear pressure drop effects are assumed to be proportional to the Q^2 term.

\textbf{6.81.5 Limitations - Not applicable.}

\textbf{6.81.6 Variable Names}

\begin{tabular}{|l|l|l|}
\hline
Variable & Description & Units \\
\hline
D(CONE2) & Q^2 element coefficient & PSI/CIS2 \\
D(CONSEL) & Q element coefficient & PSI/CIS \\
DPIN & Intermediate calculation & -- \\
DPOUT & Intermediate calculation & -- \\
DT(GIN) & Sum of Inlet Conductances & CIS/PSI \\
DT(GOUT) & Sum of Outlet Conductances & CIS/PSI \\
DT(GTOT) & Intermediate Calculation & -- \\
L1 & Dummy Variable & -- \\
\hline
\end{tabular}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>DT(PBL)</td>
<td>Bowl Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PEL)</td>
<td>Element Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>QE</td>
<td>Flow Across Element</td>
<td>CIS</td>
</tr>
<tr>
<td>D(VOLEX)</td>
<td>Exit Volume</td>
<td>IN^3</td>
</tr>
<tr>
<td>D(VOLIN)</td>
<td>Inlet Volume</td>
<td>IN^3</td>
</tr>
</tbody>
</table>
SUBROUTINE FILTS1 (0, DT, OD, L)

C**** RVLSEIS JAN 1, 1976 ****

C STEN STEPL,NTSTP,ITPT,IPINT,APTS,INEL,NEL,STOPL,MLEFT(51,3),
1 POLE(90,12),LCSS(90,12),ILLE(41400),OD(90),ON(90)
CConstraint PARA: (150, 0), Pa(1500), Qi(1500), P(300), G(300), C(300)
1,2(300), RHO(20), SORhos(20), VISC(20), SUL(20), TEMP(20), PVA(20)
2,TPHIE, T, DELT, LEM, PFINAL, PTITLE, PL, TITLE(20), LEGH, ICOS
C,LEN(99), LSTART(150), KUPT(150), ETPLE(99), X(99), INV, INV
C,IV, ILEP, Alleg, NLL, IND, IENR, INL, IENL, REL, RLL, M, NMOD, M2LOT
C,MLETS, M5S

DIMENSION D(1), DT(1), DD(1), L(1)

INTEGER VOL1, VOLE, CONS, PEL, BEL, SOT, G1, GOUT, CONE2

C**** D ARRAY VARIABLES ****

DATA VOL1/1/, VOLE/2/, CONS/3/, CONE2/4/

C**** DT ARRAY VARIABLES ****

DATA F1/1/, P2/2/, S3/3/, G4/4/, GOUT/5/

IP(UNCR) 1520, 2000, 3000

C SECTION 1000 ESTABLISHES CONSTANTS FOR USE IN FUTURE CALCULATIONS

1000 CONTINUE

IF (IM1,.LE.0) GO TO 1500

C

SLIP CONSTANTS FOR INTEGRATION OF PRESSURES

L1=TIME(P(140))

P(VOL1)=P(VOL1)/DEL/L(VLX(L1))
P(VOLE)=P(VOLE)/DEL/L(VLX(L1))

C

MODIFY INPUTTED CONSTANTS FOR FLUID OTHER THAN M1=0.0004 AND/O

C

TEMPERATURE OTHER THAN 196 DEG F

P(CONSL)=VISC(L1)*RHO(L1)/(.023*2.31-5)*D(CONSL)

IF (C(CONSL).LE.0.3) D(CONSL) = .001

RETURN

1500 CONTINUE

IF (FCELL-2) 1510, 1510, 1510

1510 P=POLEG(111, 1)

P=POLEG(111, 2)

POLEG(111, 5)=POLEG(111, 5)+D(CONSL)

POLEG(111, 3)=POLEG(111, 3)+D(CONSL)

DT(PEL)=POLEG(111, 11)

DT(PEL)=DT(PEL)+A*(M(CONSL)+A*E(CONE2))

POLEG(111, 11)=DT(PEL)

1510 RETURN

2000 CONTINUE

A=1.0/2(L(1))+P(VOL1)

POLEG(111, 1)=1.0/2(L(2))+P(VOLE)

DT(CTOT)=DT(SL1)+D(TOT)/((DT(SL1)+D(TOT))

DT(CTOT)=DT(TOT)+D(CONSL)

RETURN

C

SLCT 3000 CALCULATES AND STORES INTERNAL AND CONDUCTION PRESS'S

C AND FLOWS

3000 CONTINUE

L1=L(1)**

6.81-6
6.81.7 (Continued)

L2=L(2)
DPIIN=(C(L1)/Z(L1)+D(VOLIN)*DT(PBL))/DT(GIA)
DPCOUT=(C(L2)/Z(L2)+D(VOLIN)*DT(PBL))/DT(GOUT)
DI=SQRT(DT(GTOT)+2.4*D(CONL2)*ABS(DPIIN-DPCOUT))
DI=SIGN((DL-DT(GTOT))/(2*D(CONL2)), DPIIN-DPCOUT)
DT(PBL)=DPIIN-CL/DT(GIA)
DT(PBL)=DPCOUT+CL/DT(GOUT)
CL=(C(L1)-DT(PBL))/Z(L1)
P(L1)=DL(DT(PBL))
P(L2)=(C(L2)-DT(PBL))/Z(L2)
P(L2)=DT(PBL)
RETURN
END
6.82 SUBROUTINE FILT82

FILT82 is a simulation of a three element filter manifold incorporating a relief valve between the supply and return filters. Inlet and outlet connections are specified and an incorrect installation will cause a message to be printed.

![Diagram of Filter Manifold]

FILTER MANIFOLD

FIGURE 6.82-1
6.82.1 Math Model

The FILTB2 model calculates the transient pressure and flow demands of a three element filter manifold incorporating a relief valve. Figure 6.82.2 schematically describes the filter manifold where the bowl and element pressures of each filter, \(P_B \) and \(P_E \), are to be determined. The past valves of the bowl and element pressures, \(P_{BS} \) and \(P_{ES} \), are shown at the ends of pseudo passages along with their conductances, \(G \). The conductance of the pseudo passage is calculated using the equation:

\[
G_{Vol} = \frac{VOL}{(BULK*DELT)}
\]

where

- \(G_{Vol} \) = conductance of the volume, CIS/PSI,
- \(VOL \) = volume, \(\text{in}^3 \),
- \(BULK \) = fluid bulk modulus, PSI,
- \(DELT \) = calculation time interval, SEC.

The conductances of the lines connected to the filter manifold is simply the reciprocal of the line impedance, \(Z \).

\[
G_{line} = \frac{1}{Z_{line}}
\]

where

- \(G_{line} \) = conductance of the line, CIS/PSI,
- \(Z_{line} \) = impedance of the line, PSI/CIS.

Initially, the relief valve is assumed to be closed and a solution technique similar to that used in FILTB1 is used to solve for the bowl and element pressures of each filter.

After all the line and volume conductances have been calculated, the flows are summed about \(P_B \) and \(P_E \) resulting in the following equations.
FILT82 DIAGRAM

FIGURE 6.82-2
\[(C(1)-PB)*G(1)+(PBS-PB)*G(3)-QE=0 \tag{6.82.1}\]
\[QE+(PES-PE)*G(4)-(PE-C(2))*G(2)=0 \tag{6.82.2}\]

where

- \(C\) = the line characteristic pressures
- \(QE\) = the flow across the element.

The pressure drop between PB and PE is
\[PB-PE=QE^2*R2+QE*R1 \tag{6.82.3}\]

where

- \(R1\) = linear pressure drop coefficient
- \(R2\) = \(Q^2\) pressure drop coefficient.

Equation 6.82.3 is solved for \(QE\) in terms of PB and PE using the quadratic formula. The result is substituted into equations 6.82.1 and 6.82.2. The substitution for \(QE\) results in a set of two equations and two unknowns, PB and PE. The equations are solved simultaneously to give PB and PE.

After the bowl and element pressures for each filter have been calculated, a test is made to determine if the relief valve is open. If \(PE(6)-PB(1)\) is less than the relief pressure, the relief valve is closed and the pressures and flows at the connections to the filters may be immediately calculated.

\[Q(N)=(C(N)-PB(N))/Z(N)\]
\[P(N)=PB(N)\]
\[Q(M)=(C(M)-PE(M))/Z(M)\]
\[P(M)=PE(M)\]

where

- \(N = 1, 3\) or \(5\)
- \(M = 2, 4\) or \(6\)
If PE(6) - PB(1) is greater than the relief pressure the relief valve is open and the bowl and element pressures for the supply and return filters are recalculated.

An equivalent conductance, GEQ, is calculated for the flow across the filter elements of the supply and return filters.

\[
GEQ(1) = QE(1)/(PB(1) - PE(1))
\]
\[
GEQ(2) = QE(3)/(PB(5) - PE(6))
\]

With the relief valve open there is a flow from PE(6) to PB(1). The flow through the relief valve plus all other flows are summed about PB(1), PE(2), PB(5) and PE(6) to give the following equations.

\[
(C(1) - PB(1)) * G(1) + (PB(1) - PB(1)) * G(7) + (PE(6) - PB(1)) * GREL
- (PB(1) - PE(2)) * GEQ(1) = 0
\]
\[
(PB(1) - PE(2)) * GEQ(1) + (PB(5) - PB(2)) * G(8) - (PE(2) - C(2)) * G(2) = 0
\]
\[
(C(5) - PB(5)) * G(5) + (PB(5) - PB(5)) * G(11) - (PB(5) - PE(6)) * GEQ(2) = 0
\]
\[
(PB(5) - PE(6)) * GEQ(2) + (PB(6) - PE(6)) * G(12) - (PE(6) - PB(1)) * GREL
- (PE(6) - C(6)) * G(6) = 0
\]

This results in a set of four equations with four unknowns, PB(1), PE(2), PB(5) and PE(6). These equations are solved simultaneously to give the bowl and element pressures in the supply and return filters with the relief valve open.

The bowl and element pressures for the supply and return filters are used to calculate the flows and pressures at the connections to the filters.

\[
Q(1) = (C(1) - PB(1)) / Z(1)
\]
\[
P(1) = PE(1)
\]
\[
Q(2) = (C(2) - PE(2)) / Z(2)
\]
\[
P(2) = PE(2)
\]
\[Q(5) = (C(5) - P(B(5))/Z(5) \]
\[P(5) = P(B(5)) \]
\[Q(u) = (C(u) - P(E(u))/Z(6) \]

6.82.2 Assumptions

It is assumed that a linearized equivalent conductance may be used to
calculate the pressure drop across the element when the relief valve is open. The
relief valve is assumed to open instantaneously.

6.82.3 Computational Methods

SECTION 1000

A DO loop is used to calculate pseudo conductances for the bowl and
element volumes for each filter. The filter element constant for each
filter, \(D(Consel+FF) \), is adjusted for fluids other than MIL-H-5606 and/or
temperatures other than 100°F.

DO 1200 ::-1, 3
F = (K-I)*4
H = (N-1)*9
D(VOLIN+F) = D(VOLIN+F)/(BULK(KL)*DELT)
D(VOLEX+F) = D(VOLEX+F)/(BULK(KL)*DELT)
D(Consel+FF) = VISC(KL)*RHO(KL)/(.028*8.2E-5)*D(Consel+FF)
1200 CONTINUE

SECTION 1500

A test is made to insure the filter is properly connected. If a
connection is found to be in error a message is printed and the run
continues. Only calls to connection 1, 3 and 5 are allowed.

For each filter the filter element constants \(D(Consel+FF) \) and
\(D(Conel+F) \) are added to the \(Q \) and \(Q^2 \) steady state flow coefficients,
respectively. The pressure drop across the filter is subtracted from the upstream pressure for the log.

SECTION 2000

A do loop is used to calculate the following constants for each filter. Pseudo conductances are calculated for use in the transient calculation section.

DO 2020 I=1, J
M=2*L-1
N=M+1
L1=L(N)
L2=L(N)
F=(I=1)*4
H=(I=1)*8
DT(GRELH)=1.0/2*(L1)+D(VOUT1+F)
DT(GOUTH)=1.0/2*L2)+D(VOLEX+F)
DT(GTOTH)=(DT(GINH+HT)+DT(GOUTH))/D(GINH+HT)*DT(GOUTH)
DT(GOUTH)=0.5*(DT/GTOTH)+D(CONSEL+F))/D(CONSEL+F)

SECTION 3000

The values of DT(PBL+H) and DT(PCH+H) are calculated for each filter using a do loop.

DO 3060 J=1, J
M=2*L-1
N=M+1
L1=L(N)
L2=L(N)
F=(I=1)*4
H=(I=1)*8

6.82-7
\[
\begin{align*}
DPIN &= \frac{C(L1)/Z(L1) + D(\text{VOLIM}+F) \cdot DT(\text{PRESSB}+H)}{DT(GIN+H)} \\
DPOUT &= \frac{C(L2)/Z(2) + D(\text{VOLEX}+F) \cdot DT(\text{PRESSE}+H)}{DT(GOUT+H)} \\
DT(QE+H) &= \sqrt{DT(\text{GTOT}+H)^2 + \text{ABS}(DPIN-DPOUT) \cdot D(CONEZ+F)} \\
DT(QE+H) &= \text{SIGN}(DT(QE+A)-DT(\text{GTOT}+H), DPIN-DPOUT) \\
DT(PBL+H) &= DPIN - DT(QE+H)/DT(GIN+H) \\
DT(PEL+H) &= DP.OUT + DT(QE+H)/DT(GOUT+H)
\end{align*}
\]

The pressures and flows at the connections are then calculated and post values of DT(PBL+H) and DT(PEL+H) are saved.

\[
\begin{align*}
Q(L1) &= \frac{C(L1)-DT(PBL+H)}{Z(L1)} \\
P(L1) &= DT(PBL+H) \\
Q(L2) &= \frac{C(L2)-DT(PEL+H)}{Z(L2)} \\
P(L2) &= DT(PEL+H) \\
DT(PRESSB+H) &= DT(PBL+H) \\
DT(PRESSE+H) &= DT(PEL+H)
\end{align*}
\]

The difference between the supply element pressure, DT(PEL+H), and the return bowl pressure, DT(PBL), is then compared with the relief pressure, PREL. If the difference is less than the relief pressure the subroutine returns execution to the calling program. If the difference is greater than PREL the bowl and element pressures for the supply and return filters are recomputed.

The conductances of the lines are computed.

\[
\begin{align*}
G1 &= 1./Z(L1) \\
G2 &= 1./Z(L2) \\
G7 &= 1./Z(L6) \\
G9 &= 1./Z(L6)
\end{align*}
\]

The A array is zeroed. The A and B arrays are then loaded for the matrix solution using SIMULT.
A(1,1)=G1+D(VOLIN)+CREL+GEQ1
A(1,2)=GEQ1
A(1,4)=CREL
A(2,1)=GEQ1
A(2,2)=GEQ1+D(VOLEX)+G3
A(3,3)=G7+D(VOLIN+8)+GEQ2
A(3,4)=GEQ2
A(4,1)=CREL
A(4,3)=GEQ2
A(4,4)=GEQ2+D(VOLEX+8)+CREL+G9
B(1)=C(L1)*G1+DT(PBL)*DT(VOLIN)-PREL*CREL
B(2)=DT(PBL)*D(VOLEX)+C(L2)*G3
B(3)=C(L5)*G)+DT(PBL+16)*D(VOLIN+8)
B(4)=DT(PBL+16)*D(VOLEX+8)+PREL*CREL+G(L6)*G9
CALL SIMULT (A, B, 4, J)

The bowl and element pressures are returned through B and are
saved. The flows and pressures at the connections to the supply and
return filters are then recalculated using the newly computed bowl and
element pressures.

DT(PRESSB)=B(1)
DT(PRESSE)=B(2)
DT(PRESSB+16)=B(3)
DT(PRESSSE+16)=B(4)
Q(L1)=(C(L1)-B(1))/Z(L1)
Q(L2)=(C(L2)-B(2))/Z(L2)
Q(L5)=(C(L5)-B(3))/Z(L5)
Q(L6)=(C(L6)-B(4))/Z(L6)

6.82-9
P(L1)=B(1)
P(L2)=B(2)
P(L5)=B(3)
P(L6)=B(4)

6.82.4 Approximations

Nonlinear pressure drop effects are assumed to be proportional to the Q^2 term.

6.82.5 Limitations

The pressure and flow calculations with the relief valve open are approximations, the accuracy of which will decrease as the duration of the relief valve opening increases.

6.82.6 Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(CONE2)</td>
<td>Nonlinear Element Constant</td>
<td>PSI/CIS$^{1/2}$</td>
</tr>
<tr>
<td>D(CONSEL+F)</td>
<td>Linear Element Constant</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>DPIN</td>
<td>Intermediate Calculation</td>
<td>-</td>
</tr>
<tr>
<td>DPOUT</td>
<td>Intermediate Calculation</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>Increment</td>
<td>-</td>
</tr>
<tr>
<td>GEQ1</td>
<td>Return Filter Equivalent Conductance</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>GEQ2</td>
<td>Supply Filter Equivalent Conductance</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(GIN+H)</td>
<td>Sum of Inlet Conductances</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(GOUT+H)</td>
<td>Sum of Outlet Conductances</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>GREL</td>
<td>Relief Valve Conductance</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(GTOT)</td>
<td>Intermediate Calculation</td>
<td>-</td>
</tr>
<tr>
<td>G1</td>
<td>Line Conductance</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>G3</td>
<td>Line Conductance</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>G7</td>
<td>Line Conductance</td>
<td>CIS/PSI</td>
</tr>
</tbody>
</table>
G9 Line Conductance CIS/PSI
H Increment -
I Counter -
II Counter -
J Counter -
JL Counter -
K Counter -
L1 Dummy Variable -
L2 Dummy Variable -
L3 Dummy Variable -
L4 Dummy Variable -
L5 Dummy Variable -
L6 Dummy Variable -
M Dummy Variable -
N Dummy Variable -
DT(PBL+H) Filter Bowl Pressure PSI
DT(PEL+H) Filter Element Pressure PSI
PREL Relief Pressure PSI
DT(PRESSB-H) Filter Bowl Pressure PSI
DT(PRESSE+H) Filter Element Pressure PSI
DT(QE=H) Flow Across Filter Element CIS
DT(VOLEX+F) Exit Volume \(\text{in}^3 \)
DT(VOLIN+F) Inlet Volume \(\text{in}^3 \)
SUBROUTINE FILTGR (D, DT, D0, L)
C**** REVISED 5.6/75 ****
COMMON WNLPL, WDTPL, IP, iq, KTS, JN, EKEL, NTOPL, NLPLT(51,3), 1 POLGL(90,12), C(90,10), LEC(140), P(90), CG(90)
COMMON/SU/PAI(150,9), PI(150), Q(150), P(300), Q(300), C(300)
1, Z(300), H(20), S(20), B(20), T(20), TP(20), H(20), V(20)
2, APRES, TL, TFINAL, PL, PT, TITLE, CT, IC0, IC0
3, KREL(99), INTART(150), NLPL(150), LTYPE(99), NC(99), IR, IJG
4, INV, ITEP, PLINE, LL, IND, IENT?, IDLITEM, I, NL, NLEG, NREL, NLPL
5, NLPLT, IC0
DIMENSION D(24), DT(12), D0(1), L(8), A(4,4), B(4)
INTEG[X-VOLJ, VOLL, CONSEL, CONEL, GIN, GOUT, GTOT, PLL, PLE, PAR,
IPRES1, PRESSL, F, H
C ***** D' ARRAY VARIABLES *****
DATA VOLTJ/1, VOLXL/2, CONSEL/3, CONEL/4/
C ***** D' ARRAY VARIABLES *****
DATA GIN/1, GOUT/2, PRES1/3, PRESSL/4, GTOT/5, PLL/6, PLE/7/
1, 06/8/
IF (1000) 1000, 2000, 3000
C SECTION: 1000 ESTABLISHES CONSTANTS FOR USE IN FUTURE CALCULATIONS
1000 CONTINUE
50 IF (INEL=10) GO TO 1500
C SET RELIEF VALVE PRESSURE
PLL=1350.
C SET RELIEF VALVE ADJUSTMENT
CRL=5
K=ETL-P(INEL)
GO TO 1200 X=1,3
F=(K-1)*4
H=(K-1)*3
C SET CONSTANTS FOR INTEGRATION OF PRESSURES
D(VOLL+*P)=D(VOLL+*P)/D(VOLL*ELT)
D(VOLL+*P)=D(VOLL+*P)/D(VOLL*ELT)
C VOLUME INDUCTIVE CONSTANTS FOR EQUATIONS OTHER THAN EIL-5-5605 AND/ON
C TEMPERATURES BELOW THAN 100 DEG F
D(CONSEL+P)=VISC(KI)*RD(41)/(.0289*2L-5)
A*B(CONSEL+P)
IP(D(CONSEL+P), 1E+0.3) D(CONSEL+P)=1001
1200 CONTINUE
RETURN
1500 F=0
GO TO(1550, 1580, 1520, 1500, 1510, 1200, 1300, 1400)
1510 F=F+4
1520 F=F+4
1550 CONTINUE
 Applying=PLOG(INEL, 1)
 Applying=PLOG(INEL, 2)
PLOG(INEL, 6)=PLOG(INEL, 6)+D(CONSEL+P)
PLOG(INEL, 8)=PLOG(INEL, 8)+D(CONSEL+P)
PLOG(INEL, 11)=PLOG(INEL, 11)-A*B*D(CONSEL+P)-1
A*D*H**2.*D(CONSEL+P)
RETURN
1300 CONTINUE
WRITE(6,1301) IND,INEL,KNL
1301 FORMAT(2X,7H04P 50,14,31.3) CALLING INCORRECTLY PROC. LSC 80,
1 I4,7H CON 40,I4)
RETURN
C C SECT 2000 DETERMINES VALIDITY OF COMPONENT CONNECTIONS AND
C DIRECTION OF FLOW. INITIAL PRESSURES IN ELEMENT AND IN BOWL AS
C WELL AS INITIAL FLOW ACROSS ELEMENT ARE CALCULATED AND STORED
C D) 2000 CONTINUE
DO 2020 I=1,3
 J=I-1
 N=I+1
 L1=L(J)
 L2=L(N)
 P=(I-1)*4
 H=(I-1)*3
C C SET DI/1Y VARIABLES
C C STORE BOWL PRESS, ELEMENT PRESS AND FLOW, AND PASSAGB DELTA P'S
C C CONS=EL+1=1./9(CONSLL+F)
C DT(PRESSS+H)=P(L1)
C DT(PRESSLL)=P(L2)
C DT(G13+H)=1.0/(Z(L1)+C(VOLIN+F))
C DT(GOUT+H)=1.0/(Z(L2)+C(VOLLL+F))
C DT(GOUT+H)=DT(GOUT+H)/DT(G13+H))
C DT(GOUT+H)=0.5*(DT(GOUT+H)+C(CONSLL+F))/D(CONSL2+F)
C DT(POL+H)=DT(PRESSS+H)
C DT(POL+H)=DT(PRESSL+H)
C DT(POL+H)=0.0
C C 2020 CONTINUE
RETURN
C C SECT 3000 CALCULATES AND STORES INTERNAL AND CONNECTION PRESS'S
C AND FLOWS
C C 3000 CONTINUE
DO 3052 I=1,3
 J=I-1
 N=I+1
 L1=L(J)
 L2=L(N)
 P=(I-1)*4
 H=(I-1)*3
C C 3052 CONTINUE
C DT(IN)=(C(L1)/Z(L1)+C(VOLIN+F)*DT(PRESSS+H))/DT(G13+H)
C DT(OUT)=(C(L2)/Z(L2)+C(VOLLL+F)*DT(PRESSL+H))/DT(GOUT+H)
C DT(GL3+H)=SQRT(DT(GOUT+H)**2.0+AS(S(DPIN-DOUT))/D(CONSL2+F))
C DT(POL+H)=SQRT(DT(PSL+H)**2.0+DT(DOUT))/D(CONSL2+F)
C DT(POL+H)=DPIN-DT(PSL+H)/DT(G13+H)
C DT(POL+H)=DOUT+DT(POL+H)/DT(GOUT+H)
C *(L1)=(C(L1)-DT(POL+H))/Z(L1)
C *(L1)=DT(POL+H)
C *(L2)=(C(L2)-DT(POL+H))/Z(L2)
C *(L2)=DT(POL+H)
C DT(PRESSB+H)=DT(POL+H)

BEST AVAILABLE COPY
6.82.7 (Continued)

\[DT(\text{PRESSEL+H}) = DT(\text{PBL+H}) \]

3060 CONTINUE
IF (DT(PBL+16) - DT(PBL) LT PREL) GO TO 3200
L1 = L(1)
L2 = L(2)
L3 = L(3)
L4 = L(4)
L5 = L(5)
L6 = L(6)
GLQ1 = DT(CL)/ (DT(PBL) - DT(PBL))
GLQ2 = DT(CL+16) / (DT(PBL+16) - DT(PBL+15))

3152 C1 = 1. + Z(L1)
C2 = 1. / Z(L2)
C3 = 1. / Z(L5)
C4 = 1. / Z(L6)
DO 20 II = 1, 4
DO 10 JJ = 1, 4
10 A(J1, JJ) = 0.0
B(J1) = 0.0
20 CONTINUE
A(1,1) = - C1 - D(VOLIN) - GREL - GLQ1
A(1,2) = GLQ1
A(1,4) = GREL
A(2,1) = GLQ1
A(2,2) = - GLQ1 - C(VOLEX) - C3
A(3,3) = - C7 - D(VOLIN+3) - GLQ2
A(3,4) = GLQ2
A(4,1) = GREL
A(4,3) = GLQ2
A(4,4) = - GLQ2 - D(VOLIN+9) - GREL - C0
C(1) = C(L1) * C1 - DT(PBL) * DT(VOLIN) + PREL * GREL
C(2) = DT(PBL) * D(VOLEX) - C(L2) * G3
C(3) = C(L5) * C7 - DT(PCL+15) * D(VOLIN+8)
C(4) = DT(PBL+16) * D(VOLIN+3) - PREL * GREL - C(L6) * G2
CALL SDATA (A, 3, 4, 7)
\[DT(\text{PRESS3}) = 2(1) \]
\[DT(\text{PRESS5}) = 2(2) \]
\[DT(\text{PRESS5+15}) = 3(3) \]
\[DT(\text{PRESS5+16}) = 3(4) \]
Q(L1) = (C(L1) - 3(1)) / Z(L1)
Q(L2) = (C(L2) - 3(2)) / Z(L2)
Q(L5) = (C(L5) - 3(3)) / Z(L5)
Q(L6) = (C(L6) - 3(4)) / Z(L6)
P(L1) = 3(1)
P(L2) = 3(2)
P(L5) = 3(3)
P(L6) = 3(4)

3200 CONTINUE
RETURN
END
6.83 SUBROUTINE FILT83

FILT83 is a simulation of an inline, bypass type, multiconnection filter. One inlet and two outlet connections are used.
6.83.1 Math Model

FILT83 calculates the bowl and element pressures under transient conditions. FILT83 DIAGRAM, Figure 6.83-2, schematically describes the model where PB and PE, the bowl and element pressures, are to be determined. The past values of the bowl and element pressures, PBL and PEL, are shown at the ends of pseudo passages along with their conductances, D(VOLIN) and D(VOLEX), respectively. These conductances are calculated using the equation:

$$G_{\text{vol}} = \frac{\text{VOL}}{\text{BULK} \times \text{DELT}}$$

where
- G_{vol} = Conductance of the volume
- BULK = fluid bulk modulus
- VOL = volume of oil in bowl or element section
- DELT = time step of program

The conductance of the element is the reciprocal of the input element constant.

$$G_{\text{elec}} = \frac{1}{\text{CONSEL}}$$

The conductance of the relief valve is the reciprocal of the input relief valve constant.

$$G_{\text{rel}} = \frac{1}{\text{REL}}$$

The conductances of the three lines connected to the filter is simply the reciprocal of the individual line impedances.

$$G_{\text{line}} = \frac{1}{Z_{\text{line}}}$$

With all the conductances calculated, flows are summed about PB and PE resulting in the following equations.

$$G_1(\text{PB-C(L1)}) + G_{\text{VOLIN}}(\text{PB-PBL}) + G_{\text{elec}}(\text{PB-PE}) + G_{\text{rel}}(\text{PB-PE}) = 0$$

$$G_{\text{rel}}(\text{PE-PB}) + G_{\text{elec}}(\text{PE-PBL}) + G_{\text{VOLEX}}(\text{PE-PBL}) + G_3(\text{PE-L1(L2)}) + G_3(\text{PE-UL3}) = 0$$
If the difference between the previously calculated values of PB and PE is less than the cracking pressure of the relief valve, \(G_{rel} \) is set equal to zero. The above equations are then solved to yield the pressures PB and PE. The values of PB and PE are then set equal to PBL and PEL respectively. The inlet and outlet flows are then calculated

\[
\begin{align*}
Q(L1) &= \frac{(C(L1) - PB)}{Z(L1)} \\
Q(L2) &= \frac{(C(L2) - PE)}{Z(L2)} \\
Q(L3) &= \frac{(C(L3) - PE)}{Z(L3)}
\end{align*}
\]

6.83.2 Assumptions

The pressure losses at the inlet and outlet are assumed to be negligible and are, therefore, not included in the simulation. The relief valve is assumed to open and close instantaneously.

6.83.3 Computational Methods

SECTION 1000

Pseudo impedances for the bowl and element sections are calculated using

\[
\begin{align*}
D(VOLIN) &= \text{BULK}(KTEMP(IND))/D(VOLIN)*DELT \\
D(VOLEX) &= \text{BULK}(KTEMP(IND))/D(VOLEX)*DELT
\end{align*}
\]

The filter element constant is adjusted for fluid other than MIL-H-5606 and/or temperature other than 100°F.

SECTION 1500

The leg constant for \(Q \) is updated and the outlet pressure is calculated and stored. The bowl and element pressures are initialized.

SECTION 2000

The impedances are converted to conductances.
\[D(\text{VOLEX}) = 1 / D(\text{VOLEX}) \]
\[D(\text{VOLIN}) = 1 / D(\text{VOLIN}) \]
\[D(\text{CONSEL}) = 1 / D(\text{CONSEL}) \]
\[D(\text{REL}) = 1 / D(\text{REL}) \]

The constants DT(G1), DT(G2), DT(G3) are evaluated

\[DT(G1) = 1 / Z(L1) + D(\text{VOLIN}) + D(\text{CONSEL}) \]
\[DT(G2) = -D(\text{CONSEL}) \]
\[DT(G3) = -D(\text{CONSEL}) / D(\text{VOLEX}) + 1 / Z(L2) - 1 / Z(L3) \]

SECTION 3000

The difference between the previous values of the bowl and element pressure, DT(PBL) and DT(PEL), is compared to the relief pressure.

If the relief pressure is exceeded DREL, the relief valve conductance, is set equal to the input value for the relief valve conductance, D(REL). If the relief pressure is not exceeded DREL is set to 0.0.

\[DREL = 0.0 \]
\[\text{IF}(DT(PBI) - DT(PEL), GTR, D(RELPR)) DREL = D(REL) \]

The bowl and element pressures, DT(PBL) and DT(PEL) are then calculated and stored.

\[DG1 = DT(G1) + DREL \]
\[DG2 = DT(G2) - DREL \]
\[DG3 = DT(G3) + DREL \]
\[R1 = DT(PB2) * D(\text{VOLIN}) + C(L1) / Z(L1) + D(RELPR) * DREL \]
\[R2 = DT(PEL) * D(\text{VOLEX}) + C(L2) / Z(L2) + C(L3) / Z(L3) - D(RELPR) * DREL \]
\[DT(PBL) = (R2 * DG1 - R1 * DG2) / (DG3 * DG1 - DG2 * 2.) \]
\[DT(PEL) = (R1 * DG3 - R2 * DG1) / (DG1 * DG3 - DG2 * 2.) \]

The pressures and flows at each of the connections are then calculated and stored.

6.83.4 Approximations

The relationship between pressure drop and flow across the filter is assumed to be linear.
6.83.5 **Limitations**

The accuracy of the model will decrease at flow rates where the effects of the pressure losses of inlet and outlet passages become significant.

6.83.6 **Variable Names**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(CONSEL)</td>
<td>Element Constant</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>DG1</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>DG2</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>DG3</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(G1)</td>
<td>Sum of Inlet Conductances</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(G2)</td>
<td>Element Constant</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>DT(G3)</td>
<td>Sum of Outlet Conductances</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>L1</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>L2</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>L3</td>
<td>Dummy Variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(PBL)</td>
<td>Bowl Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PEL)</td>
<td>Element Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>R1</td>
<td>Intermediate Calculation</td>
<td>--</td>
</tr>
<tr>
<td>R2</td>
<td>Intermediate Calculation</td>
<td>--</td>
</tr>
<tr>
<td>D(REL)</td>
<td>Relief Valve Constant</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>D(RELPR)</td>
<td>Relief Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(VOLEX)</td>
<td>Exit Volume</td>
<td>(\text{in}^3)</td>
</tr>
<tr>
<td>D(VOLIN)</td>
<td>Inlet Volume</td>
<td>(\text{in}^3)</td>
</tr>
</tbody>
</table>
6.83.7 Subroutine Listing

SUBROUTINE FILT3 (D, DT, DD, DL)

C**** REVISED MAY 1, 1976 ****
COMMON NTNLPL, NTOLPL, IPT, IPOINT, NPTS, INLL, KNL, STOL, NLPLT(61,3),
1 POLEG(90,12), LCS(90,10), ILEG(1400), PN(90), QN(90)
COMMON/ SUB/ PAR(I(150, 2), R(I(1500), Q(1500), P(300), C(300))
1, Z(300), NRO(20), S2RO(20), VISC(20), BULK(20), TEM(20), PVAP(20)
2, ATIP, T, DELT, PTOLLL, PI, TILTLE, LECH, ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), IX, IIZ
4, INV, ISEP, NNL, REL, IND, IENTR, NLINE, NNL, HILEG, ICEMODE, NPLT
5, INPTS, AOD

DIMENSION D(1), DT(1), DD(1), DL(1)
INTEGER VOLIN, VOLEX, CONSEL, PNL, PEL, C1, C2, C3, REL, RELPP

C**** D ARRAY VARIABLES ****
DATA VOLIN/1/, VOLEX/2/, CONSEL/3/, REL/4/, RELPP/5/
C**** DT ARRAY VARIABLES ****
DATA PNL/1/, PEL/2/, C1/3/, C2/4/, C3/5/
IF (IENIT) 1000, 2000, 3000

C SECTION 1000 ESTABLISHES CONSTANTS FOR USE IN FUTURE CALCULATIONS
1000 CONTINUE
IF (INLL, NL, 0) GO TO 1500
C
C SET CONSTANTS FOR INTEGRATION OF Pressures
D(VOLIN)=3UL(KTEM(IND))/D(VOLIN)*DELT
D(VOLEX)=3UL(KTEM(IND))/D(VOLEX)*DELT
C
C ADJUST INPUTTED CONSTANTS FOR FLUID OTHER THAN HIL=2-5500 A 0/0
C
C TEMPERATURES OTHER THAN 100 DEG F
D(CONSEL)=VISC(KTEM(IND))*RSG(KTEM(IND))/.022*8.6-5)*D(CONSEL)
IF (D(CONSEL), LL, 0.0) D(CONSEL)=.0001
RETURN

1500 CONTINUE
IF (KNL=2) 1510, 1610, 1610
1510 DA=POLEG(IWL, 1)
TS=POLEG(IWL, 3)
POLEG(IWL, 5)=POLEG(IWL, 5)+C(CONSEL)
O(PEL)=POLEG(IWL, 11)
POLEG(IWL, 11)=POLEG(IWL, 11)-DA*D(CONSEL)
O(PEL)=POLEG(IWL, 11)
1610 RETURN

2000 CONTINUE
D(VOLEX)=1./D(VOLIN)
D(VOLIN)=1./D(VOLIN)
D(CONSEL)=1./D(CONSEL)
O(NL)=1./O(NL)
O(G1)=1./2(L(1))+D(VOLIN)+O(CONSEL)
O(G3)=O(CONSEL)+D(VOLIN)+1./2(L(2))+1./2(L(3))
RETURN

C SECTION 3000 CALCULATES AND STORES INTERNAL AND CORRECTION PRESS
C AND FLOWS
3000 CONTINUE
6.83-7 (Continued)

L1 = L(1)
L2 = L(2)
L3 = L(3)

DRLLF = 0.0
IF(DT(PBL) - DT(LLL) * C(RELPR)) DRLLF = D(LLL)
DG1 = DT(G1) + DRLLF
DG2 = DT(G2) - DRLLF
DG3 = DT(G3) + DRLLF

R1 = DT(PBL) * D(VOL) + C(L1) / 2(L1) + D(RELPR) * DRLLF
R2 = DT(LLL) * D(VOL) + C(L2) / 2(L2) + C(L3) / 2(L3) - D(RELPR) * DRLLF

DT(LLL) = (R2 * DG1 - R1 * DG2) / (DG1 + DG2 - DG2 ** 2)

Q(L1) = (C(L1) - DT(PBL)) / Z(L1)
P(L1) = DT(PLL)
Q(L2) = (C(L2) - DT(PLL)) / Z(L2)
P(L2) = DT(PLL)
Q(L3) = (C(L3) - DT(PLL)) / Z(L3)
P(L3) = DT(PLL)
RETURN
6.92 **SUBROUTINE CAD92**

Subroutine CAD92 is a dummy input subroutine which can be used in the place of a guidance and control subroutine, to input position commands to the elevon actuator subroutine.

The data is inputted in a tabular form, and accessed via a first order table lookup routine. The data input, described in Volume I, contains the elevon actuator component number (L(1)), the number of data points in the tables (inputted as L(1)) and stored as L(5)).

The table of time values, starts in D(9) and can occupy 8 or more spaces in groups of 8, this table is followed by the table of input commands which is also stored in groups of 8.

The first 8 spaces in D() are reserved for hinge moment data, which will be added later.
6.92.1 Subroutine Listing

SUBROUTINE CAD92 (D, DT, DD, L)

C *** REVISED SEPTEMBER 1975 ***
DOUBLE PRECISION DD
INTEGER TLUD
COMMON NTELPL, NTOLPL, IPT, IPINTER, NPTS, INEL, KNEL, NTOPL, NLPLT(61, 3),
1 PQLEG(90, 12), LCS(90, 10), ILEG(1400), PN(90), QN(90), VSTORE(6150)
DIMENSION D(24), DT(1), DD(1), L(5)
COMMON /SUB/PARM(150, 9), PN(1500), QM(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), S2ORHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATPRES, T, DETA, TFINAL, PLTDEL, PI, TITLE(20), LEGN, ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTEP, NLINE, NEL, IND, IEN, DLINE, NDEL, MNLEG, MNNODE, MNPLOT
5, MNLPTS, MDS
COMMON /COMPD/ XD(4500), LX(1500), LEX(99, 4)
DATA TLUD/1/
IF (IENTR) 1000, 2000, 3000
1000 CONTINUE
DT(TLUD) = 0.0
L(3) = 9
L(4) = 9 + (L(11) + 7) / 8 * 8
L(5) = L(11)
NCOAP = L(1)
L(2) = LEX(NCOMP, 2)
IF (NCOMP, GT, IND) GO TO 1500
XD(LEX(NCOMP, 2)) = D(L(4))
GO TO 3300
1500 CONTINUE
WRITE(6, 1600) NCOMP, IND
1600 FORMAT(2X, 14H COMPONENT NO, 15, 142H SHOULD HAVE A LOWER NO THAN COMPONENT NO, 15)
RETURN
2000 CONTINUE
GO TO 3100
3000 CONTINUE
IF (T - DT(TLUD) LT. 0.040) GO TO 3400
DT(TLUD) = T
3100 CALL INTERP (T, D(L(3)), D(L(4)), 10, L(5), VALY, IOD)
NCOMP = L(1)
XD(L(2)) = VALY
3300 XD(L(2) + 3) = D(1)
XD(L(2) + 4) = D(2)
3400 RETURN
END
6.93 **SUBROUTINE CAD93**

Subroutine CAD93 is a dummy input subroutine which can be used in the place of a pump subroutine, to input torque loads to the APU subroutine.

The data is inputted in a tabular form, and accessed via a first order table lookup routine. The data input, described in Volume I, contains the number of data points in the tables (inputted as \(\text{L}(11) \) and stored as \(\text{L}(5) \)).

The table of time values, starts in \(\text{D}(9) \) and can occupy 8 or more spaces in groups of 8, this table is followed by the table of torque data which is also stored in groups of 8.

The first 8 spaces in \(\text{D}(\) \) are reserved for oscillatory torque data, which will be added later.
SUBROUTINE CAD93 (D, DT, DD, L)

C *** REVISED SEPTEMBER 1975 ***
DOUBLE PRECISION DD
DIMENSION D(1), DT(1), DD(1), L(1)
COMMON /NTELPL, NTOPL, IPT, IPOINT, NPTS, INEL, KNEL, NTOPL, NLPLT(61,3),
 1 PQUEL(90,12), LCS(90,10), ILEG(1400), PN(90), ON(90), VSTORE(6150)
COMMON /SUB/PARM(150,9), PR(1500), QM(1500), P(300), Q(300), C(300)
 1, Z(300), RHO(20), S2ORHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
 2, ATPRES, T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LEGN, ICON
 3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
 4, INV, ISTEP, NLINE, NEL, IND, IENTR, MNLINE, MNEL, MNLEG, MNNODE, MNPLOT
 5, MNPLTS, MDS
COMMON /CO±'1PD/ XD(4500), LX(1500), LEX(99,4)
IF (IENTR) 1000, 2000, 3000

1000 CONTINUE
L(3) = 9
L(4) = 9 + (L(11) + 7) / 8 * 3
L(5) = L(11)
DT(1) = D(3)
RETURN

2000 CONTINUE
RETURN

3000 CONTINUE
CALL INTERP (T, D(L(3)), D(L(4)), 10, L(5), VALY, IOD)
DT(2) = VALY + DT(1) * D(2) + D(1)
RETURN
END
6.95 SUBROUTINE APU95

The APU95 subroutine is a generalized subroutine set up to model the auxiliary power units of the space shuttle. The function of the model is to return values of RPM to the pump subroutine. The value of RPM is determined by burning the liquid fuel and looking at the loads of the gear box, hydraulic pump and fuel pump.

6.95.1 Math Model

The block diagram of the APU analytical model is shown in Figure 6.95-1. An ON-OFF fuel controller is used to maintain the speed of the turbine between an upper speed - RPMH and a lower speed - RPML. The liquid fuel is converted to gaseous state in the hydrazing gas generator to drive the turbine. In each cycle, after fuel cut off, the turbine speed reduces rapidly due to the loads reflected by the gear box, hydraulic pump, and fuel pump. At sea level the APU system cycles off and on approximately 1 cps with zero flow from the hydraulic pump, but cycling increases to approximately 3 cps with maximum flow from the pump. The functions and the nomenclature of the APU model are in Table 6.95-1.

Fuel Pump Calculations of Flow Rate, Change in Pressure and Horsepower

\[\dot{m}_{FP} = 3.0267 \times 10^{-6} N_T \{V\} (SW) \]

\[\Delta P_{FP} = P_G - P_U + 105.28 \dot{m}_{FP} \quad (400 \leq P_U \leq 80) \]

\[HP_{FP} = 7.0042 \times 10^{-3} \dot{m}_{FP} \Delta P_{FP} \]
<table>
<thead>
<tr>
<th>VARIABLE NAME</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_o</td>
<td>Gas Spouting Velocity</td>
<td>ft/sec</td>
</tr>
<tr>
<td>H_{AD}</td>
<td>Adiabatic Head</td>
<td>Btu/lbm</td>
</tr>
<tr>
<td>HP</td>
<td>Horsepower</td>
<td>HP</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Mass Flowrate</td>
<td>lb/sec</td>
</tr>
<tr>
<td>η_T</td>
<td>Turbine Efficiency</td>
<td>--</td>
</tr>
<tr>
<td>N</td>
<td>Rotating Speed</td>
<td>RPM</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
<td>psia</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
<td>lbm/ft3</td>
</tr>
<tr>
<td>R_e</td>
<td>Reynolds Number</td>
<td></td>
</tr>
<tr>
<td>R_e^*</td>
<td>Machine Reynolds Number</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>oR</td>
</tr>
<tr>
<td>τ</td>
<td>Torque</td>
<td>in-lb</td>
</tr>
<tr>
<td>U</td>
<td>Tip Velocity</td>
<td>ft/sec</td>
</tr>
<tr>
<td>V</td>
<td>Control Valve Area Factor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBSCRIPT NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Disk</td>
</tr>
<tr>
<td>fP</td>
<td>Fuel Pump</td>
</tr>
<tr>
<td>g</td>
<td>Gas Generator</td>
</tr>
<tr>
<td>GB</td>
<td>Gearbox</td>
</tr>
<tr>
<td>hp</td>
<td>Hydraulic Pump</td>
</tr>
<tr>
<td>S</td>
<td>Static</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBSCRIPT NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Ullage</td>
</tr>
<tr>
<td>0</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>Inlet</td>
</tr>
<tr>
<td>2</td>
<td>Outlet</td>
</tr>
</tbody>
</table>

TABLE 6.95-1
FUNCTIONS AND NOMENCLATURE OF THE APU ANALYTICAL MODEL
Controller

If \((N_T > \text{RPMH})\) SW = 0.0

If \((N_T < \text{RPML})\) SW = 1.0

Control Valve Position

\[
V = \left[1 - \frac{1.0}{e^{(\Delta t/0.01)}} \right]
\]
(Opening Transient)

\[
V = \left[\frac{1.0}{e^{(\Delta t/0.01)}} \right]
\]
(Closing Transient)

Gas Generator

Subsonic Flow:

\[
m_G = \frac{0.046513}{\sqrt{T_G}} \frac{P_G}{(P_{T2S}/P_G)} \left(0.78431\right) \sqrt{\frac{1}{1 - \left(\frac{P_{T2S}}{P_G}\right)^{(0.21569)}}}
\]

Sonic Flow:

\[
m_c = 0.01012 \frac{P_G}{\sqrt{T_G}}
\]

\[
\left(\frac{dP_G}{dt}\right) = 117.903 \ T_G \left(\dot{m}_f - \dot{m}_G\right)
\]

\[P_G = \int \left(\frac{dP_G}{dt}\right) \ dt\]

\[T_G = 2160^\circ \text{R}\]
Exhaust Duct

Space:

\[P_{T2S} = 1.0688 \dot{m}_G (T_{T20})^{0.49938} - 0.50097 (\dot{m}_G)^2 (T_{T20})^{0.48268} \]

Sea Level:

\[P_{T2S} = 14.7 + 2.2086 \times 10^{-3} (\dot{m}_G) (T_{T20})^{0.79309} \]
\[+ 0.0142 (\dot{m}_G)^2 (T_{T20})^{1.0257} \]

20,000 FT:

\[P_{T2S} = 6.75 + 4.5162 \times 10^{-6} (\dot{m}_G) (T_{T20})^{1.7809} \]
\[+ 0.16848 (\dot{m}_G) (T_{T20})^{0.78269} \]

Turbine

\[\frac{dH_T}{dT} = \frac{2.9033 \times 10^7}{N_T} \left(1.3432 \dot{m}_G H_{AD} \eta_T - HP_{FP} - HP_{GB} - D_F - HP_{HP} \right) \]

\[H_{AD} = 0.70856 T_G \left[1 - \frac{P_{T2S}}{P_G} \right]^{0.21569} \]

\[C_D = 188.375 \sqrt{T_G} \left[1 - \frac{P_{T2S}}{P_G} \right]^{0.21569} \]

\[U = 0.023998 N_T \]

\[\eta_T = f(U/C_D, P_G) \]

\[T_{T20} = T_G (1 - \eta_T) + \eta_T T_G \frac{P_{T2S}}{P_G} \]

\[D_F = 8.3900 \times 10^{-7} C_D U^3 \]

Efficiency Data from EFF vs U/C_D Curves

\[(0.21569) \]
\[C_D = \frac{1541.89}{(\text{Red})} \]
\[C_D = \frac{2.1341}{(\text{Red})^{1/2}} \]
\[C_D = \frac{0.20017}{(\text{Red})^{1/4}} \]
\[C_D = \frac{0.058832}{(\text{Red})^{1/5}} \]

Maximum Value

\[R_E^{*} = 79.94 N_T \rho \]
\[R_E^{*} = 0.89236 R_E^{*} \]
\[\rho = 1.21165 \frac{P_{T25}}{T_{T20}} \]

\[N_T = \int \left(\frac{dT}{dt} \right) dt \]

\[\text{HP}_{GB} = f (N_T, \text{HP}_{HP}) \]

Gearbox Loss Data from Input Data Curve
6.95.2 Assumptions
TBD

6.95.3 Computations

1000 Section
In the 1000 section the steady state APU characteristics are stored in the temporary variable array (DT). The controller for the fuel pump is initially turned off and the valve area factor (V) is set to 1.

2000 Section
In the 2000 section variables are calculated for use in the transient section in order to decrease running time.

3000 Section
This section of the APU95 subroutine computes the output RPM of the APU through a gearbox and feeds this value to the appropriate pump in the simulated hydraulic system.

On transfer to the 3000 section the previous pump RPM in the DT array is divided by the gearbox ratio to obtain an APU RPM. The fuel pump controller is set to maintain the speed of the turbine between the upper DT (RPMH) and lower DT (RPML) RPM values. The fuel pump horsepower is computed from the given RPM and controller position as follows:

\[
\text{EMDOFP} = 3.0267 \times 10^{-6} \times \text{RPM} \times V
\]

\[
\text{DELPFP} = \text{DT(PG)} - \text{DT(PU)} + 105.28 \times \text{EMDOFP}
\]

\[
\text{HPFP} = 7.0042 \times 10^{-3} \times \text{EMDOFP} \times \text{DELPFP}
\]

The torque of the pump is also computed externally and returned to the APU95 subroutine. The APU subroutine converts the torque to net horsepower and uses this value along with the APU RPM to obtain the horsepower loss through the gearbox.
The next step in the computations is to determine the flow characteristics in the gas generator, and then calculate the flow rate, gas inlet pressure and change in gas inlet pressure.

Knowing the gas inlet pressure and computing the U/C₀ value, the APU efficiency is obtained from a table lookup. The APU efficiency vs U/C₀ curves were input with the APU data.

After determining the exhaust duct conditions the differential change in RPM (DRPM) is calculated. The actual value of APU RPM is determined as follows:

\[\text{RPM} = \text{RPM} + \text{DELT} \times (\text{DRPM} + \text{DT} \times \text{DRPMO}) / 2.0 \]

where

- \(\text{RPM} \) - The initial entry RPM
- \(\text{DELT} \) - Transient time step
- \(\text{DRPM} \) - Computed differential change in RPM for this time step
- \(\text{DRPMO} \) - Previous differential change in RPM

The new value of RPM is multiplied by the gearbox ratio and the value is returned to the calling subroutine.

6.95.4 Approximations - TBD
6.95.5 Limitations - TBD
6.95.6 Variable Names:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Maximum value of variables</td>
<td></td>
</tr>
<tr>
<td>CDO</td>
<td>Array of temporary variables</td>
<td></td>
</tr>
<tr>
<td>CED</td>
<td>Array of input constants</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Gas spouting velocity</td>
<td>ft/sec</td>
</tr>
<tr>
<td>CV</td>
<td>Delay variable of value position</td>
<td></td>
</tr>
<tr>
<td>DELPFP</td>
<td>Pressure drop across fuel pump</td>
<td>psi</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Dimensions</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>DF</td>
<td>Temporary Variable</td>
<td></td>
</tr>
<tr>
<td>DPG</td>
<td>Rate of Change of Gas pressure</td>
<td></td>
</tr>
<tr>
<td>DPGO</td>
<td>Previous value of DPG</td>
<td></td>
</tr>
<tr>
<td>DPGSAV</td>
<td>Previous value of DPGO</td>
<td></td>
</tr>
<tr>
<td>DRPM</td>
<td>Rate of change of RPM</td>
<td></td>
</tr>
<tr>
<td>DRPMO</td>
<td>Previous value of DRPM</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>Delta time step</td>
<td>sec</td>
</tr>
<tr>
<td>DTC</td>
<td>Delay time</td>
<td>sec</td>
</tr>
<tr>
<td>EFF</td>
<td>Efficiency of APU</td>
<td></td>
</tr>
<tr>
<td>EMDOTG</td>
<td>Mass flow rate - gas generator</td>
<td>lb/sec</td>
</tr>
<tr>
<td>EMDOFF</td>
<td>Mass flow rate - fuel pump</td>
<td>lb/sec</td>
</tr>
<tr>
<td>GBR</td>
<td>Gear box ratio</td>
<td></td>
</tr>
<tr>
<td>HPFP</td>
<td>Fuel pump H.P.</td>
<td></td>
</tr>
<tr>
<td>HPGB</td>
<td>Gear box HP loss</td>
<td></td>
</tr>
<tr>
<td>HPHP</td>
<td>Horsepower hydraulic pump</td>
<td></td>
</tr>
<tr>
<td>HAD</td>
<td>A diabatic head</td>
<td>btu/lbs mass</td>
</tr>
<tr>
<td>I</td>
<td>Temporary integer vari: le</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td>Integer variable</td>
<td></td>
</tr>
<tr>
<td>ISW</td>
<td>Controller indicator 1 = on - opening transient</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = off - closing transient</td>
<td></td>
</tr>
<tr>
<td>NAGB</td>
<td>Constants for gear box data</td>
<td></td>
</tr>
<tr>
<td>NEXTR</td>
<td>Temporary variable</td>
<td></td>
</tr>
<tr>
<td>PEXO</td>
<td>External pressure</td>
<td>psi</td>
</tr>
<tr>
<td>PG</td>
<td>Gas pressure</td>
<td>psi</td>
</tr>
<tr>
<td>PGO</td>
<td>Initial value of PG</td>
<td>psi</td>
</tr>
<tr>
<td>PGSAV</td>
<td>Previous value of PG</td>
<td>psi</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>POPTPG</td>
<td>Temporary Variable</td>
<td></td>
</tr>
<tr>
<td>PTPG</td>
<td>Temporary variable</td>
<td></td>
</tr>
<tr>
<td>PT2S</td>
<td>Turbine exhaust pressure</td>
<td>psi</td>
</tr>
<tr>
<td>PT2SO</td>
<td>Previous value of PT2S</td>
<td></td>
</tr>
<tr>
<td>PU</td>
<td>Fuel tank pressure</td>
<td>psi</td>
</tr>
<tr>
<td>PUO</td>
<td>Initial fuel tank pressure</td>
<td>psi</td>
</tr>
<tr>
<td>RED</td>
<td>Temp variable</td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>Temp variable</td>
<td></td>
</tr>
<tr>
<td>RESTAR</td>
<td>Temp variable</td>
<td></td>
</tr>
<tr>
<td>RHO</td>
<td>Temp variable</td>
<td></td>
</tr>
<tr>
<td>RPM</td>
<td>Turbine RPM</td>
<td>rpm</td>
</tr>
<tr>
<td>RPMH</td>
<td>RPM high limit for valve closing</td>
<td>rpm</td>
</tr>
<tr>
<td>RPML</td>
<td>RPM low limit for valve opening</td>
<td>rpm</td>
</tr>
<tr>
<td>RPMO</td>
<td>Initial RPM</td>
<td>rpm</td>
</tr>
<tr>
<td>RTRED</td>
<td>SQRT or RED</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Time</td>
<td>sec</td>
</tr>
<tr>
<td>TCVO</td>
<td>Time at Valve closure</td>
<td>sec</td>
</tr>
<tr>
<td>TFAPU</td>
<td>Time to fail APU</td>
<td>sec</td>
</tr>
<tr>
<td>TG</td>
<td>Gas temperature</td>
<td>°R</td>
</tr>
<tr>
<td>TGO</td>
<td>Initial gas temp</td>
<td></td>
</tr>
<tr>
<td>TGPOW</td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>TT20</td>
<td>Outlet gas temp</td>
<td>°R</td>
</tr>
<tr>
<td>U</td>
<td>Tip velocity</td>
<td>ft/sec</td>
</tr>
<tr>
<td>UCO</td>
<td>U divided by CO</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Control valve area factor</td>
<td></td>
</tr>
<tr>
<td>ZEM</td>
<td>Temporary Variable</td>
<td></td>
</tr>
</tbody>
</table>

6.95-10
6.95.7 Subroutine Listing

SUBROUTINE APU95(D,DT,DD,L)

REVISED 21 AUG '75

AUXILIARY POWER UNIT (APU)

INTEGER PT2SO, PGO, TGO, PUO, RPMH, RPML,
+ CED1, CED2, CED3, CED4, TFAPU, GBR,
+ PT2S, PG, TLUD, DPGO, DRPMO, DPG, DPGSAV, TCVO, PGSAV
 COMMON/STAB/PARl(150,9), Pi(1500), QH(1500), P(300), Q(300), C(300)
 1, Z(300), RHO(20), S2ORHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
 2, ATRES, T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LEGN, ICON
 3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
 4, INV, ISTEP, NLINE, NEL, IND, IENTR, :INLINE, :NEL, :NLEG, :NNODE, :NPLOT
 5, :NLPTS, :MDS
 COMMON /COMP/DARRAY(4500), LT(1500), LE(99,4)
 DIMENSION D(125), DT(15), DD(1), L(7)
 DIMENSION NAG3(2), XGB(8), YGB(15), XA(2), CDO(4)
 DIMENSION TABX(4), TABY(4)
 DATA NAG3/5,3/,
 + XGB/20.,40.,60.,80.,100.,120.,140.,160.,
 + YGB/2.37,2.62,2.85,3.11,3.35,3.63,3.91,4.19,4.68,
 + 4.17,4.46,4.77,6.08,6.72/
 DATA PT2S/1/, PGO/2/, TGO/3/, PUO/4/, RPMH/5/, RPML/6/,
 + CED1/7/, CED2/8/, CED3/9/, CED4/10/, TFAPU/11/, GBR/12/,
 + PT2S/1/, PG/2/, TLUD/3/, DPGO/4/, DRPMO/5/, DPG/6/,
 + DPGSAV/7/, PGSAV/8/, TCVO/9/
 DATA TABX/-20.,60.,90.,140., TA3Y/3.,7.6,10.8,20.3/
 IF(IENTR) 1300,2000,3000

1000 CONTINUE
 DT(10) = 0.
 DT(11) = 0.
 DT(12) = 0.
 DT(13) = 2
 DT(14) = 1
 DT(15) = 7200.

C

INITIALIZATION

C

ISW = 7
 ITER = 0
 IF(D(TFAPU) .EQ. 0.) D(TFAPU) = 10E6
 DT(PT2S) = D(PT2S)
 DT(PG) = D(PGO)
 DT(TLUD) = 0.0
 TG = D(TGO)
 PU = D(PUO)
 ADELT = DELT*1.0
 V = 1.0

C

L(ISW) = 2
C ------
DT(DPGO) = 0.0
DT(DRPMO) = 0.0
DT(TCVO) = -1.0
RETURN
2000 CONTINUE
RETURN
3000 CONTINUE
ITER=ITER+1
IF(T.EQ.0.0.OR.T.EQ.TFINAL)GO TO 201
IF((T-DT(TLUD)).LT.ADELT*.99)RETURN
201 DT(TLUD)=T
L5=L(2)+L(3)+17
N2=LE(L(1),2)
C N2 - LOCATION OF FIRST DT VARIABLE IN PUMP
RP4=DARRAY(N2)/D(GBR)
C OUTPUT HORSEPOWER IS IN POSITION N2+1 OF DT
CHP=ITER
ITER=0
X=DARRAY(N2+1)/CHP
CALL INTERP(X,TABX,TABY,10,4,Y,IERR)
HPHP=X+Y

C *** CONTROLLER
C L(ISW) = 1 CONTROLLER ON (OPENING TRANSIENT)
C L(ISW) = 2 CONTROLLER OFF (CLOSING TRANSIENT)

C ------ TEST FOR FAILURE OF FUEL PUMP
IF(T.LT.D(TFAPU)) GO TO 55
DT(TCVO) = T
V = 0.0
GO TO 130
55 CONTINUE
LISW=L(ISW)
GO TO(60,70),LISW

C ------ CONTROLLER ON
C 60 CONTINUE
IF(RPMI.LT.D(RPH)) GO TO 90
L(ISW) = 2
GO TO 80

C ------ CONTROLLER OFF
C 70 CONTINUE
IF(RPMI.GE.D(RPAL)) GO TO 90
L(ISW) = 1
80 CONTINUE
DT(TCVO) = T
90 CONTINUE
DTC = T-DT(TCVO)
CV = 1.0/EXP(DTC/0.01)

*** CONTROL VALVE
LISW=L(ISW)
GO TO(110,120),LISW
110 CONTINUE
V = 1.0-CV
GO TO 130
120 CONTINUE
V = CV
130 CONTINUE

*** FULL PUMP
EMDOFP = 3.0267E-6*RPd*V
DELPFP = DT(PG)-PU+105.28*EMDOFP
HPFP = 7.0042E-3*EMDOFP*DELPFP

*** GEAR BOX
XA(1) = HPHP
XA(2) = RPd
CALL LUCUP(3,NAGB,XG,B,YGB,XA,HPGB,IE,NEXTR)

*** GAS GENERATOR
PTPG = DT(PT2S)/DT(PG)
POPTPG = (PTPG)**0.21569
ZEM = DT(PG)/SQRT(TG)
IF(PTPG.LT.0.55) GO TO 150

----- SUBSONIC FLOW
ENDOTG = 0.046513*ZEM*SQRT(1.0-POPTPG)*(PTPG**0.78431)
GO TO 160
150 CONTINUE

----- SONIC FLOW
ENDOTG = 0.01012*ZEM
160 CONTINUE
DT(DPG) = 117.903*TG*(EMDOFP-ENDOTG)
DT(DPGSAV) = DT(DPGO)
DT(PGSAV) = DT(PG)
6.95.7 (Continued)

\[DT(\text{PG}) = DT(\text{PG}) + \text{ADELT} \times (DT(\text{DPG}) + DT(\text{DPGO})) / 2.0 \]
\[DT(\text{DPGO}) = DT(\text{DPG}) \]

Turbine

\[TGPOW = TG \times (1.0 - \text{POPTPG}) \]
\[HAD = 0.70856 \times TGPOW \]
\[CO = 188.375 \times \text{SQRT}(TGPOW) \]
\[U = 0.023998 \times \text{RP} \]
\[UCO = U / CO \]

\[\text{IF}(DT(\text{PG}) \leq DT(\text{PT2S})) \ UCO = 0.325 \]
\[\text{IF}(CO \leq 0.0) \ UCO = 0.325 \]
\[\text{IF}(UCO \gt 0.325) \ UCO = 0.325 \]

Exhaust Duct Conditions - Pressure and Temperature

\[TT20 = TG \times (1.0 - \text{EFF}) + \text{EFF} \times TG \times \text{POPTPG} \]
\[DT(\text{PT2S}) = D(CED1) \times \text{EMDOTG} \times (TT20 \times D(CED2)) + D(CED3) \times \text{EMDOTG} \times \text{EMDOTG} \]
\[1 \times (TT20 \times D(CED4)) + \text{ATPRCS} \]
\[\text{IF}(DT(\text{PG}) \geq DT(\text{PT2S})) \ \text{GO TO} \ 180 \]
\[DT(\text{DPGO}) = (DT(\text{PT2S}) - DT(\text{PGSAV})) / 2.0 / \text{ADELT} - DT(\text{DPGSAV}) \]
\[DT(\text{PG}) = DT(\text{PT2S}) + 0.5 \]

190 CONTINUE

\[\text{DENS} = 1.21165 \times DT(\text{PT2S}) / TT20 \]
\[\text{RESTART} = 791.94 \times \text{RP} \times \text{DENS} \]
\[\text{RED} = 0.89236 \times \text{RESTART} \]
\[\text{CDO}(1) = 1541.89 / \text{RED} \]
\[\text{RTRED} = \text{SQRT}(\text{RED}) \]
\[\text{CDO}(2) = 2.1341 / \text{RTRED} \]
\[\text{CDO}(3) = 0.20017 \times \text{SQRT}(\text{RTRED}) \]
\[\text{CDO}(4) = 0.058832 / (\text{RED} \times 0.20) \]
\[\text{CD} = \text{CDO}(1) \]
\[\text{DO} 200 \ 	ext{I}=2,4 \]
\[\text{IF}(ext{CDO}(1) \gt \text{CD}) \ \text{CD} = \text{CDO}(1) \]

200 CONTINUE

\[\text{DF} = 8.3900 \times 10^{-7} \times \text{CD} \times \text{U} \times \text{U} \times \text{DENS} \]
\[\text{DRP} = 2.9033 \times (1.3432 \times \text{EMDOTG} \times \text{HAD} \times \text{EFF} - \text{HPFP} - \text{HPGB} - \text{DF} \times \text{HPHP}) / \text{RP} \]
\[\text{RPM} = \text{RP} \times \text{ADEL} \times (\text{DRP} \times \text{DT} \times \text{DRPH0}) / 2.0 \]
\[\text{DT(\text{DRPH0})} = \text{DRP} \]
\[\text{DT(10)} = \text{HPFP} \]
\[\text{DT(11)} = \text{HPGB} \]
\[\text{DT(12)} = \text{HPHP} \]
\[\text{DT(13)} = \text{LISW} \]
\[\text{DT(14)} = \text{V} \]
DT(15) = RPM/10.
DARRAY(N2) = RPM*D(GBR)
DARRAY(N2+1) = 0.0
RETURN
END
6.98 **SUBROUTINE CAD98**

Subroutine CAD98 is a dummy input subroutine which can be used in the place of a guidance and control subroutine, to input position commands to the SSME engine control (E.C.) actuators. Subroutine CAD98 will supply commands to up to nine actuators. The number of actuators to be used is input in L(10).

The data is inputted in a tabular form, and accessed via a first order table lookup routine. The data input, described in Volume I, contains the E.C. actuator component numbers (L(1) through L(9)), the number of data points in the tables (inputted as L(11) and stored as L(12)), and the number of actuators to be command (L(10)).

The table of time values, starts in D(1) and can occupy 8 or more spaces in groups of 8, this table is followed by the table of input commands which is also stored in groups of 8.

6.98.1 **MATH MODEL**

Not applicable.

6.98.2 **ASSUMPTIONS**

Not applicable.

6.98.3 **COMPUTATION METHOD**

SECTION 1000

The number of data points to be used by the 3000 section is computed. The initial command is calculated.

SECTION 1500

None.

SECTION 2000

None.
SECTION 3000

Commands to be supplied to the actuators are calculated.

6.98.4 APPROXIMATIONS

Not applicable.

6.98.5 LIMITATION

No load data is supplied to the actuators.

6.98.6 VARIABLES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCOMP</td>
<td>Component Number of Actuator to be Commanded</td>
<td>-</td>
</tr>
<tr>
<td>DT(TLUD)</td>
<td>Calculation Interval</td>
<td>SEC</td>
</tr>
</tbody>
</table>
6.98.7 Subroutine Listing

SUBROUTINE CAD98 (D, DT, DD, L)

C *** REVISED DECEMBER 1975 ***
DOUBLE PRECISION D
INTEGER TLJD
COMMON NTELPL, NTOPL, IPT, IPOINT, NPTS, INEL, KEL, NTOPL, NLPLT(61,3),
1 PQLEG(90,12), LCS(90,10), ILEG(1400), PN(90), QN(90), VSTORE(6150)
DIMENSION D(1), DT(1), DD(1), L(1)
COMMON SUB/PAR(150,9), PN(1500), QN(1500), P(300), O(300), C(300)
1 Z(100), RH(20), S2ORHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, A, P, T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LECN, ICON
3, KTLAP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTEP, NLINE, NEL, IND, IENTR, NLINE, NEL, NLLEG, NNNODE, NNPLOT
5, NNLPTS, XDS
COMMON /COMP/ XD(4500), LX(1500), LEX(99,4)
DATA TLJD/1/
1000 CONTINUE
D(TLJD)=0.0
NO=L(10)
L(12)=1
L(13)=1
DO 1200 J=1, NO
NCOIP=L(J)
L(12)=L(12)+(L(11)+7)/8*3
IF(NCOIP.GT.IND) GO TO 1500
1200 XD(LEX(NCOIP,2))=D(L(12))
RETURN
1500 CONTINUE
WRITE(6,1600) NCOIP, IND
1600 FORMAT(2X,14H COMPONENT NO,15,
1 423 SHOULD HAVE A LOWER NO THAN COMPONENT NO,15)
RETURN
2000 CONTINUE
RETURN
3000 CONTINUE
J=L(10)
IF(T-DT(TLJD)).LT.0,020) GO TO 3300
J=L(13)
DT(TLJD)=T
3100 L(12)=1
DO 3200 I=1, J
L(12)=L(12)+(L(11)+7)/8*3
CALL INTERP(T,D(L(13)),D(L(12)),10,L(11), VALY, IOD)
NCOIP=L(I)
3200 XD(LEX(NCOIP,2))=VALY
3300 RETURN
END
6.99 **SUBROUTINE CAD99**

CAD99 is a special type of component subroutine whose purpose is to provide the necessary interface between HYTRAN and the six-degree-of-freedom (SDF) programs. There are two interface routines. CAD99D is used with the SDF descent program and CAD99A is used with the SDF ascent program.

6.99.1 **Math Model**

Not applicable.

6.99.2 **Assumptions**

Not applicable.

6.99.3 **Computation Method**

1000 Section

The units conversions are input in this section and the beginning address of each actuator in the XD array is computed. The SDF program is called and the HYTRAN actuator commands are initialized to the required trim positions. Hinge moment slopes are initialized to zero and hinge moment intercepts are initialized to the hinge moments computed by the SDF program. No hinge moment data is available from the SIV ascent program.

2000 Section

Not applicable.

3000 Section

This section transfers actuator and surface positions from HYTRAN to the SDF program and it transfers actuator commands from SDF to the HYTRAN program. In addition hinge moment slopes and intercepts are computed from SDF descent data and transferred to HYTRAN. Data is transferred at flight control computation intervals (DTFCS).
6.99.4 **Approximations**

Not applicable.

6.99.5 **Limitations**

Not applicable.

6.99.6 **Variable Names**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>XD(BF)</td>
<td>Body Flap Rate Command</td>
<td></td>
</tr>
<tr>
<td>XD(BF+1)</td>
<td>Body Flap Position</td>
<td>deg</td>
</tr>
<tr>
<td>XD(BF+2)</td>
<td>Body Flap Hinge Moment Intercept</td>
<td>in-lb</td>
</tr>
<tr>
<td>XD(BF+4)</td>
<td>Body Flap Hinge Moment Slope</td>
<td>lb</td>
</tr>
<tr>
<td>DBI</td>
<td>Inboard Elevon Degree Bias</td>
<td>deg</td>
</tr>
<tr>
<td>DBO</td>
<td>Outboard Elevon Degree Bias</td>
<td>deg</td>
</tr>
<tr>
<td>DTFCS</td>
<td>Flight Control Computation Interval</td>
<td>sec</td>
</tr>
<tr>
<td>DTVEI</td>
<td>Inboard Elevon Conversion Factor</td>
<td>v/deg</td>
</tr>
<tr>
<td>DTVEO</td>
<td>Outboard Elevon Conversion Factor</td>
<td>v/deg</td>
</tr>
<tr>
<td>DTVBF</td>
<td>Body Flap Conversion Factor</td>
<td>v/deg</td>
</tr>
<tr>
<td>DTVR</td>
<td>Rudder Conversion Factor</td>
<td>v/deg</td>
</tr>
<tr>
<td>DTVSB</td>
<td>Speedbrake Conversion Factor</td>
<td>v/deg</td>
</tr>
<tr>
<td>DRESET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L(1)</td>
<td>Left Outboard Elevon Component Number</td>
<td>-</td>
</tr>
<tr>
<td>L(2)</td>
<td>Left Inboard Elevon Component Number</td>
<td>-</td>
</tr>
<tr>
<td>L(3)</td>
<td>Right Outboard Elevon Component Number</td>
<td>-</td>
</tr>
<tr>
<td>L(4)</td>
<td>Right Inboard Elevon Component Number</td>
<td>-</td>
</tr>
<tr>
<td>L(5)</td>
<td>Rudder/Speedbrake Component Number</td>
<td>-</td>
</tr>
<tr>
<td>L(6)</td>
<td>Body Flap Component Number</td>
<td>-</td>
</tr>
<tr>
<td>L(7)</td>
<td>Engine 1 Pitch TVC Component Number</td>
<td>-</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Dimensions</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>L(8)</td>
<td>Engine 1 Yaw TVC Component Number</td>
<td>--</td>
</tr>
<tr>
<td>L(9)</td>
<td>Engine 2 Pitch TVC Component Number</td>
<td>--</td>
</tr>
<tr>
<td>L(10)</td>
<td>Engine 2 Yaw TVC Component Number</td>
<td>--</td>
</tr>
<tr>
<td>L(11)</td>
<td>Engine 3 Pitch TVC Component Number</td>
<td>--</td>
</tr>
<tr>
<td>L(12)</td>
<td>Engine 3 Yaw TVC Component Number</td>
<td>--</td>
</tr>
<tr>
<td>XD(LIBE)</td>
<td>Left Inboard Elevon Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(LIBE+3)</td>
<td>Left Inboard Elevon Hinge Moment Intercept</td>
<td>in-lb</td>
</tr>
<tr>
<td>XD(LIBE+4)</td>
<td>Left Inboard Elevon Hinge Moment Slope</td>
<td>lb</td>
</tr>
<tr>
<td>XD(LIBE+37)</td>
<td>Left Inboard Elevon Position</td>
<td>deg</td>
</tr>
<tr>
<td>XD(LOBE)</td>
<td>Left Outboard Elevon Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(LOBE+3)</td>
<td>Left Outboard Elevon Hinge Moment Intercept</td>
<td>in-lb</td>
</tr>
<tr>
<td>XD(LOBE+4)</td>
<td>Left Outboard Elevon Hinge Moment Slope</td>
<td>lb</td>
</tr>
<tr>
<td>XD(LOBE+37)</td>
<td>Left Outboard Elevon Position</td>
<td>deg</td>
</tr>
<tr>
<td>XD(NIP)</td>
<td>Engine 1 TVC Pitch Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(NIP+37)</td>
<td>Engine 1 TVC Pitch Position</td>
<td>in</td>
</tr>
<tr>
<td>XD(NIY)</td>
<td>Engine 1 TVC Yaw Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(NIY+37)</td>
<td>Engine 1 TVC Yaw Position</td>
<td>in</td>
</tr>
<tr>
<td>XD(N2P)</td>
<td>Engine 2 TVC Pitch Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(N2P+37)</td>
<td>Engine 2 TVC Pitch Position</td>
<td>in</td>
</tr>
<tr>
<td>XD(N2Y)</td>
<td>Engine 2 TVC Yaw Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(N2Y+37)</td>
<td>Engine 2 TVC Yaw Position</td>
<td>in</td>
</tr>
<tr>
<td>XD(N3P)</td>
<td>Engine 3 TVC Pitch Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(N3P+37)</td>
<td>Engine 3 TVC Pitch Position</td>
<td>in</td>
</tr>
<tr>
<td>XD(N3Y)</td>
<td>Engine 3 TVC Yaw Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(N3Y+37)</td>
<td>Engine 3 TVC Yaw Position</td>
<td>in</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>XD(RlBE)</td>
<td>Right Inboard Elevon Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(RlBE+3)</td>
<td>Right Inboard Elevon Hinge Moment Intercept</td>
<td>in-lb</td>
</tr>
<tr>
<td>XD(RlBE+4)</td>
<td>Right Inboard Elevon Hinge Moment Slope</td>
<td>lb</td>
</tr>
<tr>
<td>XD(RlBE+37)</td>
<td>Right Inboard Elevon Position</td>
<td>deg</td>
</tr>
<tr>
<td>RITDEI</td>
<td>Inboard Elevon Conversion Factor</td>
<td>deg/in</td>
</tr>
<tr>
<td>RITDEO</td>
<td>Outboard Elevon Conversion Factor</td>
<td>deg/in</td>
</tr>
<tr>
<td>RITDT</td>
<td>TVC Actuator Conversion Factor</td>
<td>deg/in</td>
</tr>
<tr>
<td>RITVP</td>
<td>TVC Actuator Conversion Factor (Pitch)</td>
<td>v/in</td>
</tr>
<tr>
<td>RITVY</td>
<td>TVC Actuator Conversion Factor (Yaw)</td>
<td>v/in</td>
</tr>
<tr>
<td>XD(ROBE)</td>
<td>Right Outboard Elevon Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(ROBE+3)</td>
<td>Right Outboard Elevon Hinge Moment Intercept</td>
<td>in-lb</td>
</tr>
<tr>
<td>XD(ROBE+4)</td>
<td>Right Outboard Elevon Hinge Moment Slope</td>
<td>lb</td>
</tr>
<tr>
<td>XD(ROBE+37)</td>
<td>Right Outboard Elevon Position</td>
<td>deg</td>
</tr>
<tr>
<td>XD(RSB)</td>
<td>Rudder Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(RSB+1)</td>
<td>Speedbrake Command</td>
<td>v</td>
</tr>
<tr>
<td>XD(RSB+3)</td>
<td>Left Rudder Panel Hinge Moment Intercept</td>
<td>in-lb</td>
</tr>
<tr>
<td>XD(RSB+4)</td>
<td>Left Rudder Panel Hinge Moment Slope</td>
<td>lb</td>
</tr>
<tr>
<td>XD(RSB+5)</td>
<td>Right Rudder Panel Hinge Moment Intercept</td>
<td>in-lb</td>
</tr>
<tr>
<td>XD(RSB+6)</td>
<td>Right Rudder Panel Hinge Moment Slope</td>
<td>lb</td>
</tr>
<tr>
<td>XD(RSB+7)</td>
<td>Left Rudder Panel Position</td>
<td>deg</td>
</tr>
<tr>
<td>XD(RSB+8)</td>
<td>Right Rudder Panel Position</td>
<td>deg</td>
</tr>
<tr>
<td>RTD</td>
<td>Radian to Degree Conversion</td>
<td>deg/rad</td>
</tr>
<tr>
<td>TFT</td>
<td>Time in Flight at Beginning of Run</td>
<td>sec</td>
</tr>
<tr>
<td>VBI</td>
<td>Inboard Elevon Bias</td>
<td>v</td>
</tr>
<tr>
<td>VBO</td>
<td>Outboard Elevon Bias</td>
<td>v</td>
</tr>
</tbody>
</table>
6.99.7 **Subroutine Listing**

SUBROUTINE CAD99 (D,DT,DD,L)

HYDRAULIC SYSTEM TRANSIENT ANALYSIS (HYTRAN) PROGRAM AND
SIX DEGREE OF FREEDOM ASCENT (SDFASC) PROGRAM

COMMUNICATION ROUTINE

INTEGER ROBE,RIBE,RSB,BF

DECLARATIVE STATEMENTS ASSOCIATED WITH HYTRAN

DOUBLE PRECISION DD
DIMENSION D(1),DT(1),DD(1),L(1)
COMMON/SUB/PARM(150,9),PM(1500),QM(1500),P(300),Q(300),C(300)
1,Z(300),RHO(20),SZORHO(20),VISC(20),BULK(20),TEMP(20),PVAP(20)
2,ATPRES,T,DELT,TFINAL,PLTDEL,PI,TITLE(20),LEGN,ICON
3,KTEMP(99),LSTART(150),NLPT(150),LTYPE(99),NC(99),INX,INZ
4,INV,ISTEP,NLINE,NEL,IND,IENTR,NLINE,NNEL,NNLEG,NNODE,NNPLOT
5,NNLPTS,MDL
COMMON /COMPD/ XD(4500),LX(1500),LEX(99,4)

DECLARATIVE STATEMENTS ASSOCIATED WITH SDFASC

COMMON /FARRAY/ FC(200)
EQUIVALENCE
 ,(DTFCS ,FC(2)),(IRESET ,FC(6)),(RTD ,FC(7))
 ,(TFT ,FC(1))

IF(IENTR) 1000,2000,3000
1000 CONTINUE
IRESET = 1
TPAST = T
DVDEO=1.173/6.7246
VBD=7.61*1.173/6.7246
VBD=7.538*.683/3.92
DBO=-7.61
DBD=-7.538
RITDT=8.499/4.413
RTVEO=4.59/4.413
RITVP=4.59/5.449
DTVEO=6.7246
RIDTD=3.92
C***DTERMINE THE LOCATION OF THE ACTUATOR DT ARRAYS
IN THE XD ARRAY.
L(I)=COMPONENT NUMBER OF THE ACTUATOR
LOBE=LEX(L(1),2)
L3E=LEX(L(2),2)
ROBE=LEX(L(3),2)
R13E=LEX(L(4),2)
RSB=LEX(L(5),2)
BF=LEX(L(6),2)
N1P = LEX(L(7),2)
N1Y = LEX(L(8),2)
N2P = LEX(L(9),2)
N2Y = LEX(L(10),2)
N3P = LEX(L(11),2)
N3Y = LEX(L(12),2)
CALL SDFASC
TFO = TFP
CALL FDUMP(FC, 1, 200)
XD(RESE) = FC(143) * DTVEO + VBO
XD(LEBE) = FC(146) * DTVEI + VBI
XD(RKEE) = FC(149) * DTVEO + VBO
XD(RKBE) = FC(147) * DTVEI + VBI
XD(N1P) = FC(166) * RITVP/RITDT
XD(N2P) = FC(167) * RITVP/RITDT
XD(N3P) = FC(168) * RITVP/RITDT
XD(N1Y) = FC(171) * RITVY/RITDT
XD(N2Y) = FC(172) * RITVY/RITDT
XD(N3Y) = FC(173) * RITVY/RITDT
DT(1) = FC(186)
DT(2) = FC(185)
DT(3) = RITDT*FC(191)
DT(4) = RITDT*FC(192)
DT(5) = RITDT*FC(193)
DT(6) = RITDT*FC(196)
DT(7) = RITDT*FC(197)
DT(8) = RITDT*FC(198)
DT(9) = FC(148)
DT(10) = FC(146)
DT(11) = FC(149)
DT(12) = FC(147)
DT(13) = FC(166)
DT(14) = FC(167)
DT(15) = FC(158)
DT(16) = FC(171)
DT(17) = FC(172)
DT(18) = FC(173)
DT(19) = FC(71) * RTO
DT(20) = FC(72) * RTO
DT(21) = FC(79) * RTO
DT(22) = FC(80) * RTO
DT(23) = FC(81) * RTO
DT(24) = FC(181)
DT(25) = FC(132)
RETURN
2000 CONTINUE
RETURN
3000 CONTINUE
IRESET = 0
C***INTERFACE PARAMETERS TO BE TRANSFERRED TO SDFASC
C***TVC POSITIONS
 FC(166)=XD(N1P+37)*RITDT
 FC(167)=XD(N2P+37)*RITDT
 FC(168)=XD(N3P+37)*RITDT
 FC(171)=XD(N1Y+37)*RITDT
 FC(172)=XD(N2Y+37)*RITDT
 FC(173)=XD(N3Y+37)*RITDT

C***ELEVON POSITIONS
 FC(148)=XD(LOBE+37)*RITDO+DBO
 FC(146)=XD(LIBE+37)*RITDEI+DBI
 FC(149)=XD(ROBE+37)*RITDO+DBO
 FC(147)=XD(RI3E+37)*RITDEI+DBI

IF((T-TPAST).LT.1JTFCS)GO TO 3200
TPAST=T
TFT=T+TFO
CALL SDFASC

C***INTERFACE PARAMETERS TO BE TRANSFERRED TO HYTRAN
C***TVC COMMANDS
 XD(N1P)=FC(191)*RITVP
 XD(N2P)=FC(192)*RITVP
 XD(N3P)=FC(193)*RITVP
 XD(N1Y)=FC(196)*RITVY
 XD(N2Y)=FC(197)*RITVY
 XD(N3Y)=FC(198)*RITVY

C***ELEVON COMMANDS
 XD(LOBE)=FC(186)*DTVLO+V30
 XD(LIBE)=FC(185)*DTVLEI+V31
 XD(ROBE)=FC(186)*DTVRO+V30
 XD(RI3E)=FC(195)*DTVLEI+V31

C***RS3 & 3F CMDs.
 XD(RSB)=0.0
 XD(RS3+1)=0.0
 XD(BF)=0.0
C***ELEV. OUTBOARD CMDs.
 DT(1)=FC(196)
C***ELEV. INBOARD CMDs.
 DT(2)=FC(195)
C***TVC PITCH CMDs.
 DT(3)=RITDT*FC(191)
 DT(4)=RITDT*FC(192)
 DT(5)=RITDT*FC(193)
C***TVC YAW CMDs.
 DT(6)=RITDT*FC(196)
 DT(7)=RITDT*FC(197)
 DT(8)=RITDT*FC(198)
 CALL FDU4P(FC,1,200)
3200 CONTINUE
C***ELEV. POS. LO,LI,RO,RI
 DT(9)=FC(148)
6.99.7 (Continued)

 DT(10)=FC(146)
 DT(11)=FC(149)
 DT(12)=FC(147)

 C***TVC PITCH POS.
 DT(13)=FC(166)
 DT(14)=FC(167)
 DT(15)=FC(168)

 C***TVC YAW POS.
 DT(16)=FC(171)
 DT(17)=FC(172)
 DT(18)=FC(173)

 C***ALPHA
 DT(19)=FC(71)*RTD

 C***BETA
 DT(20)=FC(72)*RTD

 C***BODY RATES
 DT(21)=FC(79)*RTD
 DT(22)=FC(80)*RTD
 DT(23)=FC(81)*RTD

 C***BODY ACCELERATIONS
 DT(24)=FC(181)
 DT(25)=FC(192)

C
C

 RETURN
 END
SUBROUTINE CAD99 (D, DT, DD, L)

HYDRAULIC SYSTEM TRANSIENT ANALYSIS (HYTRAN) PROGRAM AND
SIX DEGREE OF FREEDOM DESCENT (SDFDES) PROGRAM

COMMUNICATION ROUTINE
INTEGER ROBE, RIBE, RSB, BF

DECLARATIVE STATEMENTS ASSOCIATED WITH HYTRAN

DOUBLE PRECISION DD
DIMENSION D(1), DT(26), DD(1), L(6)
COMMON/SUB/PAR(150, 9), PH(1500), QH(1500), P(300), Q(300), C(300)
Z(300), RHO(20), S2RHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATRES,T, DELT, TFINAL, PI, TITLE(20), LEGN, ICON
3, RTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTEP, NLINE, NEL, IENTR, NLINE, MEL, MNLEG, MNNODE, MNPLOT
5, NLPTS, ADS
COMMON /COND/P XD(4500), LX(1500), LEX(99, 4)

DECLARATIVE STATEMENTS ASSOCIATED WITH SDFDES

COMMON /FARRAY/ FC(200)
EQUIVALENCE
.(DFCS ,FC(2)), (IRESET ,FC(6)), (RTD ,FC(7))
.(TFT ,FC(1))

IF(IENTR) 1000, 2000, 3000
1000 CONTINUE
IRESET = 1
TPAST = T
DVTLC=6.7246
DVTLE=.683/3.92
RITDEO=6.7246
V5O=7.61*1.173/6.7246
VBI=7.538*.683/3.92
DBO=-7.61
DBI=-7.538
RITDEI=3.92
DTRV=.184
DVT3=.0937
DVTBF=.13

C***DETERMINE THE LOCATION OF THE ACTUATOR DT ARRAYS
IN THE XD ARRAY.
C L(I)=COMPONENT NUMBER OF THE ACTUATOR
LOBE=LEX(L(1), 2)
LI3E=LEX(L(2), 2)
ROBE=LEX(L(3), 2)
RIBE=LEX(L(4), 2)
RSB=LEX(L(5), 2)
BF=LEX(L(6), 2)
CALL SDFDES
TF0=TFT
CALL FDUMP(FC,1,200)

C***INITIALIZE COMMANDS
XD(LOBE)=FC(172)*DTVEO+VBO
XD(LIBE)=FC(172)*DTVEI+VBI
XD(ROBE)=FC(171)*DTVEO+VBO
XD(RISE)=FC(171)*DTVEI+VBI
XD(RSB)=FC(174)*DTVVR
XD(RSB+1)=FC(173)*DTVVB3
XD(BF)=0.0
XD(BF+1)=FC(144)

C***INITIALIZE H.4.
XD(LOBE+3)=FC(132)
XD(LIBE+3)=FC(130)
XD(ROBE+3)=FC(133)
XD(RISE+3)=FC(131)
XD(LOBE+4)=0.0
XD(LIBE+4)=0.0
XD(ROBE+4)=0.0
XD(RISE+4)=0.0
XD(RSB+3)=FC(126)
XD(RSB+5)=FC(127)
XD(RSB+4)=0.0
XD(RSB+6)=0.0
XD(3F+3)=FC(134)
XD(BF+4)=0.0
DT(1)=FC(172)
DT(2)=FC(171)
DT(3)=FC(148)
DT(4)=FC(146)
DT(5)=FC(149)
DT(6)=FC(147)
DT(7)=FC(174)
DT(8)=FC(173)
DT(11)=FC(169)
DT(13)=FC(71)*RTD
DT(14)=FC(72)*RTD
DT(15)=FC(79)*RTD
DT(16)=FC(80)*RTD
DT(17)=FC(81)*RTD
DT(19)=FC(193)
DT(19)=FC(194)
DT(9)=FC(136)
DT(10)=FC(137)
DT(12)=FC(143)
DT(18)=FC(145)
DT(19)=FC(144)
DT(20)=FC(126)
DT(21)=FC(127)
6.99.7 (Continued)

DT(22)=FC(134)
DT(23)=FC(132)
DT(24)=FC(130)
DT(25)=FC(133)
DT(26)=FC(131)
RETURN

2000 CONTINUE
RETURN

3000 CONTINUE
IRESET = 0
C***INTERFACE PARAMETERS TO BE TRANSFERRED TO SDPDES
C***ELEVON POSITIONS
 FC(148)=XD(LOBE+37)*RITDEO+DBO
 FC(146)=XD(LIBE+37)*RITDEI+DBI
 FC(149)=XD(ROBE+37)*RITDEO+DBO
 FC(147)=XD(RIBE+37)*RITDEI+DBI
 FC(195)=.25*(FC(146)+FC(147)+FL(148)+FC(149))
C***RUDDER/SB POSITIONS
 FC(143)=(XD(RSB+7)+XD(RSB+8))/2.
 FC(145)=-(XD(RSB+8)-XD(RSB+7))
C***BODYFLAP POSITION
 FC(144)=XD(BF+1)
 IF((T-TPAST).LT.DTFC)GO TO 3200
 TPAST=T
 TPT=T+TFO
 CALL SDPDES
C***INTERFACE PARAMETERS TO BE TRANSFERRED TO HYTRAN
C***ELEVON COMMANDS
 XD(LOBE)=FC(172)*DTVEO+VBO
 XD(LIBE)=FC(172)*DTVEI+VBI
 XD(ROBE)=FC(171)*DTVEO+VBO
 XD(RIBE)=FC(171)*DTVEI+VBI
C***ELEVON HINGE MOMENT INTERCEPTS
 XD(LOBE+3)=FC(132)-FC(105)*RITDEO*XD(LOBE+37)
 XD(LIBE+3)=FC(130)-FC(103)*RITDEI*XD(LIBE+37)
 XD(ROBE+3)=FC(133)-FC(106)*RITDEO*XD(ROBE+37)
 XD(RIBE+3)=FC(131)-FC(104)*RITDEI*XD(RIBE+37)
C***ELEVON H.M. SLOPES
 XD(LOBE+4)=FC(105)*RITDEO
 XD(LIBE+4)=FC(103)*RITDEI
 XD(ROBE+4)=FC(106)*RITDEO
 XD(RIBE+4)=FC(104)*RITDEI
C***RUDDER COMMAND
 XD(RSB)=FC(174)*DTV
C***SB COMMAND
 XD(RSB+1)=FC(173)*DTSB
C***RUDDER/SB H.M. INTERCEPTS (LEFT),(RIGHT)
 XD(RSB+3)=FC(126)-XD(RSB+7)*FC(107)
 XD(RSB+5)=FC(127)-XD(RSB+9)*FC(108)
6.99.7 (Continued)

Rudder/SB H.M. SLOPES (LEFT),(RIGHT)
XD(RSB+4)=FC(107)
XD(RSB+6)=FC(108)

BODYFLAP RATE COMMAND
XD(BF)=FC(169)

BODYFLAP H.M. INERCEPT
XD(BF+3)=FC(134)-XD(BF+1)*FC(109)

BODYFLAP H.M. SLOPE
XD(BF+4)=FC(109)

BODYFLAP U.v. i1.1PR3.ERCEPT
XD(BF+3)=FC(134)-XD(BF+1)*FC(109)

ELEV. CMD. L,R
DT(1)=FC(172)
DT(2)=FC(171)

RUD. CMD.
DT(7)=FC(174)

SB CMD.
DT(8)=FC(173)

BF RATE CMD.
DT(11)=FC(169)
FC(111)=XD(LOBE+3)
FC(112)=XD(LIBE+3)
FC(113)=XD(ROBE+3)
FC(114)=XD(ROBE+3)
FC(115)=XD(RSBE+3)
FC(116)=XD(RSB+5)
FC(117)=XD(BF+3)
FC(119)=XD(LOBE+58)
FC(119)=XD(LIBE+58)
CALL FDUMP(FC,1,200)

3200 CONTINUE

ELEV. POS. LO,LI,RO,RI
DT(3)=FC(148)
DT(4)=FC(146)
DT(5)=FC(149)
DT(6)=FC(147)
DT(13)=FC(71)*RTD
DT(14)=FC(72)*RTD
DT(15)=FC(79)*RTD
DT(16)=FC(80)*RTD
DT(17)=FC(81)*RTD
DT(9)=FC('36)
DT(10)=FC(137)
DT(12)=FC(143)
DT(18)=FC(145)
DT(19)=FC(144)
DT(20)=FC(126)
DT(21)=FC(127)
DT(22)=FC(134)
DT(23)=FC(132)
DT(24)=FC(130)
DT(25)=FC(133)

6.99-12
6.99.7 (Continued)

\[DT(26) = FC(131) \]

C

C

RETURN

END
6.101 SUBROUTINE ACT101

This subroutine models a simple servo actuator with a mechanical input to the servo valve, which operates open loop, without feedback.

A time history of valve position is inputed and a first order or straight line interpolation is used between the input points.

The valve is assumed to be a linear square port configuration, with zero lap. The width of each port slot is inputed independently, to allow the valve areas to be matched to the actuator piston areas.

The initial actuator position is inputed, together with the external loads at the fully retracted and extended stroke positions. The load stroke curve is assumed to be linear between these positions.

The steady state balancing system uses the load at the initial position to determine the pressure drop across the piston. The effects of atmospheric pressure is incorporated into the load.

6.101.1 Math Model

The math model can be divided into two sections, the flow calculations and the integral calculations.

The flow calculations are based on a combination of the line equations, valve orifice equations, and the volumetric impedance.

The sign convention used is, flows into the actuator cavities (Q1), and (Q2) are +ve, which is the same as the line convention. The flows are calculated using the general formulae

\[FLOW = (SORT(FN2**2+4*FN1*ABS (C -PT))-FN2)/2.0 \]

where \(FN1 = (XV*VK)**2 \)
\(FN2 = FN1*Z \)
\(XV = \) Valve Position
\(VK = W*SQR(2/RHO(IT))*0.65*Slot \) width
\(Z = Line \ Characteristic \ Impedance + Volumetric \ Impedance \)
\(C = Line \ Characteristic \ Pressure \)
\(PT = Chamber \ volumetric \ pressure \)
\(IT = Fluid \ Temperature/Pressure \) indication
where the volumetric impedance \(Z_{V1} = DT(K_BULK)/(D(VOL_1)+D(AREA_1)*DT(PX)) \)

and the chamber volumetric pressure.

\[P_T = DT(P_{P1}) - DT(VEL)*D(AREA_1)*Z_{V1} \]

The actuator velocity is calculated using the equivalent network given in Figure 6.101-2.

The two flows \(DT(Q_1) \) and \(DT(Q_2) \) are calculated using the value orifice equations and predicted actuator pressures \(DT(P_{P1P}) \) and \(DT(P_{P2P}) \).

The network is solved for piston velocity \(DT(VEL) \). The damping term includes an inertia term which accounts for the load required to change the velocity during the time step \(DELT \).

A load due the old or previous velocity is included with the actuator load term.

The network solution takes into account the volumetric effect of the two actuator cavities. The assumption is that a portion of the flow is lost or obtained from these volumes due to changes in pressure within the cavities.

The basis network equations are:

\[\begin{align*}
VELO & - DT(VEL) = (OLD \ VELOCITY) \\
DT(VEL)*D(AREA_1) & = DT(Q_1) + (DT(P_{P1P}) - P_1)*G_{V1} \\
DT(VEL)*D(AREA_2) & = -DT(Q_2) - (DT(P_{P2P}) - P_2)*G_{V2} \\
DT(VEL)*D(KDAMP) & = P_1*D(AREA_1) - P_2*D(AREA_2) - DP + VELO*DT(INERT)
\end{align*} \]

where

\[DP = \text{External Load} \]

\[= DT(LOADZ) + DT(PX)*DT(LOADS) + DT(LOADEX) \]

The atmospheric load is kept separate to allow time varying computations of values for \(DT(LOADZ) \) AND \(DT(LOADS) \) to be added later.
FIGURE 6.101-1
TYPE NO. 101 VALVE CONTROLLED ACTUATOR

FIGURE 6.101-2
SCHEMATIC DIAGRAM FOR TYPE NO. 101 VALVE CONTROLLED ACTUATOR
Equations (1), (2) and (3) are combined to eliminate P_1 and P_2, giving the solution in the listing.

6.101.2 Assumptions

It was intended that this particular subroutine should be kept as simple as possible, hence a number of relatively important actuator characteristics have not been included in the model.

Those omitted are cross piston leakage, static and dynamic seal friction, volumetric expansion of the actuator cavity, external load spring mass characteristics, valve leakage and neutral gain characteristics, and cavitation effects, within the actuator cavity.

This model fills the need for a simple actuator model to act as a system load where the detailed dynamics of the actuator are of no particular concern.

6.101.3 Computation

Section 1000

The external load input data is modified by calculating the load displacement curve, and adding the force due to atmospheric pressure.

Finally, the valve impedances, and the location of the node, are calculated for the steady state valve position, for use in the steady state section.

The cavity pressures and piston velocity were initialized in the steady state section.
Section 1500

This section is called from LEGCAL via COMPE for each connection number for each iteration. (INEL, 7) = 5 requires calls to be made for each iteration because the overboard flow and pressure drop across the piston head vary with the flow into the actuator and the pressure in the piston cavity.

One of the cavities is required to be a system node. Which cavity it is depends on the valve position at time zero.

If NODE = 1 it is in #1 cavity, if NODE = 2 it is in #2 cavity.

The steady state section is complicated by the need to determine if the actuator is at its stroke limits, and if the flow guess is taking it toward or away from the limit.

When it is at its limits, and is being driven into the limit, a high impedance is added into the leg (ZQ = 40000.), and the overboard flow is set to zero. (Overboard flow is a displacement flow due to unequal areas).

The steady state calculation set up requires that connection #1 must be the last or only element in the upstream leg, and connection #2 is the first element in the downstream leg.

The upstream leg flow is used to calculate the overboard flow and piston velocity. If the valve is closed the overboard flow is set to zero.

For the upstream leg the valve impedance DT(PP1P) is added into PQLEG(INEL,8). For the downstream leg, the valve impedance PT(PP2P) is added into PQLEG(INEL,8), ZQ is added into PQLEG(INEL,6) and the constant pressure drop DELTP across the piston is subtracted from PQLEG(INEL,5) or added if it is a pressure rise.
Section 3000

This section calculates the transient response of the actuator using an integration step size of DELT.

INTERP is called to obtain an interpolated value of valve position XV. With this value of XV, the flows into the actuator chambers are calculated.

If XV is zero, the flows are set to zero. For XV > 0, Q1 is the flow from connection #1 to chamber #1, and Q2 the flow from chamber #2 to connection #2. For XV < 0 the flows are reversed.

A common formulae is used to calculate FLOW with a computer go to, to branch back, with ICALC acting as the branch indicator.

With Q1 and Q2 calculated the next section calculates the value of DT(PPI) and DT(PP2) and the velocity of the piston.

The piston velocity is calculated by summing the forces acting on it and dividing by the mass plus the damping coefficients.

A check is then made to see if the piston is at a stroke limit. If it is, the velocity is set to zero if it is in the limit direction.

The pressures are calculated by taking the sum of the flows into the cavity, including the piston velocity and multiplying by DT(KBULK) cavity volume.
6.101.4 **Approximations** - To be added later.

6.101.5 **Limitations**

The straight line flow characteristics of the valve and the straight line load characteristics limit the applicability of this subroutine to a rather rudimentary type of actuator. It can however be used to generate waterhammer transients due to rapidly closing valve motion, with the advantage of a good simulation of the actuator cavity pressure response.

6.101.6 **Variable Names**

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(AREA1)</td>
<td>#1 piston area</td>
<td>IN**2</td>
</tr>
<tr>
<td>D(AREA2)</td>
<td>#2 piston area</td>
<td>IN**2</td>
</tr>
<tr>
<td>C(L1)</td>
<td>Connection #1 line characteristic</td>
<td>PSI</td>
</tr>
<tr>
<td>C(L2)</td>
<td>Connection #2 line characteristic</td>
<td>PSI</td>
</tr>
<tr>
<td>D(DAMP)</td>
<td>Piston damping factor</td>
<td>LBS/SEC/IN</td>
</tr>
<tr>
<td>DT(DELTP)</td>
<td>Pressure drop across piston</td>
<td>PSI</td>
</tr>
<tr>
<td>FLOW</td>
<td>Temporary value of line flow</td>
<td>CIS</td>
</tr>
<tr>
<td>FNI</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>FN2</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(FORCE)</td>
<td>Load at maximum stroke</td>
<td>LBS</td>
</tr>
<tr>
<td>ICALC</td>
<td>Calculation counter</td>
<td>--</td>
</tr>
<tr>
<td>GV1</td>
<td>Conductance of Vol 1</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>GV2</td>
<td>Conductance of Vol 2</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>DT(INERT)</td>
<td>Load Inertia</td>
<td>LB SEC/IN</td>
</tr>
<tr>
<td>IN2</td>
<td>Interpolation indicator returned from INTERP</td>
<td>--</td>
</tr>
<tr>
<td>D(INPOS)</td>
<td>Initial actuator position</td>
<td>IN</td>
</tr>
<tr>
<td>DT(KBULK)</td>
<td>Oil bulk modulus times Al</td>
<td>PSI*SEC</td>
</tr>
</tbody>
</table>
6.101.6 Variable Names (cont'd)

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT(KDAMP)</td>
<td>Damping factor</td>
<td>LB/SEC/IN</td>
</tr>
<tr>
<td>L(IY)</td>
<td>Address of first value in valve position table</td>
<td>--</td>
</tr>
<tr>
<td>DT(LOADS)</td>
<td>Load slope</td>
<td>LB/IN</td>
</tr>
<tr>
<td>DT(LOADZ)</td>
<td>Load at zero stroke</td>
<td>LBS</td>
</tr>
<tr>
<td>DT(LOADEX)</td>
<td>External load</td>
<td>LBS</td>
</tr>
<tr>
<td>Li</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>L2</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>N</td>
<td>Integer counter</td>
<td>--</td>
</tr>
<tr>
<td>D(MASS)</td>
<td>Load mass</td>
<td>LB SEC²/IN</td>
</tr>
<tr>
<td>D(MINST)</td>
<td>Minimum actuator stroke</td>
<td>IN</td>
</tr>
<tr>
<td>D(MAXST)</td>
<td>Maximum actuator stroke</td>
<td>IN</td>
</tr>
<tr>
<td>D(MINL)</td>
<td>Load - actuator fully retracted</td>
<td>LBS</td>
</tr>
<tr>
<td>D(MAXL)</td>
<td>Load - actuator fully extended</td>
<td>LBS</td>
</tr>
<tr>
<td>DT(NCAV)</td>
<td>Flow for cavitation volume</td>
<td>CIS</td>
</tr>
<tr>
<td>L(NODE)</td>
<td>Node location indicator</td>
<td>--</td>
</tr>
<tr>
<td>L(NTAB)</td>
<td>Number of points in time table</td>
<td>--</td>
</tr>
<tr>
<td>DT(PFORCE)</td>
<td>External actuator load</td>
<td>LBS</td>
</tr>
<tr>
<td>DT(PPI)</td>
<td>Pressure in #1 cavity</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PP2)</td>
<td>Pressure in #2 cavity</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PPIP)</td>
<td>Predicted pressure in #1 cavity</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PP2P)</td>
<td>Predicted pressure in #2 cavity</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PX)</td>
<td>Predicted piston position</td>
<td>IN</td>
</tr>
<tr>
<td>QA</td>
<td>Leg flow in steady state section</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(Q1)</td>
<td>Flow into cavity #1</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(Q2)</td>
<td>Flow out of cavity #2</td>
<td>CIS</td>
</tr>
</tbody>
</table>

6.101-8
Variable Names (cont'd)

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS</td>
<td>Flow sign</td>
<td>--</td>
</tr>
<tr>
<td>D(SLOTW1)</td>
<td>Sloth width Vol #1 to Con #1</td>
<td>IN</td>
</tr>
<tr>
<td>D(SLOTW2)</td>
<td>Sloth width Vol #1 to Con #2</td>
<td>IN</td>
</tr>
<tr>
<td>D(SLOTW3)</td>
<td>Sloth width Vol #2 to Con #1</td>
<td>IN</td>
</tr>
<tr>
<td>D(SLOTW4)</td>
<td>Sloth width Vol #2 to Con #2</td>
<td>IN</td>
</tr>
<tr>
<td>DT(VEL)</td>
<td>Actuator Velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>VELO</td>
<td>Previous actuator velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>VS</td>
<td>Temporary value of SLOTW</td>
<td>IN</td>
</tr>
<tr>
<td>D(VOL1)</td>
<td>Minimum volume of cavity #1</td>
<td>IN**3</td>
</tr>
<tr>
<td>D(VOL2)</td>
<td>Maximum volume of cavity #2</td>
<td>IN**3</td>
</tr>
<tr>
<td>DT(X)</td>
<td>Piston position</td>
<td>IN</td>
</tr>
<tr>
<td>XV</td>
<td>Valve position</td>
<td>IN</td>
</tr>
<tr>
<td>ZQ</td>
<td>Cross piston leakage impedance</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>ZT</td>
<td>Temporary value of line impedance</td>
<td>--</td>
</tr>
<tr>
<td>ZV1</td>
<td>CON #1 valve impedance</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>ZV2</td>
<td>CON #2 valve impedance</td>
<td>PSI/CIS**2</td>
</tr>
</tbody>
</table>
6.101.7 Subroutine Listing

SUBROUTINE ACT101 (D, DT, DD, L)

C ***REVISED JUNE 1976 ***
DOUBLE PRECISION D
DIMENSION D(32), DT(18), DD(1), L(12)
COMMON NTOLPL, NTOPL, IPT, IPPOINT, NPTS, INEL, KEL, NODE, NLPLT(61, 3),
1 POLEG(90, 12), LSC(90, 10), ILEG(1400), PN(90), QN(90)
COMMON/ SUB/PAR(150, 9), Pn(1500), PM(1500), P(300), Q(300), C(300)
1, 2(300), RHO(20), S2ORHO(20), VISC(20), BULK(20), TEAP(20), PVAP(20)
2, ATRES, T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LEGN, ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTEP, NLINE, NEL, IND, IENTR, MNLNO, MNLEG, MNNODE, MNPLOT
5, MNPLTS, MDS
INTEGER AREA1, AREA2, VOL1, VOL2, SLOTW1, SLOTW2
1, SLOTW3, SLOTW4, DAMP, X, PFORCE, FORCE, PP1, PP2, PP3
2, PP1, PP2, Q1, Q2, VEL, PX
C D ARRAY VARIABLES
DATA AREA1/1/, AREA2/2/, VOL1/3/, VOL2/4/, NINST/5/, NAXST/6/
1, DAMP/7/, DASS/8/, SLOTW1/9/, SLOTW2/10/, SLOTW3/11/, SLOTW4/12/
2, MINST/13/, MAXST/14/, INPOS/15/
C L ARRAY VARIABLES
DATA NTAB/5/, IT/6/, NODE/7/
C DT ARRAY VARIABLES
DATA XI/1/, YEL/2/, LOADZ/3/, LOADS/4/, PP1/5/, PP2/6/
1, Q1/7/, Q2/8/, K3ULK/9/, NCAV/10/, PP1/11/, PP2/12/
2, PFORCE/13/, FORCE/14/, KDAI/15/, PX/16/, INERT/17/, LOADLX/18/
C
IF(ILNT) 1000, 2000, 3000
C *** 1000 SECTION
1000 CONTINUE
C ACTUATOR PARAMETER INPUT
D(SLOTW1) = D(SLOTW1) * 0.65 * S2ORHO(KTEAP(IND))
D(SLOTW2) = D(SLOTW2) * 0.55 * S2ORHO(KTEAP(IND))
D(SLOTW3) = D(SLOTW3) * 0.65 * S2ORHO(KTEAP(IND))
D(SLOTW4) = D(SLOTW4) * 0.65 * S2ORHO(KTEAP(IND))
D(LOADS) = D(MAXST) - D(INPOS) / (D(MAXST) - D(INST))
D(LOADZ) = D(MAXST) - D(LOADS) * D(INPOS)
D(LOADLX) = ATRES * (D(NTAB) - D(NTAB2))
D(INERT) = D(INERT) / DELT
D(TKDAI) = D(INPOS) + D(INERT)
D(TX) = D(INPOS)
D(K3ULK) = BULK(KTEAP(IND)) * DELT
DELTO2 = DELT / 2.0
L(NTAB) = L(12)
L(IY) = (L(NTAB) + 7) / 8
L(IY) = 17 + L(IY) * 8
L(NODE) = 1
XY = D(L(IY))
D(TC) = 1.0

6.101-10
6.101.7 (Continued)

DT(PFORCE) = DT(FORCE) / (D(ARLA2))

IF (XV) 60, 70, 80

60 DT(PP1P) = 1/(D(SLOTW2) * XV)** 2
DT(PP2P) = 1/(D(SLOTW3) * XV)** 2
L(NODE) = 2
DT(PFORCE) = DT(FORCE) / (D(ARL1))
GO TO 90

70 DT(PP1P) = 400000.
DT(PP2P) = 400000.
DT(NCAV) = 0.0
GO TO 90

80 DT(PP1P) = 1/(D(SLOTW1) * XV)** 2
DT(PP2P) = 1/(D(SLOTW4) * XV)** 2
90 RETURN

C *** 1500 SECTION
C THE STEADY STATE SECTION

1500 CONTINUE
QA = PQLEG(INEL, 1)
QS = PQLEG(INEL, 2)
LCS(INEL, 7) = 5
IF (K(NEL) .EQ. 2) GO TO 1750
IF (K(NEL) .EQ. 1) GO TO 1900
IF (L(NODE) .EQ. 2) QS = -QS
Z = 0.0
N = LCS(INEL, 3)
IF (DT(X) .GT. 0.0) GO TO 1600
IF (QS .GT. 0.0) GO TO 1650

1550 QN(N) = 0.0
Z = 100000.
IF (L(NODE) .EQ. 1) GO TO 1700
QS = -QS
GO TO 1850

1600 IF (DT(X) .LT. (AXST)) GO TO 1650
IF (QS .GT. 0.0) GO TO 1550

1650 IF (L(NODE) .EQ. 2) GO TO 1800
QN(N) = -DT(NCAV) * QA * QS * (D(ARLA1) - D(ARLA2)) / D(ARLA1)

1700 DT(PFORCE) = (DT(FORCE) - PN(N) * (D(ARLA1) - D(ARLA2))) / D(ARLA2)
DT(PP1) = PN(N)
DT(PP2) = PN(N) - DT(PFORCE) - QA * QS * Z
DT(VEL) = QA * QS / D(ARLA1)
PQLEG(INEL, 8) = PQLEG(INEL, 8) + DT(PP1)
RETURN

1750 PQLEG(INEL, 8) = PQLEG(INEL, 8) + DT(PP2)
PQLEG(INEL, 6) = PQLEG(INEL, 6) + Z
PQLEG(INEL, 5) = PQLEG(INEL, 5) - DT(PFORCE)
PQLEG(INEL, 11) = PQLEG(INEL, 11) - DT(PFORCE) - QA * QS * (Z + QA * DT(PP2))
RETURN

1800 QS = -QS
QN(N) = -DT(NCAV) * QA * QS * (D(ARLA1) - D(ARLA2)) / D(ARLA2)
6.101.7 (Continued)

1350 DT(PFORCE)=-(PN(N)*(D(AREA2)-D(AREA1))+DT(PFORCE))/D(AREA1)
DT(PP2)=PN(N)
DT(PP1)=PN(N)-DT(PFORCE)-QA*QS*ZQ
DT(VEL)=-QA*QS/D(AREA2)
RETURN

1900 WRITL(5,1950) IND,KNEL,INEL
1950 FORMAT(5X,7HCONP NO,13,20H, HAS INVALID CON NO ,13,
11H, IN LEG NO ,14)

C *** 2000 SECTION
2000 CONTINUE
 DT(NCAV)=0.0
 DT(PP1P)=DT(PP1)
 DT(PP2P)=DT(PP2)
 DT(PX)=DT(X)-DT(VEL)*DLT
 DT(PFORCE)=0.0
 XV=D(L(IY))
 DT(Q2)=Q(L(2))
 DT(Q1)=Q(L(1))
 IF(XV,GT,0.0) GO TO 2020
 DT(Q2)=Q(L(1))
 DT(Q1)=Q(L(2))
2020 CONTINUE
 RETURN
C
C *** 3000 SECTION
3000 CONTINUE
C
 L1=L(1)
 L2=L(2)
 GV1=(D(VOL1)+DT(PX)*D(AREA1))/(DT(KBULK)*DLT)
 ZV1=1.0/GV1
 DT(PP1P)=DT(PP1)-DT(VEL)*D(AREA1)*ZV1
 GV2=(D(VOL2)-DT(PX)*D(AREA2))/(DT(KBULK)*DLT)
 ZV2=1.0/GV2
 DT(PP2P)=DT(PP2)+DT(VEL)*D(AREA2)*ZV2
 CALL INTERP (T,D(17),D(L(IY))),10,L(NTAB),XV,IN2)
C
C CALCULATE LINE FLOWS AND PRESSURES
 1F (XV) 140,170,180
C
 XV LESS THAN 0
140 VX=D(SLOTW3)
 ZT=Z(L1)+ZV2
 DP=C(L1)-DT(PP2P)
 ICALC=1
 GO TO 210
150 DT(Q2)=SIGN(FLOW,DP)
 Q(L1)=DT(Q2)
 VX=D(SLOTW2)
 ZT=Z(L2)+ZV1

6.101-12
6.101.7 (Continued)

\[DP = C(L2) - DT(PP1P) \]
\[ICALC = 2 \]
\[GO TO 210 \]

160 \[DT(Q1) = \text{SIGN}(FLOW, DP) \]
\[Q(L2) = DT(Q1) \]
\[GO TO 220 \]

C

\[XV = 0 \]
\[DT(Q1) = 0. \]
\[DT(Q2) = 0. \]
\[Q(L2) = 0.0 \]
\[Q(L1) = 0.0 \]
\[ICALC = 5 \]
\[GO TO 220 \]

C

\[XV \text{ GREATER THAN 0} \]
\[VK = D(SLOTW1) \]
\[ZT = Z(L1) + ZV1 \]
\[DP = C(L1) - DT(PP1P) \]
\[ICALC = 3 \]
\[GO TO 210 \]

190 \[DT(Q1) = \text{SIGN}(FLOW, DP) \]
\[Q(L1) = DT(Q1) \]
\[VK = D(SLOTW4) \]
\[ZT = Z(L2) + ZV2 \]
\[DP = C(L2) - DT(PP2P) \]
\[ICALC = 4 \]
\[GO TO 210 \]

200 \[DT(Q2) = \text{SIGN}(FLOW, DP) \]
\[Q(L2) = DT(Q2) \]
\[GO TO 220 \]

C

C

\[\text{CALCULATE ABSOLUTE VALUE OF FLOWS} \]
\[210 FN1 = XV * XV * VK * VK \]
\[FN2 = FN1 * ZT \]
\[FLOW = (\text{SORT(FN2**2 + 4.0*FN1*ABS(DP)) - FN2}) / 2.0 \]
\[GO TO (150,160,190,200), ICALC \]

C

220 \[\text{CONTINUE} \]
\[P(L1) = C(L1) - Q(L1) * Z(L1) \]
\[P(L2) = C(L2) - Q(L2) * Z(L2) \]
\[VAP = VAP(KTL;P(IND)) \]
\[IF(P(L2) .GT. VAP .AND. DT(INDAV) .LE. 0.0) \]
\[GO TO 270 \]
\[FLOW = 0.0 \]
\[GO TO (230,230,240,240,250), ICALC \]

230 \[FN2 = FN1 * ZV1 \]
\[DP = VAP - DT(PP1P) \]
\[FLOW = (\text{SORT(FN2**2 + 4.0*FN1*ABS(DP)) - FN2}) / 2.0 \]
\[FLOW = \text{SIGN}(FLOW, DP) \]
\[DT(Q1) = FLOW \]

6.101-13
6.101.7 (Continued)

GO TO 250
240 FN2=FN1*ZV2
 DP=VAP-DT(PP2P)
 FLOW=(SQRT(FN2**2+4.0*FN1*ABS(DP))-FN2)/2.0
 FLOW=SIGN(FLOW,DP)
 DT(Q2)=FLOW
250 Q(L2)=(C(L2)-VAP)/Z(L2)
 P(L2)=VAP
 DT(NCAV)=DT(NCAV)+FLOW-Q(L2)
 CONTINUE

C
C CALCULATE ACTUATOR VELOCITY
C
 G1=GV1/D(ARLAL1)
 G2=GV2/D(ARLAL2)
 ZN=DT(KDA:P)+D(ARLAL1)/G1+D(ARLAL2)/G2
 DP=DT(LOADX)+DT(LOADZ)+DT(PX)*DT(LOADS)
 DELTP=DT(Q1)/G1+DT(PP1)*D(ARLAL1)-DT(Q2)/G2-DT(PP2)*D(ARLAL2)
 VLL0=DT(VEL)
 DT(VEL)=(DT:LT:DP+VEL0*DT(INERT))/ZN
 DT(PX)=DT(X)
 DT(X)=DT(X)+DELTO2*(DT(VEL)+VLL0)
 CALL XLIMIT(DT(X),DT(VEL),DP,D(AINS),D(AINS))
 DT(PX)=DT(X)*2.0-DT(PX)
 IF(DP.NLE.0.0) DT(PX)=DT(X)
 IF(DP.LT.0.0) VLL0=DT(VEL)
 DT(PP1)=DT(PP1)+(DT(Q1)-VEL0*D(ARLAL1))/GV1
 DT(PP2)=DT(PP2)+(DT(Q2)+VLL0*D(ARLAL2))/GV2
 RETURN

END
6.102 SUBROUTINE ACT102

ACT102 simulates a basic utility actuator. The current subroutine allows the input of piston rod loads at zero and maximum stroke. Straight line interpolation is used between these two loads.

FIGURE 6.102-1
TYPE NO. 102 UTILITY ACTUATOR
6.102.1 Math Model

The ACT102 subroutine simulates a simple utility actuator. Figure 6.102.2 shows the various forces acting on the actuator.

![Diagram of actuator forces](image)

Figure 6.102.2

Summing the forces on the actuator yield

\[F = P_1 A_1 - P_2 A_2 - F_D - F_I \]

where

- \(F \) is the load on the actuator, lb,
- \(P_1 \) is the head side pressure, psi,
- \(A_1 \) is the head side area, \(\text{in}^2 \),
- \(P_2 \) is the rod side pressure, psi,
- \(A_2 \) is the rod side area, \(\text{in}^2 \),
- \(F_D \) is the damping force, lb,
- \(F_I \) is the inertial force, lb.

The damping force, \(F_D \), is

\[F_D = V \times \text{DAMP} \]

where, \(V \) is the velocity of the piston, \(\text{in/ sec} \)

\(\text{DAMP} \) is the piston damping coefficient, lb sec/in.

The inertia force, \(F_I \), is

\[F_I = (V - V_0) \times M / T \]

where

- \(V_0 \) is the previously calculated velocity, \(\text{in/ sec} \),
- \(M \) is the mass of the piston and load, \(\text{lb-in/sec}^2 \)
- \(T \) is the calculation time step.
The unknown quantities V, P_1 and P_2 must be determined. The value of P_1 and P_2 may be determined from figure 6.102-3.

![Figure 6.102-3](image)

ACT102 Schematic

The past values of P_1 and P_2, $DT(P_1)$ and $DT(P_2)$ respectively, are shown at the ends of pseudo passages along with their conductances, GV_1 and GV_2.

The conductances GV_1 is calculated using the equation

$$GV_1 = \frac{(VOL_1 + X A_1)}{BULK \times T}$$

where, VOL_1 is the head side volume, in3,

X is the displacement of the piston, in,

$BULK$ is the bulk modulus of the fluid, psi.

Similarly, GV_2 is calculated using

$$GV_2 = \frac{(VOL_2 - X A_2)}{BULK \times T}$$

Summing the flows about P_1 and P_2 yields,

$$\frac{(C(L_1) - P_1)}{Z(L_1)} + \frac{(DT(P_1) - P_1) \times GV_1}{\text{V} \times A_1} = 0$$

$$\frac{(P_2 - C(L_2))}{Z(L_2)} + \frac{(P_2 - DT(P_2)) \times GV_2}{\text{V} \times A_2} = 0$$

where, $DT(P_1)$ is the previously calculated head side pressure, psi,

$DT(P_2)$ is the previously calculated rod side pressure, psi
Solving the above equations for P_1 and P_2,

$$P_1 = \frac{[C(L1) + DT(P1)*GV1 - V*A1]}{1/Z(L1) + GV1}$$

$$P_2 = \frac{[C(L2) + DT(P2)*GV2 + U*A2]}{1/Z(L2) + GV2}$$

Let,

$$C1 = \frac{C(L1)}{Z(L1) + DT(P1)*GV1}$$

$$C2 = \frac{C(L2)}{Z(L2) + DT(P2)*GV2}$$

$$G1 = \frac{1}{Z(L1) + GV1}$$

$$G2 = \frac{1}{Z(L2) + GV2}$$

Substituting $C1$, $C2$, $G1$ and $G2$ into the equations for $P1$ and $P2$ yields,

$$P1 = \frac{(C1 - V*A1)}{G1}$$

$$P2 = \frac{(C2 + V*A2)}{G2}$$

Rewriting 6.102.1 using the equations for $P1$, $P2$, F_D and F_I gives,

$$F = ((C1-V*A1)*A1 - (C2*V*A2)/G2)*A2 - V*DAMP - (V-Vo)*M/\Delta T$$

Solving for V gives

$$V = \left[\frac{G2*C2*A2}{G1} - \frac{G1*A1}{G2} - \frac{F+Vo*M/\Delta T}{A1^2 + A2^2 + (DAMP*M/\Delta T)}\right]$$

With the velocity of the piston, V, known the pressures in the head and rod side of the actuator may be determined using,

$$P1 = \frac{(C1 - V*A1)}{G1}$$

$$P2 = \frac{(C2 + V*A2)}{G2}$$

The displacement of the piston is given by

$$X = X_0 + (V-Vo)\Delta T$$

where X_0 is the previously calculated displacement, in.

The pressures and flows at the connections to the actuator may then be calculated as follows,
\[P(L1) = P1 \]
\[P(L2) = P2 \]
\[Q(L1) = \frac{(C(L1) - P(L1))}{Z(L1)} \]
\[Q(L2) = \frac{(C(L2) - P(L2))}{Z(L2)} \]

where, \(P(L1) \) and \(P(L2) \) are the pressures at the connections, psi
\(Q(L1) \) and \(Q(L2) \) are the flows at the connections, cis.

6.102.2 Assumptions
Friction and stiction are assumed to be zero

6.102.3 Computational Method
1000 Section
The slope of the actuator load stroke curve is calculated
\[DT(LOADS) = \frac{(D(MAXL) - D(MINL))}{(D(MAXST) - D(MINST))} \]
The load at zero stroke and the net external load are then calculated.
\[DT(LOADZ) = D(MAXL) - DT(LOADS) \times D(MAXST) \]
\[DT(LOADEX) = DT(LOADS) \times D(INPOS) + DT(LOADZ) + (D(AREA1) - D(AREA2)) \times ATPRES \]

A sign convention is established such that flow into the volume 1 chamber and the resulting piston velocity are positive.
Various variables are initialized to zero.

1500 Section
The entry first determines whether connection no. 1 is attached to an upstream or downstream line. This establishes the actuator steady state mode of operation. If entry is made using connection no. 2, leg pressure gain (or loss) and leg laminar constant are updated. Pressure at connection no. 2 is also calculated and stored. If entry is made using connection no. 1, tests are performed to verify that the piston is free to move as prescribed by the flow guess.
If the piston is on a stop and the flow guess is such that motion would be into the stop, the node overboard flow is set to zero and impedance is set to a very large number (40000).

If the piston is free to move, the overboard flow, piston velocity, P across piston and pressure at connection no. 2 are calculated.

2000 Section

The variables used in the 1500 section are changed to the values needed in the 3000 section.

3000 Section

A series of temporary variables GV1, G1, C1, C11 and DP etc. are calculated using the predicted actuator position DT(PX). The variables are used in the solution of the network shown in Figure 6.102-3.

The velocity of the piston is calculated using

\[PT(VEL) = (C11-C22-DP+VELO*DT(INERT))/ZN \]

The DT(INERT) term is used to incorporate the effect of the load mass in much the same way as the fluid flow is included in the pressure to give a characteristic pressure. The inertia term is equal to the force required to decelerate the piston from the old velocity to zero in the time interval DELT, and hence contributes to the net force on the piston.

If the velocity is constant then the inertia term included in DT(NDAMP) balances out the DT(INERT) term and produces no net effect.

The position of the piston is the calculated from

\[DT(X) = DT(X)+(VELO+DT(VEL))\cdot DELT02 \]

The piston position is checked to determine whether or not it exceeds the maximum or minimum actuator stroke specified in the input data.

The pressures within volumes 1 and 2 are then calculated using,

\[DT(P1) = (C1-DT(VEL)\cdot D(AREA1))/C1 \]
\[DT(P2) = (C2+DT(VEL)\cdot D(AREA2))/C2 \]
The flows and pressures into and out of the actuator are then calculated by:

\[
D(L1) = \frac{(C(L1) - DT(P1))}{Z(L1)}
\]

\[
P(L1) = DT(P1)
\]

\[
Q(L2) = \frac{(C(L2) - DT(P2))}{Z(L2)}
\]

\[
P(L2) = DT(P2)
\]

6.102.4 Approximations

None

6.102.5 Limitations

With no friction or stiction the model response to small pressure changes or load changes will not be accurate.

The model is inaccurate if the actuator volumes are allowed to cavitate.
Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(AREA1)</td>
<td>#1 Piston area (Extend)</td>
<td>in²</td>
</tr>
<tr>
<td>D(AREA2)</td>
<td>#2 Piston area (Retract)</td>
<td>in²</td>
</tr>
<tr>
<td>C1</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>C11</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>C2</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>C22</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>E(DAMP)</td>
<td>Seal friction</td>
<td>lb·sec/in</td>
</tr>
<tr>
<td>DELTO2</td>
<td>Integration constant</td>
<td>sec</td>
</tr>
<tr>
<td>DT(DELTP)</td>
<td>Pressure drop across piston</td>
<td>psi</td>
</tr>
<tr>
<td>DP</td>
<td>External load</td>
<td>lb</td>
</tr>
<tr>
<td>GV1</td>
<td>Conductance of Volume 1</td>
<td>cis/psi</td>
</tr>
<tr>
<td>GV2</td>
<td>Conductance of Volume 2</td>
<td>cis/psi</td>
</tr>
<tr>
<td>G1</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>G2</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(INERT)</td>
<td>Load inertia</td>
<td>lb·sec/in</td>
</tr>
<tr>
<td>D(INPOS)</td>
<td>Initial actuator position</td>
<td>in</td>
</tr>
<tr>
<td>DT(KBULK)</td>
<td>Oil bulk modulus times T</td>
<td>psi·sec</td>
</tr>
<tr>
<td>DT(LOADEX)</td>
<td>External load</td>
<td>lbs</td>
</tr>
<tr>
<td>DT(LOADS)</td>
<td>Load slope</td>
<td>lb/in</td>
</tr>
<tr>
<td>DT(LOADZ)</td>
<td>Load at zero stroke</td>
<td>lbs</td>
</tr>
<tr>
<td>LS</td>
<td>Connection sign</td>
<td>--</td>
</tr>
<tr>
<td>L1</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>L2</td>
<td>Dummy variable</td>
<td>--</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>D(MASS)</td>
<td>Load mass</td>
<td>lb sec²/in</td>
</tr>
<tr>
<td>D(MAXL)</td>
<td>Load - actuator fully extended</td>
<td>lbs</td>
</tr>
<tr>
<td>D(MAXST)</td>
<td>Maximum actuator stroke</td>
<td>in</td>
</tr>
<tr>
<td>D(MINL)</td>
<td>Load-actuator fully retracted</td>
<td>lbs</td>
</tr>
<tr>
<td>D(MINST)</td>
<td>Minimum actuator stroke</td>
<td>in</td>
</tr>
<tr>
<td>N</td>
<td>Integer counter</td>
<td></td>
</tr>
<tr>
<td>DT(NDAMP)</td>
<td>Load damping factor</td>
<td>lb sec/in</td>
</tr>
<tr>
<td>DT(PX)</td>
<td>Predicted piston position</td>
<td>in</td>
</tr>
<tr>
<td>DT(P1)</td>
<td>Pressure in volume 1</td>
<td>psi</td>
</tr>
<tr>
<td>DT(P2)</td>
<td>Pressure in volume 2</td>
<td>psi</td>
</tr>
<tr>
<td>TLOAD</td>
<td>Temporary variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(VEL)</td>
<td>Actuator velocity</td>
<td>in/sec</td>
</tr>
<tr>
<td>VELO</td>
<td>Previous actuator velocity</td>
<td>in/sec</td>
</tr>
<tr>
<td>D(VOL1)</td>
<td>Volume 1 at zero stroke</td>
<td>in³</td>
</tr>
<tr>
<td>D(VOL2)</td>
<td>Volume 2 at zero stroke</td>
<td>in³</td>
</tr>
<tr>
<td>DT(X)</td>
<td>Piston position</td>
<td>in</td>
</tr>
<tr>
<td>ZN</td>
<td>Temporary variable</td>
<td></td>
</tr>
</tbody>
</table>

6.102-9
6.102.7 Subroutine Listing

SUBROUTINE ACT102 (D, DT, DD, L)
C ****REVISED JUNE 1976 ****
DOUBLE PRECISION DD
DIMENSION D(11), DT(11), DD(1), L(4)
COMMON NTELPL, NTOLPL, IPT, IPOINT, NPTS, INEL, KNEL, NTOLP, NLPLT(61,3),
1 POLEG(90,10), LCS(90,10), TLEG(1400), PN(90), QN(90)
COMMON SUB/Par(150,9), PAu(1500), QAu(1500), P(300), QA(300), C(300)
1, Z(300), RIO(20), S20RIO(20), VIS(20), DUL(20), TEMP(20), PVAP(20)
2, ATPRES, T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LEON, ICON
3, KTEMP(99), LSTART(150), NLPT(150), NC(99), INX, INZ
4, INV, ISTEP, NLLINE, NL, LNPT, MIDENT, MNLLE, MNNODE, MNPLT
5, INLP, NDS
INTEGER AREA1, AREA2, VOL1, VOL2, DAMP, X, VEL, P1, P2, ZQ, DELTP, PX
C D ARRAY VARIABLES
DATA ARLA1/1/, ARLA2/2/, VOL1/3/, VOL2/4/, MINS/5/, MAXST/6/,
1 DAMP/7/, MABS/8/, MNL/9/, MAXL/10/, IMPOS/11/
C DT ARRAY VARIABLES
DATA X/1/, VEL/2/, LOADZ/3/, LOADS/4/, LOADXL/5/, P1/6/, P2/7/,
1 PX/8/, ZQ/9/, NDA/10/, INLRT/11/, DELT/12/, KBULK/13/
IF(INTR) 1000 1000 2000 3000
1000 CONTINUE
IF (INEL.EQ.0) GO TO 1500
DO 1010 I=1,20
1010 DT(I)=0.0
L(3)=1
IF(L(1)/2.NE.L(1)+1/2) L(3)=-1
L(4)=-1
IF(L(2)/2.NE.L(2)+1/2) L(4)=1
DT(Z)=0.0
DT(DELTP)=0.0
DT(X)=DT(IMPOS)
DT(PX)=DT(X)
DT(LOADS)=(D(MAX)-D(INEL))/(D(MAXST)-D(MINST))
DT(LOADZ)=D(MAX)-DT(LOADS)*D(MAXST)
DT(LOADXL)=DT(LOADS)*(IMPOS)+DT(LOADZ)+(D(ARLA1)-B(ARLA2))*ATPKLS
DT(KBULK)=3*UL(KTEMP,IND)*DELT
IF(LT(2)=DELT/2.0
RETURN
C C****STEADY STATE SECTION****
C
1500 CONTINUE
QA=POLEG(INEL,1)
LS=L(2+KNEL)
QS=POLEG(INEL,2)*LS
N=LCS(INEL,3)
LCS(INEL,7)=5
IF(LS.GT.0) GO TO 1510
IF(INX.EN.1.AND.KNEL.EQ.1) GO TO 1900
N=LCS(INEL,2)

6.102-10
6.102.7 (Continued)

1510 IF(KNEL.EQ.2) GO TO 1850
 IF(D(INPOS).GT.D(MINST)) GO TO 1600
 IF(DT(LOADEX).GE.0.0) GO TO 1550
 IF(QS.GT.0) GO TO 1650
1550 QN(N)=0
 DT(ZQ)=40000.
 TLOAD=0.0
 DT(VEL)=0.0
 GO TO 1700
1600 IF(D(INPOS).LT.D(MAXSL)) GO TO 1650
 IF(DT(LOADEX).LE.0.0) GO TO 1550
 IF(QS.GT.0) GO TO 1550
1650 DT(ZQ)=0.0
 TLOAD=DT(LOADEX)
 QN(N)=(-1.)*QA*QS*(D(AREA1)-D(APLA2))/D(AREA1)
 DT(VEL)=QA*QS/D(AREA1)
1700 DT(DELTP)=(PN(N)*(D(AREA1)-D(AREA2))-TLOAD-2-DT(VEL)*D(DAMP))/D(AREA2)
1750 DT(P1)=PN(N)
 DT(P2)=PN(N)+DT(DELTP)-QA*QS*DT(ZQ)
1800 RETURN
1950 FORMAT(5X,7I0,F9.4,A1,F9.4,A1,F9.4,13X,A1,F9.4)
 WRITE(6,999)
999 FORMAT(10X,33I0,STOP IN SUBROUTINE ACT.02)
STOP
2000 CONTINUE
 DT(INERT)=D(MASS)/DELT
 DT(DAMP)=D(DAMP)+DT(INERT)
 DT(LOADEX)=(D(AREA1)-D(AREA2))*ATPRBS
 DT(ZQ)=0.0
 RETURN
3000 CONTINU
 L1=L(1)
 L2=L(2)
 GV1=(D(VOL1)+DT(PX)*D(AREA1))/D(K3ULK)
 GV2=(D(VOL2)-DT(PX)*D(AREA2))/D(K3ULK)
 G1 =1.0/Z(L1)+GV1
 G2 =1.0/Z(L2)+GV2
 C1=C(L1)/Z(L1)+DT(F1)*GV1
 C11=C1*D(AREA1)/G1
 C2=C(L2)/Z(L2)+DT(P2)*GV2
 C22=C2*D(AREA2)/G2
 DP=DT(LOADEX)+DT(LOADZ)+DT(LOADS)*DT(PX)
 DT(ZQ)=DP
 VEL0=DT(VEL)
6.102.7 (Continued)

\[ZN = DT(DATA) + D(ARIAL) \times 2/G1 + D(ARIA2) \times 2/G2 \]
\[DT(VEL) = (C11 - C22 - DP + VEL0 \times DT(INERT)) / ZN \]
\[DT(PX) = DT(X) \]
\[DT(X) = DT(X) + (VEL0 + DT(VEL)) \times DLTO2 \]

CALL XLI4IT(DT(X), DT(VEL), DP, D(INST), D(MAXST))
\[DT(PX) = DT(X) \times 2.0 - DT(PX) \]

IF (DP NE 0.0) DT(PX) = DT(X)
\[DT(P1) = (C1 - DT(VEL) \times D(ARIAL)) / G1 \]
\[DT(P2) = (C2 + DT(VEL) \times D(ARIA2)) / G2 \]
\[P(L1) = (C(L1) - DT(P1)) / Z(L1) \]
\[P(L1) = DT(P1) \]
\[Q(L2) = (C(L2) - DT(P2)) / Z(L2) \]
\[P(L2) = DT(P2) \]
RETURN
END
6.103 **SUBROUTINE ACT103**

Subroutine ACT103 models the shuttle elevon actuators, the layout of which is shown in Figure 6.103-1. The elevon actuators operate from three pairs of hydraulic supply and return lines. The actuator supply and return is selected from the three hydraulic systems by a switching valve module as shown in Figure 6.103-2. For the purposes of modeling the switching valve module is considered to be an independent model connected to the actuator via pseudo lines. The input command and hinge moments are supplied by the SDF Program which updates the values at each sample time interval of the guidance system which is .04 seconds.

6.103.1 **Math Model**

This elevon math model was derived from information and a model provided by RL. The model shown in Figure 6.103-1 takes the difference between the position command signal V_C and the position feedback signal V_{FB}, to generate commands to the servo valve torque motor. The net applied torque deflects the servo valve causing differential flow to the secondary actuator piston. The subsequent displacement of the secondary actuator which is attached to the servo valve by a wire feedback, continues until the valve is returned to the equilibrium flow position. Changes in the position of the secondary actuator are also transmitted to the power spool through the summing linkage. The power spool displacements, X_{PS}, generate differential flow the main ram causing elevon deflection. The elevon deflection is sensed as V_{FB} and compared with the elevon position command V_C to close the loop. Demand flow on the hydraulic system is generated by the sum of the flow to the main ram with the flow to four secondary actuators plus first stage leakage.
6.103.2 Assumptions

The model is limited to simulating one channel of the secondary actuator and it is assumed that the other channels if operative will give identical outputs, in terms of available force at the main control valve.

The model of the differential pressure transducer does not have static and dynamic friction. To save computing time a common hinge moment arm has been used for translating force to hinge moment and elevon velocity to actuator velocity.

The actuator velocity conversion is not quite correct since the actuator position is the sum of the elevon deflection and structural deflection.

6.103.3 Computation Method

The method used for computation is based on the previous program developed by J. Fivel and J. Callihan.

This program uses Tustin's method of integration and is arranged such that each differential is evaluated using the latest value of the previous integral, in a series calculation, rather than the more usual parallel integration methods, where the integrals are effectively evaluated simultaneously using previous values to evaluate the derivatives.

The use of the series integration used together with predicted values for selected variables works better than other methods under certain conditions.

The computation follows the usual component subroutine layout shown in Figure 6.1-1 on page 6.1-2.

1000 Section.

This section is used to initialize variables used by the program. For the most part, the integration variables are zeroed and the Tustin subroutine is called to initialize the integration constants.
1500 Section

This section is used to return values for the steady state calculation so that the system state conditions can be calculated. It is assumed that the secondary and surface actuators are at zero velocity, hence the only steady state flow is that due to the first stage servo valve leakage. The first stage impedance $1.0/(D(KQLOSS)\times D(KCHAN))$ is added to the Q^2 value in PQLEG (INEL,8), and the pressure drop DELP is subtracted from the inlet pressure PQLEG(INEL,11).

2000 Section

This section is used to initialize the variables to their steady state values. The only variables involved for the subroutine are the surface actuator pressures which are set at the mean of the inlet and return pressures. The effect of the internal load is to vary the pressures either side of this mean. The actuator position is initialized to the trim position calculated by the SDF program. Most of the other variables are zeroed since to initialize the elevon variables at any condition other than zero velocity would be very difficult.

3000 Section

The transient section of the program is coded to follow the flow path of the model diagram, starting with the input position command DT(VC). DT(VC), is varied by the SDF program with the value being updated at 40 millisecond intervals. The SDF program uses the latest value of actuator position feedback voltage DT(VFB) in its calculations as an indication of the elevon position. SDF also calculates the surface hinge moment at this position and using that at the previous time step uses a linear interpolation to obtain a hinge moment at zero actuator position and the slope of hinge moment versus position.
ACT103 uses the zero and slope values, to interpolate values of TAERO until those values are updated by the next SDF computation. The interface between this subroutine ACT103 and the SDF program is via the following variables DT(1) thru DT(4).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT(VC)</td>
<td>Input position command</td>
<td>Volts</td>
</tr>
<tr>
<td>(Calculated by SDF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(VFB)</td>
<td>Elevon actuator position</td>
<td>Volts</td>
</tr>
<tr>
<td>(Calculated by ACT103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(KAERO)</td>
<td>Elevon hinge moment at zero stroke</td>
<td>In lbs</td>
</tr>
<tr>
<td>(Calculated by SDF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(KAEROP)</td>
<td>Elevon hinge moment slope</td>
<td>In lbs/in</td>
</tr>
<tr>
<td>(Calculated by SDF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The input command DT(VC) is fed via a first order lag to the junction, where it is summed with a predicted feedback value.

The error is passed through a limiter to the servo valve which converts it to torque. The torque is summed with the spring feedback from the secondary actuator and the pressure feedback across the secondary actuator piston.

The flow calculation uses the supply and pressures from the previous time step to calculate a new flow. The flow is passed through a simple lag to denote the servo valve time delay, and is then integrated to obtain a new secondary actuator (main control valve) position.

The actuator position is tested against its limits, if it is at a limit then the secondary actuator flow is set to zero.

The flow through the main control valve is calculated using the predicted actuator cavity pressure and the valve orifice equations which are solved in conjunction with the line characteristic equation.

The line characteristic pressure is reduced by an amount equal to the 6.103-6.
secondary actuator flow plus the leakage flow times the characteristic impedance. This method avoids the need for a simultaneous solution which would have required a more expensive iterative solution.

The computed flows, which are positive when flowing into the actuator cavities, are then integrated. The integrated flows are summed with the actuator displacement flow and the difference is used to compute a new actuator cavity pressure.

The cavity pressure computation is complicated by the actuator deflection due to differential pressure acting on the structural stiffness.

If solved sequentially, an arithmetic loop is created which creates computational instability. This was avoided by reformulating the loop to give a direct solution for actuator cavity pressures, with the structural stiffness being integrated into the calculation.

The remaining part of the computation follows the block diagram.

Switching Valve Module

The switching valve module is the same as that used in the TVC subroutine ACT105 and described in the TVC model description. This model will need to be revised when the valve design details are finalized.

The revisions will be in the area trigger valve operation which is different from the technique used in the TVC design.
6.103.4 Approximations

The servo valve first order lag of 0.005 seconds is an approximation.

6.103.5 Limitations

The Elevon module can be used to simulate the overall response of the actuator and surface to commands from the SDF program. Because of the simplification in the area of the secondary actuator the small signal response is better than can be expected in practice. The simulation of the switching valve is not ideal, because of the very fast response of these valves. To improve the model would require a much smaller time step. Should these limitations become a problem, a smaller time step can be used with some minor program changes and of course an increase in cost.
6.103.6 Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Outboard Valve*</th>
<th>Inboard Valve</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>Working Area of Power Spool</td>
<td>0.193 in²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(AR)</td>
<td>Effective Ram Area</td>
<td>18.02 in²</td>
<td>21.80 in²</td>
<td></td>
</tr>
<tr>
<td>D(BE)</td>
<td>Effective Elevon Damping Coefficient</td>
<td>15000. in-lb-sec</td>
<td>45000. in-lb-sec</td>
<td></td>
</tr>
<tr>
<td>EPST</td>
<td>Net Error Torque</td>
<td></td>
<td></td>
<td>in-lb</td>
</tr>
<tr>
<td>EYE</td>
<td>Torque Motor Input Current</td>
<td></td>
<td></td>
<td>ma</td>
</tr>
<tr>
<td>EYEL</td>
<td>Servo Amplifier Saturation Limit</td>
<td>8.0 ma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>Ram Force to Load</td>
<td></td>
<td></td>
<td>lb</td>
</tr>
<tr>
<td>D(IE)</td>
<td>Elevon Moment of Inertia About 2663 in-lb-sec</td>
<td>9743 in-lb-sec²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L(ISYS)</td>
<td>Active Hydraulic Connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KA</td>
<td>Servo Amplifier Gain</td>
<td>15. ma/volt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(KAERO)</td>
<td>Hinge Moment at Zero Stroke</td>
<td></td>
<td></td>
<td>in-lb</td>
</tr>
<tr>
<td>DT(KAEROP)</td>
<td>Hinge Moment Slope</td>
<td></td>
<td></td>
<td>in-lb/in</td>
</tr>
<tr>
<td>D(KB)</td>
<td>Bernoulli Force Coefficient</td>
<td>0.319 in</td>
<td>0.755 in</td>
<td></td>
</tr>
<tr>
<td>D(KCHAN)</td>
<td>Number of Active Channels</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(KFB)</td>
<td>Linear Position Transducer Gain 1.173</td>
<td>0.683 volts/in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KQLOSS</td>
<td>First Stage Leakage Coefficient</td>
<td>0.0237 CIS/ PSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(KQPS)</td>
<td>Power Spool Flow Gain</td>
<td>51.8 in³/(sec lb)</td>
<td>124.7 in³/(sec lb)</td>
<td></td>
</tr>
<tr>
<td>KQS</td>
<td>Secondary Valve Flow Gain</td>
<td>0.387 in³/(sec lb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(KS)</td>
<td>Structural Stiffness</td>
<td>154000. lb/in</td>
<td>298000. lb/in</td>
<td></td>
</tr>
<tr>
<td>KTM</td>
<td>Torque Motor Gain Constant</td>
<td>0.045 in-lb/ma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KXPS</td>
<td>Wire Feedback, Power Spool to Torque Motors</td>
<td>6.22 in-lb/in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(MAO)</td>
<td>Initial Position of Elevon Actuator</td>
<td>8.793 in</td>
<td>15.09 in</td>
<td></td>
</tr>
<tr>
<td>D(MAI)</td>
<td>1st Moment Arm Constant</td>
<td>-4.063E-2 in/in</td>
<td>-2.90E-2 in/in</td>
<td></td>
</tr>
</tbody>
</table>

6.103-9
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(MA2)</td>
<td>2nd Moment Arm Constant</td>
<td>-5.51E-2</td>
<td>-3.22E-3</td>
<td>in/in^2</td>
<td></td>
</tr>
<tr>
<td>D(MA3)</td>
<td>3rd Moment Arm Constant</td>
<td>1.40E-3</td>
<td>6.40E-4</td>
<td>in/in^3</td>
<td></td>
</tr>
<tr>
<td>D(MA4)</td>
<td>4th Moment Arm Constant</td>
<td>6.40E-4</td>
<td>-5.88E-5</td>
<td>in/in^4</td>
<td></td>
</tr>
<tr>
<td>DT(PL)</td>
<td>Load Pressure Across Ram Piston</td>
<td></td>
<td></td>
<td>PSI</td>
<td></td>
</tr>
<tr>
<td>DT(P1)</td>
<td>Secondary Actuator Pressure</td>
<td></td>
<td></td>
<td>PSI</td>
<td></td>
</tr>
<tr>
<td>DT(QS)</td>
<td>Secondary Actuator Flow to Mod Piston</td>
<td></td>
<td></td>
<td>CIS</td>
<td></td>
</tr>
<tr>
<td>DT(RFXL)</td>
<td>Effective Moment Arm</td>
<td></td>
<td></td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>DT(TAERO)</td>
<td>Hinge Moment at Zero Stroke</td>
<td></td>
<td></td>
<td>in-lb</td>
<td></td>
</tr>
<tr>
<td>TAUC</td>
<td>Dynamic Load Damping Time Constant</td>
<td>0.1</td>
<td></td>
<td>sec</td>
<td></td>
</tr>
<tr>
<td>TAUFBD</td>
<td>Linear Position Transducer Demod. Time Constant</td>
<td>0.004</td>
<td></td>
<td>sec</td>
<td></td>
</tr>
<tr>
<td>VAP</td>
<td>Vapor Pressure</td>
<td></td>
<td></td>
<td>PSI</td>
<td></td>
</tr>
<tr>
<td>DT(VC)</td>
<td>Position Command Signal</td>
<td></td>
<td></td>
<td>volts</td>
<td></td>
</tr>
<tr>
<td>DT(VFB)</td>
<td>Ram Position Feedback Voltage</td>
<td></td>
<td></td>
<td>volts</td>
<td></td>
</tr>
<tr>
<td>VLVOL</td>
<td>Power Valve Overlap</td>
<td>0.0006</td>
<td></td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>D(VOL1)</td>
<td>#1 Cavity Volume at Mid-Stroke</td>
<td>82.6</td>
<td>169.0</td>
<td>in^3</td>
<td></td>
</tr>
<tr>
<td>D(VOL2)</td>
<td>#2 Cavity Volume at Mid-Stroke</td>
<td>82.6</td>
<td>169.0</td>
<td>in^3</td>
<td></td>
</tr>
<tr>
<td>DT(XFB)</td>
<td>Ram Pistion Position</td>
<td></td>
<td></td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>DT(XPS)</td>
<td>Power Valve Displacement</td>
<td></td>
<td></td>
<td>in</td>
<td></td>
</tr>
</tbody>
</table>

* Same as inboard unless otherwise noted.*
SUBROUTINE ACT103 (D, DT, DD, L)

***** REVISED JUNE 1976 *****
SHUTTLE ELEVON ACTUATOR MODEL WITH SWITCHING VALVE

DOUBLE PRECISION DD
COMMON NTELPL, NTOLPL, IPT, IPTOINT, NPTS, INEL, KNEL, NTOPL, NLPLT(61, 3),
1 PQLEG(90, 12), LCS(90, 10), XLEG(1400), PN(90), QN(90)
COMMON/SUB/PAICM(150, 9), PM(1500), QN(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), SQ2RHO(20), VISCT(20), BULK(20), TEMPT(20), PVAP(20)
2, ATPRES, T, DELT, TPINAL, PLTDEL, PI, TITLE(20), LEGN, ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NCQ, INX, INZ
4, INV, ISTEP, NLINE, NEL, IND, TNENTR, MNLINE, MNEL, MNLEG, MNNODE, MNPLD
5, MNPLTS, MDS

REAL KA, KC, KTN, KQS, KXPS, KQLOSS
INTEGER AR, BE, VC, VFB, VFBP, PL, XPS,
2 TXPS, PS, XYQS, QS, QXQ, XQ,
3 XYXPSD, XPSD, XPSI, Q1, Q2, PP1, PP2, XYTE, TE, DELEDI,
4 XYXLEG, VXL, RFXL, XL, XSD, XYPL, PL, VPX, XYXPSB, XFS, XFP, VPBI,
5 VOL1, VOL2, VXL, XFS, XFBP, PIP
6 ,FIBETA, XL, XIQ1, XIQ2, VCS, VCN, VCL
7 ,CRA, CSA, CRV, CSV
8 ,XPS, XLP, VELP, XS, XSP, VELS, COEFVP, COEFVS

DIMENSION D(16), DT(100), DD(1), L(10)

*** D ARRAY VARIABLES
DATA KCHAN/1/, KB/2/, KQPS/3/, AR/4/, KS/5/, IE/6/, BE/7/, KFB/8/,
2 VOL1/9/, VOL2/10/, MAO/12/, MA1/13/, MA2/14/, MA3/15/, MA4/16/

*** DT ARRAY VARIABLES
DATA VC/1/, VFB/2/, VFBP/3/, KAERO/4/, KAEROP/5/,
1 P1/6/, XPS/7/, TXPS/8/, PS/9/, XYQS/10/, QS/11/,
2 XIQ1/12/, XIQ2/13/, NQLOSS/14/, NQS/15/, NQPS/16/, NCAV/17/,
3 IBETA/18/, XYXPSD/19/, XPSD/20/, XPSI/21/, QXQ/22/,
4 QXQ/23/, PP1/24/, PP2/25/, XYTE/26/, TE/27/, DELEDI/28/,
5 XYLEG/29/, VXL/30/, RFXL/31/, XL/32/, XSD/33/, XYPL/34/, PL/35/,
6 VPX/36/, XYXPSB/37/, XFB/38/, KINT/39/, KFLOW/42/, VXLP/45/, XFBP/46/,
1 PPL/47/, VFBP/48/, DPFB/49/, DPFBP/50/, FIBETA/51/,
2 XLP/52/, XIQ1/53/, XIQ2/54/, KCOM/55/, VCS/58/, VCN/59/, VCL/60/,
3 XP/61/, XPP/62/, VELP/63/, XS/64/, XSP/65/, VELS/66/,
4 COEFVP/67/, COEFVS/68/, LOSS/69/, LEAK/70/, LSWACT/71/,
5 NSUPRF/72/, NRETRP/73/, ISYS/8/
6 ,CSA/74/, CSV/75/, CRA/76/, CRV/77/, TP/78/, KDAAP/79/, KTRANS/82/

*** INITIALIZE CONSTANTS COMMON TO ALL ACTUATORS ***
DATA VLVOL/.0006/,
1 DORFCP/-.5/, DORFCS/-.5/, OLP/.005/, OLS/0.005/, ZSPP/15., SSPP/50./,

6.103-11
6.103.7 (Continued)

3 AISS1/.338/, A2SS2/.230/, A3SB/.263/, A4SR2/.382/,
4 KA/.15/, KTM/.045/, EYEL/8.0/, KQS/.387/, KXPS/6.22/,
5 APS/.193/, XPST/.065/, KQLOSS/.0237/, ZS/6.5/, ZR/6.5/
6 KC/.000019/, TAUC/.1/, TAUFB/.004/

IF (IENTR) 1000, 2000, 3000

1000 IF (INEL .NE. 0) GO TO 1500

C

C INITIALIZATION

DO 1001 I=1, 100

1001 DT(I)=0.0

C CORRECT INPUT DATA FOR FLUID TEMPERATURE

I=KTEV1P(IND)

DT(NQPS)=S2ORHO(I)/SQRT(2./7.82E-5)

DT(NQPS)=D(KOPS)*DT(NQPS)*SQRT(2.)

DT(NQLOSS)=KQLOSS*DT(NQPS)

DT(NQPS)=KQS*DT(NQPS)

DT(IBETA)=BULK(I)

DT(FIBETA)=DT(IBETA)*D(AR)*D(AR)/D(KS)

CALL TUSTIN(1,1.,DT(KINT),DELT)

CALL TUSTIN(2,.005,DT(KFLOW),DELT)

CALL TUSTIN(2,.0159,DT(KCOM),DELT)

CALL TUSTIN(3, TAUC, DT(KDALIN),DELT)

CALL TUSTIN(2, TAUFB, DT(KTRANS), DELT)

C SET UP SWITCHING VALVE CONSTANTS

DINP= .75/(12*32.2*DELT)

DELTO2=DEL/T/2.0

BBVP=(DORFCP/A3PB)**2

BVP=BBVP*.1+DINP)/2.0

SQBVP=BVP**2

BBVS=(DORFCS/A3SB)**2

BVS=BBVS*.1+DINP)/2.0

SQBVS=BVS**2

DT(COEFVP)=2.0*.65*S2ORHO(I)

DT(COEFVS)=2.0*.65*S2ORHO(I)

DT(LEAK)=1000000.

L(ISYS)=1

IF(INV) 1220, 1250, 1200

1200 IF(L(9).EQ.INV) GO TO 1250

IF(L(10).EQ.INV) GO TO 1230

L(ISYS)=3

GO TO 1250

1220 IF(L(9).NE.-INV) GO TO 1250

1230 L(ISYS)=2

1250 CONTINUE

DT(LOSS)=RHO(1)*5.06

DT(LSWACT)=1.0/(DT(COEFVS)*.2)**2+DT(LOSS)

IF(L(ISYS).GT.2) GO TO 1260

6.103-12
6.103.7 (Continued)

```
DT(LSWACT) = DT(LSWACT) + 1.0/(DT(COFVP)*.2)**2 + DT(LOSS)
1260 CONTINUE
RETURN
C
C ------------------ STEADY STATE
C
1500 CONTINUE
QLoss = (1.0/(DT(NQLOSS)*D(KCHAN)))**2
COES = DT(LEAK)
IF((KNEL+1)/2.NE.L(ISYS)) GO TO 1600
DT(QS) = PQLEG(INEL,1)*PQLEG(INEL,2)
COES = 0.0
1600 QSA = PQLEG(INEL,1)
PDELTA = PQLEG(INEL,2)*QSA*(QSA*DT(LSWACT)+COES)
DELP = PQLEG(INEL,2)*QSA*2*QLoss
PSA = PQLEG(INEL,11)-PDELTA
PRA = PSA-Delp
PQLEG(INEL,11) = PRA-PDELTA
PQLEG(INEL,6) = PQLEG(INEL,6)+COES*2.0
PQLEG(INEL,8) = PQLEG(INEL,8)+2.0*DT(LSWACT)+QLoss
IF(COES.NE.0.0) GO TO 1700
DT(PP1) = PSA
DT(PP2) = PRA
1700 RETURN
C
C------ VARIABLE INITIALIZATION
C
2000 CONTINUE
DT(NSUPRP) = DT(PP1)
DT(NRETRP) = DT(PP2)
DT(CSA) = DT(PP1)+DT(QS)*ZS
DT(CSV) = DT(PP1)-DT(QS)*ZS
DT(CRA) = DT(PP2)-DT(QS)*ZR
DT(CRV) = DT(PP2)+DT(QS)*ZR
DT(VCL) = DT(VC)
DT(VCS) = DT(VC)
DT(VFB) = DT(VC)
DT(XFB) = DT(VFB)/D(KV'B)
DT(XYFB) = DT(XFB)
DT(VFBT) = DT(XFB)
DT(XYXFB) = DT(XFB)
DT(XFBP) = DT(XFB)
TAERO = DT(KAERO)+DT(KAEROP)*DT(XFB)
DT(RFXL) = D(MA0)+D(MA1)*DT(XFB)+D(MA2)*DT(XFB)**2
1 + DT(XFB)**3*(D(MA3)+DT(XFB)*D(MA4))
DT(XL) = DT(XFB)-(TAERO/DT(RFXL))/D(KS)
DT(XLP) = DT(XL)
F1 = TAERO/(DT(RFXL)/D(AR)
DT(PS) = DT(PP1)-DT(PP2)
DELP = (DT(PP1)+DT(PP2))/2
```

6.103-13
6.103.7 (Continued)

\[DT(\text{PP}1) = \text{DELP}+\frac{F_1}{2} \]
\[DT(\text{PP}2) = \text{DELP}-\frac{F_1}{2} \]
\[DT(\text{PL}) = F_1 \]
\[DT(\text{XYPL}) = F_1 \]
\[DT(\text{XI}Q_1)=\frac{\left(D(\text{VOL}_1)+DT(\text{XFB})\cdot D(\text{AR})\right)}{1.-DT(\text{PP}1)/DT(\text{IBETA})} \]
\[DT(\text{XI}Q_2)=\frac{\left(D(\text{VOL}_2)-DT(\text{XFB})\cdot D(\text{AR})\right)}{1.-DT(\text{PP}2)/DT(\text{IBETA})} \]
\[DT(\text{VCL})=DT(\text{VC}) \]
\[DT(\text{VCS})=DT(\text{VC}) \]
\[DT(\text{XP})=0.2 \]
\[DT(\text{XS})=0.2 \]
\[IF(L(ISYS)-2)\{2040,2020,2010\} \]
\[2010 \quad DT(\text{XS})=-.2 \]
\[\text{GO TO 2040} \]
\[2020 \quad DT(\text{XP})=-.2 \]
\[2040 \quad DT(\text{XP})=DT(\text{XP}) \]
\[DT(\text{XSP})=DT(\text{XS}) \]
\[DT(\text{QS})=0.0 \]
\[\text{RETURN} \]

3000 CONTINUE

C

**** TRANSIENT CALCULATIONS ****

C

**** INITIALIZE VARIABLES ****

RFXLS = DT(RFXL)

\[DT(\text{RFXL}) = D(mA_0)+D(mA_1)\cdot DT(\text{XL})+D(mA_2)\cdot DT(\text{XL})^2 \]
\[+DT(XFB)\cdot 3\cdot (D(mA_3)+DT(XFB)\cdot D(mA_4)) \]

RFXLP = 2. \cdot DT(RFXL) - RFXLS

TAERO = DT(\text{KAERO}) + DT(\text{KAEROP}) \cdot DT(XFB)

C

SECONDARY ACTUATOR

C

----- SERVO AMPLIFIER

\[DT(\text{VCN})=DT(\text{VC}) \]
\[DT(\text{VCL})=\text{DYN4AM}(DT(\text{VCS}),DT(\text{VCL}),DT(\text{KCO})) \]
\[DT(\text{VCS})=DT(\text{VC}) \]
\[EYE=KA\cdot (DT(\text{VCL})-DT(VFBP)) \]
\[\text{IF}(\text{ABS}(EYE)\cdot \text{GT}.\text{EYEL}) \quad EYE=\text{SIGN}(\text{EYEL}, \text{EYE}) \]

C

----- TORQUE MOTOR

\[TXPSS = DT(TXPS) \]
\[DT(TXPS) = DT(TXPS)\cdot KXPS \]
\[TXPSP = 2\cdot DT(TXPS) - TXPSS \]
\[T_l = EYL\cdot KTM \]
\[\text{EPST}=\text{TM}-\text{TXPSP} \]
\[\text{IF}(\text{ABS}(\text{EPST})\cdot \text{GT}.0.02) \quad \text{EPST}=\text{SIGN}(0.02, \text{EPST}) \]
\[\text{DELP}=\text{DT(PS)}\cdot \text{SIGN}(1.0, \text{EPST})\cdot \text{DT(PIP)} \]
\[\text{IF}(\text{DELP}\cdot \text{LT}.0.0) \quad \text{DELP}=0.0 \]
\[DT(\text{QS}) = \text{EPST}\cdot DT(NQS)\cdot \text{SQRABS}(\text{DELP}) \]
6.103.7 (Continued)

C ------ MAIN CONTROL VALVE POSITION
C

DT(XQI) = DYNAM(DT(XYQS),DT(XQI),DT(KFLOW))
DT(XPSD) = DT(XQI)/APS
DT(XPS) = DYNAM(DT(XYXPSD),DT(XPS),DT(KINT))
CALL XLIMIT(DT(XPS),DT(XPSD),TM,-XPSL,XPSL)
IF(TM.EQ.0.0) GO TO 60
DT(QS)=0.0
DT(XQI)=0.0
60 CONTINUE

DT(XYXPSD)=DT(XPSD)
DT(XYQS)=DT(QS)
QLOSS = (ABS(DT(XQI))DT(NQLOSS)*SQRA(S(DT(PS)))D(KCHAN)
Q1S=DT(Q1)
Q2S=DT(Q2)
NXV=DT(XPS)/VL
IF(NXV) 130,170,180

C XPS LESS THAN 0

130 XPSS=((DT(XPS)+VL*V)*DT(NQPS)**2
SGN=DT(CRA)-DT(PP1)+QLOSS*ZR
FN2=XPSS*ZR
ICALC=1

C CALCULATE MAIN CONTROL VALVE FLOWS
C

140 FLOW=(SQRT(FN2**2+4.0*XPSS*ABS(SGN))-FN2)/2.0
ZCALC = ICALC
GO TO (150,160,190,200),ICALC

150 DT(Q1)=SIGN(FLOW,SGN)
QRA = DT(Q1)-QLOSS
FN2=XPSS*ZS
SGN=DT(CSA)-DT(PP2)-QLOSS*ZS
ICALC=2
GO TO 140

160 DT(Q2)=SIGN(FLOW,SGN)
QSA = DT(Q2)+QLOSS
GO TO 220

C XPS = 0

170 DT(Q1)=0.
FLOW=0.0
QSA = QLOSS
DT(Q2)=0.
ORA = -QLOSS
ICALC=5

6.103-15
6.103.7 (Continued)

GO TO 220

C XPS GREATER THAN 0

180 XPSS=DT(XPS)-VLVOL*DT(NQPS)**2
 FN2=ZS*XPSS
 SGN=DT(CSA)-DT(PP1)-QLOSS*ZS
 ICALC=3
 GO TO 140

190 DT(Q1)=SIGN(FLOW,SGN)
 QSA = DT(Q1)+QLOSS
 FN2=ZR*XPSS
 SGN=DT(CRA)-DT(PP2)+QLOSS*ZR
 ICALC=4
 GO TO 140

200 DT(Q2)=SIGN(FLOW,SGN)
 QRA = DT(Q2)-QLOSS

220 PSA = DT(CSA)-ZS*QSA
 PRA = DT(CRA)-ZR*QRA
 VAP=PVAR(KTEMP(IND))
 IF(PRA.GT.VAP.AND.DT(NCAV).LE.0.0) GO TO 270
 GO TO (230,230,240,240,250),ICALC

230 FLOW=SQRA13S(XPSS*(VAP-DT(PP1)))
 DT(Q1)=FLOW
 GO TO 250

240 FLOW=SQRA13S(XPSS*(VAP-DT(PP2)))
 DT(Q2)=FLOW

250 QRA=(DT(CRA)-VAP)/ZR
 PRA=VAP
 DT(NCAV)=DT(NCAV)+FLOW-QLOSS-QRA
 CONTINUE

270 CONTINUE
 DT(PS) = PSA-PRA

---- ACTUATOR CHAMBER PRESSURES

PFLOW=DT(VXL)*D(AR)
PDIS=DT(XLP)*D(AR)
DT(XIQ1)=DT(XIQ1)+.5*DELT*(DT(Q1)+Q1S)
DT(XIQ2)=DT(XIQ2)+.5*DELT*(DT(Q2)+Q2S)
FQ1=DT(FIBETA)/DT(XIQ1)
FQ2=DT(FIBETA)/DT(XIQ2)
BETA1=DT(IBETA)*(1.+FQ2)/(1.+FQ1+FQ2)
BETA2=DT(IBETA)*(1.+FQ1)/(1.+FQ1+FQ2)
PP11=BETA1*(1.-(PDIS+D(VOL1))/DT(XIQ1))
PP22=BETA2*(1.+(PDIS-D(VOL2))/DT(XIQ2))
PP21=PP11*FQ2/(1.+FQ2)
PP12=PP22*FQ1/(1.+FQ1)

IF(DT(P1).LT.VAP) DT(P1)=VAP

6.103-16
IF(DT(PP2).LT.VAP) DT(PP2)=VAP

DT(PL) = DT(PP1)-DT(PP2)

-------- LOAD DYNAMICS

FL=DT(PL)*D(AR)
TR = FL*RFXLP
DT(XSD)=FL/D(KS)
FDRIVE=TR-TAERO
CALL CFRING2(FDRIVE,FF,DT(VXLP),DT(VXL),DT(TE),DT(XYTE),
1 DT(DELEDI),DELS,201000.,1.263,1.)
DT(TE)=FDRIVE+FF-DT(VXLP)*D(BE)/RFXLP
DT(DELEDI) = DYNAM(DT(XYTE),DT(DELEDI),DT(KINT))
VXLs=DT(VXL)
DT(VXL) = DT(DELEDI)*RFXLP/D(IE)
DT(VXLp)=2.*DT(VXL)-VXLs
DT(XYTE) = DT(TE)
XLS=DT(XL)
DT(XL) = DYNAM(DT(XYDLED),DT(XL),DT(KINT))
DT(XLP)=2.*DT(XL)-XLS
DT(XYDLED) = DT(VXL)
XFBS=DT(XFB)
DT(XFB) = DT(XL)+DT(XSD)
DT(XFBP)=2.*DT(XFB)-XFBS
PLS=DT(P1)
DT(P1)=DT(XPS)*D(KR)*(DT(PS)-SIGN(DT(PL),DT(XPS))/APS/D(KCHAN)
DT(P1P)=2.*DT(P1)-PLS

POSITION AND PRESSURE FEEDBACK

DT(VPLI) = DYNAM(DT(XYPL),DT(VPLI),DT(KDAAP))
DT(XYPL) = DT(PL)
DT(VFB) = DYNAM(DT(XYFB),DT(VFBI),DT(KTRANS))
DT(XYFB) = DT(XFB)
VFBS=DT(VFB)
DT(VFB)=DT(VFBI)*D(KFB)+DT(VPLI)*KC
DT(VFIP)=2.0*DT(VFBI)-VFBS

SWITCHING VALVE CALCULATIONS

DO 3010 I=1,6
IL=L(I)
Q(IL)=0.0
3010 P(IL)=C(IL)
QSV=0.0
QRV=0.0
PSV=DT(CSV)
PRV=DT(CRV)
NS=1
PXP=DT(XP)*2.0-DT(XPP)
6.103.7 (Continued)

\[\text{PXS} = \text{DT}(\text{XS}) \times 2.0 - \text{DT}(\text{XP}) \]
\[\text{NDISVP} = \text{PXP}/\text{OLP} \]
\[\text{NDTSVS} = \text{PXS}/\text{OLS} \]
\[\text{IF} (\text{NDISVS}) = 3020, 3640, 3029 \]
\[3020 \quad \text{COE} = (\text{PXS} + \text{OLS}) \times \text{DT}(\text{COLFVS}) \times 2 \]
\[\text{COE} = \text{COE} / (\text{COE} \times \text{DT}(\text{LOSS}) + 1.0) \]
\[\text{NS} = 3 \]
\[\text{GO TO 3036} \]
\[3029 \quad \text{IF} (\text{NDISVP}) = 3030, 3045, 3035 \]
\[3030 \quad \text{NS} = 2 \]
\[3035 \quad \text{COEP} = 1.0 / ((\text{PXP} - \text{SIGN}(\text{OLP}, \text{PXP})) \times \text{DT}(\text{COLFVP}) \times 2 + \text{DT}(\text{LOSS}) \]
\[\text{COE} = 1.0 / (\text{COEP} + \text{COE}) \]
\[3036 \quad \text{LS} = \text{NS} \times 2 \]
\[\text{LR} = \text{L}(\text{LS}) \]
\[\text{LS} = \text{L}(\text{LS} - 1) \]

SUPPLY CALCULATION

\[\text{ZA} = (\text{Z}(\text{LS}) \times 2) \times \text{COL} / 2.0 \]
\[\text{OSV} = -\text{ZA} + \text{SQRT}((\text{ZA}^2 + 4 \times \text{ABSV}(\text{Z}(\text{LS}) - \text{DT}(\text{CSV})) \times \text{COL})) \]
\[\text{OSV} = \text{SIGN}(\text{OSV}, \text{C}(\text{LS}) - \text{DT}(\text{CSV})) \]
\[\text{PSV} = \text{DT}(\text{CSV}) + ZS \times \text{OSV} \]
\[\text{O}(\text{LS}) = \text{OSV} \]
\[\text{P}(\text{LS}) = \text{C}(\text{LS}) - \text{OSV} \times Z(\text{LS}) \]
\[\text{DT}(\text{NSUPRP}) = \text{C}(\text{LS}) - \text{QRV} \times (Z(\text{LS}) - \text{ABSV}(\text{QRV}) \times \text{COLP}) \]

RETURN CALCULATION

\[\text{ZA} = (\text{Z}(\text{LR}) + \text{ZR}) \times \text{COL} / 2.0 \]
\[\text{QRV} = -\text{ZA} + \text{SQRT}((\text{ZA}^2 + 4 \times \text{ABSV}(\text{C}(\text{LR}) - \text{DT}(\text{CRV})) \times \text{COL})) \]
\[\text{QRV} = \text{SIGN}(\text{QRV}, \text{C}(\text{LR}) - \text{DT}(\text{CRV})) \]
\[\text{PRV} = \text{DT}(\text{CRV}) + \text{ZR} \times \text{QRV} \]
\[\text{Q}(\text{LR}) = \text{QRV} \]
\[\text{P}(\text{LR}) = \text{C}(\text{LR}) - \text{QRV} \times Z(\text{LR}) \]
\[\text{DT}(\text{NELTRP}) = \text{C}(\text{LR}) - \text{QRV} \times (\text{Z}(\text{LR}) - \text{ABSV}(\text{QRV}) \times \text{COLP}) \]

3040 \quad \text{N} = 1
\[\text{IF} (\text{NDISVP}) = 3043, 3100, 3044 \]
\[3043 \quad \text{N} = \text{N} + 2 \]
\[3044 \quad \text{DT}(\text{NSUPRP}) = \text{P}(\text{L}(\text{N})) \]
\[\text{DT}(\text{NRELTRP}) = \text{P}(\text{L}(\text{N} + 1)) \]
\[\text{GO TO 3100} \]
\[3045 \quad \text{DT}(\text{NSUPRP}) = \text{PSV} \]
\[\text{DT}(\text{NRELTRP}) = \text{PRV} \]

3100 \quad \text{CONTINUE}
\[\text{VLLPO} = \text{DT}(\text{VLLP}) \]
\[\text{PBST} = \text{P}(\text{L}(1)) \]
\[\text{IF} (\text{PXP} \times \text{LT} \times 0.1) \quad \text{PBST} = \text{P}(\text{L}(2)) \]
\[\text{PSPL} = (2 \times \text{PSPL} - \text{SSPP} \times \text{PXP} + \text{P}(\text{L}(3)) \times \text{AP2PS} + \text{P}(\text{L}(4)) \times \text{AP4PS} - \text{P}(\text{L}(1)) \times \text{AP1PS}) \]
\[\text{PSPL} = (\text{PSPL} - \text{VLLPO} \times \text{D1NP}) / \text{APPL} \]
\[\text{DT}(\text{VLLP}) = \text{PBST} + \text{SQRT}(\text{SSPP} \times \text{PXP} + \text{PSPL} \times \text{ABS}(\text{PBST} \times \text{PSPL})) \]
\[\text{DT}(\text{VCLP}) = \text{SIGN}(\text{DT}(\text{VLLP}), \text{PBST} - \text{PSPL}) \]
\[\text{DT}(\text{XPP}) = \text{DT}(\text{XP}) \]
\[\text{DT}(\text{XP}) = \text{DT}(\text{XP}) + (\text{VLLPO} + \text{DT}(\text{VCLP})) \times \text{DELTDO}2 \]
CALL XLIMIT(DT(XP), DT(VELP), PSPL, -.2, .2)
IF (PSPL NE .0 .0) DT(XPP) = DT(XP)

C

VELSO = DT(VELS)
PBST = DT(NSUPRP)
IF (PX5 LT .0 .1) PBST = DT(NRETRP)
PSPL = (ZSPP - SSPP * PX5 + P(L(5)) * A2SS2 + P(L(6)) * A4SR2
1 - DT(NSUPRP) * A1SS1)

PSPL=(PSPL-VELSO*DINP)/A3SB
DT(VELS) = -BVS + SQRT(SQBVS + 3BVS * ABS(PBST - PSPL))
DT(VELS) = SIGN(DT(VELS), PBST - PSPL)
DT(XSP) = DT(XS)
DT(XS) = DT(XS) + (VELSO + DT(VELS)) * DELTO2
CALL XLIMIT(DT(XS), DT(VELS), PSPL, -.2, .2)
IF (PSPL NE .0 .0) DT(XSP) = DT(XS)

DT(CSA) = PSV + ZS * QSV
DT(CSV) = PSA - ZS * QSA
DT(CRA) = PRV + ZR * QRV
DT(CRV) = PRA - ZR * QRA
DT(89) = TAERO
DT(90) = TR
RETURN
END
The No. 104 actuator is a model of a push-push servoactuator. External loads as well as friction are not included in the model. Data inputs required are position transducer gain, servovalve gain constant, average effective moment arm and piston area.
6.104.1 Math Model

This EC actuator math model was derived from "Models for Use in Pressure Transient Simulation Report" (388-202-75-080), written by A. C. Morse of Rockwell International Space Division. The model shown in Figure 6.104-2 takes the difference between the position command signal KCOM and the position feedback signal KPH, to generate commands to the servo valve torque motor. The net applied torque deflects the servo valve causing differential flow to the secondary actuator piston. The subsequent displacement of the secondary actuator which is attached to the servo valve by a wire feedback, continues until the valve is returned to the equilibrium flow position. Changes in the position of the secondary actuator are also transmitted to the power spool through the summing linkage. The power spool displacements XV generate differential flow to the actuator piston. The actuator position is sensed as VF and compared with the position command VCOM to close the loop.

For purposes of interfacing with HYTRAN program the servoactuator schematic can be considered as follows:

\[
P_1 = C_1 - Q(L_1)Z(L_1)
\]

\[
P_2 = C_2 + Q(L_1)Z(L_2)
\]

\[
Q_C = X_C\sqrt{P_1 - P_2}
\]
FIGURE 6.104-2
BLOCK DIAGRAM OF SSME - ENGINE CONTROL ACTUATOR
QL = XL*SQRT(P1-P2)

Q(L1) = QC + QL

Q(L1) = (XC + XL)*SQRT(P1-P2)

\[\frac{Q(L1)^2}{(XC+XL)^2} = (C1-C2) - Q(L1)*(Z1+Z2) \]

Solving for Q(L1) by putting in quadratic form

\[Q(L1) - (\sqrt(ZT^2+4.0*ABS(CDIFF)/XCL)-ZT)*XCL/2.0 \]

where:

\[ZT = Z(L1)+Z(L2) \]
\[CDIFF = C1 - C2 \]
\[XCL = (XC+XL)^2 \]

6.104.2 Assumptions

The model does not include static and dynamic friction. To save computing time a common hinge moment arm has been used for translating force to hinge moment and actuator velocity to output rotational velocity.

6.104.3 Computation Method

This program uses Tustin's method of integration and is arranged such that each differential is evaluated using the latest value of the previous integral, in a series calculation, rather than the more usual parallel integration methods, where the integrals are effectively evaluated simultaneously using previous values to evaluate the derivatives.

The use of the series integration is difficult to justify except by stating that it seems to work better than the other method under certain conditions.

1000 Section

This section adjusts RH0 dependent variables for the input temperature.
1500 Section

This section is used to return values for the steady state calculation so that the system state conditions can be calculated. It is assumed that the actuator is at zero velocity, hence the only steady state flow is that due to the first stage servo valve leakage. The first stage impedance $1.0/(DT(KQL)**2$ is added to the Q^2 value in PQLEG (INEL,8), and the pressure drop $DT(KQ)*XCL$ is subtracted from the inlet pressure PQLEG(INEL,11).

2000 Section

This section is used to initialize the variables to their steady state values. The variables are zeroed since to initialize the variables at any condition other than zero velocity would be very difficult.

3000 Section

The transient section of the program is coded to follow the flow path of the model diagram, starting with the input position command $DT(KCOM)$. $DT(KCOM)$, is varied by the guidance and control subroutine CAD98 or its equivalent in the same way as it is in the actual vehicle, with the value being updated at 20 millisecond intervals. The CAD98 subroutine uses the latest value of actuator position feedback voltage $DT(KPH)$ in its calculations as an indication of the actuator position.

The interface between this subroutine AC0_14 and the guidance and control subroutine CAD98 is via the following variables $DT(1)$ and $DT(2)$.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT(KCOM)</td>
<td>Input position command</td>
<td>Volts</td>
</tr>
<tr>
<td>(Calculated by CAD98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(KPH)</td>
<td>Actuator position</td>
<td>Volts</td>
</tr>
<tr>
<td>(Calculated by ACT104)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The line pressures and flows are returned via the P and Q arrays using the address L(1) and L(2) for the supply and return connections respectively.

6.104.4 **APPROXIMATIONS**

None.

6.104.5 **LIMITATION**

The assumption of "no load" on the actuator may give the actuator a higher response than would actually occur under a high load condition.
Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPKT</td>
<td>Constant (KAMPKTKV)</td>
<td>--</td>
</tr>
<tr>
<td>CDIFF</td>
<td>C(L1)-C(L2)</td>
<td>PSI</td>
</tr>
<tr>
<td>DELT02</td>
<td>DELT/2</td>
<td>SEC</td>
</tr>
<tr>
<td>D(KAMPI)</td>
<td>Constant (57.3/(Effective Moment Arm* Piston Area))</td>
<td>DEG/IN³</td>
</tr>
<tr>
<td>D(KC)</td>
<td>Servovalve Gain Constant for 100°F</td>
<td>--</td>
</tr>
<tr>
<td>DT(KCOM)</td>
<td>Position Command</td>
<td>VOLTS</td>
</tr>
<tr>
<td>DT(KCT)</td>
<td>Servovalve Gain Constant for Run Temperature</td>
<td>--</td>
</tr>
<tr>
<td>D(KF)</td>
<td>Position Transducer Gain</td>
<td>V/DEG.</td>
</tr>
<tr>
<td>DT(KPH)</td>
<td>Actuator Position Feedback Voltage</td>
<td>VOLTS</td>
</tr>
<tr>
<td>DT(KQ)</td>
<td>Actuator Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(KQL)</td>
<td>Actuator Displacement</td>
<td>IN³</td>
</tr>
<tr>
<td>DT(KQL)</td>
<td>Old Value of Actuator Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(KXLK)</td>
<td>Leakage Leg Constant for Run Temperature</td>
<td>--</td>
</tr>
<tr>
<td>LL</td>
<td>Dummy Variable for L(1)</td>
<td>--</td>
</tr>
<tr>
<td>LL</td>
<td>Dummy Variable for L(2)</td>
<td>--</td>
</tr>
<tr>
<td>VE</td>
<td>Difference Between Command and Valve Position</td>
<td>VOLTS</td>
</tr>
<tr>
<td>VILM</td>
<td>Constant (ILM/KAMP)</td>
<td>--</td>
</tr>
<tr>
<td>XC</td>
<td>Flow Constant for Actuator Leg</td>
<td>--</td>
</tr>
<tr>
<td>XCL</td>
<td>Constant (Sum of Flow and Leakage Leg Constants Squared)</td>
<td>--</td>
</tr>
<tr>
<td>XLK</td>
<td>Leakage Leg Constant for 100°F</td>
<td>--</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>ZT</td>
<td>Sum of L1 and L2 Characteristic Impedance</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(KLAG)</td>
<td>Integration Constant</td>
<td>--</td>
</tr>
<tr>
<td>D(LAG)</td>
<td>First Order Lag Time Constant</td>
<td>sec</td>
</tr>
</tbody>
</table>
SUBROUTINE ACT104 (D, DT, DD, L)

C *** REVISED NOV 3, 1975 ***

C *** SHUTTLE SSME ENGINE CONTROL ACTUATOR MODEL
	DOUBLE PRECISION DD
	DIMENSION D(1), DT(1), DD(1), L(1)

COMMON NTPNL, NTOPL, IPT, IPOINT, NPTS, INEL, KNEL,
1 NTOPL, MLPL(61,3), PQLEG(90,12), LCS(90,10), ILEG(1400),
2 PN(90), QN(90)

COMMON/SPARM(150,9), PM(1500), QN(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), S2ORHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATRES, T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LEN, ICON

3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTEP, NLINE, NEL, IND, IENTR, ANLINE, MEL, ANLEG, AMNODE, AMPLOT
5, MMNLPTS, ADS

C *** D ARRAY VARIABLES
DATA KF/1/, KC/2/, KAPPI/3/, LAG/4/

C *** DT ARRAY VARIABLES
DATA KCOMP/1/, KPH/2/, KQL/3/, KQ/4/, KQI/5/, KXLK/6/, KCT/7/
1, KLAG/8/, KCONS/11/, KCOMP/12/, KCOMP/13/
DATA AIMPXT, 0.0688, VILM, 0.184162, XISK, 0.02058

C

XISK=1.155*(1/SQRT(3000)), KAPPI=57.3/(A*K)

1000 IF (INEl. NE.0) GC TO 1500
XCL=S2ORHO(KTEMP(IND))/SQRT(2./7.82E-5)

DT(KXLK)=XISK*XCL
DT(KCT)=D(KC)*XCL
DT(KCOMP)=0.0
CALL TUSTIN(2, D(LAEG), DT(KLAG), DELT)
RETURN

1500 XISK=1.0/DT(KXLK)**2
PQLEG(INEL,8)=PQLEG(INEL,8)+XISK
DT(KQ)=PQLEG(INEL,1)**2*PQLEG(INEL,2)
PQLEG(INEL,11)=PQLEG(INEL,11)-DT(KQ)*XISK
RETURN

2000 IF (INEl. NE.0) GC TO 1500

DT(KQ)=0.0
DT(KPH)=DT(KCOMP)
DT(KQI)=DT(KPH)/D(KAPPI)
DELTO2=DELTO/2.0
DT(KCOMP)=DT(KCOMP)
DT(KCONS)=DT(KCOMP)
RETURN

3000 IF (INEl. NE.0) GC TO 1500

L1=L(1)
L2=L(2)
ZT=Z(L1)+Z(L2)

DT(KCOMP)=DT(KCOMP)
DT(KCOMP)=DYNAT(DT(KCONS), DT(KCOMP), DT(KLAG))
DT(KCOIS) = DT(KCONN)

VE = D(KF) * (DT(KCOML) - DT(KPH))

CDIFF = C(L1) - C(L2)

IF(ABS(VE) .GT. VILH) VE = SIGN(VILH, VE)

XC = VE * A1 * PKT * DT(KCT)

XCL = (DT(KXLK) + ABS(XC)) ** 2

Q(L1) = (SQRT(ZT**2 + 4.0 * ABS(CDIEF) / XCL) - ZT) * XCL / 2.0

Q(L1) = SIGN(Q(L1), CDIFF)

P(L1) = C(L1) - Q(L1) * Z(L1)

Q(L2) = -Q(L1)

P(L2) = C(L2) - Q(L2) * Z(L2)

DT(KQL) = DT(KQ)

DT(KQ) = XC * SQRABS(P(L1) - P(L2))

DT(KQI) = DT(KQI) + (DT(KQL) + DT(KQ)) * DELTO2

DT(KPH) = DT(KQI) * D(KAPI)

RETURN

END
6.105 **SUBROUTINE ACT105**

Subroutine ACT105 models the shuttle thrust vector control (TVC) actuators, the layout of which is shown in Figure 6.105-1. The TVC actuators operate from three pairs of hydraulic supply and return lines. The supply and return used is selected by a switching valve module as shown in Figure 6.105-2. For the purpose of modeling the switching valve module is considered to be separated from the actuator by a pair of pseudo lines. The input command and hinge moments are supplied by a Guidance and Control subroutine which updates the values at each sample time interval of the guidance system which is .04 seconds.

6.105.1 *Math Model*

This TVC math model was derived from that proposed by Rockwell International. The model shown in Figure 6.105-1 uses the position command signal VC to generate commands to the servo valve torque motor. The applied torque deflects the servo valve causing differential flow to the secondary actuator piston. The subsequent displacement of the secondary actuator, which is attached to the servo valve by a wire feedback, and to the main ram by mechanical linkage, continues until the valve is returned to the equilibrium flow position. Changes in the position of the secondary actuator are transmitted to the power spool through the summing linkage. The power spool displacement, XPS, generates differential flow to the main ram causing actuator deflection. The deflection is sensed as XFB and is feed back to the servo valve as a torque to close the loop. Demand flow on the hydraulic system is generated by the sum of the flow to the main ram with the flow to four secondary actuators plus first stage leakage.
SSME TVC ACTUATION CONTROL SYSTEM MODEL

![SSME TVC ACTUATION CONTROL SYSTEM MODEL Diagram]

FIGURE 6.105-1
6.103.2 Assumptions

The model is limited to simulating one channel of the secondary actuator and it is assumed that the other channels if operative will give identical outputs, in terms of available force at the main control valve.

The model of the surface actuator includes static and dynamic friction. To save computing time a common hinge moment arm has been used for translating force to hinge moment and TVC velocity to actuator velocity.

The actuator velocity conversion is not quite correct since the actuator position is the sum of the TVC deflection and structural deflection.

6.103.3 Computation Method

The method used for computation is based on the previous program developed for the elevon actuator.

This program uses Tustin's method of integration and is arranged such that each differential is evaluated using the latest value of the previous integral, in a series calculation, rather than the more usual parallel integration methods, where the integrals are effectively evaluated simultaneously using previous values to evaluate the derivatives.

Predicted values are used to improve the calculation where the use of a previous value would incur a significant error. The computation follows the usual component subroutine layout shown in Figure 6.1-1 on page 6.1-2.

1000 Section.

This section is used to initialize variables used by the program. For the most part, the integration variables are zeroed and the Tustin
subroutine is called to initialize the integration constants.

1500 Section

This section is used to return values for the steady state calculation so that the system state conditions can be calculated. It is assumed that the secondary and power actuators are at zero velocity, hence the only steady state flow is that due to the first stage servo valve leakage. The first stage impedance $1.0/(D(KQLOSS)*D(KCHAN))^{**2}$ is added to the Q^2 value in PQLEG (INEL,8), and the pressure drop DELP is subtracted from the inlet pressure PQLEG(INEL,11).

2000 Section

This section is used to initialize the variables to their steady state values. The only variables involved for the subroutine are the actuator pressures which are set at the mean of the inlet and return pressures. The effect of the internal load is to vary the pressures either side of this mean. Most of the other variables are zeroed since to initialize the TVC actuator variables at any condition other than zero velocity would be very difficult.

3000 Section

The transient section of the program is coded to follow the flow path of the model diagram, starting with the input position command DT(VC). DT(VC), is varied by the guidance and control subroutine or its equivalent in the same way as it is in the actual vehicle, with the value being updated at 40 millisecond intervals. The six degree of freedom (SDF) subroutine uses the latest value of actuator position feedback DT(XFB) in its calculations as an indication of the actuator position. The SDF program also calculates a hinge moment at zero actuator position and the slope of hinge moment versus position.
ACT105 uses the zero and slope values, interpolate values of TAERO until those values are updated by the next guidance and control computation. The interface between this subroutine ACT105 and the guidance and control subroutine is via the following variables DT(1) thru DT(5).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT(VC)</td>
<td>Input position command</td>
<td>Volts</td>
</tr>
<tr>
<td>(Calculated by SDF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(XFB)</td>
<td>TVC actuator position</td>
<td>In</td>
</tr>
<tr>
<td>(Calculated by ACT105)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(KAERO)</td>
<td>TVC hinge moment at zero stroke</td>
<td>In lbs</td>
</tr>
<tr>
<td>(Calculated by SDF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(KAEROP)</td>
<td>TVC hinge moment slope</td>
<td>In lbs/in</td>
</tr>
<tr>
<td>(Calculated by SDF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The line pressures and flows are returned via the P and Q arrays using the address L(1) - L(6) for the supply and return connections.

The input command DT(VC) is fed via a first order lag to the junction, where it is summed with a predicted feedback value.

The error is passed through a limiter to the servo valve which converts it to torque. The torque is summed with the spring feedback from the secondary actuator and the pressure feedback across the secondary actuator piston.

The flow calculation uses the supply and pressures from the previous time step to calculate a new flow. The flow is passed through a simple lag to denote the servo valve time delay, and is then integrated to obtain a new secondary actuator (main control valve) position.

The actuator position is tested against its limits, if it is at a limit then the secondary actuator flow is set to zero.

The flow through the main control valve is calculated using the predicted actuator cavity pressure and the valve orifice equations which are
solved in conjunction with the line characteristic equation.

The line characteristic pressure is reduced by an amount equal to the secondary actuator flow plus the leakage flow times the characteristic impedance. This method avoids the need for a simultaneous solution which would have required a more expensive iterative solution.

The computed flows, which are positive when flowing into the actuator cavities, are then integrated. The integrated flows are summed with the actuator displacement flow and the difference is used to compute a new actuator cavity pressure.

The cavity pressure computation is complicated by the actuator deflection due to differential pressure acting on the structural stiffness.

If solved sequentially, an arithmetic loop is created which creates computational instability. This was avoided by reformulating the loop to give a direct solution for actuator cavity pressures, with the structural stiffness being integrated into the calculation.

The remaining part of the computation follows the block diagram.
SWITCHING VALVE SECTION

The final section of the TVC subroutine describes the operation of the switching valve or selector valve as it is sometimes called. The valve model is set up as an independent model to that of the TVC and is connected to the actuator via pseudo lines, which provides the numerical isolation required.

Because of the TVC package dimensions, these pseudo lines do have some factual basis in that there is a significant flow path length between the connections and the main control valve. The valve pressure loss in each flow path is assumed to be contributed by two separate orifice coefficients, due to the inlet holes through the sleeve, and due to the valve metering orifices.

There are four .375" dia inlet holes. The metering orifice has four slots, 0.5" wide 0.2" long. This configuration is repeated for each flow path, in the primary and secondary sections of the valve.

The pressure drop for each orifice will be

\[P = \frac{Q}{\text{AREA}(\text{CD})^2} \times \rho \times \frac{2}{\text{AREA}^2} \]

for \(Q = 150 \text{ CIS} \)

\[= 2.13/\text{AREA}^2 \]

\[= 13.31 \text{ psi for metering orifice} \]

\[= 10.9 \text{ psi for the four holes} \]

\[= 26.22 \text{ for each valve flow path} \]

\[= 96.99 \text{ psi for supply and return for the primary system} \]
PRIMARY SELECTOR VALVE (NO. 1) W/ POSITION TRANSDUCER

SECONDARY SELECTOR VALVE (NO. 2) W/ POSITION TRANSDUCER

AREA 1

AREA 2

AREA 3

AREA 4

P1

P2

R1

R2

P3

R3

CONTROL ORIFICE

ACTUATOR SUPPLY

ACTUATOR RETURN

BOOTSTRAP AREAS

XP-2-X

BEST AVAILABLE COPY
The pressure drop across the valve holes
\[\Delta P = Q^2 \cdot DT(LOSS) \]
where the loss coefficient
\[DT(LOSS) = \frac{\text{RHO}}{(2 \cdot 65^2 \cdot \text{AREA}^2)} \]
\[= 0.000485 \text{ @ } 130^\circ\text{F} \]
or \[= \text{RHO} \cdot 6.06 \]

This combination of orifices is only significant when the valves are fully open, the predominant loss occurs when the valve displacement is less than 0.1" during the switching cycle.

It is under switching conditions that the actual stability of the model becomes significant. When the start up conditions are normal, switching occurs from #1 to #2, and then #2 to #3. Under these conditions the bootstrap arrangement will give a positive or stable switching characteristic. The real stability problem occurs when the system is switching from #3 to #2 or #2 to #1 when the pump is being repressurized. Fortunately this particular situation will occur at low or zero flows. The high water hammer pressures, associated with valve closure when there is a high flow demand, will probably not occur during reverse switching.

Math Model

Valve Positions - The valve positions are predicted based on the positions at the last two time steps.

\[PXP = DT(XP) \cdot 2 - DT(XPP) \]

Predicted values are used to improve the computation accuracy during switching, no effort is made to correct the computations when the final positions are computed. The choice of a predicted position computation was based on the need to use a valve position nearer to the
true value, but still avoiding the predictor - corrector type of computation, which leads to stability problems.

The computation would be improved by the use of a very small time step, but it is doubtful if there would be any significant improvement in the overall system accuracy.

The initial position of the valve is determined from the system indicator INV which indicates the conditions of the three systems. This is translated into the local system indicated (ISYS).

where

\[L(ISYS) = \begin{cases}
1 & \text{primary system active} \\
2 & \text{first back-up active primary failed} \\
3 & \text{second back-up active primary and first back-up failed}
\end{cases} \]

The valve positions at the \(L(ISYS) = 1 \) condition are both +0.2 inches. The positions for \(L(ISYS) = 3 \) are -0.2 inches.

There are two valves in series for the No. 1 and No. 2 systems, and just one for the No. 3 system. The two valves are normally called No. 1 and No. 2 selector valves, but to avoid confusion with the line connections, we have used primary and secondary as the valve names. The two valves are almost identical except for the end areas, which are varied to provide some difference in the switching pressures. The basic philosophy is to make the primary valve move and switch before the secondary valve responds.

The achievement of this will depend on the transient pressures that occur during switching.
The reference pressures DT(NSUPRP) and DT(NRETRP) are the supply and return pressures at the outlet side of the primary valve. These reference pressures control the switching of the secondary valves.

Springs are used to position the valves on start up.

At the time of writing, there is no data on the damping effects of the small diameter holes connecting the return or pressure ports and the bootstrap area end of the valve. Scaling the drawings available show the hole to be approximately .1" diameter and about 1.2" long.

The max valve velocity is expected to be about 80 in/sec which would give a flow of approximately 21 CIS. Using the diameter and length we can generate an equivalent orifice coefficient for the flow restriction. A plain orifice of .1" dia gives a coeff of 1.25 PSI/(CIS)² plus a smaller contribution from the pole length gives a total of 1.4 PSI/CIS² At the 21 CIS flow this will give a pressure drop of 617 PSI which will have a significant effect on the bootstrap pressure.

In going from the initial position of PXP=.2" to the switches position of PXP= -.2", oil is pumped out of the bootstrap cavity, initially into the P1 supply and later when PXP <.1", it is pumped into the R1 return. The bootstrap reference pressure PBST is switched when PXP < .1 from PBST = P(L(1)) to PBST = P(L(2)).

The spring pre-load is 5 lbs @ XS = .2 and the spring rate is 50 lbs/in.

This makes the spring load

\[ZSPP - DISVP \cdot SSPP \]

where \(ZSPP = 5 + .2 \cdot 50 \)

= 15 lbs.

and \(SSPP = 50 \) lbs/in

6.105-13
The predicted valve displacement PDISVP is used for the calculation. In calculating the valve velocity, the inertia and damping forces are considered. The inertial forces are normally small, but very high accelerations are required to achieve switching in 10 milliseconds. With a stroke of .4" and assuming constant acceleration

\[\text{ACCN} = 0.4 \times 2 \times 10^4 = 8000 \text{ in/sec}^2 \]

\[\text{FORCE} = 0.002 \times 8000 = 16 \text{ lbs.} \]

6.105.5 **Approximations**

The servo valve first order lag of 0.005 seconds is an approximation.

6.105.5 **Limitations**

The TVC module can be used to simulate the overall response of the actuator and surface to commands from the SDF program. Because of the simplification in the area of the secondary actuator, the small signal response is better than can be expected in practice. The simulation of the switching valve is not ideal, because of the very fast response of these valves. To improve the model would require a much smaller time step. Should these limitations become a problem, a smaller time step can be used with some minor program changes and of course an increase in cost.

6.105.6 **Variable Names**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>E3P</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>Working Area of Power Spool</td>
<td></td>
<td>in²</td>
</tr>
<tr>
<td>D(AR)</td>
<td>Effective Ram Actuator Area</td>
<td>20.03</td>
<td>in²</td>
</tr>
<tr>
<td>D(BE)</td>
<td>Effective TVC Damping Coefficient</td>
<td>1000</td>
<td>16/sec</td>
</tr>
<tr>
<td>EPS7</td>
<td>Net Error Torque</td>
<td></td>
<td>in-lb</td>
</tr>
<tr>
<td>EYE</td>
<td>Input Current</td>
<td></td>
<td>ma</td>
</tr>
<tr>
<td>EYEL</td>
<td>Servo Amplifier Saturation Limit</td>
<td>50.0</td>
<td>ma</td>
</tr>
</tbody>
</table>

6.105-14
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>E3P*</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDRIVE</td>
<td>Net Ram Force</td>
<td></td>
<td>lb</td>
</tr>
<tr>
<td>FF</td>
<td>Friction Force on Ram</td>
<td></td>
<td>lb</td>
</tr>
<tr>
<td>FL</td>
<td>Ram Force Applied to Load</td>
<td></td>
<td>lb</td>
</tr>
<tr>
<td>D(IC)</td>
<td>Engine Moment of Inertia About Hinge Line</td>
<td>48400</td>
<td>in-lb-sec²</td>
</tr>
<tr>
<td>KA</td>
<td>Servo Amplifier Gain</td>
<td>11.</td>
<td>ma/v</td>
</tr>
<tr>
<td>KB</td>
<td>Bernoulli Force Coefficient</td>
<td>.702</td>
<td>in</td>
</tr>
<tr>
<td>D(KCHAN)</td>
<td>Number of Operative Channels</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>KDEL</td>
<td>Dynamic Pressure Feedback Gain</td>
<td>.2</td>
<td>--</td>
</tr>
<tr>
<td>KDPF</td>
<td>Dynamic Pressure Feedback Gain</td>
<td>.00062</td>
<td>in lb/PSI</td>
</tr>
<tr>
<td>KE</td>
<td>Dynamic Pressure Feedback Integrator Gain</td>
<td>59.4</td>
<td>--</td>
</tr>
<tr>
<td>D(KFB)</td>
<td>Actuator Feedback Gain</td>
<td>.367</td>
<td>in-lb</td>
</tr>
<tr>
<td>D(KQPS)</td>
<td>Power Spool Flow Gain</td>
<td>121.0</td>
<td>CIS/1b</td>
</tr>
<tr>
<td>KQS</td>
<td>Secondary Valve Flow Gain</td>
<td>3.743</td>
<td>in³/(SEC lb³)</td>
</tr>
<tr>
<td>D(KS)</td>
<td>Structural Stiffness</td>
<td>226000.</td>
<td>lb/in</td>
</tr>
<tr>
<td>KTM</td>
<td>Torque Motor Gain</td>
<td>.04</td>
<td>in-lb/ma</td>
</tr>
<tr>
<td>D(KXPS)</td>
<td>Power Spool Feedback Gain</td>
<td>5.82</td>
<td>in-lb</td>
</tr>
<tr>
<td>D(MAO)</td>
<td>First Moment Arm Constant</td>
<td>27.79</td>
<td>in</td>
</tr>
<tr>
<td>D(MA1)</td>
<td>Second Moment Arm Constant</td>
<td>-.3499</td>
<td>in/in</td>
</tr>
<tr>
<td>D(MA2)</td>
<td>Third Moment Arm Constant</td>
<td>-.00787</td>
<td>in/in²</td>
</tr>
<tr>
<td>VOL VOL</td>
<td>Power Spool Overlap</td>
<td>.0006</td>
<td>in</td>
</tr>
<tr>
<td>D(VOL1)</td>
<td>#1 Cavity Volume at Mid-stroke</td>
<td>122.0</td>
<td>in³</td>
</tr>
<tr>
<td>D(VOL2)</td>
<td>#2 Cavity Volume at Mid-stroke</td>
<td>115.0</td>
<td>in³</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>E3P*</td>
<td>Dimensions</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>XPSL</td>
<td>Power Spool Displacement Limit</td>
<td>.05</td>
<td>in</td>
</tr>
</tbody>
</table>

* Engine No. 3 Pitch TVC.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1PS1</td>
<td>Primary valve AREA1</td>
<td>IN²</td>
</tr>
<tr>
<td>A1SS1</td>
<td>Secondary valve AREA1</td>
<td></td>
</tr>
<tr>
<td>A2PS2</td>
<td>Primary valve AREA2</td>
<td>"</td>
</tr>
<tr>
<td>A2SS2</td>
<td>Secondary valve AREA2</td>
<td>"</td>
</tr>
<tr>
<td>A3PB</td>
<td>Primary valve AREA3</td>
<td>"</td>
</tr>
<tr>
<td>A3SB</td>
<td>Secondary valve AREA3</td>
<td>"</td>
</tr>
<tr>
<td>A4PR2</td>
<td>Primary valve AREA4</td>
<td>"</td>
</tr>
<tr>
<td>A4SR2</td>
<td>Secondary valve AREA4</td>
<td>"</td>
</tr>
<tr>
<td>BBVP</td>
<td>Damping coeff.</td>
<td>-</td>
</tr>
<tr>
<td>BVP</td>
<td>Damping & Inertial coeff.</td>
<td></td>
</tr>
<tr>
<td>COE</td>
<td>Combined orifice coeff.</td>
<td></td>
</tr>
<tr>
<td>DT(COEFVP)</td>
<td>Metering orifice coef.</td>
<td>CIS/(PSI)(^{1/2})/IN</td>
</tr>
<tr>
<td>DT(COEFVS)</td>
<td>Metering orifice coef.</td>
<td>"</td>
</tr>
<tr>
<td>COEP</td>
<td>Primary combined orifice coeff.</td>
<td>PSI/(CIS)²</td>
</tr>
<tr>
<td>COES</td>
<td>Secondary combined orifice coeff.</td>
<td>"</td>
</tr>
<tr>
<td>DELT02</td>
<td>DELT 2.0</td>
<td></td>
</tr>
<tr>
<td>DINP</td>
<td>Spool inertia coeff</td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>DORFCP</td>
<td>Spool damping orifice coef</td>
<td></td>
</tr>
<tr>
<td>DORFCS</td>
<td>Spool damping orifice coef</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Do loop counter</td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>Actuator line address</td>
<td></td>
</tr>
<tr>
<td>IL</td>
<td>Line address</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>Connection number</td>
<td></td>
</tr>
<tr>
<td>IPASS</td>
<td>Calculation counter</td>
<td></td>
</tr>
<tr>
<td>L(ISYS)</td>
<td>Active system indicator</td>
<td></td>
</tr>
<tr>
<td>DT(LEAK)</td>
<td>Leakage coef when valves are closed</td>
<td></td>
</tr>
<tr>
<td>DT(LOSS)</td>
<td>Orifice coef of inlet holes</td>
<td></td>
</tr>
<tr>
<td>DT(LSWACT)</td>
<td>Combined coef oc metering orifice and hose coef</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Connection counter</td>
<td></td>
</tr>
<tr>
<td>NDISVP</td>
<td>Integer position indicator</td>
<td></td>
</tr>
<tr>
<td>NDISVS</td>
<td>Integer position indicator</td>
<td></td>
</tr>
<tr>
<td>DT(NRETRP)</td>
<td>Return reference pressure</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>System indicator</td>
<td></td>
</tr>
<tr>
<td>DT(NSUPRP)</td>
<td>Supply reference pressure</td>
<td></td>
</tr>
<tr>
<td>OLP</td>
<td>Primary valve overlap</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>Secondary valve overlap</td>
<td></td>
</tr>
<tr>
<td>PBST</td>
<td>Bootstrap reference pressure</td>
<td></td>
</tr>
<tr>
<td>PDELTAS</td>
<td>Steady state pressure drop</td>
<td></td>
</tr>
<tr>
<td>PXP</td>
<td>Predicted value of XP</td>
<td></td>
</tr>
<tr>
<td>FXS</td>
<td>Predicted value of XS</td>
<td></td>
</tr>
<tr>
<td>PSPL</td>
<td>Pressure exerted by spool forces on bootstrap volume</td>
<td></td>
</tr>
<tr>
<td>QS</td>
<td>Flow through valve</td>
<td></td>
</tr>
</tbody>
</table>

6.105-17
<table>
<thead>
<tr>
<th>SQBVP</th>
<th>BUP^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPP</td>
<td>Spring slope or rate</td>
</tr>
<tr>
<td>DT(VELP)</td>
<td>Primary spool velocity</td>
</tr>
<tr>
<td>VELPO</td>
<td>Previous value of DT(VELP)</td>
</tr>
<tr>
<td>DT(VELS)</td>
<td>Secondary spool velocity</td>
</tr>
<tr>
<td>VELSO</td>
<td>Previous value DT(VELS)</td>
</tr>
<tr>
<td>DT(XP)</td>
<td>Primary valve position</td>
</tr>
<tr>
<td>DT(XPP)</td>
<td>Previous value of XP</td>
</tr>
<tr>
<td>DT(XS)</td>
<td>Secondary value position</td>
</tr>
<tr>
<td>DT(XSP)</td>
<td>Previous value of XS</td>
</tr>
<tr>
<td>ZA</td>
<td>Temporary impedance</td>
</tr>
<tr>
<td>ZSPP</td>
<td>Spring load at zero position</td>
</tr>
</tbody>
</table>
6.105.7 Subroutine Listing

SUBROUTINE ACT105 (D, DT, DD, L)

*****REVISED NOVEMBER 1975 ****
SHUTTLE SSME TVC ACTUATOR MODEL

DOUBLE PRECISION DD
COMMON NTELPL, NTOLPL, IPT, IPOINT, NPTS, INEL, KNEL, NTPLXL, NLPLT(61, 3),
1 PQUEG(90, 12), LCS(90, 10), ILEG(1400), PN(90), ON(90)
COMMON/SUB/PAXA(150, 9), Pm(1500), Q2(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), 20RHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATPRES, T, DELT, TFINAL, PLTDELT, PI, TITLE(20), LEGN, ICON
3, KTEMP(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTP, NLINE, NLL, INDEX, IENTR, MNLINE, MNEL, MNLEEG, MNODE, MNPLOT
5, MNPLTS, MDS
REAL KA, KTM, KQS, KDEL, KDPP, KE, KQLOSS
INTEGER AR, BE, VC, P1, XPS,
2 TXPS, PS, XYQS, OS, QX1,
3 XYXPSD, XPSD, XPSI, Q1, Q2, PP1, PP2, XYTE, TE, DELLEDI,
4 XYDEL, VX1, XPSL, XSL, PL, VEPI, XPS,
5 VOL1, VOL2, VXL, XFBP, PI1
6, TP, TPN, DPBP, DPFPBP, FIBETA, XLP, XIQ1, XIQ2, VCS, VCN, VCL
7, CRA, CSA, CRV, CSV
8, XP, XPP, VELP, XS, XSP, VELS, COEFV, COEFVS
DIMENSION D(16), DT(100), DD(1), L(10)

DATA VC, K, KAero/1/, KB/2/, KQS/3/, AR/4/, KS/5/, IE/6/, BE/7/, KB/8/,
2 VOL1/9/, VOL2/10/, XPS/11/, MAO/12/, MAL/13/, MA2/14/

DATA VLVOL/0.000E,/, KD/P(19.2/), KDPF/0.00062/, KL/9.4/,
1 DORFP/0.5/, DPDFP/0.25/, O1P/0.005/, OLS/0.005/, ZSPP/15.0/, SSPP/50.0/,
2 ALS/0.338/, A2PS/0.274/, A3PB/0.263/, A4PR/0.327/,

C *** D ARRAY VARIABLES

DATA KCHAN/1/, KB/2/, KQS/3/, AR/4/, KS/5/, IE/6/, BE/7/, KB/8/,
2 VOL1/9/, VOL2/10/, XPS/11/, MAO/12/, MAL/13/, MA2/14/

C *** DT ARRAY VARIABLES

DATA VC/1/, KAE/4/, KAER0/5/,
1 P1/6/, XPS/7/, TXPS/8/, PS/9/, XYQS/ 0/, Q5/11/,
2 QX1/12/, KQLOSS/14/, Q5/15/, NQPS/ 16/, NCAV/17/,
3 IBETA/18/, XYXPSD/19/, XPSD/20/, XPSI/21/, Q1/22/,
4 Q2/23/, PP1/24/, PP2/25/, XYTE/26/, TE/27/, DELLEDI/28/,
5 XYDEL/29/, VXL/30/, XYZ/31/, XSL/32/, XPS/33/,
6 PL/35/, VEPI/36/, XFBP/38/, KINT/39/, KFLOW/42/, VXL/45/, XFBP/46/,
1 P1P/47/, TPN/48/, DPBP/49/, DPFPBP/50/, FIBETA/51/,
2 XLP/52/, XIQ1/53/, XIQ2/54/, KCON/55/, VCS/58/, VCN/59/, VCL/60/,
3 X/61/, XPS/62/, VELP/63/, VELS/64/, XSP/65/, VELSP/66/,
4 COEF/67/, COEFVS/68/, LOSS/69/, LEAK/70/, LSWACT/71/,
5 NSUPRP/72/, NREL/73/, IYES/8/,
6, CSA/74/, CSV/75/, CRA/76/, CV/77/, TP/78/

C *** INITIALIZE CONSTANTS COMMON TO ALL ACTUATORS ***

DATA VLVOL/0.006/, KDEL/2/, KDPP/0.0062/, KE/59.4/,
1 DORFP/5/, DORFS/5/, O1P/0.005/, OLS/0.005/, ZSPP/15.0/, SSPP/50.0/,
2 ALS/0.338/, A2PS/0.274/, A3PB/0.263/, A4PR/0.327/,
6.105.7 (Continued)

3 AIS.1/.338/, A2SS/.230/, A3SB/.263/, A4SR2/.382/,
4 KA/11./, KTh/.04/, EQEL/50./, KQS/3.743/,
5 APS/.393/, XPS/.05/, KQLOSS/.0237/, ZS/6.5/, ZR/6.5/,
IF (IENTR) 1000, 2000, 3000
1000 IF (INEL. NE.0) GO TO 1500
C
C
C

INITIALIZATION
C

DO 1001 I=1,100
1001 DT(I)=O.0
C

CORRECT INPUT DATA FOR FLUID TEMPERATURE
I=KTEMP(IND)
DT(NQS)=S2ORHO(I)/SQRT(2.7.82E-5)
DT(NQPS)=D(KQPS)*DT(NQS)*SQRT(2.)
DT(NQLOSS)=KQLOSS*DT(NQS)
DT(NQS)=KQS*DT(NQS)
DT(13ETA)=BULK(I)
DT(FIBETA)=DT(13ETA)*D(AR)*D(AR)/D(KS)
CALL TUSTIN(1,1.,DT(KINT),DELT)
CALL TUSTIN(2,.005,DT(KFLOW),DELT)
CALL TUSTIN(2,.01872,DT(KCON),DELT)
C

SET UP SWITCHING VALVE CONSTANTS
DINP=.75/(12*32.2*DELT)
DELT02=DELT/2.0
BBVP=(DORFCP/A3PB)**2
BVP=BBVP*(.1+DINP)/2.0
SQBVP=BVP**2
BBVS=(DORFCS/A3SB)**2
BVS=BBVS*(.1+DINP)/2.0
SQBVS=BVS**2
DT(COLFPV)=2.0*.65*S2ORHO(I)
DT(COLFVS)=2.0*.65*S2ORHO(I)
DT(LHAK)=1000000.
C

L(ISYS)=1
IF(INV) 1220, 1250, 1200
1200 IF(L(9). EQ. INV) GO TO 1250
IF(L(10). EQ. INV) GO TO 1230
L(ISYS)=3
GO TO 1250
1220 IF(L(9). NE. -INV) GO TO 1250
1230 L(ISYS)=2
1250 CONTINUE
DT(LQSS)=RIIj/(1)*6.06
DT(LSWACT)=1.0/(DT(COFVPS)*.2)**2+DT(LSS)
IF(L(ISYS). GT. 2) GO TO 1260
DT(LSWACT)=DT(LSWACT)+1.0/(DT(COFVPS)*.2)**2+DT(LSS)
1260 CONTINUE
RETURN

6.105-20
6.105.7 (Continued)

------- STEADY STATE SECTION

1500 CONTINUE
QLOSS = (1.0/(DT(NQLOSS)*D(KCHAN)))**2
COES=DT(LEAK)
IF((KNE+1)/2.NE.L(ISYS)) GO TO 1600
DT(QS)=PQLEG(INEL,1)*POLEG(INEL,2)
COES=0.0

1600 QSA=PQLEG(INEL,1)
PDELTA=PQLEG(INEL,2)*QSA*(QSA*DT(LSWACT)+COES)
DELP=PQLEG(INEL,2)*QSA**2*QLOSS
PSA=PQLEG(INEL,11)-PDELTA
PRA=PSA-DELP
PQLEG(INEL,11)=PRA-PDELTA
PQLEG(INEL,6)=PQLEG(INEL,6)+COES*2.0
PQLEG(INEL,8)=PQLEG(INEL,8)+2.0*DT(LSWACT)+QLOSS
IF(COES.NE.0.0) GO TO 1700
DT(PP1)=PSA
DT(PP2)=PRA
1700 RETURN

------- VARIABLE INITIALIZATION

2000 CONTINUE
DT(NSUPRP)=DT(PP1)
DT(NKETRP)=DT(PP2)
DT(CSA)=DT(PP1)+DT(QS)*ZS
DT(CSV)=DT(PP1)-DT(QS)*ZS
DT(CRA)=DT(PP2)-DT(QS)*ZR
DT(CRV)=DT(PP2)+DT(QS)*ZR
DT(XFB)=DT(VC)*KA*KI/D(KF3)
DT(XFPB)=DT(XFB)
TAE= DT(KAERO)+DT(KAERO)*DT(XFB)
DT(RFXL)= D(MA0)+D(MA1)*DT(XFB)+D(MA2)*DT(XFB)**2
DT(XL)= DT(XFB)-(TAE/DT(RFXL))/D(KS)
DT(XLP)=DT(XL)
F1 = TAE/DT(RFXL)/D(AR)
DT(P8) = DT(PP1)-DT(PP2)
DELP = (DT(PP1)+DT(PP2))/2
DT(PP1) = DELP+F1/2
DT(PP2) = DELP-'1/2
DT(PL) = F1
DT(XIQ)=D(VOL1)+DT(XFB)*D(AR))/(1.-DT(PP1)/DT(IBETA))
DT(XIQ2)=D(VOL2)-DT(XFB)*D(AR))/(1.-DT(PP2)/DT(IBETA))
DT(VCL)=DT(VC)
DT(VCS)=DT(VC)
DT(DPFB)=DT(PL)*KDPL*KDPF/XL
DT(XP)=0.2
DT(XS)=0.2
6.105.7 (Continued)

IF(L(ISYS)-2) 2040, 2020, 2010
2010 DT(XS)=-.2
 GO TO 2040
2020 DT(XP)=-.2
2040 DT(XPP)=DT(XP)
 DT(XSP)=DT(XS)
 DT(QS)=0.0
 RETURN
3000 CONTINUE

*** TRANSIENT CALCULATIONS ***

**** INITIALIZE VARIABLES ****

RFXLS=DT(RFXL)
 DT(RFXL) = D(mA0)+D(mA1)*DT(XL)+D(mA2)*DT(XL)**2
RFXLP=2.*DT(RFXL)-RFXLS
 TAERO=DT(KAERO)+DT(KAEROP)*DT(XFBP)

SECONDARY ACTUATOR

----- SERVO AMPLIFIER

 DT(VCN)=DT(VC)
 DT(VCL)=DYNAM(DT(VCS),DT(VCL),DT(KCOM))
 DT(VCS)=DT(VCN)
 EYE=DT(VCL)*KA
 IF(ABS(EYE).GT.EYEL) E-ESIGNCEYEL,UYE)

----- TORQUE MOTOR

 TXPSS=DT(TXPS)
 DT(TXPS) = DT(XPS)*KXPS
 TXPSP=2.*DT(TXPS)-TXPSS
 TM = EYE*KTw
 EPST=TM-DT(XFBP)*D(KFB)-TXPSP-DT(TP)
 EPST = .03042*EPST
 IF(ABS(EPST).GT.0.02) EPST=SIGN(0.02,EPST)
 Delp=DT(PS)-SIGN(1.0,EPST)*DT(P1P)
 IF(DELP.LT.0.0) DELP=0.0
 DT(QS) = EPST*DT(NQS)*SQRABS(DELPI)

----- MAIN CONTROL VALVE POSITION

 DT(XQI) = DYNAM(DT(XYQS),DT(XQI),DT(KFLOW))
 DT(XPSD) = DT(XQI)/APS
 DT(XPS) = DYNAM(DT(XYXPSD),DT(XPS),DT(KINT))
 CALL XLI4T(DT(XPS),DT(XPSD),TM,-XPSL,XPSL)
 IF(TM.EQ.0.0) GO TO 60
 DT(QS)=0.0
 DT(XQI)=0.0
6.105.7 (Continued)

60 CONTINUE
DT(XYXPSD)=DT(XPS))
DT(XYQS)=DT(QS)
QLOSS = (ABS(DT(XQ1))+DT(QLOSS)*SQRA3S(DT(PS)))*D(KCHAN)
Q1S=DT(Q1)
Q2S=DT(Q2)
NXV=DT(XPS)/VLVOL
IF(NXV) 130, 170, 180

C
XPS LESS THAN 0

130 XPSS=((DT(XPS)+VLVOL)*DT(NQPS))**2
SGN=DT(CSA)-DT(PP1)+QLOSS*ZS
FN2=XPSS*ZS
ICALC=1
C
CALCULATE MAIN CONTROL VALVLE FLO'S

140 FLOW=(SQRT(FN2**2+4.0*XPSS*ABS(SGN)))-FN2)/2.0
ZCALC = ICALC
GO TO (150, 160, 190, 200), ICALC

C
DT(Q1)=SIGN(FLOW,SGN)
QRA = DT(Q1)-QLOSS
FN2=XPSS*ZS
SGN=DT(CSA)-DT(PP2)-QLOSS*ZS
ICALC=2
GO TO 140

160 DT(Q2)=SIGN(FLOW,SGN)
QSA = DT(Q2)+QLOSS
GO TO 220

C
XPS = 0

170 DT(Q1)=0.
FLOW=0.0
QSA = QLOSS
DT(Q2)=0.
QRA = -QLOSS
ICALC=5
GO TO 220

C
XPS GREATER THAN 0

180 XPSS=((DT(XPS)-VLVOL)*DT(NQPS))**2
FN2=ZS*XPSS
SGN=DT(CSA)-DT(PP1)-QLOSS*ZS
ICALC=3
GO TO 140

190 DT(Q1)=SIGN(FLOW,SGN)
6.105.7 (Continued)

\[
QSA = DT(Q1) + QLOSS
\]
\[
FN2 = 3R*XPSS
\]
\[
SGN = DT(CRA) - DT(PP2) + QLOSS*ZR
\]
\[
ICALC = 4
\]
\[
GO TO 140
\]
\[
200 DT(Q2) = \text{SIGN}(\text{FLOW}, SGN)
\]
\[
QRA = DT(Q2) - QLOSS
\]
\[
C220 PSA = DT(CSA) - ZS*QSA
\]
\[
PRA = DT(CRA) - ZR*QRA
\]
\[
VP = PVAP(\text{KTEMP(IND)})
\]
\[
\text{IF}(PRA, DT, VAP, AND, DT(NCAV) LE, 0.0) \text{ GO TO} 270
\]
\[
\text{GO TO} (230, 230, 240, 240, 250), ICALC
\]
\[
230 \text{FLO} = \text{SQRA} = (\text{XPSS}*(\text{VAP} - DT(PP1)))
\]
\[
DT(Q1) = \text{FLOW}
\]
\[
GO TO 250
\]
\[
240 FLOW = \text{SQRA} = (\text{XPSS}*(\text{VAP} - DT(PP2)))
\]
\[
DT(Q2) = \text{FLOW}
\]
\[
250 QRA = DT(CRA) - VAP)/ZR
\]
\[
PRA = VAP
\]
\[
DT(NCAV) = DT(NCAV) + FLOW - QLOSS - QRA
\]
\[
270 CONTINUL
\]
\[
DT(PS) = PSA - PRA
\]

C

\[
\text{ACTUATOR CHAMBER PRESSURES}
\]
\[
\text{PFLOW} = DT(VXLP)*D(AR)
\]
\[
\text{PD} = DT(XL)*D(AR)
\]
\[
\text{DT(XI1)} = DT(XI1) + 5*DELT*(DT(Q1) + QIS)
\]
\[
\text{DT(XI2)} = DT(XI2) + 5*DELT*(DT(Q2) + QIS)
\]
\[
\text{F1} = DT(FIBETA)/DT(XI1)
\]
\[
\text{F2} = DT(FIBETA)/DT(XI2)
\]
\[
\text{BETA1} = DT(FIBETA)*(1 + F2)/(1 + FQ1 + FQ2)
\]
\[
\text{BETA2} = DT(FIBETA)*(1 + FQ1)/(1 + FQ1 + FQ2)
\]
\[
\text{PPL} = BETA1*(1 - (PD - D(VOL1))/(DT(XI1))
\]
\[
\text{PP2} = BETA2*(1 + (PD - D(VOL2))/(DT(XI2))
\]
\[
\text{PP2} = PPL1 + PPL2
\]
\[
\text{PP2} = PP2 + PP21
\]
\[
\text{IF}(DT(PP1), LT, VAP) \text{ DT}(PPL) = VAP
\]
\[
\text{DT}(PP2), LT, VAP) \text{ DT}(PP2) = VAP
\]
\[
\text{PLS} = DT(PL)
\]
\[
\text{DT}(PL) = DT(PP1) - DT(PP2)
\]
\[
\text{DDL} = DT(PL)
\]
\[
\text{IF}(ABS(DLLT), GT, 2000) \text{ DLLT} = \text{SIGN}(2000, DLLT
\]
\[
\text{DT}(TP) = DLLT*KDEL*KDFP*KL*DT(DPPBP)
\]
\[
\text{TPNS} = DT(TPN)
\]
\[
\text{DT}(TPN) = \text{SQRA} = (\text{DT}(TP))
\]
\[
\text{DPF}3 = DT(DPF3)
\]
\[
\text{DT}(DPF3) = DT(DPF3) + 5*DELT*(DT(TPN) + TPNS)
\]
\[DT(DPFB) = 2 \times DT(DPFB) - DPBS \]

--- LOAD DYNAMICS

- \(FL = DT(PL) \times D(AR) \)
- \(TR = FL \times RFXLP \)
- \(DT(XSD) = FL / D(KS) \)
- \(FDRIVE = TR - TAERO \)

CALL CFRIC2(FDRIVE, FF, DT(VXLP), DT(VXL), DT(TE), DT(XYTE),

1 DT(DELIEDI), DELS, 201000., 1.263, 1.)

DT(TE) = FDRIVE + FF - DT(VXLP) * D(BE) / RFXLP

DELS = DT(DELIEDI)

DT(DELIEDI) = DYNAM(DT(XYTE), DT(DELIEDI), DT(KINT))

VXLS = DT(VXL)

DT(VXLP) = DT(DELIEDI) * RFXLP / D(IE)

DT(VXLP) = 2 \times DT(VXL) - VXLS

DT(XYTE) = 2 \times DT(TE)

XLS = DT(XL)

DT(XL) = DYNAM(DT(XYLED), DT(XL), DT(KINT))

DT(XLP) = 2 \times DT(XL) - XLS

DT(XYLED) = DT(VXL)

XFB = DT(XFB)

DT(XFB) = DT(XL) + DT(XSD)

DT(XFBP) = 2 \times DT(XFB) - XFB

DELP = DT(PP1) - DT(PP2)

PLS = DT(P1)

DT(P1) = DT(XPS) * D(KB) * (DT(PS) - SIGN(DELP, DT(XPS))) / APS / D(KCHAN)

DT(PLP) = 2 \times DT(P1) - PLS

--- SWITCHING VALVE CALCULATIONS

DO 3010 I = 1, 6

IL = L(I)

Q(IL) = 0, 0

3010 P(IL) = C(IL)

QSV = 0, 0

QRV = 0, 0

PSV = DT(CSV)

PRV = DT(CRV)

NS = 1

PXP = DT(XP) * 2.0 - DT(XPP)

PXS = DT(XS) * 2.0 - DT(XSP)

NDISVP = PXP / OLP

NDISVS = PXS / OLS

IF(NDISVS) 3020, 3040, 3029

3020 COE = ((PXS + OLS) * DT(COEFVS)) ** 2

COE = COE / (COE * DT(LOSS) + 1.0)

NS = 3

GO TO 3036

3029 IF(NDISVP) 3030, 3045, 3035
6.105.7 (Continued)

3030 NS=2
3035 COEP=1.0/((PX-P+SIGN(OLP,PXP))*DT(COEFP))**2+DT(LOSS)
COES=1.0/((PX5-OLS)*DT(COEFS))**2+DT(LOSS)
COE=1.0/(COEP+COES)
3036 LS=NS*2
LR=L(LS)
LS=L(LS-1)
C SUPPLY CALCULATION
ZA=(Z(LS)+ZS)*COE/2.0
QSV= -ZA+SQRT(ZA**2+ABS(C(LS)-DT(CSV))*COE)
QSV= SIGN(QSV,C(LS)+DT(CSV))
PSV=DT(CSV)+ZS*QSV
Q(LS)=QSV
P(LS)=C(LS)-QSV*Z(LS)
DT(NSUPRP)=C(LS)-QRV*(Z(LS)-ABS(QRV)*COEP)
C RETURN CALCULATION
ZA=(Z(LS)+ZR)*COE/2.0
QRV= -ZA+SQRT(ZA**2+ABS(C(LR)-DT(CRV))*COE)
QRV= SIGN(QRV,C(LR)-DT(CRV))
PRV=DT(CRV)+ZR*QRV
Q(LR)=QRV
P(LR)=C(LR)-QRV*Z(LR)
DT(NRETRP)=C(LR)-QRV*(Z(LR)-ABS(QRV)*COEP)
3040 N=1
IF(NDISVP) 3043,3100,3044
3043 N=N+2
3044 DT(NSUPRP)=P(L(N))
DT(NRETRP)=P(L(N+1))
GO TO 3100
3045 DT(NSUPRP)=PSV
DT(NRETRP)=PRV
3100 CONTINUE
VELPO=DT(VELP)
PBST=P(L(1))
IF(PXP.LT.0.1) PBST=P(L(2))
PSPL=(ZSPP-SPPP*PX+P(L(3))*A2PS2+P(L(4))*A4PR2-P(L(1))*A1PS1)
PSPL=(PSPL-VELPO*DINP)/A3PB
DT(VELP)=-3VP+SQRT(SQ3VP+3BVP*ABS(PBST-PSPL))
DT(VELP)=SIGN(DT(VELP),PBST-PSPL)
DT(XPP)=DT(XP)
DT(XP)=DT(XP)+(VELPO+DT(VELP))*DELTIA
CALL XLIMIT(DT(XP),DT(VELP),PSPL,-.2,.2)
IF(PSPL.NE.0.0) DT(XPP)=DT(XP)
C VELSO=DT(VELS)
PBST=DT(NSUPRP)
IF(PXP.LT.0.1) PBST=DT(NRETRP)
PSPL=(ZSPP-SPPP*PX+P(L(5))*A2SS2+P(L(6))*A4SR2)
1 -LT(NSUPRP)*A1SS1)
PSPL=(PSPL-VELSO*DINP)/A3SB
6.105.7 (Continued)

\[DT(VELS) = -BVS + \sqrt{SOBVS + BBVS \cdot ABS(PBST - PSPL)} \]
\[DT(VELS) = \text{SIGN}(DT(VELS), PBST - PSPL) \]
\[DT(XSP) = DT(XS) \]
\[DT(XS) = DT(XS) + (VELSO + DT(VELS)) \cdot DELTO2 \]
\[\text{CALL XLIMIT}(DT(XS), DT(VELS), PSPL, -2, 2) \]
\[\text{IF}(PSPL \neq 0.0) \ DT(XSP) = DT(XS) \]
\[DT(CSA) = PSV + ZS \cdot QSV \]
\[DT(CSV) = PSA - ZS \cdot QSA \]
\[DT(CRA) = PRV + ZR \cdot QRV \]
\[DT(CRV) = PRA - ZR \cdot QRA \]
\[\text{RETURN} \]
\[\text{END} \]
Subroutine ACT106 is a model of the space shuttle body flap actuation subsystem, a schematic of which is shown in Figure 6.106-1. The subsystem basically consists of three hydraulic motors, a valve, a mechanical drive unit, and rotary surface actuators. The component has six hydraulic connections, two for each hydraulic system, attached to it. Each system powers a motor. The output of the motors is summed in the mechanical drive which in turn drives the rotary surface actuators to position the body flap.

A single valve controls the flow to all three motors. The guidance and control subroutine provides the input commands and hinge moments at each sample time interval of the guidance system, which is .04 seconds. The valve may be commanded to open in the extend direction, open in the retract direction or close.

The body flap subsystem is essentially an open loop system with no feedback between the body flap and the valve. The position of the body flap is supplied to the command and control subroutine which commands the position of the valve.
BODY FLAP ACTION

FIGURE 6.106-1
6.106.1 MATH MODEL

The body flap model, Figure 6.106-1, receives input commands from the guidance and control program. The command signal, DT(VC), commands the valve to open in either the extend or retract direction, or to close.

The pressures and flows at the component connections, Q(L1), Q(L2), P(L1) and P(L2) are then calculated. The pressure drop due to the load on the motor is,

\[
P_{\text{MLR}} = \frac{(Q_R - V_{\text{MTR}} \cdot R_{\text{DIS}})}{D_{\text{KPQ}}} \tag{6.106-1}
\]

where

- \(P_{\text{MLR}}\) is the pressure drop due to motor load,
- \(Q_R\) is the flow through the valve,
- \(V_{\text{MTR}}\) is the velocity of the motor,
- \(R_{\text{DIS}}\) is the displacement of the motor,
- \(D_{\text{KPQ}}\) is the motor leakage coefficient.

The total pressure drop through the valve is,

\[
P_{\text{S-PMR}} = \frac{Q_R^2}{C_{\text{K}}^2} \tag{6.106-2}
\]

where

- \(P_{\text{S}}\) is the pressure drop between connections,
- \(C_{\text{K}}\) is the valve coefficient.

Combining Equations 6.106-1 and 6.106-2 and simplifying,

\[
\frac{Q_R^2}{C_{\text{K}}^2} + \frac{Q_R}{D_{\text{KPQ}}} = P_{\text{S}} + \frac{(V_{\text{MTR}} \cdot R_{\text{DIS}})}{D_{\text{KPQ}}}
\]

With \(Q_R\) known the loads on the body flap and the position of the body flap are determined using the model in Figure 6.106-2.

6.106.2 Assumptions

The model of the mechanical drive was derived from the rudder/speedbrake model. Values of panel inertia, stiffness and damping are approximations based upon similar rudder/speedbrake value.
6.106.3 Computational Method

This subroutine uses Tustin's method of integration and is arranged such that each differential is evaluated using the latest value of the previous integral in a series calculation, rather than the more usual parallel integration methods where the integrals are effectively evaluated simultaneously using previous values to evaluate the derivatives.

Predicted values are used to improve the calculation, where the use of a previous value would incur a significant error. The computation follows the usual component model layout shown in Figure 6.1-1 on Page 6.1-2.

1000 SECTION

This section is used to initialize the integration constants used by the subroutine. Subroutine Tustin is called to initialize each of the constants. Subroutine variables are zeroed.

1500 SECTION

This section is used to return values for the steady state calculation. In the steady state calculation the motors are assumed to be stopped and the valves are closed. The steady state flow for each system is assumed to be a leakage flow through the valve.

2000 SECTION

This section is used to initialize the subroutine variables to their steady state values. If the body flap has an initial position other than zero the variables used to calculate the body flap position are evaluated.

Constants used by the 3000 section are evaluated.

3000 SECTION

The 3000 section models the transient response of the body flap and follows the model in Figure 6.106-2. It is divided into four parts. Part one models the valve, part two models the pressure and flow demands of the...
hydraulic motors, part three models the load dynamics of the rotary actuators and aerodynamic panel and part four models the gear efficiency.

In part one a command is received from the guidance and control program. This command may be +1, -1 or 0. The command is delayed .05 seconds before being used by the subroutine. If within the .05 second delay the command is changed the new command is used at the end of the delay. The command, \(A(\text{COM}) \), has a lag with a time constant of .0083 seconds. The lagged command, \(A(\text{XPSL}) \), is multiplied by the power valve flow coefficient. If \(A(\text{XPSL}) \) is positive the flap up flow coefficient, \(U_{KQP} \), is used. If \(A(\text{XPSL}) \) is negative the flap down flow coefficient \(D_{KQP} \), is used. If \(A(\text{XPSL}) \) is zero the flow coefficient is assumed to have a leakage value of .00000001.

The resulting power valve flow coefficient, \(C_K \), is used to calculate the flow through the body flap.

Part two of the 3000 section uses the power valve flow coefficient, \(C_K \), calculated in part one to calculate the pressure and flow demands of the body flap motors. The calculations in part two are performed three times, once for each hydraulic system connected to the body flap. The flow through the valve, \(Q_R \), is calculated. This flow is equal to the flow through the body flap. With the flow known the pressures at the connections are calculated. The flow, \(Q_R \), is then used to calculate the velocity of the body flap motor, \(A(\text{VMTR+MA}) \), (\(NA \) may equal 0, 1 or 2 depending on which system is being solved).

Part three sums the individual body flap motor velocities. The total velocity is integrated to give the total angular displacement of the power drive unit, \(A(\text{POSR}) \). The angular displacement is then divided by the total mechanism gear ratio to give the total angular displacement of the drive mechanism. The torque caused by the load on the panel is calculated.
next. The torque is integrated twice to yield the position of the body flap aerodynamic panel under load.

Part four models the gear efficiency of the body flap drive mechanism.

6.106.4 APPROXIMATION

The values for the panel friction and damping were estimated since no data was available. The inertia of the panel is based upon the rudder/speedbrake panel inertia.

6.106.5 LIMITATIONS

Little data was available for the body flap, therefore, when necessary, rudder/speedbrake data was used. This, obviously, will produce some error in the body flap performance. However, the flow requirements and surface rates do approximate those specified for the body flap.
Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROTI</td>
<td>Body flap aerodynamic load</td>
<td>in-¥</td>
</tr>
<tr>
<td>BM</td>
<td>Motor viscosity friction coefficient</td>
<td>.015 in-lb-sec</td>
</tr>
<tr>
<td>BP</td>
<td>Viscous damping of panel</td>
<td>40000. in-lb-sec</td>
</tr>
<tr>
<td>BRK</td>
<td>Motor brake torque</td>
<td>in-lb</td>
</tr>
<tr>
<td>A(COM)</td>
<td>Time delayed input command</td>
<td>deg</td>
</tr>
<tr>
<td>CK</td>
<td>Valve flow characteristic</td>
<td>cis/ psi</td>
</tr>
<tr>
<td>DJMR</td>
<td>Motor moment of inertia</td>
<td>.00636 in-lb-sec²</td>
</tr>
<tr>
<td>DJI'</td>
<td>Inertia of body flap panel</td>
<td>2579. in-lb-sec²</td>
</tr>
<tr>
<td>DKHC</td>
<td>Rotary actuator spring constant</td>
<td>16.5E6 in-lb/rad</td>
</tr>
<tr>
<td>DKPQ</td>
<td>Motor leakage coefficient</td>
<td>.001 cis/psi</td>
</tr>
<tr>
<td>DKQP</td>
<td>Body flap down valve coefficient</td>
<td>cis/ psi</td>
</tr>
<tr>
<td>DLAC</td>
<td>Power valve and linkage response time</td>
<td>.0083 sec</td>
</tr>
<tr>
<td>DMLK</td>
<td>Valve leakage impedance</td>
<td>1.0E6 psi/cis</td>
</tr>
<tr>
<td>EFFII</td>
<td>Gear efficiency</td>
<td>96 percent</td>
</tr>
<tr>
<td>A(FAR+MA)</td>
<td>Net motor torque</td>
<td>in-lb</td>
</tr>
<tr>
<td>A(FBP)</td>
<td>Net torque on panel</td>
<td>in-lb</td>
</tr>
<tr>
<td>FDR</td>
<td>Gross developed motor torque</td>
<td>in-lb</td>
</tr>
<tr>
<td>FFP</td>
<td>Friction force on body flap panel</td>
<td>in-lb</td>
</tr>
<tr>
<td>FFR</td>
<td>Friction force on motor</td>
<td>in-lb</td>
</tr>
<tr>
<td>FRIC</td>
<td>Motor column friction</td>
<td>9.0 in-lb</td>
</tr>
<tr>
<td>FRICP</td>
<td>Panel column friction</td>
<td>9.0 in-lb</td>
</tr>
<tr>
<td>A(FSTR)</td>
<td>Body flap panel load</td>
<td>in-lb</td>
</tr>
<tr>
<td>CH</td>
<td>Power train gear ratio</td>
<td>56640</td>
</tr>
<tr>
<td>A(KINT)</td>
<td>Integration constant</td>
<td>-</td>
</tr>
<tr>
<td>A(LAG)</td>
<td>Integration constant</td>
<td>-</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Supply connection number</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>Return connection number</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>System indicator</td>
<td></td>
</tr>
<tr>
<td>A(PMLR+MA)</td>
<td>Body flap motor load pressure (psi)</td>
<td></td>
</tr>
<tr>
<td>A(POSR)</td>
<td>Total drive unit rotation (rad)</td>
<td></td>
</tr>
<tr>
<td>A(PSC+MA)</td>
<td>System pressure loss across body flap (psi)</td>
<td></td>
</tr>
<tr>
<td>QR</td>
<td>Flow through body flap (cis)</td>
<td></td>
</tr>
<tr>
<td>RMDIS</td>
<td>Motor volumetric displacement (.01432 in³/rod)</td>
<td></td>
</tr>
<tr>
<td>A(RPOSR)</td>
<td>Body flap position (rad)</td>
<td></td>
</tr>
<tr>
<td>SPOSFR</td>
<td>Body flap deflection (rad)</td>
<td></td>
</tr>
<tr>
<td>SPOSIR</td>
<td>Body flap hinge rotation (rad)</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Ratio of motor static to coulomb friction (2.0)</td>
<td></td>
</tr>
<tr>
<td>SHP</td>
<td>Ratio of panel static to coulomb friction (2.0)</td>
<td></td>
</tr>
<tr>
<td>STR</td>
<td>Torque due to body flap deflection (in-lb)</td>
<td></td>
</tr>
<tr>
<td>SXPS</td>
<td>Sign of valve opening</td>
<td></td>
</tr>
<tr>
<td>DT(TAERO)</td>
<td>Aerodynamic load from SDF (in-lb)</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Gear box reaction torque (in-lb)</td>
<td></td>
</tr>
<tr>
<td>TSW</td>
<td>Valve delay counter (sec)</td>
<td></td>
</tr>
<tr>
<td>UKQP</td>
<td>Body flap up valve coefficient (cis/psi)</td>
<td></td>
</tr>
<tr>
<td>DT(VC)</td>
<td>Body flap position command</td>
<td></td>
</tr>
<tr>
<td>VLVOL</td>
<td>Power valve overlap (.043 in)</td>
<td></td>
</tr>
<tr>
<td>VM</td>
<td>Motor fluid volume (2.77 in³)</td>
<td></td>
</tr>
<tr>
<td>A(UMTR+MA)</td>
<td>Body flap motor velocity (rad/sec)</td>
<td></td>
</tr>
<tr>
<td>A(VRT)</td>
<td>Sum of motor velocities (rad/sec)</td>
<td></td>
</tr>
<tr>
<td>A(XPS)</td>
<td>Valve position</td>
<td></td>
</tr>
</tbody>
</table>

6.106-8
6.106.7 Subroutine Listing

SUBROUTINE ACT106 (D, DT, DD, L)

SHUTTLE BODY FLAP MODEL

REVISED AUGUST 28, 1976

COMMON NTNLPL, NTOLPL, IPT, IPOINT, NPTS, IREL, NREL, NTOPL, NLPLT(61,3),
1 PQLE(90,12), LCS(90,10), LLEG(1400), PN(90), QN(90)
COMMON/SUB/FARM(150,9), PM(1500), QM(1500), P(300), Q(300), C(300)
1, Z(300), RHO(20), S2ORHO(20), VISC(20), BULK(20), TEMP(20), PVAP(20)
2, ATPRES,T, DELT, TFINAL, PLTDEL, PI, TITLE(20), LEGN, ICON
3, KTEMP(99), LSTART(150), NLPLT(150), LTYPE(99), NC(99), INV, INX
4, INV, ISTE, MLINE, INL, IND, IENTR, MNLINE, MNL, MNLEG, MNNODE, MNPLT
5, MNLPTS, MDS

DIMENSION D(1), DT(13), DD(1), L(1), A(70)

REAL MTORR
INTEGER XPS, POSR, RPOSRS, RPOSRS, RPIR, PSC, QRS, PHLR,
1 VMTR, VTR, TR, FSTR, RP1, VC, TAERO, VTRP, VRHO, FAR, FARO
2, XPSS, XPSN, XPSL, VBP, FBPO, VBPO, COM

----------- A ARRAY VARIABLES -----------
DATA XPS/1/, PSC/2/, QRS/5/, PMLR/8/, VMTR/11/, TR/14/, VTR/17/
1, POSR/20/, RPOSRS/21/, RPOSRS/22/, RP1/24/, FAR/25/
2, FARO/28/, VTR/30/, FSTR/32/, RP1/35/, KINT/37/, KSSGN/40/
3, KRP1/41/, VTRP/44/, VRHO/47/, LAG/50/, XPSL/53/, XPSS/54/, XPSN/55/
4, VBP/60/, FBPO/61/, FBPO/65/, VBPO/66/, COM/69/

----------- DT ARRAY VARIABLES -----------
DATA VC/1/, TAERO/4/

INITIALIZATION OF CONSTANTS
DATA DKPQ/.001/, VM/2.77/, D/1800000., DJP/2579./,
1 BP/400000., DMLR/1.0E6/, DKVC/.002/, DKPI/.000138/,
2 DKA/15.0/, DRT/0.045/, DKXPS/6.22/, DAPS/0.193/
3 VLVOL/.043/, RNDS/.01432/, Bm/.015/, DJMR/.00636/
4 DKPR/.184/, DKHC/16.5E6/, DKB/.52/,
5 GH/56640./, EFH/.82/, EPPG/.96/, FRIC/.90/
6 SR/2.0/, SF/1.0/, DI/.006/, DIL/8.0/, DLAG/.0083/
7, FRICP/9.0/, SRC/2.0/, SPF/1.0/

IF (IENTR) 1000, 2000, 3000
1000 IF (INL.NE.0) GO TO 1500

---------- INITIALIZATION ----------
DO 1001 I=1,70
1001 A(I)=0.0
DO 1002 I=1,11
1002 DT(I)=0.0
TDRHO=8200000(KTEMP(IND))/SQRT(2./7.82E-5)
CALL TUSTIN (1, DUMMY, A(KINT), DELT)
CALL TUSTIN (2, DLAG, A(LAG), DELT)
6.106.7 (Continued)

CON3=DJP/BP
CALL TUSTIN(2,CON3,A(KRP1),DELT)
RETURN

1500 CONTINUE

A=(({INEL+1)/2)-1
QA=POLEG(INEL,1)
QS=POLEG(INEL,2)
POLEG(INEL,6)=POLEG(INEL,6)+DMLK
POLEG(INEL,11)=POLEG(INEL,11)-QA*QS*DMLK
A(PSC+1A)=QA*QS*DMLK
A(QRS=1A)=QA*QS
RETURN

2000 CONTINUE

UKQP=(.65*320RHO(KTMP(IND))*PI/4.0)**2
DKQP=UKQP*.112**4
UKQP=UKQP*0.63**4
UKQP=UKQP*DKQP/(UKQP+DKQP)
DELT2=DELT/2.0
A(RPOSAP)=DT(2)/57.3
A(RPOSAP)=A(RPOSAP)
A(PORR)=A(RPORR)+(DT(2)*DT(TAERO+1)+DT(TAERO))/DKHC
A(PORR)=A(PORR)*G
A(COH)=DT(VC)
RETURN

3000 CONTINUE

IF(DT(VC),NE.A(COH))GO TO 3050
TSW=.050
GO TO 3070

3050 TSW=TSW=DELT
IF(TSW.LE.0.0)A(COH)=DT(VC)

3070 CONTINUE

AERO1=DT(TAERO)+DT(TAERO+1)*A(RPOSAP)*57.3
XPOS=A(RPOSAP)*57.3
CALL XLIMIT(XPOS,A(COH),A(KSSGN),-11.7,22.5)
A(XPS)=A(COH)
DT(8)=A(XPS)
A(XPSN)=A(XPS)
A(XPSS)=DYNAM(A(XPSS),A(XPSL),A(LAG))
A(XPSS)=A(XPSN)
DT(6)=A(XPSS)
SXPS=SIGN(1.0,A(XPSL))
NXV=A(XPSL)/VLVOL
IF(NXV)3100,3110,3120

C --------- XPS LESS THAN ZERO ---------

C

3100 XVVL=A(XPSL)+VLVOL
CK=DKQP*ABS(XVVL)
GO TO 3130

C --------- XPS LESS THAN VALVE OVERLAP ---------

3110 XVVL=0.0
6.106.7 (Continued)

CK=.00000001
GO TO 3130
C -------- XPS GREATER THAN ZERO --------
3120 XXLV=A(XPSL)-VLVOL
CK=UKQP*XXXLV
3130 DT(7)=XXLV
C -------- PRESSURE DROP BETWEEN CONNECTIONS -------
C THE VARIABLES IN THE A ARRAY WILL BE USED IN SETS OF THREE
C USING ONE POSITION FOR EACH SYSTEM. THE POSITION WILL BE
C DETERMINED BY THE CONSTANT &A.
B1=CK/DKPQ
C
DO 3300 I=1,3
&2A=I-1
LI=L(2*I-1)
L2=L(2*I)
PS=A(PSC+&A)
QVR=A(VTR+&A)*RNDIS
C1=(PS+QVR*3XPS/DKPQ)*CK
QR=(-B1+SQRT(B1**2+4.*0*C1))/(2.*0)
QR=SIGN(QR,C1)
A(PSC+&A)=C(L1)-QR*Z(L1)-C(L2)-QR*Z(L2)
Q(L1)=QR
Q(L2)=-QR
P(L1)=C(L1)-Q(L1)*Z(L1)
P(L2)=C(L2)-Q(L2)*Z(L2)
A(PAR+&A)=(QR*XPS-A(VTR+&A)*RNDIS)/DKPQ
ATORR=A(PAR+&A)*RNDIS
C
C ---------- MOTOR FRICTION AND DAMPING EFFECTS --------
C
FRR=ATORR-A(TRN+&A)
BRK=0.0
IF(P(L1),LT,2220.)BRR=(2220.-P(L1))/2220.*73.8
CALL CFRTC(FDR,FRR,A(VTR+&A),A(VTR+&A),A(FAR+&A),A(FAR+&A)
1,FRTC3RR,SRR,BF)
A(FAR+&A)=A(FAR+&A)
A(FAR+&A)=FRR-A(VTR+&A)*(B1/DJR)+FRR
A(VTR+&A)=A(VTR+&A)
A(VTR+&A)=A(VTR+&A)+DLT2*(A(FAR+&A)+A(FAR+&A))
A(VTR+&A)=2.0*A(VTR+&A)-A(VTR+&A)
A(VTR+&A)=A(VTR+&A)/DJR
3300 CONTINUE
C
C ----------- LOAD DYNAMICS -----------
C
A(VRT)=A(VRT+1)
A(VRT+1)=A(VTR)+A(VTR+1)+A(VTR+2)
A(POSR)=DYNAT(A(VTR),A(POSR),A(KINT))
SPROT=A(POSR)/G

6.106-11
SPOSFR=SPOSIR-A(RPOSR)
STR=SPOSFR*DKHC
A(FSTR)=STR-AEROT1
CALL CFRIC(A(FSTR),FFP,A(VBPP),A(VBP),A(FBP+1),A(FBP0)
A(FBPO)=A(FBP+1)
A(FBP+1)=A(FSTR)-A(VBPP)*(BP/DJP)+FFP
A(VBPO)=A(VBP)
A(VBP)=DYNAM(A(FBP),A(VBP),A(KINT))
A(VBPP)=2.0*A(VBP)-A(VBPO)
A(RP1)=A(RP1+1)
A(RP1+1)=A(VBP)/BP
A(RPOSR)=A(RPOSR)
A(RPOSR)=DYNAM(A(RP1),A(RPOSR),A(KINT))
A(RPOSRP)=2.0*A(RPOSR)-A(RPOSR)
WRITE(6,4700)A(VRT),A(VRT+1),A(POS),A(VBP),STR,AEROT1,A(FSTR)
C 1 A(FBP+1),A(RP1+1),A(RPOSR)
C4700 FORMAT(2X,1H3,2X,10E12.5)
C
C ----------- GEAR EFFICIENCY CALCULATION -----------
C ----------- HINGE GEAR EFFICIENCY -----------
C
TRP=STR/GH
DO 3440 I=1,3
NA=I-1
IF(STR*A(RP1).GE.0.0) GO TO 3410
TRPH=TRP/EFFH
GO TO 3440
3410 TRPH=TRP*EFFH
3440 A(TR+NA)=TRPH
 DT(2)=A(RPOSR)*57.3
 DT(3)=A(VRT+1)*60./(2.*3.14159)
 DT(10)=A(POS)*57.3
 DT(11)=A(RP1+1)
RETURN
END
6.107 SUBROUTINE ACT107

Subroutine ACT107 models the shuttle rudder/speedbrake actuation subsystem, the layout of which is shown in Figure 6.107-1. The subsystem consists of six hydraulic motors, two power valves and two 4-channel servo actuators. Each system powers two motors, one for the rudder and one for the speedbrake. The servo actuators which control the power valves are powered by a single system. All three hydraulic systems power the motors and a switching valve selects one of the three systems to supply the servo actuator. A single power valve controls all three rudder motors and a single power valve controls all three speedbrake motors. The input command and hinge moments are supplied by a guidance and control program which updates the values at each sample time interval of the guidance system which is .04 seconds.

6.107.1 Math Model

The ACT107 rudder/speedbrake model is shown in Figure 6.107-2. The figure shows one of the four rudder servovalves, the rudder power valve and the rudder motor. The models of the speedbrake are identical to those of the rudder except for constants which describe the physical characteristics of the rudder and speedbrake. Figure 6.107-2 also shows the rotary actuator and aerodynamic surface model which is common to both the rudder and speedbrake.

The following portions of the rudder/speedbrake description which specify the rudder apply equally well to the speedbrake.

The rudder receives input commands from the command and guidance program. The input command, \(V_C \), and the rudder position feedback, \(V_{FP} \), are summed to yield an error signal which drives the first stage flapper valve of a two stage servovalve.

The ACT107 model uses the error signal to calculate the pressure and flow demands of the rudder/speedbrake. The rudder/speedbrake may be represented
RUDDER/SPEEDBRAKE ACTUATION SUBSYSTEM

FIGURE 6.107-1
by six parallel orifices with a common supply and return, Figure 6.107-3.

Two of the orifices represent the servovalves first stage flapper valves. Two of the orifices represent the servovalves second stage valve and the mod piston. The third set of orifices represent the power valves and rudder/speedbrake motors.

The total flow through the system is equal to the sum of the flows through each orifice.

\[Q_T = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 \]

6.107.1

where, \(Q_T \) is the total flow through the rudder/speedbrake

\(Q_1 \) to \(Q_6 \) are the flows through each orifice

The flow through each orifice is

\[Q_N = C_N \frac{1}{2} \left(\frac{P_{LN}}{P_S} \right)^{1/2} \quad N = 1,6 \]

6.107.2

where \(Q_N \) is the flow through each orifice,

\(C_N \) is the orifice flow coefficient,

\(P_S \) is the pressure drop across the component connections,

\(P_{LN} \) is the load pressure on each orifice.

Combining 6.107.1 and 6.107.2

\[Q_T = P_S^{1/2} \frac{1}{2} C_N \left(\frac{P_{LN}}{P_S} \right)^{1/2} \]

6.107.2a

\(C_N \) must be determined for each orifice.

For the two orifices which represent the rudder and speedbrake flapper valve \(C_N \) is simply the first stage leakage coefficient, DQLOSS.

The orifice flow coefficient for the rudder and speedbrake second stage valve varies depending upon the error signal to the flapper valve. The error signal produces a torque in the flapper valve torque motor which is summed with the secondary wire feedback torque and the pressure compensated feedback torque to yield a flapper valve error torque.

6.107-4
Rudder Flapper Valve

Speedbrake Flapper Valve

Rudder Second Valve

Rudder Mod Piston

P(L1) PS = P(L1) - P(L2)

Speedbrake Second Valve

Speedbrake Mod Piston

Rudder Power Valve

Rudder Motor

Speedbrake Power Valve

Speedbrake Motor

Figure 6.107.3
Rudder/Speedbrake Flow Model
\[\text{EPST} = \text{TC} - \text{TXPS} - \text{TP1} \]

where, \(\text{EPST} \) is the flapper valve error torque,
\(\text{TC} \) is the torque motor input torque,
\(\text{TXPS} \) is the wire feedback torque,
\(\text{TP1} \) is the pressure compensated feedback torque.

The orifice coefficient is then calculated from
\[\text{K2} = \text{EPST} \times \text{DKQS} \]

where, \(\text{K2} \) is the orifice flow coefficient for the rudder,
\(\text{DKQS} \) is the secondary valve flow gain.

The orifice coefficient for the power valve depends upon the displacement of the power valve. The power valve displacement is equal to the displacement of the mod piston which is,
\[
\text{FLOW} = \frac{\text{XQI} \times \sqrt{\text{PS} - \text{P1P}}}{\text{DAPS}} \\
\text{XQS} = \frac{\text{FLOW}}{\text{DAPS}} \\
\text{XPS} = \text{XQS}
\]

Where, \(\text{FLOW} \) is the flow to the mod piston,
\(\text{XQI} \) is the secondary valve flow coefficient,
\(\text{P1P} \) is the mod piston load pressure,
\(\text{XQS} \) is the mod piston velocity,
\(\text{DAPS} \) is the mod piston area,
\(\text{XPS} \) is the displacement of the mod piston and power valve.

The flow coefficient for the power valve is,
\[\text{K5} = (\text{XPS} - \text{VLVOL}) \times \text{DKQP} \]

where, \(\text{K5} \) is the power valve flow coefficient,
\(\text{VLVOL} \) is the valve overlap,
\(\text{DKQP} \) is the power valve flow gain.

The power valve and motor are modeled as shown in Figure 6.107-4.
The pressure drop across the valve and motor, PS, is

$$PS = PV + PM$$

Where, PV is the pressure drop across the valve,

PM is the pressure drop across the motor.

PS in terms of the flows through the orifices is

$$PS = \frac{QR^2}{K5^2} + \frac{QR - QVR}{DKPQ}$$

where, QR is the flow through the valve,

QVR is the flow displaced by the motor,

$DKPQ$ is the motor leakage coefficient.
With the orifice flow coefficients, CN, calculated for each of the six orifices a total flow coefficient, CT, is calculated

$$CT = CN(1 - \frac{PrN}{PS})^{1/2} \quad N = 1, 6$$

6.107.4

For the flapper valve orifices and the power valve and motor equivalent orifice, PlN is equal to zero.

The pressure drop across the component is

$$PS = Cl - C2 - QTZ1 - QTZ2$$

6.107.5

where, $C1$ and $C2$ are the characteristic line pressures, $Z1$ and $Z2$ are the line impedance. The pressure drop across the component in terms of $C1$ is:

$$PS = \frac{QT^2}{CT^2}$$

6.107.6

Combining 6.107.5 and 6.107.6 and solving for QT,

$$QT = \frac{-CT^2(Z1 + Z2) + \sqrt{(CT^2(Z1 + Z2))^2 + \frac{4(CT^2(C1 - C2))}{CT^4(Z1 + Z2)^2}}}{2}$$

QT is compared to the QT calculated during the previous time step and if the difference is less than .001 CIS the program proceeds to the next section.

If the difference between the old and new QT is greater than .001 CIS and $ITER$ is less than 25, PS is recalculated using equation 6.107.4 and CT and QT are recalculated.

With the pressure drop across the component calculated the flow through the power valve, QR, may be calculated. The pressure drop across the power valve and motor is,

$$PS = \frac{QR^2}{K^2} + \frac{QR - QVK}{QKPQ}$$
Solving for QR yields,

\[
QR = \frac{-K^2_{52}}{DKPQ} + \sqrt{\frac{K^2_{52}}{DKPQ} + 4 \frac{K^2_{52} QR}{DKPQ} + PS}
\]

With QR known, the left and right rudder panel positions may be calculated using the model in Figure 6.107-2.

6.107.2 Assumptions

The model is limited to simulating one channel of the secondary actuator and it is assumed that the other channels are operative and will give identical outputs in terms of available force at the power spool.

6.107.3 Computational Method

This program uses Tustin's method of integration and is arranged such that each differential is evaluated using the latest value of the previous integral in a series calculation, rather than the more usual parallel integration methods, where the integrals are effectively evaluated simultaneously using previous values to evaluate the derivatives.

Predicted values are used to improve the calculation where the use of a previous value would incur a significant error. The computation follows the usual component subroutine layout shown in Figure 6.1-1 on Page 6.1-2.

1000 SECTION

This section is used to initialize the integration constants used by the subroutine. Subroutine Tustin is called to initialize each of the constants.

The system used to supply the servovalve is also selected using the input constant INV which indicates which systems are active or shut down.

1500 SECTION

This section is used to return values for the steady state calculation so that the system state conditions can be calculated. It is assumed that
the secondary actuators and the motors are at zero velocity. For the two hydraulic systems used to power the motors only, the steady state flow consists of leakage flow past the power valve. The leakage impedance is added to the \(Q \) value in \(\text{PQLEG(INEL,6)} \), and the pressure drop \(A(PSC+MA) \) is subtracted from the inlet pressure \(\text{PQLEG(INEL,11)} \). \(MA \) may have the value of 0, 1 or 2 depending on whether the pressure for system 1, 2 or 3 is being calculated.

For the system which supplies the two 4-channel servovalves the only steady state flow is that due to the first stage servovalve leakage. It is assumed that the leakage through the second stage control valve and the power valve are small compared to the servovalve leakage and can be ignored. The first stage impedance \((1.0/(DQLOSS)*8.0))^{*}2.0 \) is added to the \(Q^2 \) value in \(\text{PQLEG(INEL,8)} \), and the pressure drop \((A(PSC+MA)) \) is subtracted from the inlet pressure \(\text{PQLEG(INEL,11)} \).

2000 SECTION

This section is used to initialize the variables to their steady state values. If the initial position is other than zero, variables used to calculate the panel positions are evaluated. Other variables are set to zero. In addition some of the constants used in the 3000 section are defined.

3000 SECTION

The 3000 section models the transient response of the rudder/speedbrake. It is divided into four parts. Part one models the servovalve. Part two models the pressure and flow demands of the hydraulic motors. Part three models the load dynamics of the rotary actuators and aerodynamic panels. Part four models the gear efficiency.

Before the servovalve calculations in part one are begun, a test is made to determine which hydraulic system is to supply the servovalve via the switching valve. The aerodynamic loads on the two rudder/speedbrake panels
are then calculated using hinge moments and hinge moment slopes provided by
the command and guidance program.

The servovalve calculations in part one are performed twice, once for the
rudder commands and once for the speedbrake commands. The command and guidance
program supplies a rudder command, A(VC+N), which, when summed with the rudder
position feedback, A(VFP+N), commands the servovalve torque motor (N=0 for
rudder, N=1 for speedbrake). The command to the servovalve causes a displace-
ment of the mod piston which is connected to the power valve. The resulting
power valve displacement, A(XPS+N), is used to calculate a power valve flow
coefficient A(K5+N).

Part two of the 3000 section uses the power valve flow coefficient along
with the flapper valve leakage coefficient, A(KI+N), and the secondary valve
flow coefficient, A(K3+N), also calculated in part one, to calculate the
pressure and flow demands of the rudder and speedbrake motors. The calcula-
tions in part two are performed three times, once for each hydraulic system
connected to the rudder/speedbrake. The calculation technique uses an iterat-
ive procedure to solve for the total flow from each system, A(QRS+MA). (MA
may be equal to 0, 1 or 2 depending on which system is being solved). With
the flow known, the pressures at the connections are calculated. The
flow to the motors through the power valve, QR, is calculated next and is
used to calculate the velocity of the rudder motor, A(VMTR+MA).

Part three sums the individual rudder motor velocities. The total
velocity is integrated to give the total angular displacement of the power
drive unit. The angular displacements for the rudder and speedbrake are then
summed to give the angular displacement of the rotary actuators. The torques
caused by loads on the panels are calculated next. The torques acting on
both panels are integrated twice to yield the position of the rudder/speedbrake panels.

Part four models the effect of the gear efficiency on the rudder/speedbrake load reaction torque.

6.107.4 Approximations

The aerodynamic panel friction and damping were unavailable for use in the model, therefore, approximate values were used and should be revised when actual values become available.

6.107.5 Limitations

None.
6.107.6 Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROT1</td>
<td>Aerodynamic load on R.H. panel</td>
<td>in-lb</td>
</tr>
<tr>
<td>AEROT2</td>
<td>Aerodynamic load on L.H. panel</td>
<td>in-lb</td>
</tr>
<tr>
<td>BM</td>
<td>Motor viscous friction coefficient 0.015</td>
<td>in-lb-sec</td>
</tr>
<tr>
<td>BP</td>
<td>Viscous damping, each rudder panel 1808.</td>
<td>in-lb-sec</td>
</tr>
<tr>
<td>CER</td>
<td>Combined Rudder Orifice Coefficient</td>
<td>CIS/√Psi</td>
</tr>
<tr>
<td>CES</td>
<td>Combined Speedbrake Orifice Coefficient</td>
<td>CIS/√Psi</td>
</tr>
<tr>
<td>CK</td>
<td>Total flow characteristic</td>
<td>CIS/√Psi</td>
</tr>
<tr>
<td>CT</td>
<td>Flow characteristic array</td>
<td>CIS/√Psi</td>
</tr>
<tr>
<td>DAPS</td>
<td>Mod piston area</td>
<td>0.1930 in²</td>
</tr>
<tr>
<td>DH</td>
<td>Torque motor hysteresis</td>
<td>0.006 in-lb</td>
</tr>
<tr>
<td>DIL</td>
<td>Servo amplifier saturation limit</td>
<td>8.0 ma</td>
</tr>
<tr>
<td>DJMR</td>
<td>Motor moment of inertia (rudder) 0.00636</td>
<td>in-lb-sec²</td>
</tr>
<tr>
<td>DJMSB</td>
<td>Motor moment of inertia (speedbrake) 0.00565</td>
<td>in-lb-sec²</td>
</tr>
<tr>
<td>DJP</td>
<td>Inertia of each rudder panel 1169.</td>
<td>in-lb-sec²</td>
</tr>
<tr>
<td>DKA</td>
<td>Servo amplifier gain</td>
<td>15.0 ma/v</td>
</tr>
<tr>
<td>DKB</td>
<td>Bernoulli coefficient</td>
<td>0.52 in</td>
</tr>
<tr>
<td>DKHC</td>
<td>Rotary actuator spring constant</td>
<td>7.0E6 in-lb/rad</td>
</tr>
<tr>
<td>A(DKP)</td>
<td>Rudder position gain</td>
<td>0.184 v/deg</td>
</tr>
<tr>
<td>A(DKP+1)</td>
<td>Speedbrake position gain</td>
<td>0.0937 v/deg</td>
</tr>
<tr>
<td>DKPI</td>
<td>Nozzle pressure feedback gain</td>
<td>0.000138 in³</td>
</tr>
<tr>
<td>DKPQ</td>
<td>Motor leakage coefficient</td>
<td>0.004 CIS/PSI</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>DKQP</td>
<td>Power spool flow gain</td>
<td>73.24</td>
</tr>
<tr>
<td>DKQS</td>
<td>Secondary valve flow gain</td>
<td>0.3868</td>
</tr>
<tr>
<td>DKTM</td>
<td>Torque motor gain</td>
<td>0.045</td>
</tr>
<tr>
<td>DKLXPS</td>
<td>Wire feedback gain</td>
<td>6.22</td>
</tr>
<tr>
<td>DMLK</td>
<td>Power valve leakage coefficient</td>
<td>1.0E6</td>
</tr>
<tr>
<td>DQLOSS</td>
<td>First stage leakage coefficient</td>
<td>2.37E-2</td>
</tr>
<tr>
<td>EFFG</td>
<td>Efficiency of summer and mixer gearing</td>
<td>96</td>
</tr>
<tr>
<td>EFFH</td>
<td>Efficiency of rotary actuators</td>
<td>82</td>
</tr>
<tr>
<td>EPST</td>
<td>Net error torque</td>
<td></td>
</tr>
<tr>
<td>EYE</td>
<td>Torque motor input current</td>
<td></td>
</tr>
<tr>
<td>A(FB+N)</td>
<td>Bernoulli force on power spool</td>
<td></td>
</tr>
<tr>
<td>FDR</td>
<td>Net rudder motor torque</td>
<td></td>
</tr>
<tr>
<td>FDSB</td>
<td>Net speedbrake motor torque</td>
<td></td>
</tr>
<tr>
<td>FFLP</td>
<td>Friction force on left panel</td>
<td></td>
</tr>
<tr>
<td>FFR</td>
<td>Friction force on rudder motor</td>
<td></td>
</tr>
<tr>
<td>FFRP</td>
<td>Friction force on right panel</td>
<td></td>
</tr>
<tr>
<td>FFSB</td>
<td>Friction force on speedbrake motor</td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>Dummy variable</td>
<td></td>
</tr>
<tr>
<td>FLOW</td>
<td>Flow to mod piston</td>
<td></td>
</tr>
<tr>
<td>A(FLP)</td>
<td>Net torque on left panel</td>
<td></td>
</tr>
<tr>
<td>FRIC</td>
<td>Motor Coulomb friction</td>
<td>9.0</td>
</tr>
<tr>
<td>FR1CP</td>
<td>Panel Coulomb friction</td>
<td>TDD</td>
</tr>
<tr>
<td>A(FRP)</td>
<td>Net torque on right panel</td>
<td></td>
</tr>
<tr>
<td>A(FSTL)</td>
<td>L.H. panel load</td>
<td></td>
</tr>
<tr>
<td>A(FSTR)</td>
<td>R.H. panel load</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>GH</td>
<td>Power hinge gear ratio</td>
<td>473.921:1</td>
</tr>
<tr>
<td>GMR</td>
<td>Mixer gear train ratio, rudder</td>
<td>1.47:1</td>
</tr>
<tr>
<td>GMS</td>
<td>Mixer gear train ratio, speedbrake</td>
<td>4.46:1</td>
</tr>
<tr>
<td>GS</td>
<td>Summer gear train ratio</td>
<td>7:32:1</td>
</tr>
<tr>
<td>ITER</td>
<td>Iteration counter</td>
<td>-</td>
</tr>
<tr>
<td>A(K1+N)</td>
<td>Servovalve leakage characteristic</td>
<td>-</td>
</tr>
<tr>
<td>A(K3+N)</td>
<td>Secondary actuator load characteristic</td>
<td>-</td>
</tr>
<tr>
<td>A(K5+N)</td>
<td>Power valve flow characteristic</td>
<td>-</td>
</tr>
<tr>
<td>L1</td>
<td>Supply connection number</td>
<td>-</td>
</tr>
<tr>
<td>L2</td>
<td>Return connection number</td>
<td>-</td>
</tr>
<tr>
<td>A(PMLR+MA)</td>
<td>Rudder motor load pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>A(PMLSB+MA)</td>
<td>Speedbrake motor load pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>A(POSR)</td>
<td>Total rudder motor rotation</td>
<td>Rad</td>
</tr>
<tr>
<td>A(POSSB)</td>
<td>Total speedbrake motor rotation</td>
<td>Rad</td>
</tr>
<tr>
<td>A(PSC+MA)</td>
<td>System pressure loss across rudder/speedbrake</td>
<td>PSI</td>
</tr>
<tr>
<td>A(P1+N)</td>
<td>Mod piston pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>A(QRS+MA)</td>
<td>System flow through rudder/speedbrake</td>
<td>CIS</td>
</tr>
<tr>
<td>A(QRY+MA)</td>
<td>Flow through rudder power valve</td>
<td>CIS</td>
</tr>
<tr>
<td>A(QSBV+MA)</td>
<td>Flow through speedbrake power valve</td>
<td>CIS</td>
</tr>
<tr>
<td>QVR</td>
<td>Flow through rudder motor</td>
<td>CIS</td>
</tr>
<tr>
<td>QVSB</td>
<td>Flow through speedbrake motor</td>
<td>CIS</td>
</tr>
<tr>
<td>RMDLS</td>
<td>Motor volumetric displacement (rudder)</td>
<td>0.08276 in³/rad</td>
</tr>
<tr>
<td>A(RPOSL)</td>
<td>Left panel position</td>
<td>Rad</td>
</tr>
<tr>
<td>A(RPOSR)</td>
<td>Right panel position</td>
<td>Rad</td>
</tr>
<tr>
<td>SPOSFL</td>
<td>Left panel deflection</td>
<td>Rad</td>
</tr>
</tbody>
</table>
SBMDLS Motor volumetric displacement
 (speedbrake) 0.08276 in³/rad
SPOSFR Left panel deflection Rad
SR Ratio of motor static to Coulomb friction 2.0
SRP Ratio of panel static to Coulomb friction 2.0
STL Torque due to left panel deflection in-lb
STR Torque due to right panel deflection in-lb
SWIT Switching valve switching pressure PSI
SYS System supplying servovalve -
A(TAEROL) Left panel aerodynamic load in-lb
A(TAEROR) Right panel aerodynamic load in-lb
TC Torque motor torque in-lb
A(TP1P+N) Mod piston predicted pressure feedback in-lb
TR Rudder gearbox reaction torque in-lb
A(TXPS+N) Wire feedback torque in-lb
VA Net position error v
UT(VC+N) Rudder/speedbrake position command Deg
VLVOL Power valve overlap 0.0011 in.
VM Motor fluid volume 2.77 in³
A(VMTR+MA) Rudder motor velocity Rad/sec
A(VMTSB+MA) Speedbrake motor velocity Rad/sec
A(VRT+1) Sum of rudder motor velocities Rad/sec
A(VSBT+1) Sum of speedbrake motor velocities Rad/sec
XIL Power valve displacement limit 0.065 in
A(XPS+N) Power valve displacement in
XVLV Effective power valve displacement in
6.107.7 Subroutine Listing

SUBROUTINE ACT107 (D, DT, DD, L)

REvised JANUARY 28, 1976

COMMON NTGLPL, NT0PLP, I1PT, IP10VT, NPTS, INEL, KNEL, NTOPL, NLPNL(61, 13),
1, P0LEG(90, 12), L0C(90, 10), I0LEG(1400), PN(90), QN(90)
COMM0N/SUB/PARM(150, 9), PM(1500), QH(1500), P(300), Q(300), C(300)
12, Z(300), R0(20), ZORIO(20), V1SC(20), BULK(20), TEMP(20), FVAP(20)
2, APRLS, T, DLT, TFINA1, PLTDEL, PI, TITLE(20), LLGN, ICON
3, KTITP(99), L0START(150), NLPT(150), LBTP(99), NC(99), INX, INZ
4, INV, ISFNP, NLINE, NEL, IND, LENTR, MLINE, HNEL, MNLEC, NNODE, MNPLOT
5, MNLFTS, ADS
6, DIMENSION D(1), DT(13), DD(1), L(1), A(170), CT(6), PL(6)
REAL :TORR, HTORSB
1, INTEGER VFP, TXPS, KPS, P1P, XYQ5, XQ1, XQ, XOS,
2, P1, FB, P1P, POSR, POSSB, RPOS, RPOS, VRPP, VLPF,
3, PSC, QKS, P1S3, F1ST, VRPP, VRPP, VTSB, VTSB, SYS, TR, TS,
4, VRT, VSBT, FSTL, FSTL, RP1, RT, VC, TAEROR, TAEROL,
5, VTRP, VTSBP, VTRB, VTSBB, FAR, FAR, FASS, FASS, DKP, QRV, QSBV
6, , PFR, PLP, FR0, FLP0, VRPP, VLP0, VLP0, VRPP, RPOS, RPOS, RPOS, RPOS,
7, , CON, CON, CO,
C
----------- A ARRAY VARIABLES -----------

DATA VFP/1/, XPS/5/, TP1P/7/, XQI/9/, 1
1, XYQ5/11/, XQ/15/, P1/17/, PB/19/, P1P/21/, PSC/23/, 2
2, ORS/26/, PlLR/29/, P1LS/32/, V1TR/35/, VR1TSB/38/, 3
3, TR/41/, TSS/44/, VR1TSB/50/, POSR/53/, POSSB/54/, 4
4, KPOS/55/, RPOS/56/, VRP/57/, VLP/58/, QRV/59/, QSBV/62/, XQS/65/, 5
5, DPP/69/, FAR/71/, FARO/74/, FASS/77/, FASS/80/, VRT/83/, VSBT/85/, 6
6, FSTR/87/, FSTL/88/, VTRP/89/, VLP/90/, RPI/91/, RP2/93/, KINT/95/, 7
8, K4/118/, K5/119/, K6/120/, VTRP/121/, VTSBP/124/, VTRB/127/, VTSBO/130/, 9
9, KFLON/133/, TXPS/136/, PFR/138/, FL/140/, FR0/142/, FLP0/143/
A, VRPP/144/, VLP0/145/, RPOS/146/, RPOSSL/147/, RPOS/148/, 0
0, RPOS/149/, CON/150/, CON/151/, COM/152/, COH/156/
C
----------- DT ARRAY VARIABLES -----------

DATA VC/1/, TAEROR/4/, TAEROR/6/
C
---- Rudder/Speed Brake / INPUT DATA ----

DATA DKP/0.004/, V1/2.77/, B/180000./, DPP/1169./, BP/1808./, 1
1, DMLK/1.066/, DM0GS/2.37U-2/, DKPI/0.000138/, VM/15.0/, 2
2, DKIP/0.045/, DXP/6.22/, DAPS/0.1930/, VLP/0.001/, 3
3, RMDIS/0.08276/, SM0DIS/0.00276/, BM/0.015/, D3/0.00636/, 4
4, DNB/0.00565/, DKIC/7.066/, DK3/0.52/, GS/7.32/, HMR/1.47/, 5
5, GNS/4.46/, GH/473.921/, ESF/82/, ESF/96/, FRIC/9.0/, 6
6, SR/2.0/, PB/1.0/, FRIC/12.0/, SR2/2.0/, BFP/1.0/, XIL/0.065/, 7
7, DH/0.006/, DIL/8.0/,

6.107.17
6.107.7 (Continued)

IF (IENTR) 1000, 2000, 3000
1000 IF (INEL.NE.0) GO TO 1500

C --------- INITIALIZATION ---------

C

DO 1010 I=1, 170
1010 A(I)=0.0

DO 1020 I=1, 30
1020 DT(I)=0.0

TDRO=S2ORHO(KTEMP(IND))/SRT(2./7.82E-5)

CALL TUSTIN (1, DUMMY, A(KINT), DELT)

CON1=DKP2/(VM/(4.83))

CALL TUSTIN (2, CON1, A(KPML), DELT)

CON3=DPJ/3P

CALL TUSTIN(2, CON3, A(KRPL), DELT)

CALL TUSTIN(2, 0.005, A(KFLOW), DELT)

CALL TUSTIN(2, 0.0159, A(KCOM), DELT)

SYS=0

DO 15 I=1, 3

K=I+6

SY3=SYS+1

IF(INV) 20, 30, 10

10 IF(INV.LT.L(K)) GO TO 30

15 CONTINUE

20 IF(INV.EQ.L(K))SYS=SYS+1

30 CONTINUE

RETURN

1500 CONTINUE

AA=((KNN+1)/2)-1

QA=PQLEG(INEL, 1)

QS=PQLEG(INEL, 2)

IF(SYS.LT.(KNN+1)/2)GO TO 1600

PQLEG(INEL, 6)=PQLEG(INEL, 6)+DILK

PQLEG(INEL, 11)=PQLEG(INEL, 11)-QA*QS*DILK

A(PSC+MA)=QA*QS

RETURN

1600 CONTINUE

QLOSS=(1.0/(DOCLOSS*8.0))**2.0

PQLEG(INEL, 8)=PQLEG(INEL, 8)+QLOSS

A(PSC+MA)=QLOSS*QS**2.0

PQLEG(INEL, 11)=PQLEG(INEL, 11)-A(PSC+MA)

A(QRS+MA)=QA*QS

RETURN

2000 CONTINUE

SWIT=1300.

DKQ8=0.3868*TDROH

DKQP=73.24*TDROH*SRT(2.0)

DELT2=DELT/2.0

A(DKP)=0.194
A(DKP+1) = 0.937
DKCR = 1/(GS*GR)
DKGS = 1/(GS*GS)
DICOIR = DT(VC)/(57.3*A(DKP))
DICOIS = DT(VC+1)/(2.0*57.3*A(DKP+1))
A(POSR) = (DICOIR*GI)/DKCR
A(POSSB) = (DICOIS*GI)/DKGS
A(VFP) = DT(VC)
A(VFP+1) = DT(VC+1)
A(RPOSR) = DICOIR - DICOIS
A(RPOSL) = DICOIR + DICOIS
A(RPOSR) = A(RPOSR) - (A(RPOSR)*57.3*DT(TAEOR+1) + DT(TAEOR))/DKHC
A(RPOSL) = A(RPOSL) - (A(RPOSL)*57.3*DT(TAEOR+1) + DT(TAEOR))/DKHC
A(RPOSRP) = A(RPOSR)
A(RPOSLP) = A(RPOSL)

C ----------- INITIALIZE CONTROL ACTUATOR VARIABLES -----------

C
A(COL) = DT(VC)
A(COS) = DT(VC)
A(COL+3) = DT(VC+1)
A(COS+3) = DT(VC+1)
DT(10) = A(VFP)
DT(11) = A(VFP+1)
DT(9) = A(RPOSR)*57.3
DT(8) = A(RPOSL)*57.3
CALL FDMAP(A(1),A(150),1)
RETURN

3000 CONTINUE
C IF N=0 INDICATES THE Rudder, N=1 INDICATES THE SPINDLE BRAKE.
DO 3010 I=1,3
 K=1
 IF(A(PSCK-1)*GT.SWIT) GO TO 3020
3010 CONTINUE
3020 IF(K.NE.3) SWIT=1300,
 SY3=K
 IF(SWIT.GT.1300) SWIT=50.
 N=0
 AEROT1 = DT(TAEOR) + DT(TAEOR+1)*A(RPOSR)*57.3
 AEROT2 = DT(TAEOR) + DT(TAEOR+1)*A(RPOSL)*57.3
3050 IF(N.NE.2) GO TO 3290
C
C ----------- SERVO AMPLIFIER -----------
C
A(COL+3*N) = DT(VF+4)
A(COL+3*N) = DYNAVL(A(COL+3*N),A(COL+3*N),A(KCN)
A(COS+3*N) = A(COS+3*N)
DT(17+N) = A(COL+3*N)
VA = A(COL+3*N) - A(VFP+4)

6.107.7 (Continued)
6.107.7 (Continued)

```fortran
LYE=VA*DKA
CALL XLIMIT(LEY,TW,PI,-DIL,DIL)

C -------------- TORQUE MOTOR CONSTANTS --------------
C
TH=LEY*DKT
TC=HIYSTLI(TD,DH,A(KHYST+5*N))
TXPS1=L(TXPS+N)
A(TXPS+N)=A(XPS+N)*DKPS
TXPS1=2.0*A(TXPS+N)-TXPS
EPST=TC-A(TP1+N)-TXPS
IF(ABS(EPSST).GT..064973) EPSST=SIGN(.064973,EPSST)
A(X3+N)=ABS(EPSST*DKOS)
A(K1+N)=DKOS

C -------------- POWER SPOOL DISPLACEMENT --------------
C
A(XQ3+2*N+1)=EPSST*DKOS
A(XQ4+2*N)=DYNAX(A(XQ3+2*N),A(XQ4+N),A(KFLOW))
FLOW=A(XQ4+N)*SQRABS(A(PSC+SYS-1)-SIGN(1.0,A(XQ4))*A(P1P+N))
A(XQ5+2*N+1)=FLOW/DAPS
A(XQ5+N)=DYNAX(A(XQ5+2*N),A(XQ5+N),A(KINT))
CALL XLAIMT(A(XP5+N),A(XQ5+2*N+1),A(KSSGN),-XIL,XIL)
IF(A(KSSGN).EQ.0.0) GO TO 3060
A(XQ5+2*N+1)=0.0
A(X3+N)=0.0

3060 CONTINUE
A(XQ3+2*N+1)=A(XQ3+2*N+1)
A(XQ4+2*N)=A(XQ4+2*N+1)
P1S=A(P1+N)
P1S=A(P1+N)/(4.0*DAPS)
P1S=0.0
A(P1P+N)=2.0*A(P1+N)-P1S
A(TP1P+N)=A(P1P+N)*DKPI
NXV=A(XP5+N)/VXL
TP(NXV) = 3100, 3110, 3120

C -------------- XPS LESS THAN ZERO --------------
C
3100 XVLV=A(XPS+N)+VXL
GO TO 3130

C -------------- XPS LESS THAN VALVE OVERLAP --------------
3110 XVLV=0.0
GO TO 3130

C -------------- XPS GREATER THAN ZERO --------------
3120 XVLV=A(XPS+N)-VXL
3130 A(K5+N)=ABS(DKPS*XVLV)
D1(14+N)=XVLV
N=N+1
GO TO 3050
```

6.107.20
C --------- PRESSURE DROP BETWEEN CONNECTIONS ---------

3200 CONTINUE
DO 3300 I=1,3
ITER=0
IA=I-1
C THE VARIABLES IN THE A ARRAY WILL BE USED IN SETS OF THREE
C USING ONE POSITION FOR EACH SYSTEM. THE POSITION WILL BE
C DETERMINED BY THE CONSTANT IA.
L1=L(2*I-1)
L2=L(2*I)
PS=A(PSC+IA)
C A(PSC+IA) IS THE PRESSURE DROP ACROSS THE CONNECTIONS FROM
C THE PREVIOUS TIME STEP.
QOLD=A(QRS+IA)
IF (I.EQ.SYS) GO TO 3220
C SYS IS THE ACTIVE CONTROL SYSTEM
DO 3210 K=1,4
CT(K)=0.0
PL(K)=0.0
GO TO 3235
3210
DO 3230 K=1,4
PL(K)=0.0
GO TO 3235
3230
CT(K)=A(K1+K-1)*4.0
PL(3)=A(P1)*SIGN(1.0,A(XPS))
PL(4)=A(P1+1)*SIGN(1.0,A(XPS+1))
3235 CONTINUE
CT(5)=A(K5)
CT(6)=A(K6)
QVR=A(VTR+IA)*RADIS
QVS3=A(VTSB+IA)*SB3DIS
PS=A(PSC+IA)
QR=A(QVR+IA)
QSB=A(QSBV+IA)
SXPS=A(SIGN(1.0,A(XPS))
SXPSB=SIGN(1.0,A(XPS+1))
3240
PL(5)=(QR-QVR)*SXPS/PS
PL(6)=(QSB-QVSB)*SXPSB/PS
ITER=ITER+1
CK=0.0
DO 3260 K=1,6
3260 CK=CK+CT(K)*SQRABS(1-PL(K)/PS)
IF(CK.NL.0.0) GO TO 3265
ONLW=(C(L1)-C(L2))/(Z(L1)+Z(L2)+DNLK)
PS=C(L1)-ONLW*Z(L1)-C(L2)-ONLW*Z(L2)
QR=0.0
QSB=0.0
GO TO 3274
3265 CONTINUE
X=((Z(L1)+Z(L2))*CK**2.0)/2.0

6.107.21
\[Y = 4.0 \times (C(L1) - C(L2)) / (C(L1) + C(L2)) \times 2.0 \]
\[TPRES = 1.0 + \text{ABS}(Y) \]
\[QNEW = X \times (1.0 + \text{SQRT}(TPRES)) \times \text{SIGN}(1.0, Y) \]
\[PSN = C(L1) - QNEW \times Z(L1) - C(L2) - QNEW \times Z(L2) \]
\[\text{IF}(\text{ABS}(PS - PSN) \times \text{LT.} .1 \text{OR.} \text{ITER.} \text{GT.} .25) \text{ GO TO 3274} \]
\[PS = (PS + PSN) / 2. \]
\[QR = 0.0 \]
\[\text{IF}(A(K5) \times \text{EQ.} 0.0) \text{ GO TO 3262} \]
\[A1 = 1 / (A(K5) \times 2.) \]
\[B1 = 1 / DKPQ \]
\[C1 = \text{ABS}(PS + QVR \times SXPSR / DKPQ) \]
\[QR = (-B1 + \text{SQRT}(B1 \times 2. + 4. \times A1 \times C1)) / (2. \times A1) \]
\[QS = QR \times \text{SIGN}(1.0, (PS + QVR \times SXPSR / DKPQ) \times A(XPS)) \]

3262
\[QS = 0.0 \]
\[\text{IF}(A(K6) \times \text{EQ.} 0.0) \text{ GO TO 3240} \]
\[A2 = 1 / (A(K6) \times 2) \]
\[B2 = 1 / DKPQ \]
\[C2 = \text{ABS}(PS + QVS3 \times SXPS3 / DKPQ) \]
\[QS = (-B2 + \text{SQRT}(B2 \times 2. + 4. \times A2 \times C2)) / (2. \times A2) \]
\[QS = QS \times \text{SIGN}(1.0, (PS + QVS3 \times SXPS3 / DKPQ) \times A(XPS + 1)) \]
\[\text{GO TO 3240} \]

3274
\[\text{CONTINUE} \]
\[A(PS + QA) = PS \]
\[A(QVS + QA) = QR \]
\[A(QVS + QA) = QS \]
\[Q(L1) = QNEW \]
\[Q(L2) = -QNEW \]
\[A(QRS + QA) = QNEW \]
\[P(L1) = C(L1) - Q(L1) \times Z(L1) \]
\[P(L2) = C(L2) - Q(L2) \times Z(L2) \]
\[A(P:LR + QA) = (QR - A(VMTH + QA) \times RDIS) \times 250. \]
\[A(PHSB + QA) = (QS - A(VTSB + QA) \times SBANDIS) \times 250. \]
\[\text{MOTOR} = A(P:LR + QA) \times RDIS \]
\[\text{MOTOR} = A(PHSB + QA) \times SBANDIS \]

--- MOTION FRICTION AND DAMPING EFFECTS ---

\[FDR = \text{MOTOR} - A(TR + QA) \]
\[FDSB = \text{MOTOR} - A(TSB + QA) \]
\[\text{IF}(A(PS + QA) \times \text{LT.} 1300.) \text{BF} = (1300. - A(PS + QA)) / 50. + 1 \]
\[\text{CALL CFRIC}(FDR, FF, A(VTRP + QA), A(VTR + QA), A(FAR + QA), A(FAR0 + QA)) \]
\[1, \text{FRIC}, \text{SR}, \text{BF} \]
\[\text{CALL CFRIC}(FDSB, FF, A(VTSB + QA), A(VTSB + QA), A(FASB + QA), A(FASBO + QA)) \]
\[1, \text{FRIC}, \text{SR}, \text{BF} \]
\[3F = 1 \]
\[A(FAR0 + QA) = A(FAR + QA) \]
\[A(FASB0 + QA) = A(FASB + QA) \]
\[A(FA + QA) = FDR - A(VTRP + QA) \times (BA/DJ4R) + FF \]
\[A(FASB + QA) = FDSB - A(VTSB + QA) \times (BA/DJ4SB) + FFSB \]

6.107.7 (Continued)

\[
\begin{align*}
A(VT\text{RO}+1A) &= A(VT\text{RO}+1A) \\
A(VT\text{SO}+1A) &= A(VT\text{SO}+1A) \\
A(VTR+1A) &= A(VT\text{RO}+1A) + DL\text{T}2*(A(FAR+1A) + A(FAR+1A)) \\
A(VT\text{SB}+1A) &= A(VT\text{SO}+1A) + DL\text{T}2*(A(FASBO+1A) + A(FASBO+1A)) \\
A(VTRP+1A) &= 2.0*A(VTR+1A) - A(VT\text{RO}+1A) \\
A(VT\text{SBP}+1A) &= 2.0*A(VT\text{SB}+1A) - A(VT\text{SO}+1A) \\
A(VTR'+1A) &= A(VTR+1A)/DJ\text{AR} \\
A(VT\text{SB}+1A) &= A(VT\text{SB}+1A)/DJ\text{S}3 \\
3300 \text{ CONTINUE} \\
\text{ DO 3310 } I=1,3 \\
A(FB) &= A(FB) + A(\text{XP}5) * DKB*(A(PSC+I-1) - A(PHLR+I-1) * SXPSR) \\
A(FB+1) &= A(FB+1) + A(\text{XP}5+1) * DKB*(A(PSC+I-1) - A(PHLR+I-1) * SXPSB) \\
3310 \text{ CONTINUE} \\
C \\
C --------- Rudder and Speedbrake Load Dynamics \\
C \\
A(VF'T) &= A(VF'T+1) \\
A(VS'B'T) &= A(VS'B'T+1) \\
A(VR'T+1) &= A(VR'T) + A(VR'T+1) + A(VR'T+2) \\
A(VS'B'T+1) &= A(VS'B'T) + A(VS'B'T+1) + A(VS'B'T+2) \\
A(P0SR) &= DYNAM(A(VF'T), A(P0SR), A(KINT)) \\
A(P0SSB) &= DYNAM(A(VS'B'T), A(P0SSB), A(KINT)) \\
RIP &= A(P0SR) * BKGR \\
SB1P &= A(P0SSB) * BKGR \\
A(VFP) &= (RIP/GH) * 57.3 * A(DKP) \\
A(VFP+1) &= (2.0 * SB1P/GH) * 57.3 * A(DKP+1) \\
SPOSR &= RIP - SB1P \\
SPOSIL &= RIP + SB1P \\
SPOSR &= SPOSL/GH \\
SPOSL &= SPOSL/GH \\
SPOSFR &= SPOSR - A(KDOGRP) \\
SPOSFL &= SPOSL - A(KDOSLP) \\
SRT &= SPOSFR * DEFIC \\
SRTL &= SPOSFL * CRIC \\
A(FSTR) &= STR - AEROT1 \\
A(FSTL) &= STL - AEROT2 \\
\text{ CALL CFRIC(A(FSTK), FFRP, A(VRPP), A(VRP), A(FRP+1), A(FRP0), FPRCP, SRP, BFP) } \\
\text{ CALL CFRIC(A(FSTL), FFLP, A(VLPP), A(VLP), A(FLP+1), A(FLPO), FPRCP, SRP, BFP) } \\
A(FRP0) &= A(FRP+1) \\
A(FLPO) &= A(FLP+1) \\
A(FRP+1) &= A(FSTR) - A(VRPP) * (BP/DJP) + FFRP \\
A(FLP+1) &= A(FSTL) - A(VLPP) * (BP/DJP) + FFLP \\
A(VKPO) &= A(VRP) \\
A(VLPO) &= A(VLP) \\
A(VRP) &= DYNAM(A(FRP), A(VRP), A(KINT)) \\
A(VLP) &= DYNAM(A(FLP), A(VLP), A(KINT)) \\
A(VRPP) &= 2.0*A(VRP) - A(VKPO) \\
A(VLPP) &= 2.0*A(VLP) - A(VLPO) \\
\end{align*}
\]
A(RP1) = A(RP1 + 1)
A(RP2) = A(RP2 + 1)
A(RP1 + 1) = A(VRP) / DJP
A(RP2 + 1) = A(VLP) / DJP
A(RPOS) = A(RPOS)
A(RPOSLS) = A(RPOS)
A(RPOS) = DYNAM(A(RP1), A(RPOS), A(KINT))
A(RPOSLS) = DYNAM(A(RP2), A(RPOSLS), A(KINT))
A(RPOSRP) = 2.0 * A(RPOS) - A(RPOSLS)
A(RPOSLP) = 2.0 * A(RPOS) - A(RPOSLS)
DT(16) = (A(RPOSLS) - A(RPOS)) * 57.3

---------- GEAR EFFICIENCY CALCULATION ----------
---------- HINGE GEAR EFFICIENCY ----------

TRP = STR / SH
TLP = STL / SH
IF (STR * A(VRP) * GL .0.0) GO TO 3410
TRPH = TRP * EFFPH
GO TO 3420
3410 TRPH = TRP * EFFPH
3420 IF (STL * A(VLP) * GL .0.0) GO TO 3430
TLP = TLP / EFFPH
GO TO 3440
3430 TLP = TLP / EFFPH

---------- MIXLR GEAR EFFICIENCY ----------

3440 TGAR = TRPH + TLPH
TGMS = TLPH - TRPH
TRAR = (TGAR / GHR) / GS
TGRA = (TGMS / GHR) / GS

---------- SUMMER GEAR EFFICIENCY ----------

DO 3490 K = 1, 3
PA = K - 1
IF (TAR * A(VTR + NA) * GL .0.0) GO TO 3450
A(TAR) = TAR / EFFG
GO TO 3460
3450 A(TAR + NA) = TAR * EFFG
3460 IF (TAGS * A(VTS + NA) * GL .0.0) GO TO 3470
A(TAGS + NA) = TAGS / EFFG
GO TO 3480
3470 A(TAGS + NA) = TAGS * EFFG
3480 CONTINUE
3490 CONTINUE
DT(9) = A(RPOS) * 57.3
DT(8) = A(RPOSLS) * 57.3
DT(10) = A(VRP)
\[\text{DT(11)} = A(V_{FF} + 1) \]
\[\text{DT(12)} = A(V_{RT} + 1) \times 60. / (2. \times 3.14159) \]
\[\text{DT(13)} = A(V_{ST} + 1) \times 60. / (2. \times 3.14159) \]
RETURN
LND
7.0 OUTPUT SUBROUTINES

The output subroutines comprising, store, graph and scaled are currently dedicated to producing print plots of the data calculated by the program.

Current options allow maximum or minimum calculated values to be substituted for plot values in event these max or min values occurred between plot intervals. This assures that the max or min values calculated are reflected in the output plots. Another option allows tabulation of all calculated values for each plot variable.
7.1 **SUBROUTINE STORE**

Subroutine STORE, which is called by HYTR, reads output requirements and stores data required for output plots.

7.1.1 **Math Model**

Not applicable.

7.1.2 **Assumptions**

Not applicable.

7.1.3 **Computation Methods**

Section 1000

Section 1000 reads in all the plot information for line and component plots.

Section 2000

This section first performs a test to determine if the current time step is also a plot time, if so line or component data is stored. If it is not time to store but the MAX/MIN option has been exercised, tests are made to determine if the current calculated value is less than or greater than (depending on which option was exercised) the previous value stored, if so the stored value is replaced by the current calculated value. If the LIST option has been exercised every calculated plot variable is printed. Once all or a max of 101 points have been stored, GRAPH is called to plot the points. A test is then performed to determine if more than 101 points are to be plotted, if so the additional points (up to 101) are calculated and stored as before. GRAPH is again called to plot these points. This procedures is repeated until all points have been plotted.
7.1.4 **Approximations**

Not applicable.

7.1.5 **Limitations**

Not applicable.

7.1.6 **Variable Name**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>Line Number Associated with Pressure and/or Flow Plots</td>
<td></td>
</tr>
<tr>
<td>IPLT</td>
<td>Number of Plots Required along Line INDEX</td>
<td></td>
</tr>
<tr>
<td>IPTS</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>LIST</td>
<td>Input Integer Value 0 (No List) of 1 (List of all Points)</td>
<td></td>
</tr>
<tr>
<td>LPT</td>
<td>Distance in DELX's, of Required Plots from Upstream End of Line</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>MXTREM</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>NABSQ</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>NISTEP</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>NLPLTC</td>
<td>Number of Line Plot Points</td>
<td></td>
</tr>
<tr>
<td>NOGRAF</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>NOMSG</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>NOSTOP</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>NPT</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>NXTREM</td>
<td>Input Integer Value 0 (Normal Plot), +1 (Plot with Max Values) or -1 (Plot with Min Values)</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>N1</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>YY()</td>
<td>Array: Used to Store Line Positions of Required Plots</td>
<td></td>
</tr>
</tbody>
</table>
7.1.7 Subroutine Listing

SUBROUTINE STORE
C**** REVIS 5 AUGUST 5, 1975 ****
DOUBLE PRECISION DO
COMMON/NTP,LPL,NTOPL,PL,T,POINT,NPTS,TH,TH,TH,NTOPL,NLP(61,3),
1 VSTORE(1)
COMMON/US/PARI(150,9),S(1500),Q(1500),E(300),Q(300),C(300)
1,2(300),Ph(20),S2RHO(20),VISC(20),S2RHO(20),PLAPP(20),EVA(20)
2,APREL,SLL,PLP,LPL,PLT,LITLE(20),LSPH,ICOS
3,NSO(N),LST(150),NL(150),PL(150),RSO(R),RC(99),INX,IXZ
4,INX,ISTEP,PLINE,ALL,IND,INTRA,PLINE,ALL,ALLG,ANGODE,ENPLO
5,1NLPL,LPL
Dimension VT(150),DV(1500),ITITLE(40),IN(40),IX(40),IC(40),IC(40),
1ITITLE(40),ICAR(2)
COMMON/CORPV/(4500),L(1500),LE(99,4)
EQUIVALENCE(D(1,1),D(1))
DATA ICAR,4NLPL,4PLNT,4NLPL,4NLPL,2K2,2H,2P,2H 2,2H / / IF(INTRA) 1000, 1000, 2000
1000 CONTINUE
IPT=0
NISTP=0
NPTS=NPL
IF(NPTS.GT.101) NPTS=101

NLPL=N
READ(5,329) NLPLC,NLPL,NLPL,NLPL,NLPL,NLPL,NLPL,NLPL,NLPL
IF(NLPLC.GT.0) GO TO 142
DO 110 I=1,NLPLC
READ(5,329) INDEX,PL,VL,(YY(.),I=1,PL)
DO 120 J=1,PL
J=1
IF(YY(J).LT.0.0) J=-1
LPL=(YY(J)*1/PLPARA(INDEX,5)+0.5)
IF(LPL.GE.1000) LPL=NLPL(INDEX)-1
NLPL=NLPL+1
NLP(NTOLPL,2)=INDEX
NLP(NTOLPL,3)=LPL
NLPL(NTOLPL,1)=LST(INDEX)+LPL)*J
130 CONTINUE
140 CONTINUE
142 CONTINUE
NLP(NTOLPL,GNLPLOT) NLP(NTOLPL,NTOLPL)
IF(NLPLOT.GT.GPLOT) NLPLOT=GPLOT

IF(NLPLC.GT.0) GO TO 144
READ(5,329) ((NLPL(I+NTOLPL,2),NLPL(I+NTOLPL,3)),I=1,NTOLPL)
144 CONTINUE
IF(NLPLOT.GT.GPLOT) NLPLOT=GPLOT-NLPLOT
IF(NLPLOT.GT.GPLOT) NLPLOT=GPLOT
WRITE(6,520)
NLPLOT=NLPLOT+NTOLPL
IF(NTPLOT.LT.0) GO TO 1250

BEST AVAILABLE COPY 7.1-4
7.1.7 (Continued)

 LPT=NTOLPL+1
 DO 1200 I=LPT,NTOPL
 NPT=NLPLT(I, 2)
 N =NLPLT(I, 3)
 IF(N) 1150,1190,1160
1150 N1=LE(NPT, 3)+N+1
 GO TO 1170
1160 N1=LE(NPT, 2)+N-1
1170 NLPLT(I,1)=N1
 GO TO 1200
1180 NLPLT(I,1)=1
1200 CONTINUE
C
 WRITE(6,1501)
 WRITE(6,1503)
 IF(NXTREM) 5,12,10
5 WRITE(6,1506)
 GO TO 1220
10 WRITE(6,1507)
 GO TO 1220
12 WRITE(6,1508)
 GO TO 1220
1220 WRITE(6,1503)
1250 JJ=0
 II=NTOPL
 DO 1300 I=1,II
 J=1
 JJ=JJ+1
15 N1=NLPLT(I,1)
 NPT=NLPLT(I, 2)
 N =NLPLT(I, 3)
 IF(I.EQ. NTOLPL) GO TO 2500
 ITITLE(JJ)=ICHAR(1)
 IN(JJ)=NPT
 IY(JJ)=N*PAR::(NPT,5)
 ITITLE(JJ)=ICHAR(2)
 NI=0
 IF(N1.LT.0) NI=1
 IC(JJ)=ICHAR(6+NI)
 IIC(JJ)=ICHAR(5)
 GO TO 1700
2500 ITITLE(JJ)=ICHAR(3)
 ITITLE(JJ)=ICHAR(4)
 IN(JJ)=NPT
 IY(JJ)=N
 IC(JJ)=ICHAR(3)
 IIC(JJ)=ICHAR(9)
1700 IF(JJ.LT.10.AND.I.LT. NTOLPL) GO TO 1300
III=I-JJ+1
 WRITE(6,1500) ((JJJ),JJJ=III,J)
7.1.7 (Continued)

IF(I.GT.NTOLPL) GO TO 75
WRITE(6,1600) ((ITITLE(JJJ),IN(JJJ),IC(JJJ)),JJJ=1,JJ)
WRITE(6,1600) ((ITITLE(JJJ),IY(JJJ),IIC(JJJ)),JJJ=1,JJ)
GO TO 16

75 WRITE(6,1504) ((ITITLE(JJJ),IN(JJJ),IC(JJJ)),JJJ=1,JJ)
WRITE(6,1504) ((ITITLE(JJJ),IY(JJJ),IIC(JJJ)),JJJ=1,JJ)
16 WRITE(6,1505)
JJ=0
1300 CONTINUE
WRITE(6,1602)
WRITE(6,1603)
2000 CONTINUE
C
IF(ISTEP.EQ.NISTEP) GO TO 2010
IF(EXTREM.EQ.0 .AND. LIST.EQ.0) RETURN
EXTREM=EXTREM
GO TO 2020
2005 NISTEP=NISTEP-IPOINT
2010 IPT=IPT+1
NISTEP=NISTEP-IPOINT
VSTORE(IPT)=T
2020 SPT=IPT
I=0
GO 2200 I=1,NTOPL
SPT=IPT+SPT
1=FLPLT(I,1)
IF(I.GT.NTOLPL) GO TO 2050
IF(N) 2030,2150,2040
2030 Y=-N(-N)
GO TO 2030
2040 Y=Ts(N)
GO TO 2030
2050 IF(N) 2060,2150,2070
2060 Y=DD(-N)
GO TO 2030
2070 Y=O(N)
2080 IF(EXTREM) 2090,2035,2100
2090 IF(ISTEP+IPOINT.EQ.NISTEP) GO TO 2110
GO TO 2120
2095 IF(VSTORE(1P2).LT.Y) GO TO 2110
GO TO 2120
2100 IF(VSTORE(IPT).LT.Y) GO TO 2110
2110 VSTORE(IPT)=Y
2120 IF(LIST.CO.0) GO TO 2200
IF(I.EQ.1) WRITE(6,2211) T
2130 I1=I1+1
YY(I1)=Y
IF(I1.NL.10) GO TO 2200
WRITE(6,2210) YY
7.1.7 (Continued)

N1=0
GO TO 2200

2150 WRITE(6,2220) I
Y=T
GO TO 2090

2200 CONTINUE

C IF(N1*LIST.RE.0)WRITE(6,2219) (YY(I),I=1,N1)
IF(IPT.NE.NPTS) RETURN
ISV=ABS(V)
CALL GRAPH
IF(IPTS-NPTS) 2300,2350,2310

2300 NPTS=IPTS
IPT=0
GO TO 2005

2310 NPTS=101
IPTS=IPTS-100
IPT=0
GO TO 2005

2350 CONTINUE

RETURN

270 FORMAT (15I5)
320 FORMAT (2I5,7F10.0)
520 FORMAT (5X,42HTOO MANY PLOTS REQUESTED MAX NUMBER IS 60)
2210 FORMAT (5X,10E12.5)
2211 FORMAT (5X,25HDATA CALCULATED AT TIAE =,F3.4)
2220 FORMAT (5X,45HVVALUE OF N IN 2000 SECTION OF COMP IS ZERO I= ,I5)
1500 FORMAT (5X,19(4GRAPH ,I4,2H))
1600 FORMAT (5X,10(A4,I4,A2,2H))
1601 FORMAT (1H1,42X,35HVARIABLES SELECTED FOR OUTPUT PLOTS)
1602 FORMAT (1H1,53X,13HVHYTRAN OUTPUT)
1603 FORMAT (1H0)
1604 FORMAT (5X,10(A4,I6,A2))
1605 FORMAT (1H5)
1606 FORMAT (28X,71HVVALUES PLOTTED REPRESENT MAXIMUM VALUES CALCULATED I
1 IN THE TIME INTERVAL)
1607 FORMAT (28X,71HVVALUES PLOTTED REPRESENT MAXIMUM VALUES CALCULATED I
2 IN THE TIME INTERVAL)
1608 FORMAT (28X,71HVVALUES PLOTTED REPRESENT THE ACTUAL VALUES CALCULATED
3D AT EACH PLOT INTERVAL)
7.2 SUBROUTINE GRAPH

Subroutine graph produces print plots of the output data stored in VSTORE ().

Most computers will have their own version of this subroutine which could be used if necessary. However, since the plotted output is such an integral part of HYTRAN, this subroutine has been added to avoid the problems involved in changing from one computer to another.

7.2.1 Theory - Not applicable.

7.2.2 Assumptions - Not applicable.

7.2.3 Limitations:

The program is executed once for each plot, up to the total number of plots NTOPI. The DO 901 J = 1, NTOPI controls this loop.

The first section which sets the X scale, is only executed on the first pass, when J = 1.

The program currently uses TIME (1) as XMIN and TIME (NPTS) as XMAX.

In the second section a DO loop is used to find the maximum and minimum values of the Y data to be plotted, using the functions AMAX1 (YMAY, VSTORE, (1+IADD)) and AMIN1 (YMIN, VSTORE (1+IADD)).

With the maximum and minimum values established, a check is made to see if they are equal, if they are, 25 is added to YMAX, and YMIN is set at 50 less than that, to avoid a fruitless search for a suitable scale.

Subroutine SCALED is then called to obtain a preferred scale for the Y axis, and returns with values for YMAX and YMIN.
The next section finds the type of plot and sets the plot character, P, Q or C and the data to be written at the bottom of the output plot.

The routine then starts the output plot section by going to the top of a new page, and proceeds to plot the output data, line by line until the plot is complete. A more detailed explanation of this section will be added at a later date.

At the bottom of the plot a descriptive line is written which gives the line number and distance along the line for line pressure or flow plots or the variable number and the component number if it is a component data plot.

The next printed line is the title of the run, which was inputted on the first data card.

When all the plots have been completed program control returns to HYTR.
7.2.4 **Approximations** - Not applicable.

7.2.5 **Limitations**

The basic limitation of a print plot is the number of points that can be plotted on a single page graph and the resulting inaccuracy in reading the graph. To an extent these limitations can be overcome by use of the MAX/MIN and LIST options noted in Section 2.4 of Volume I of this report.

7.2.6 **Variable Names**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVS</td>
<td>Absolute value of VS</td>
<td></td>
</tr>
<tr>
<td>DIST</td>
<td>Distance of Plot Point Down a Line</td>
<td>IN</td>
</tr>
<tr>
<td>I</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>IADD</td>
<td>Address J*NPTS</td>
<td></td>
</tr>
<tr>
<td>ICHAR</td>
<td>Plot character</td>
<td></td>
</tr>
<tr>
<td>ICHAR()</td>
<td>X and Y Axis Write Characters</td>
<td></td>
</tr>
<tr>
<td>ISP</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>ISPACE()</td>
<td>Temporary Variable for Writing X and Y Axis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scales</td>
<td></td>
</tr>
<tr>
<td>ITEST</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Counter Indicating Plot Number</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>Integer Counter for Plot Line Number</td>
<td></td>
</tr>
<tr>
<td>NABSQ</td>
<td>Integer value 1 or 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Used as Indicator</td>
<td></td>
</tr>
<tr>
<td>NCHAR</td>
<td>Dummy Variable Representing Plot Character</td>
<td></td>
</tr>
<tr>
<td>NVAR</td>
<td>Dummy Variable Representing Point at which Line</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plot is taken or Component Number</td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>Column Number Nearest to the 1th Value of X-Variable</td>
<td></td>
</tr>
<tr>
<td>V;</td>
<td>Dummy Variable</td>
<td></td>
</tr>
</tbody>
</table>

7.2-3
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>XAX</td>
<td>Temporary Variable for Writing X Axis Scale Values</td>
<td></td>
</tr>
<tr>
<td>XDELTA</td>
<td>Distance Between Stored Points on X Axis</td>
<td></td>
</tr>
<tr>
<td>XMAX</td>
<td>Last (Largest) X Axis Value</td>
<td></td>
</tr>
<tr>
<td>XMIN</td>
<td>First (Lowest) X Axis Value</td>
<td></td>
</tr>
<tr>
<td>XSCALE</td>
<td>X Scale Range</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Temporary Variable (Y Axis Scale Value)</td>
<td></td>
</tr>
<tr>
<td>YDELTA</td>
<td>Distance Between Stored Points on the Y Axis</td>
<td></td>
</tr>
<tr>
<td>YLAST</td>
<td>Last Y Axis Scale Value</td>
<td></td>
</tr>
<tr>
<td>YLO</td>
<td>Lowest Value in Search Range</td>
<td></td>
</tr>
<tr>
<td>YMAX</td>
<td>Maximum Value to be Plotted</td>
<td></td>
</tr>
<tr>
<td>YMIN</td>
<td>Minimum Value to be Plotted</td>
<td></td>
</tr>
<tr>
<td>YUP</td>
<td>Highest Value in Search Range</td>
<td></td>
</tr>
</tbody>
</table>
7.2.7 Subroutine Listing

SUBROUTINE GRAPH

C**** REVISED AUGUST 5, 1975 ****
COMMON NTNLPL, NTOPL, IPT, IPOINT, NPTS, INEL, KNL, NTOPL, NLPLT(61,3),
1 VSTORE(1)
COMMON /SUB/PAR1(150,9), PAR(1500), CM(1500), P(300), Q(300), C(300)
1, R(300), RH0(20), S2ORH0(20), VISC(20), BULK(20), TLAP(20), PVAP(20)
2, ATPL, TP, TFINAL, PRTOLL, PI, TITLE(20), LEGN, ICON
3, YMAX(99), LSTART(150), NLPT(150), LTYPE(99), NC(99), INX, INZ
4, INV, ISTLP, ILINE, NEL, IND, IENT, MLINE, KNL, ENLEG, ANNODE, APLOT
5, ANLPTS, 4DB
DIMENSION ISPACE(101), XMAX(6), ICHART(8)
DATA ICHART/1,1,1,1,1,1,1,1*
DATA ITLST, XSCALE/0,0,0/
C-----BEGIN OUTER LOOP, FIND X PARAMETERS ON FIRST PASS ONLY
1 DO 901 J=1, NT0PL
 IADD=J*NPTS
 IF (J,GT,1) GO TO 2
 XMAX=VSTORE(NPTS)
 XMIN=VSTORE(1)
 ITLST=ITLST+1
 IF (ITLST,LE,1) XMAX=XMAX+XSCALE
 XSCALE=0
 CALL SCALDO(XMAX, XMIN)
 XDELTA=(XMAX-XMIN)/ITLST.
C----- FIND Y PARAMETERS
2 YMAX=VSTORE(1+IADD)
 YMIN=YMAX
 DO 902 I=2, NPTS
 YMAX=A(I)*YMAX, VSTORE(1+IADD)
 902 YMIN=A(I)*YMIN, VSTORE(I+IADD)
 NABS=0
 IF (J,GT,ITOLPL, OR, NLPLT(J,1),GE,0) GO TO 905
 IF (INV,J,GE,0) GO TO 905
 IF (YMAX,J,GT,1) GO TO 905
 NABS=1
 IF (ABS(YMIN,J,GT,YMAX), YMAX=YMAX-YMIN
 905 IF (YMAX,J,GT,YMAX) GO TO 9020
 YMAX=YMAX+25,
 YMAX=YMAX-50.
 GO TO 9025
 YMAX= (YMAX+YMAX)*.001
 IF((YMAX-YMIN),GT,MAX) GO TO 9025
 YMIN=YMAX-YMIN
 YMAX-YMIN-YMAX
 9025 CALL SCALDO(YMAX, YMIN)
 YDLPLA=(YMAX-YMIN)/50.
C----- FIND L119/COMPINT VARIABEL, TYPE OF PLOT, OUTPUT DATA
 L=NLPLT(1,1)
 IF (J,GT,STPLPL) GO TO 5
 IF (NLPLT(J,1)) 3,0,4

7.2-5
7.2.7 (Continued)

3 ICHAR=ICHART(1)
 DIST=NLPLT(J,3)*PARM(L,5)
 GO TO 6
4 ICHAR=ICHART(2)
 DIST=NLPLT(J,3)*PARM(L,5)
 GO TO 6
5 ICHAR=ICHART(3)
 NVAR=NLPLT(J,3)
C-----GO TO TOP OF NEXT PAGE
6 WRITE(6,601)
C-----LOOP FOR EACH PLOT LINE.
 Y=YMAX + YDELT
7 DO 907 LINE=1, 51
 YLAST=Y
 Y=Y-YDELT
 YUP=Y+YDELT/2.
 YLO=Y-YDELT/2.
C-----FIRST * LAST CHAR. ON LINE = *$*
 ISPACL(1)=ICHART(4)
 ISPACL(101)=ICHART(4)
C-----FIRST * LAST LINES ALL $*; EXCEPT ** IN 11,21,31,41,...,61,+$1
 IF(LINL.NL.1 .AND. LINL.NL.51)GO TO 11
9 DO 909 ISP=2,100
 IF((ISP-1).LT.(ISP-1)/10*10)GO TO 17
 ISPACL(ISP)=ICHART(5)
 GO TO 909
10 ISPACL(ISP)=ICHART(6)
909 CONTINUE
 GO TO 14
C-----INITIALIZE COL. 2-100 ON LINES 2-50 TO $*; OR $++$+*** IF AXIS
11 IF(Y.LT.0. .AND.YLAST.GT.0.)GO TO 13
12 DO 912 ISP=2, 100
 ISPACL(ISP)=ICHART(7)
 GO TO 14
912 ISP=2, 100
13 DO 913 ISP=2,100
 ISPACL(ISP)=ICHART(5)
917 ISP=(ISP-1).LT.(ISP-1)/10*10)ISPACL(ISP)=ICHART(6)
C-----SEARCH Y-VALUE ARRAY FOR THOSE IN RANGE YLO,LT.VALUE,GT.YUP
14 DO 914 I=1, NPT3
 VS=VSTORL(1+IADD)
 NCHAR=ICHAR
 IF(VS.GT.YLO .AND. VS.LE.YUP)GO TO 145
 IF(ABSQ.NL.1)GO TO 914
14 VS=ABS(VS)
 IF(VS.LT.YLO.OR.AVS.GT.YUP)GO TO 914
 NCHAR=ICHART(3)
C-----FIND COLUMN NUMBER CLOSEST TO 1-TH VALUE OF X-VARIABLE WHEN SCALED
145 SP=(VSTORL(1)-XMIN)/XDELT + 1
 IF(SP-AINT(SP).GT.0.5) SP=SP + 0.50
 ISP=SP

7.2.6
7.2-7 (Continued)

C------CHECK ISP. IF LT 0 OR GT 102, ERROR; IF 0, ADD 1; IF 102, SUBT. 1
 IF(ISP) 914, 15, 16
 15 ISP=1
 GO TO 18
 16 IF(ISP=102)18,17,914
 17 ISP=101
 18 ISPAC(ISP)=NCHAR
 914 CONTINUE

C------LINES 1,11,21,31,41,51 HAVE Y-VALUES; THESE LINES, PLUS LINES 6,
C 16,26,... ALSO HAVE *** IN CGL. 1+101 IF EMPTY
 IF((LINE-1).NL.(LINE-1)/5*5)GO TO 19
 IF(ISPACE(1).NL.ICHAR) ISPACE(1)=ICHART(6)
 IF(ISPACE(101).NL.ICHAR) ISPACE(101)=ICHART(6)
 IF((LINE-1).NL.(LINE-1)/10*10)GO TO 19

C------WRITE OUT PLOT LINES, CONTINUE
 WRITE(6,602)Y, ISPACE
 GO TO 907
 19 WRITE(6,603)ISPACE
 907 CONTINUE

C------CALCULATE + PRINT X-AXIS VALUES
 20 DO 920 I=1, 6
 920 XAX(I)=XAX(I) + (I-1)*20.*XDELTA
 WRITE(6,604) XAX

C------WRITE LOWER TITLES + VALUES, REENTER OUTER LOOP
 IF (J.GT.NTOLPL) GO TO 23
 IF(NLPLT(J,1))21,23,22
 21 WRITE(6,605) J,DIST,L
 GO TO 900
 22 WRITE(6,606) J,DIST,L
 GO TO 900
 23 WRITE(6,607) J,NVAR,L
 900 CONTINUE
 WRITE(6,608) TITL.
 901 CONTINUE
 1000 WRITE(6,601)
 WRITE(6,610)
 WRITE(6,611)
 IF(T,L,TFINAL-DELT)RETURN
 DO 1250 J=1,NTOLPL
 L=NLPLT(J,2)
 IF(J.GT.NTOLPL) GO TO 50
 DIST=NLPLT(J,3)*PARM(I,5)
 IF(NLPLT(J,1))25,1250,30
 25 WRITE(6,608) J,DIST,L
 GO TO 1250
 30 WRITE(6,606) J,DIST,L
 GO TO 1250
 50 NVAR=NLPLT(J,3)
 WRITE(6,607) J,NVAR,L
 1250 CONTINUE
7.2.7 (Continued)

601 FORMAT(1H1)
602 FORMAT(1X,15X,F12.4,1X,101A1)
603 FORMAT(1X,28X,101A1)
604 FORMAT(1X,23X,5(F9.3,11X),F9.3)
605 FORMAT(1X,29X,6HGRAPH,13,1X,53H FLOW (CU.IN/SEC) VS. TIME (SEC.)
 + FOR A DISTANCE OF ,F8.2,26H INCHES ALONG LINE NUMBER ,I5)
606 FORMAT(1X,28X,6HGRAPH,13,1X,53H PRESSURE (PSIA) VS. TIME (SEC.)
 + FOR A DISTANCE OF ,F8.2,26H INCHES ALONG LINE NUMBER ,I5)
607 FORMAT(1X,29X,6HGRAPH,13,1X,18H VARIABLE NUMBER ,I3,21H OF COMPO
 NENT NUMBER ,I3,28H VS. TIME (SEC.). THE VARIABLE IS ---)
608 FORMAT(1X,29X,20A4)
610 FORMAT(1H0,65X,27HHYTRAN PROGRAM OUTPUT PLOTS)
611 FORMAT(1H0)
 RETURN
 END
7.3 **SUBROUTINE SCALED**

The subroutine SCALED is used by GRAPH to obtain a preferred scale for the X and Y axis of the print plot graphs.

The number of divisions on the X axis = 100 and the number of divisions on the Y axis = 50, a preferred scale system was chosen which would give a difference between RMAX and RMIN of either 1.0×10^N, 2.0×10^N or 5.0×10^N where N can be +ve or -ve.

The graph data MAX and MIN is centered between RMAX and RMIN unless either RMAX or RMIN can be set to zero.

An overriding requirement is that the scales should be at some reasonable number for easy reading hence with a range of 5000, the MIN can be set at intervals of 500, or range/10. This sometimes leads to a larger scale being used than would expected from the actual range.

The goal however was graphical readability and scalability without the need to resort to a calculator to find the value of a point, and in meeting this goal we have payed some penalty in the size of the actual graph.

7.3.1 **Theory** - Not applicable.

7.3.2 **Assumptions** - Not applicable.

7.3.3 **Computation** - To be added later.

7.3.4 **Approximation** - Not applicable.

7.3.5 **Limitations**

In its present form SCALED gives inconsistent answers for small values of RMAX and RMIN, and is not currently used to scale the X axis.
7.3.6 Variable Names

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>DIMENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMAX</td>
<td>Maximum value to be plotted</td>
<td>-</td>
</tr>
<tr>
<td>AMIN</td>
<td>Minimum value to be plotted</td>
<td>-</td>
</tr>
<tr>
<td>IBOT</td>
<td>Variable used to calculate Y axis scale values</td>
<td>-</td>
</tr>
<tr>
<td>LEMAX</td>
<td>Variable used to calculate Y axis scale values</td>
<td>-</td>
</tr>
<tr>
<td>LEXP</td>
<td>Variable used to calculate Y axis scale values</td>
<td>-</td>
</tr>
<tr>
<td>ITOP</td>
<td>Variable used to calculate Y axis scale values</td>
<td>-</td>
</tr>
<tr>
<td>J</td>
<td>Integer counter</td>
<td>-</td>
</tr>
<tr>
<td>MANT</td>
<td>Variable used to calculate Y axis scale values</td>
<td>-</td>
</tr>
<tr>
<td>RANGE</td>
<td>Range of values to be plotted</td>
<td>-</td>
</tr>
<tr>
<td>RMAX</td>
<td>Maximum Y axis scale value</td>
<td>-</td>
</tr>
<tr>
<td>RMIN</td>
<td>Minimum Y axis scale value</td>
<td>-</td>
</tr>
<tr>
<td>SCALE(-)</td>
<td>Scale factors for Y axis</td>
<td>-</td>
</tr>
</tbody>
</table>
7.3.7 Subroutine Listing

SUBROUTINE SCALD(RAX,ReTV)
DIMENSION SCAL(6)
DATA SCAL(/5,1,2,5,10,20/)
C-----FIND THE RANGE OF VALUES *RANGE*, AND PLACE ACTUAL RAX AND MIN
C-----POINTS IN *RMAX* AND *ALTV*
RANGE=RMAX-RMIN
RMAX=RAX
ALTV=RMIN
C-----FIND AN INTEGER EXPONENT *ILEXP* AND BASE *MANT* SUCH THAT THE
C-----VALUE OF *MANT**ILEXP* IS .GE. RANGE.
ILEXP=ALLG10(RANGI)
MANT=RANGE/10.**ILEXP
IF(RANGE.GT.MANT**10.**ILEXP).MANT=MANT+1
C-----USING MANT, SELECT ONE OF THE PREFERRED SCALES
IF(MANT.GT.10) GO TO 70
IF(MANT.LT.1) GO TO 70
GO TO(90,90,90,100,100,100,110,110,110,110,70), MANT
70 MANT=1
ILEXP=1*ILEXP+1
90 J=2
GO TO 120
90 J=3
GO TO 120
100 J=4
GO TO 120
110 J=5
C-----SLT *ILEAX* LOBAL TO THE EXPONENT OF 10, CORRESPONDING TO RMAX
120 IF(RMAX.GE.0.) GO TO 121
ILEAX=ALLG10(ABS(RMAX))
C-----USE RMAX AND ILEAX TO FIND A POSSIBLE MAXIMUM VALUE FOR THE
C-----SCALE. PLACE THE VALUE IN RAX, AND COMPARE WITH THE ACTUAL
C-----AXIAL POI NT.
RAX=110*(ABS(RAX))/10.**ILEAX*10.**ILEAX*SIGN(1.0,ALTV)
121 IF(RMAX.GT.RAX) GO TO 130
C-----IF RAX IS < LT. ACTUAL RAX POI NT, INCREASE IT BY 5
C-----PERCENT AND RECHECK--REPEAT AS NECESSARY
RAX=RAX+.5*SCAL(1)*10.**ILEXP
GO TO 121
C-----SET THE SCALE'S LIMITS BY SUBTRACTING SCALE(J)**ILEXP FROM RMAX
C-----IF THE ACTUAL RAX HAVI NG *ALTV* LIES WITHIN THE RANGE, THEN DEFEND
C-----BY RAX AND ALTV, CONTINUE.
130 RAX=RAX-SCALE(J)*10.**ILEXP
IF(RAX.LT.ALV) GO TO 150
C-----GO TO THE NEXT LARGEST SCALE, RECALCULATE RAX, AND RECHECK
J=J+1
IF(J.LT.5.5) GO TO 130
J=1
ILEXP=ILEXP+1
GO TO 120
C-----IF THE SCALE'S MIV IS < LT. ZERO, BUT THE ACTUAL ALTV IS POSITIVE,
7.3.7 (Continued)

C-----SHIFT THE SCALE UP SO THAT THE SCALE BEGINS AT ZERO
150 IF(RMIN*AMIN.GT.0.)GO TO 170
RMIN=0.
160 RMAX=SCALE(J)*10.***IEXP
C-----DUE TO THE SHIFT, IT MAY BE POSSIBLE TO DECREASE THE SCALE TO
C-----THE NEXT SMALLEST SIZE
IF(AMAX.GT.1.000001*SCALE(J-1)*10.***IEXP) RETURN
J=J-1
IF(J.GT.1.5) GO TO 160
J=4
IEXP=IEXP-1
GO TO 160
C-----IF RMIN IS POSITIVE AND NEAR ZERO, SHIFT THE SCALE DOWN TO 0. MIN
170 IF(RMIN.LT.0.)GO TO 175
IF(RMIN.GT.1*RMAX)GO TO 190
RMIN=0.
RMAX=SCALE(J)*10.***IEXP
C-----IF THE SHIFT DOWN CAUSES RMAX TO LIE BELOW THE ACTUAL MAX,
C-----INCREASE THE SCALE RANGE TO THE NEXT LARGEST
IF(RMAX.LT.MAX)RMAX=SCALE(J+1)*12.***IEXP
RETURN
C-----IF RMIN IS NEGATIVE AND NEAR ZERO, SHIFT THE SCALE UP TO 0. MAX
175 IF(RMAX.GT.0.) GO TO 190
IF(-RMAX.GT.-0.1*RMIN) GO TO 180
RMIN=0.
RMAX=-SCALE(J)*10.***IEXP
C-----IF THE SHIFT UP CAUSES RMIN TO LIE ABOVE THE ACTUAL MAX,
C-----INCREASE THE SCALE RANGE TO THE NEXT LARGEST
IF(RMIN.GT.1.14) RMIN=-SCALE(J+1)*10.***IEXP
RETURN
C-----CENTER THE SCALE ABOUT THE ACTUAL RANGE OF POINTS
180 ITOP=(RMAX-MAX)/(0.05*SCALE(J)*10.***IEXP)
130T=(AMIN-RAIN)/(0.05*SCALE(J)*10.***IEXP)
120TDIF=(ITOP-190T)/2
IF(131DIFT.GT.0.) RETURN
RMIN=RMIN-131DIF*.05*SCALE(J)*10.***IEXP
RMAX=RMIN+SCALE(J)*131DIF*.05*SCALE(J)*10.***IEXP
RETURN
END
8.0 UTILITY SUBROUTINES

The utility subroutines have been added to avoid some of the annoying problems encountered when a program is transferred to another system which may have similar but incompatible library routines.

INTERP and LAGRAN both of which started as library routines, have been modified to cut running costs wherever possible.

A skilled user can probably replace these routines with local library routines and operate efficiently.
8.1 *INTERP SUBROUTINE*

The INTERP subroutine provides interpolation for continuous or discontinuous functions of the form $Y = f(X)$. INTERP is a shortened version of a MCAUTO library functional subroutine named DISCOT.

INTERP uses two other subroutines, DISER1 and LAGRAN, to derive the dependent variable from tabulated data input by the programmer or already existing in the program subroutine. Subroutine DISER1 gives the data points around the X variable. Lagrange's interpolation formula is used in the subroutine LAGRAN to obtain a Y value. For an X value lying outside the range of the tabulated data, the Y value will be extrapolated. Fluid viscosities are calculated using a modified Walther equation.

8.1.1 *Solution Method.* The INTERP subroutine provides the necessary control parameters to DISER1 and LAGRAN to yield a dependent variable. The subroutine arguments are:

Subroutine INTERP (X, TABX, TABY, NC, NY, Y, IND)

where:

- X - Argument of function $Y = f(X)$
- TABX - X array of independent variables in ascending order
- TABY - Y array of dependent variables in ascending order
- NC - Control word

```
Tens Digit - Degree of interpolation
Units Digit -
              = 1 Walther equation
              = 0 LAGRAN interpolation
```

- NY - Number of data points in the Y array
- Y - Dependent variable
IND - Error indicator

0 = Normal interpolation
1 = Extrapolation outside range of data points.

8.1.2 Assumptions. Not applicable

8.1.3 Computations. The degree of interpolation will be decoded from the control word NC in the INTERP subroutine argument and passed to DISERI. The error indicator IND is set to zero. On finding the data point closest to the X value from DISERI, it is entered into the LAGRAN subroutine argument. If the modified Walther equation is to be used for a viscosity calculation, IDX will be set equal to -1.

8.1.4 Approximations. Not applicable

8.1.5 Limitations. The X and Y data points must be entered in an ascending order. When tabulating a discontinuous function the independent variable (X) at the point of discontinuity is repeated, i.e.,

\[X_1, X_2, X_3, X_4, X_5 \]
\[Y_1, Y_2, Y_3, Y_4, Y_5, Y_6 \]

Thus for discontinuous functions there must be \(K + 1 \) points above and below the discontinuity, where \(K \) is the degree of interpolation.
8.1.6 INTERP Variable Names

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDX</td>
<td>Degree of interpolation</td>
<td>-</td>
</tr>
<tr>
<td>IND</td>
<td>Solution indicator</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>= 0 Normal interpolation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 1 Extrapolation outside of data range</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>Control word</td>
<td>-</td>
</tr>
<tr>
<td>NPX</td>
<td>Dummy array</td>
<td>-</td>
</tr>
<tr>
<td>NPIX</td>
<td>Location of data point X, Y for interpolation</td>
<td>-</td>
</tr>
<tr>
<td>NY</td>
<td>Number of Y data points</td>
<td>-</td>
</tr>
<tr>
<td>TABX</td>
<td>X array of data points</td>
<td>-</td>
</tr>
<tr>
<td>TABY</td>
<td>Y array of data points</td>
<td>-</td>
</tr>
<tr>
<td>X, XA</td>
<td>Independent variable</td>
<td>-</td>
</tr>
<tr>
<td>Y</td>
<td>Dependent variable</td>
<td>-</td>
</tr>
</tbody>
</table>
8.1.7 Subroutine Listing

SUBROUTINE 13288P(X, Y, A, B, C, D, E)
 N=100
 T=0
 X=0
 CALL DISPLAY(X, Y, A, B, C, D, E)
 RETURN
END
8.2 DISER1 Subroutine

The subroutine DISER1 will return the array location of the lower bound value of the interval in which the independent variable lies. DISER1 is a modification of a MCAUTO library subroutine named DISERP.

The arguments for the DISER1 subroutine are as follows:

Subroutine DISER1 (XA, TAB, I, NX, ID, NPX, IND)

XA - Independent variable
TAB - X array
I - Tabulated data location
NX - Number of points in the independent array
ID - Degree of interpolation
NPX - Location of lower bound for data point XA, in the TAB array
IND - Indicator

8.2.1 Solution Method. Not applicable

8.2.2 Assumptions. Not applicable

8.2.3 Computations. On entry of the independent variable, XA, and the tabulated data form the TABX array, DISER1 will find the tabulated data values that bound XA, and return the smaller one to the calling program. If XA were to lie outside the lower end of the data, DISER1 would return the first data point as the lower bound. Should XA lie outside the upper tabulated value, the second from the last data point location will be returned by DISER1.

8.2.4 Approximations. Not applicable

8.2.5 Limitations. Not applicable
DISERl Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IND</td>
<td>Solution indicator</td>
<td>-</td>
</tr>
<tr>
<td>I, ID, IT, J, NLOC, NLOW, NPB, NFT, NFU, NFX, NUPP, N', NXX</td>
<td>Integer counters</td>
<td>-</td>
</tr>
<tr>
<td>TAB</td>
<td>Array of independent variables</td>
<td>-</td>
</tr>
<tr>
<td>XA</td>
<td>Independent variable</td>
<td>-</td>
</tr>
</tbody>
</table>
8.2.7 Subroutine Listing

SUBROUTINE RESLIB(XA, TAB, I, NN, ID, NPX, I6D)
DIMENSION TAB(I)
IF(XA-TAB(I))71,73,72
71 J=ID+1
NPX=1
RETURN
73 XA=TAB(I)
NPX=1
RETURN
74 I=I+NX-1
IF(XA-TAB(I))1,77,76
76 I=ID+1
NPX=NPX+1
RETURN
77 XA=TAB(I)
NPX=NPX+1
RETURN
1 XP=I+NPX+1
MP = NPX/2
NPJ=NPX-NP3
IP((16-XP)/4,6,10
4 I = NX-1
GOTO 1
5 I = I+1
RETURN
10 MJP=I+NP3
NP=I+NX-(NPJ+1)
IP((6-20)/16,13,11
11 X=1/2+1
IF(XA-TAB(I6D))12,17,13
12 I=IP+1
IP((XA-TAB(I6D))12,17,17
13 MYP=NP+NX/4
IP((XA-TAB(I6D))14,17,17
14 MJP=NP-NX/4
GOTO 13
17 X=FL:
18 DO 17 II=KLDW,100
ILOC=II
IP((FL+II)-XA)19,20,20
19 GOTO 17
SP=SP+1
RETURN
20 SP=ILOC+1
RETURN
END

8.2-3
8.3 LAGRAN SUBROUTINE

The LAGRAN subroutine will interpolate or extrapolate a data point from two known tabulated values. In addition, LAGRAN will calculate viscosity using a modified Walther equation. The LAGRAN subroutine arguments are:

Subroutine LAGRAN (XA, X, Y, N, ANS)

XA - Independent variable
X - X array
Y - Y array
N - Degree of interpolation
ANS - Dependent variable

8.3.1 Math Model. LAGRANGES interpolation equation is used in this subroutine to calculate the dependent variable. The LAGRANGE formula is:

\[P(x) = \sum_{i=0}^{m} L_i(x) y_i \]

where:

\[L_i(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)(x_i-x_1)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)} \]

The LAGRANGE equation will generate a polynomial between two data points. The degree of the polynomial will be that specified by the index value N. The dependent variable will be returned as ANS in the subroutine argument.

A modified version of the Walther equation is used in the calculation of viscosity. The ASTM charts are based on this equation.

\[\log [\log (y+c)] = a \log R + b \]

where:

\[c = \text{a constant} \]
°R = Temperature, °RANKINE

ν = Viscosity, cSt

A, B = Constants for each fluid

LOG = Log to the base 10

The ASTM chart expresses c as a constant varying from 0.75 at 0.4 cSt to 0.6 at 1.5 cSt and above.

8.3.2 Assumptions. The Lagrangian equation generated by the subroutine will only use the data points around the dependent variable to generate a polynomial for interpolation. The last or first set of two data points will be used for extrapolation. The equation used to determine the viscosity uses a constant factor that is applicable to viscosity values of 2 centistokes or more.

8.3.3 Computation. The procedure LAGRAN will perform whether it be interpolation or the viscosity calculation, will always be recognized by testing the N argument in the subroutine statement. If N is equal to zero, then the viscosity will be calculated using the modified Walther equation. Otherwise N will specify the degree of interpolation to be used by the Lagrange formula. Both results will be returned to the calling program through the variable named ANS. The LAGRAN interpolation is a direct application of equation (1) to the given data.

Before evaluating the viscosity equation (3) for the viscosity value at a temperature, the constants A and B must be calculated. They are solved using the data points that surround the dependent variable, or the first or last set of two data points if the dependent variable lies outside the range of the tabulated data. With the constants calculated for this fluid the viscosity can be computed from Equation (3).

8.3.4 Approximations. In the viscosity calculation, 0.6 was used as a constant factor for all ranges of viscosity. See reference 9.6 for a more thorough discussion.
8.3.5 Limitations. Since the LAGRANGE method only uses two data points to interpolate, it can become inaccurate for remotely spaced tabulated data points. Any degree of interpolation greater than two can lead to erroneous results.

For the viscosity equation, any computed value of viscosity less than 2 centistokes cannot be considered accurate, and should be weighed in the final results.

8.3.6 LAGRANGE Subroutine Variable Names

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Constant for viscosity</td>
<td>-</td>
</tr>
<tr>
<td>ANS</td>
<td>Dependent variable</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>Constant for viscosity</td>
<td>-</td>
</tr>
<tr>
<td>I,J</td>
<td>Integer counters</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>Method of solution</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$N = 0$ Viscosity calculation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$N > 0$ Degree of interpolation</td>
<td>-</td>
</tr>
<tr>
<td>P1</td>
<td>LOG of $(Y(1) + C)$</td>
<td>cSt</td>
</tr>
<tr>
<td>P2</td>
<td>LOG of $(Y(2) + C)$</td>
<td>cSt</td>
</tr>
<tr>
<td>T1</td>
<td>$T(1)$</td>
<td>°R</td>
</tr>
<tr>
<td>T2</td>
<td>$T(2)$</td>
<td>°R</td>
</tr>
<tr>
<td>X</td>
<td>X-array</td>
<td>-</td>
</tr>
<tr>
<td>Xs</td>
<td>Independent variable</td>
<td>-</td>
</tr>
<tr>
<td>Y</td>
<td>Y-array</td>
<td>-</td>
</tr>
</tbody>
</table>
8.3.7 Subroutine Listing

SUBROUTINE LAGRAN(XA,X,Y,N,NANS)
DIMENSION X(1),Y(1)
IF(N.LE.-1) GO TO 20
IF(N.LE.0) GO TO 10
SUN=0.0
DO 3 I=1,N
PROD=Y(I)
DO 2 J=1,N
A=X(I)-X(J)
IF(A) 1,2,1
3=(XA-X(J))/A
PROD=PROD*A
2 CONTINUE
SUN=SUN+PROD
ANS=SUN
RETURN

C VISCOSITY CALCULATION

10 CONTINUE
A1=0.0
IF(Y(1).LE.2.0)A1=EXP(-1.47-1.84*Y(1)-0.51*Y(1)**2)
A2=0.0
IF(Y(2).LE.2.0)A2=EXP(-1.47-1.84*Y(2)-0.51*Y(2)**2)
P1=ALOG10(ALOG10(Y(1)+.7+A1))
P2=ALOG10(ALOG10(Y(2)+.7+A2))
T1=ALOG10(X(1)+460.)
T2=ALOG10(X(2)+460.)
B=(P1-P2)/(T2-T1)
A=P1+T1
Z=10**((A-3*ALOG10(XA+460.)))
F=(Z-LL.2.7) GO TO 11
ANS=Z-.7
RETURN
11 A=X=(Z-.7)-EXP(-.7187-3.295*(Z-.7)+.519*(Z-.7)**2
++-.3193*(Z-.7)**3)
RETURN

C FLUIDE CALCULATION

20 CONTINUE
P1=ALOG10(ALOG10(Y(1)+.6))
P2=ALOG10(ALOG10(Y(2)+.6))
T1=ALOG10(X(1)+460.)
T2=ALOG10(X(2)+460.)
?=-(P1-P2)/(T2-T1)
A=P1+T1
V0=10**((A-3*ALOG10(XA+460.)))-.6
T5=10**((.125932*A)/3)
T109=10**((-477159*A)/3)
S=ALOG10((T5)/100.+1.)-ALOG10((T109)/100.+1)
DELX=65.10979*3
S=6.55/DELX
ALPHA=3.73623-11.3806*S+13.1735*S*S-4.8831*S*S*S
8.3.7 (Continued)

\[\beta = -5.33425 + 19.9521 \times S - 23.9448 \times S \times S + 10.155 \times S \times S \times S \]

\[\chi = 3.35452 - 13.1273 \times S + 17.1712 \times S \times S - 7.6551 \times S \times S \times S \]

\[\text{ANS} = \alpha + \beta \times \log_{10}(V) + \chi \times (\log_{10}(V))^2 \]

\[\text{IF (ANS.LT.0.) ANS=0} \]

\[\text{RETURN} \]

\[\text{END} \]
8.4 SIMULT SUBROUTINE

SIMULT is a Fortran library subroutine (Reference 9.3) that solves systems of N linear algebraic equations with N unknowns. SIMULT employs Gaussian elimination and positioning for size using the largest pivotal divisor as the solution process.

8.4.1 Solution Method - A system of linear equations may be written:

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
 \vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m \\
\end{align*}
\]

(1)

Rewriting in matrix form:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix} =
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}
\]

(2)

Equation (2) may be further simplified by writing:

\[
AX = B
\]

(3)

where

\[
\begin{align*}
A &= M \times M \text{ Matrix of coefficients} \\
B &= M \text{ Matrix of Constants} \\
X &= M \text{ Matrix of } M \text{ unknowns in the system.}
\end{align*}
\]
The solution of a set of simultaneous linear equations as in (1) is by Gaussian elimination using pivoting. Each stage of elimination consists of interchanging rows when necessary to avoid division by zero or small elements. The forward solution to obtain variable M is done in M stages. The back solution for the other variables is calculated by successive substitutions. Final solution values are developed in matrix B, with variable 1 in B(1), variable 2 in B(2), ..., variable M in B(M). If no pivot can be found exceeding a tolerance of 0.0, the matrix is considered singular.

The arguments for SIMULT are as follows:

Subroutine SIMULT (CALC1, CALC2, M, J)

where:

CALC1 = A
CALC2 = B
M = number of equations
J = solution indicator

J = 1 when no solution can be found - equations are singular
J = 0 for a normal solution

Both the original CALC1 and CALC2 Matrices are destroyed in the computation. The answers are returned through the CALC2 Matrix.

8.4.2 Assumptions - The basic assumption used in the solution of simultaneous linear equations involves the ability to actually linearize the complex mathematical system that is being described. If this can reasonably be done then a set of equations as in (1) may be written and solved.
8.4.3 **Computation** - Gaussian elimination and positioning for size using the largest pivotal divisor is used. Positioning for size or pivoting will ordinarily reduce some of the roundoff errors in the solution and may actually allow some ill-conditioned systems to be solved. See Appendix D SSFAN Technical Manual (MDC A3059 Vol II) for a more thorough discussion of this method.

8.4.4 **Approximations** - The approximations are inherent in the use of the Gaussian elimination procedure as described in Appendix D of the SSFAN Technical Manual.

8.4.5 **Limitations** - If no equation in the set (1) is a linear combination of the others, the system of equations is said to be linearly independent and a unique solution exists for the unknowns. A system of equations are homogeneous if each b_i in B (EQN 2) is equal to zero. The Gaussian elimination method will provide a unique solution to equation (3) when the corresponding homogenous system has only the solution $X = 0$. Both systems $AX = B$ and $AX = 0$ as well as the coefficient matrix A are then termed non-singular. When $AX = 0$ has solutions other than zero, the two systems and matrix A are termed singular. This results in $AX = B$ either having no solution or an infinite number of solutions.
8.4.6 SIMULT Subroutine Variable Names

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N*N Matrix of Coefficients</td>
<td>--</td>
</tr>
<tr>
<td>B</td>
<td>N matrix of constants</td>
<td>--</td>
</tr>
<tr>
<td>BIGA</td>
<td>Largest element</td>
<td>--</td>
</tr>
<tr>
<td>IA,IB,IC,JJ</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>IMAX,IQS,IT</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>IX,IXJ,IXJX,</td>
<td></td>
<td>Integer counters</td>
</tr>
<tr>
<td>II,I2,J,IJ,JJX,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JX,JY,K,NY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Number of unknowns</td>
<td>--</td>
</tr>
<tr>
<td>SAVE</td>
<td>Temporary storage location</td>
<td>--</td>
</tr>
<tr>
<td>TOL</td>
<td>Tolerance</td>
<td>--</td>
</tr>
</tbody>
</table>
8.4.7 Subroutine Listing

```plaintext
SUBROUTINE SIMULT(A, B, N, KS)
C**** REVISED SEPTEMBER 3, 1974 ****
DIMENSION A(1), B(1)
TOL=0.
KS=0
JJ=-N
DO 65 J=1, N
JJ=J+1
JJ=JJ+J+1
A(J)=0
IT=JJ-J
DO 30 I=J, N
IJ=IT+I
IF(ABS(A(IJ))-ABS(A(IJ)) .gt. TOL) 20, 30, 30
20 A(IJ)=A(IJ)
IAX=I
30 CONTINUE
IF(ABS(A(IJ))-TOL) 35, 35, 40
35 KS=1
RETURN
40 I1=I+1+(J-2)
IT=IAX-J
DO 50 K=1, N
I1=I1+K
I2=I1+IT
SAVE=A(I1)
A(I1)=A(I2)
A(I2)=SAVE
50 A(I1)=A(I1)/B(I)
SAVE=3(IAX)
B(IAX)=2(J)
B(J)=SAVE/B(I)
IF(J .gt. N) 55, 76, 55
55 JX=N*(J-1)
DO 65 IX=JX, N
IXJ=IX+J
IT=J-IX
DO 60 JX=JX, N
IXJX=N*(JX-1)+IX
JY=IXJX+IT
60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JX))
65 Z(IX)=Z(IX)-(Z(J)*A(IXJ))
70 N=J-1
IT=N+1
DO 80 J=1, N
11=IT-J
12=N-J
IC=N
DO 85 K=1, J
3(13)=3(13)-A(13)*3(1C)
80 CONTINUE
85 CONTINUE
```

8.4-5
8.4.7 (Continued)

IA=IA-1
30 IC=IC-1
RETURN
END
8.5 SBRAN SUBROUTINE

The SBRAN subroutine is a special utility program which enables the programmer to input lines without having to separate them with a component or end them with a component.

8.5.1 MATH MODEL

Not applicable.

8.5.2 ASSUMPTIONS

Not applicable.

8.5.3 COMPUTATION

1000 SECTION

All the connection data for the lines is checked in the LC array. Should a line be dead-ended, a minus one will be in the appropriate address of the LC array. The number of dead ends are counted and the address of the downstream end of the line number is stored in the LL array.

Next the lines are checked to see if they are connected to each other. This occurs when a one is found in the downstream address of one line and the upstream address of another in the LC array. The address is stored in the LL array and a counter, NDEND, is incremented for each line.

If the sequences of -1 -1, 0, 0, or +1, +1 are not followed for the line data, the program will stop execution.

3000 SECTION

For a dead-ended line the address of the lines pressure and flow data is found in the LL array. The flow in the line is set to zero and the end pressure is set to the characteristic pressure.

The LL array also contains the addresses of the \(P \), \(Q \), \(Z \) and \(L \) variables for any lines that are connected.
The flow is computed as

\[Q(I) = \frac{(C(T) - C(JJ))}{Z(1) + Z(JJ)} \]

\[Q(JJ) = -Q(I) \]

where:

I denotes the upstream line end point
JJ denotes the downstream lines beginning

The pressures are calculated easily as

\[P(I) = C(I) - Q(I) \cdot z(1) \]

\[P(JJ) = P(I) \]

8.5.4 APPROXIMATIONS
Not applicable.

8.5.5 LIMITATIONS
SBRAN does not take into account the pressure drops or rises that result from any changes in cross sectional area going from one line to another.

8.5.6 VARIABLE NAMES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Downstream Line Address</td>
</tr>
<tr>
<td>JJ</td>
<td>Upstream Line Address</td>
</tr>
<tr>
<td>KFAIL</td>
<td>Error Indicator</td>
</tr>
<tr>
<td>NLINE</td>
<td>Number of Lines</td>
</tr>
<tr>
<td>NDENDS</td>
<td>Number of Dead-Ended Lines</td>
</tr>
<tr>
<td>NDUND1</td>
<td>Counter for Connected Lines</td>
</tr>
</tbody>
</table>

8.5-2
8.5.7 Subroutine Listing

SUBROUTINE SRGN

C *** REVISED DECEMBER 5, 1975 ***

C MP3/SUB/PRCH(150,1),PC(150),PM(150),P(300),C(300),H(300)

1,C(300),RHS(20),SQRNO(20),VISC(20),BULK(20),TEMP(20),PVAP(20)

2,APRES,T,DELT,TRIVAL,MLRDEL,PI,TITLE(20),LEDN,ICON

3,KPEP(20),ISTART(150),NLPT(150),LTYPE(20),NC(99),INX,INZ

4,INV,ISTOP,NLINE,NEL,INC,INTRA,INLINE,INL,ANLEG,ANGCOUL,ANPLOT

5,ANPLT,NS

DIMENSION LL(55),LC(1)

EQUIVALENCE (LC(1),C(1))

IF (THERM) 1000,2000,3000

1000 CONTINUE

J=0

GO TO 10 I=1,500

J=I+2

IF (LC(JJ),M.EQ.1) GO TO 100

J=J+1

LL(J)=JJ

100 CONTINUE

MFAIL=J

M=MLIN-1

GO TO 200 I=1,5

J=I+2

IF (LC(JJ),M.EQ.1) GO TO 100

IF (LC(JJ),ML,LC(JJ+1)) GO TO 150

IF (LC(JJ),LM,J) GO TO 200

J=J+1

LL(J)=JJ

GO TO 200

150 I=I+1

NLIN(6,4000) I,LL

4000 FOR ALL(5X,13,5X,13)

MFAIL=1

GO TO 200

100 IF (LC(JJ+1),ML,J) GO TO 150

200 CONTINUE

ML=JL 100

IF (MFAIL,L) = NMLIN(6,17)

200 FOR ALL(10X,32)PROBA. STOP 1: SUBROUTINE SRGN

IF (MFAIL,L) STOP 500

2000 RETURN

2000 CONTINUE

IF (NL,L,J) GO TO 3025

GO TO 3020 I=1,MLJN

M=LL(J)

O(I)=G,J

2020 P(I)=G(I)

2025 IF (DL,L,J) GO TO 3040

GO 3050 C=CDL(I,1)

8.5-3
8.5.7 (Continued)

I = LL(i)
JJ = I + 1
Q(I) = (C(I) - C(JJ)) / (Z(I) + Z(JJ))
Q(JJ) = -Q(I)
P(I) = C(I) - 2 Q(I) Z(I)
P(JJ) = P(I)

3050 CONTINUE
3060 RETURN
3060 END
8.6 SUBROUTINE XLIMIT

XLIMIT is a utility subroutine which provides the calling program with information to determine if a limit has been reached. The subroutine is typically used for components with mechanical movement and returns position and velocity data.

8.6.1 MATH MODEL

Not applicable.

8.6.2 ASSUMPTIONS

Not applicable.

8.6.3 COMPUTATION METHOD

Minimum (POSMIN) and maximum (POSMAX) limits are input along with the current values of position (POS) and velocity (VEL) from the calling program. Initially the sign is set to zero and the position is compared against POSMAX.

If POS is greater than or equal to POSMAX, the position is set to POSMAX and ASIGN is set to 1. Should VEL be greater than zero it is zeroed and a return is made to the calling program.

If POS is less than POSMAX it is checked against POSMIN. When POS is less than or equal to POSMIN, POS is set to POSMIN, ASIGN equals -1 and the velocity is zeroed if it is less than zero.

Should POS be greater than POSMIN a return is made to the calling program without any position or velocity changes.

8.6.4 APPROXIMATIONS

Not applicable.

8.6.5 LIMITATIONS

Not applicable.
8.6.6 VARIABLE NAMES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIGN</td>
<td>Sign (-1, 0, 1)</td>
</tr>
<tr>
<td>POS</td>
<td>Position</td>
</tr>
<tr>
<td>POSMIN</td>
<td>Minimum Position</td>
</tr>
<tr>
<td>POSMAX</td>
<td>Maximum Position</td>
</tr>
<tr>
<td>VEL</td>
<td>Velocity</td>
</tr>
</tbody>
</table>
8.6.7 Subroutine Listing

SUBROUTINE XLIMIT(POS, VEL, ASIGN, POSMIN, POSMAX)
 ASIGN=0.0
 IF(POS-POSMAX) 20,10,10
 POS=POSMAX
 ASIGN=1.0
 IF(VEL.GT.0.0) GO TO 40
 GO TO 50
20 IF(POS-POSMIN) 30,30,50
30 POS=POSMIN
 ASIGN=-1.0
 IF(VEL.LE.0.0) GO TO 50
40 VEL=0.0
50 RETURN
END
8.6.7 (Continued)

SUBROUTINE DLIMIT(POS, VEL, ASIGN, POSMIN, POSMAX)

DOUBLE PRECISION POS, VEL, ASIGN

ASIGN = 0.0D0

IF (POS - POSMAX) 20, 10, 10

10 POS = POSMAX

ASIGN = 1.0D0

IF (VEL GT 0.0D0) GO TO 40

GO TO 50

20 IF (POS - POSMIN) 30, 30, 50

30 POS = POSMIN

ASIGN = -1.0D0

IF (VEL LE 0.0D0) GO TO 50

40 VEL = 0.0D0

50 RETURN

END

8.6-4
8.6.7 (Continued)

FUNCTION SQRABS(X)
 IF(X)100,200,300
 100 SQRABS=-SQRT(-X)
 GO TO 400
 200 SQRABS=0.0
 GO TO 400
 300 SQRABS=SQRT(X)
 400 RETURN
END
8.7 **SUBROUTINE TUSTIN/FUNCTION DYNAM**

The Tustin subroutine provides coefficients to approximate difference forms of continuous transfer functions for digital simulation. The Z-plane equivalents of the integrator, lag, or lag and washout for S-plane continuous functions can be selected.

Function DYNAM performs the actual computation for the chosen transfer function.

8.7.1 **MATH MODEL**

For a general function \(G(s) \) with input \(X \) and output \(Y \),

\[
\begin{align*}
X & \rightarrow G(s) \rightarrow Y \\
\end{align*}
\]

The output at any time \(Y_n \) can be approximated by a difference equation

\[
Y_n = C_1 Y_{n-1} + C_2 X_n + C_3 X_{n-1}
\]

where \(C_1, C_2, C_3 \) are constants for a particular set of time constants \((\tau) \) and clock time \((\Delta T) \) and need only be computed one time, in the initialization section of the program.

The derivation of the integrator, lag and lag and washout are presented below.
DIGITAL SIMULATION OF CONTINUOUS TRANSFER FUNCTIONS USING TUSTIN'S METHOD

Substitute \(\frac{\Delta T}{2} \left[\frac{1 + \zeta^{-1}}{1 - \zeta^{-1}} \right] \) for \(1/S \)

1. INTEGRATOR

\[
\begin{align*}
X & \rightarrow \frac{1}{S} \rightarrow Y \\
\frac{Y}{X} &= \frac{1}{S} = \frac{\Delta T}{2} \left[\frac{1 + \zeta^{-1}}{1 - \zeta^{-1}} \right] \\
Y \left[1 - \zeta^{-1} \right] &= X \cdot \frac{\Delta T}{2} \left[1 + \zeta^{-1} \right] \\
Y - Y_{-1} &= \frac{\Delta T}{2} \left[X + X_{-1} \right] \\
Y &= Y_{-1} + \frac{\Delta T}{2} \left[X + X_{-1} \right]
\end{align*}
\]

For \(Y = c_1 Y_{-1} + c_2 X + c_3 X_{-1} \)

- \(c_1 = 1 \)
- \(c_2 = \Delta T/2 \)
- \(c_3 = \Delta T/2 \)
2. **LAG**

\[
X \xrightarrow{\frac{1}{\tau s+1}} Y
\]

\[
\frac{Y}{X} = \frac{1}{\tau s+1} = \frac{1}{\tau} \left[\frac{1}{s+\frac{1}{\tau}} \right] + 1
\]

\[
= \frac{2}{\Delta T} \left[\frac{1 - \zeta^{-1}}{1 + \zeta^{-1}} \right] + 1
\]

\[
\frac{Y}{X} = \frac{(\Delta T/2)/\tau}{1 - \zeta^{-1}} + \frac{(\Delta T/2)/\tau}{1 - \Delta T/2/\tau} (1 + \zeta^{-1})
\]

\[
\frac{Y}{X} = \frac{(\Delta T/2)/\tau(1 + \zeta^{-1})}{(1 + \Delta T/2/\tau) - (1 - \Delta T/2/\tau) \zeta^{-1}}
\]

\[
\frac{Y}{X} = \frac{[(\Delta T/2)/\tau]/(1 + (\Delta T/2)/\tau)}{1 - \left[\frac{1 - (\Delta T/2)/\tau}{(1 + (\Delta T/2)/\tau)} \right] \zeta^{-1}}
\]

\[
\frac{Y}{X} = \frac{1}{1 - \left[\frac{1/(\Delta T/2) - 1}{1/(\Delta T/2) + 1} \right] \zeta^{-1}}
\]

8.7-3
\[
Y \left\{ 1 - \left[\frac{\tau/(\Delta T/2) - 1}{\tau/(\Delta T/2) + 1} \right] \zeta^{-1} \right\} = X \left[\frac{1}{\tau/(\Delta T/2) + 1} \right] (1 + \zeta^{-1})
\]

\[
Y = \left[\frac{\tau/(\Delta T/2) - 1}{\tau/(\Delta T/2) + 1} \right] Y_{-1} = \frac{1}{\tau/(\Delta T/2) + 1} (X + X_{-1})
\]

For

\[
Y = C_1 Y_{-1} + C_2 X + C_3 X_{-1}
\]

\[
C_1 = \frac{\tau/(\Delta T/2) - 1}{\tau/(\Delta T/2) + 1}
\]

\[
C_2 = \frac{1}{\tau/(\Delta T/2) + 1}
\]

\[
C_3 = C_2
\]
3. LAG AND WASHOUT

\[
X \rightarrow \frac{S}{\tau S + 1} \rightarrow Y
\]

\[
\frac{Y}{X} = \frac{S}{\tau S + 1} \cdot \frac{1}{S} = \frac{1}{\tau + \frac{1}{S}}
\]

\[
= \frac{1}{\tau + \frac{\Delta T}{2} \left[\frac{1 + \zeta^{-1}}{1 - \zeta^{-1}} \right]}
\]

\[
\frac{Y}{X} = \frac{(1 - \zeta^{-1})}{\tau (1 - \zeta^{-1}) + \frac{\Delta T}{2} (1 + \zeta^{-1})}
\]

\[
\frac{Y}{X} = \frac{(1 - \zeta^{-1})}{(\tau + \frac{\Delta T}{2}) - (\tau - \frac{\Delta T}{2}) \zeta^{-1}}
\]

\[
\frac{Y}{X} = \frac{\frac{1}{\tau + \frac{\Delta T}{2}} \cdot (1 - \zeta^{-1})}{1 - \left[\frac{\zeta - (\Delta T/2)}{\tau + (\Delta T/2)} \right] \zeta^{-1}}
\]

\[
y = \left[\frac{\tau / (\Delta T/2) - 1}{\tau / (\Delta T/2) + 1} \right] y_{-1} = \left[\frac{1/(\Delta T/2)}{\tau / (\Delta T/2) + 1} \right] (x - x_{-1})
\]

8.7-5
For \(Y = C_1 Y_{-1} + C_2 X + C_3 X_{-1} \)

\[
C_1 = \frac{\tau/(\Delta t/2) - 1}{\sigma/(\Delta t/2) + 1}
\]

\[
C_2 = \frac{1/(\Delta t/2)}{\sigma/(\Delta t/2) + 1}
\]

\[
C_3 = -C_2
\]
8.7.2 **ASSUMPTIONS**
Not applicable.

8.7.3 **COMPUTATION METHODS**
Given below are the values of the constants for the three transfer functions:

1. **INTEGRATOR** - $G(s) = \frac{1}{s}$

 $C_1 = 1$

 $C_2 = \Delta T/2$

 $C_3 = \Delta T/2$

2. **LAG** - $G(s) = \frac{1}{ts+1}$

 $C_1 = \tau - (\Delta T/2) / \tau + (\Delta T/2)$

 $C_2 = \tau / \tau + (\Delta T/2)$

 $C_3 = C_2$

3. **LAG and WASHOUT** - $G(s) = \frac{s}{ts+1}$

 $C_1 = \tau - (\Delta T/2) / \tau + (\Delta T/2)$

 $C_2 = 1 / \tau + (\Delta T/2)$

 $C_3 = -C_2$

8.7.4 **APPROXIMATIONS**
Not applicable.

8.7.5 **LIMITATIONS**
The sample frequency must be 10 to 15 times larger than the largest system frequency. Should lower sample frequencies (larger time steps) be
selected discrepancies will arise between the Z-plane and S-plane frequency responses. With a fairly large sample frequency the Z-plane response is almost identical to the S-plane frequency response and continuous design techniques may be used. However if the sample frequency is 15 to 40 times the highest system frequency, there are numerical difficulties with the Z-transform technique which will cause the frequency response to deviate from the continuous case.

8.7.6 Variable Names

Not applicable.
8.7.7 Subroutine Listing

SUBROUTINE TUSTIN(J, TAU, C, DT)

COEFFICIENTS FOR DIGITAL SIMULATION OF CONTINUOUS TRANSFER FUNCTION

FUNCTION IN THE FORM (APPROXIMATE DIFFERENCE FORM)

\[Y(n) = C_1 Y(n-1) + C_2 X(n) + C_3 X(n-1) \]

J = 1 INTEGRATOR
J = 2 LAG
J = 3 LAG AND WASHOUT

DIMENSION C(3)

DT2 = DT/2.0
IF (1.0E+1) GO TO 10

---- INTEGRATOR

C(1) = 1.0
C(2) = 0.2
C(3) = 0.2
GO TO 50

10 CONTINUE

TAUP = TAU + DT2
TAUN = TAU - DT2
GO TO (20, 20, 20), J

---- LAG

20 CONTINUE

C(1) = TAU/TAUP
C(2) = DT3/TAUP
C(3) = C(2)
GO TO 50

---- LAG AND WASHOUT

30 CONTINUE

C(1) = TAU/TAUP
C(2) = 1.0/TAUP
C(3) = -C(2)

50 CONTINUE

RETURN
END

8.7-9
FUNCTION DYN.(X,Y,C)

CALCULATION OF CONTINUOUS TRANSFER FUNCTIONS BY TUSTING METHOD
FUNCTION IN THE FORM (APPROXIMATE DIFFERENCE FORM)

\[Y(n) = C1*Y(n-1) + C2*X(n) + C3*X(n-1) \]

DIMENSION X(2), C(3)
DYN. = C(1)*Y+C(2)*X(2)+C(3)*X(1)
RETURN
END
8.8 SUBROUTINE LUCUP

Subroutine LUCUP provides linear interpolation of data points for a three dimensional table. Two coordinate points are input and LUCUP returns the third value.
8.8.1 Subroutine Listing

SUBROUTINE LOCUP(ND, NA, X, Z, KA, ZR, IE, NEX2R)
DIMENSION X(1), Z(1), NA(1), KA(1)
AT=KA(1)
L2=KA(1)
T=KA(1)
P=KA(2)
IT=1
IF(P-X(1)) 90, 90, 50
50 DO 60 I=2, L2
60 IF(T-X(I)) 70, 90, 60
CONTINUE
IT=L2
ICODE=1
GO TO 120
70 IT=1
ICODE=1
GO TO 120
80 IT=2
ICODE=1
GO TO 120
90 IT=3
ICODE=2
GO TO 120
100 CONTINUE
KINDEX=(T-X(IT-1))/(X(IT)-X(IT-1))
110 CONTINUE
L1=L2+2
L2=L2+NA(2)
I=LI-1
IF(P-X(L1-1)) 130, 190, 150
150 DO 160 I=L1, L2
160 IF(P-X(I)) 170, 180, 150
170 CONTINUE
IP=L2
ICODE=1
GO TO 200
170 IP=1
ICODE=1
GO TO 200
180 IP=L1
ICODE=1
GO TO 200
190 IP=1
ICODE=2
GO TO 210
200 CONTINUE
KINDEX=(P-X(IP-1))/(X(IP)-X(IP-1))
210 CONTINUE
IP=IP+1
IF(ICODE .LT. 1.AND. CODEP .LT. 2) GO TO 400

BEST AVAILABLE COPY
8.8.1 (Continued)

IF(KODE.EQ.2.AND.KODEP.EQ.1) GO TO 600
IF(KODE.EQ.2.AND.KODEP.EQ.2) GO TO 800

IZ=MT*(IP-2)+(IT-1)
T1=Z(IZ)+RATIO*(Z(IZ+1)-Z(IZ))
IZ=IZ+1
T2=Z(IZ)+RATIO*(Z(IZ+1)-Z(IZ))
IZ=T1+RATIO*(T2-T1)
GO TO 1000

400 CONTINUE
IZ=MT*(IP-1)+(IT-1)
ZR=Z(IZ)+RATIO*(Z(IZ+1)-Z(IZ))
GO TO 1000

600 CONTINUE
IZ=MT*(IP-2)+IT
IZT=IZ+1
ZR=Z(IZ)+RATIO*(Z(IZT)-Z(IZ))
GO TO 1000

900 CONTINUE
IZ=MT*(IP-1)+IT
ZR=Z(IZ)

1000 CONTINUE
RETURN
END
8.9 FUNCTION HYSTLI

HYSTLI is a function subprogram which determines values of torque motor output within the hysteresis limits specified by the calling program.
8.9.1 Subroutine Listing

FUNCTION HYSTLI(X,H,T)
DIMENSION T(5)

C C T O R Q U E S O T O P H Y S T E R E S I S
IF(T(1).LE.0.0) GO TO 50
T(3) = 0
T(2) = -H
T(4) = 0.0
T(5) = 0.0
50 CONTINUE.
T(1) = +1 X MOVING IN POSITIVE DIRECTION
T(1) = -1 X MOVING IN NEGATIVE DIRECTION

IF(T(1)) 200,190,100

X MOVING IN POSITIVE DIRECTION

100 CONTINUE
IF (X-T(5)) 120,110,110
110 CONTINUE
IF (X.LE.T(3)) GO TO 300
T(4) = X-H
GO TO 100
120 T(1) = -1
T(2) = T(4)-H
GO TO 220

X MOVING IN NEGATIVE DIRECTION

200 CONTINUE
IF (X-T(5)) 220,220,210
210 T(1) = 1
T(3) = T(4)+H
GO TO 110
220 CONTINUE
IF (X.GT.T(2)) GO TO 300
T(4) = X+H
300 CONTINUE
T(5) = X
HYSTLI = T(4)
RETURN
END
8.10 CFRIC/CFRIC2 SUBROUTINES

CFRIC/CFRIC2 provide for the inclusion of coulomb friction into the simulation of a mechanical system. Coulomb friction is that which occurs between a block sitting on any typical dry surface. If the block is in motion (sliding on the surface), the friction force is assumed constant and opposite to the velocity. If the block is at rest, the friction is equal to the applied force (but with opposite sign) bounded by the stiction ratio times the running friction value.
8.10.1 **Subroutine Listing**

```fortran
SUBROUTINE CFRIC(FDRIVE,FF,XD,XDS,XDD,XDDS,FRIC,SR,BF)
   IF(XD.NE.0.)GO TO 25
   FF = -FDRIVE
   IF(ABS(FF).GT.FRIC*SR*BF)FF=SIGN(FRIC,-FDRIVE)*SR*BF
   GO TO 55
25 CONTINUE
   NPXD=SIGN(1.,XD)
   NPXDS=SIGN(1.,XDS)
   IF(NPXD.NE.NPXDS)GO TO 50
   IF(ABS(FDRIVE).GT.FRIC*SR*BF)GO TO 50
   XD=0.
   XDS=0.
   XDD=0.
   XDSDS=0.
   FF=-FDRIVE
   GO TO 55
50 CONTINUE
   FF=SIGN(FRIC,-XD)*BF
55 CONTINUE
RETURN
END
```
8.10.1 (Continued)

SUBROUTINE CFRIC2 (FDRIVE, FF, XD, XDS, XDD, XDDS, V1, V2, FRIC, SR, BF)
IF(XD .NE. 0.) GO TO 25
FF = -FDRIVE
IF(ABS(FF) .GT. FRIC*SR*BF) FF = SIGN(FRIC,-FDRIVE)*SR*BF
GO TO 55
25 CONTINUE
NPXD = SIGN(1., XD)
NPXDS = SIGN(1., XDS)
IF(NPXD .EQ. NPXDS) GO TO 50
IF(ABS(FDRIVE) .GT. FRIC*SR*BF) GO TO 50
XD = 0.
XDS = 0.
XDD = 0.
XDDS = 0.
V1 = 0.
V2 = 0.
FF = -FDRIVE
GO TO 55
50 CONTINUE
FF = SIGN(FRIC,-XD)*FF
55 CONTINUE
RETURN
END
9.0 REFERENCES

