THE ELLIPTIC ORBIT
INTEGRATION PROGRAM POINT

by

G. E. Cook,
M. D. Palmer
POINT is a computer program which evaluates the development of an earth satellite orbit by numerical integration. Provision is made for the inclusion of the following perturbations:

(i) earth's gravitational potential,
(ii) atmospheric drag, and
(iii) the gravitational attractions of the sun and moon.

A detailed description of the program is given, with full instructions for its use.
CONTENTS

1 INTRODUCTION 3
2 PROGRAM FUNCTION 4
3 EQUATIONS OF MOTION AND INTEGRATION PROCEDURE 5
4 TIME AND COORDINATE SYSTEMS 6
5 UNITS AND CONSTANTS 6
 5.1 General 6
 5.2 Geophysical constants 6
6 PROGRAM DESCRIPTION 7
7 DATA DECK 8
 7.1 Overall description 8
 7.2 The time card 9
 7.3 First control card 9
 7.4 Second control card 10
 7.5 Station cards 11
 7.6 Orbit information cards 11
 7.7 Covariance matrix 11
8 DESCRIPTION OF OUTPUT 12
9 PROGRAMS DERIVED FROM POINT 12
Acknowledgment 13
Appendix A POINT program units 15
Appendix B Subprogram specifications 17
References 89
Illustrations Figures 1-4
INTRODUCTION

POINT is the acronym for a computer program for orbit integration. The program, which numerically integrates the equations of motion of an earth satellite in a highly eccentric orbit, was originally conceived as a component of the computer software required for the analysis of the launch phase of a synchronous satellite mission. The program was written with a view to more general application, however, and will be useful in pre-launch analyses of other satellite projects. A shortened version has already been used in this role to assess the orbital stability of the proposed Astronomical Roentgen Observatory (ASRO).

Given a set of initial conditions, the program generates ephemerides of an earth-orbiting satellite. At the epoch, the orbit can be specified either by the cartesian components of the geocentric position and velocity vectors, by a standard set of launch vehicle injection conditions or by one of three types of orbital elements. The ephemerides, of which any combination may be obtained, consist of the cartesian components of geocentric position and velocity, osculating orbital elements, look angles for a maximum of four ground stations and a table of apses.

Orbit development is obtained by the numerical integration of the equations of motion as formulated in the Cowell method. Large variations occur in the satellite’s velocity and in the perturbing forces around a highly eccentric orbit. At perigee where the velocity is high, and the forces are changing rapidly, a small integration step length is required. Use of this step length around the entire orbit is unnecessary and inefficient, however. Analytical step regulation is therefore used to obtain the required accuracy without loss of efficiency.

Luni-solar perturbations caused by the differential attractions of the sun and moon are computed as required during integration. The sun-moon coordinates are stored at daily intervals in a disc file. The coordinates originate from the JPL ephemeris tapes and have been transformed into PROP axes (see section 4). Although solar radiation pressure is not incorporated at present, the program is written in a manner which will enable it to be inserted at a future date. The asphericity of the earth is taken into account approximately by including the effects of zonal harmonics up to J_9 and tesseral harmonics up to J_{44}. Atmospheric drag is included with the density evaluated from a modified form of the Jacchia 1965 model atmosphere.
POINT is written in 1900 FORTRAN for use on ICL 1900 series computers. The program requires approximately 20K words of core store, and consists of a main program and 33 subprograms. The program units are listed in Appendix A, while the calling structure is illustrated in Fig. 1. A flow chart for the main program is given in Fig. 2. The subprogram specifications are given in Appendix B.

2 PROGRAM FUNCTION

The program may take as input, at a given epoch, either the geocentric cartesian components of the position and velocity vectors \((x, y, z, \dot{x}, \dot{y}, \dot{z})\), or a standard set of launch vehicle injection conditions or one of three types of orbital elements. The launch vehicle injection conditions consist of speed, climb angle, azimuth of the velocity vector, radial distance, geocentric latitude and longitude. The three types of orbital elements are: firstly, a set of osculating elements defined by the instantaneous position and velocity vectors, and consisting of semi major axis \(a\), eccentricity \(e\), inclination \(i\), right ascension of the ascending node \(\Omega\), argument of perigee \(\omega\) and mean anomaly \(M\); secondly, a set of two-line elements in the form issued by the USAF Space Defense Center (SDC); and thirdly, a set of RAE five-card elements produced as output by the computer program PROP. The latter are mean elements in the sense defined by Kozai, i.e. time averages per revolution of the osculating elements.

The program generates up to three types of ephemerides each of which is a table of 'satellite positions' at uniform intervals of time. For the purpose of this Report 'satellite position' means either the cartesian components of the geocentric position and velocity vectors, a set of osculating orbital elements, or a set of look angles for a given ground station. Look angles consist of azimuth \(A\), measured clockwise from true north, elevation \(E\), range and range rate. The program can also determine the satellite's position and time at an apse; this information is then output in tabular form. Although only three types of ephemerides can be printed at present, it would be straightforward to increase the program's flexibility by including other types.

For cartesian components it is possible to obtain the covariance matrix as an additional output provided that the covariance matrix of the initial conditions is available as part of the input. A word of caution is needed here, however. Since the propagation of errors by means of a covariance matrix is basically a linear concept, difficulties can be encountered if the initial
errors are large, e.g. as may result from the errors associated with a set of
launch vehicle injection conditions.

3 EQUATIONS OF MOTION AND INTEGRATION PROCEDURE

For an earth satellite the equations of motion may be expressed in vector
form as

\[\ddot{r} = - \mu r^{-3} r + F, \]

where \(r \) is the position vector relative to the earth's centre of mass,
\(\mu \) (\(= GM \)) is the gravitational constant of the earth, and \(F \) is the perturbing
acceleration. Orbit development is obtained by the numerical integration of the
equations of motion as formulated in the Cowell method. Because of the large
variations in the velocity and perturbing accelerations around a highly eccentric
orbit, a constant time interval cannot be used if the computation is to be
efficient. To overcome this difficulty, the equations are transformed in such a
way that a constant step-length can be used, i.e. analytical step regulation is
introduced. Time \(t \) is replaced by the independent variable \(s \), defined by

\[\frac{dt}{ds} = \frac{r^k}{\kappa}, \]

where \(\kappa \) is a constant. Merson has discussed\(^2\) the selection of \(k \) and \(\kappa \) to
give the best results and suggested the use of \(k = 3/2 \) and \(\kappa = \mu^{1/2} \); these
values are used in the program. On changing to the independent variable \(s \),
where

\[t' = \frac{dt}{ds} = \mu^{-1/2} r^{3/2}, \]

the equation (1) becomes

\[\ddot{r}'' = - r + \frac{3}{2} \left(\frac{r \cdot \dot{r}'}{r^2} \right) \dot{r}'' + \frac{r^3}{\mu} \frac{F}{r}. \]

The equation for \(t' \) can be differentiated to give

\[t'' = \frac{3}{2} \left(r \cdot \dot{r}' \right) / (\mu r)^{3/2}, \]

so that we have four second-order differential equations (for \(x'', y'', z'', t'' \)). The
integration is based on an eighth-order Gauss-Jackson second-sum process.
A sixth-order Butcher process is used to set up the difference table required before the second-sum procedure can be started.

4 TIME AND COORDINATE SYSTEMS

Calendar dates are reckoned in Modified Julian Days (MJD), which are related to (ordinary) Julian Days by the formula

\[\text{MJD} = \text{JD} - 2400000.5 \]

The coordinate system used internally is the one suggested by Kozai. The origin 0 is at the earth's centre of mass and the Oz axis points towards the north pole. Ox lies in the plane of the true equator of date, but instead of pointing towards the true equinox of date it is directed towards a projection of the mean equinox of the epoch 1950.0 (MJD 33281.9234); Oy completes the right-handed system Oxyz.

5 UNITS AND CONSTANTS

5.1 General

Distances are measured in kilometres (for input of a covariance matrix, however, distances may alternatively be given in feet). Angles are held as radians inside the computer, but are measured in degrees for both input and output. Time is measured in seconds, except when identifying specific instants or time intervals.

Constants used in the program are assigned only once, either in the main program or in the BLOCK DATA subprogram.

5.2 Geophysical constants

Values of the geophysical constants are assigned in the BLOCK DATA subprogram; current values are listed below, E followed by an integer designating an exponent. Values for the even zonal harmonics have been taken from Ref.9, while those for the odd zonal harmonics have been taken from Ref.10. Values for the tesseral harmonics have been taken from a set derived by Wagner.
Geophysical constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>FORTRAN variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth's gravitational constant (u) (km(^3)s(^{-2}))</td>
<td>EMU</td>
<td>398601.3</td>
</tr>
<tr>
<td>Mean equatorial radius of earth (R) (km)</td>
<td>ERAD</td>
<td>6378.163</td>
</tr>
<tr>
<td>Earth's zonal harmonics (J_n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(J_2)</td>
<td>EJ2</td>
<td>1082.637E-6</td>
</tr>
<tr>
<td>(J_3)</td>
<td>EJ3</td>
<td>-2.531E-6</td>
</tr>
<tr>
<td>(J_4)</td>
<td>EJ4</td>
<td>-1.619E-6</td>
</tr>
<tr>
<td>(J_5)</td>
<td>EJ5</td>
<td>-0.246E-6</td>
</tr>
<tr>
<td>(J_6)</td>
<td>EJ6</td>
<td>0.558E-6</td>
</tr>
<tr>
<td>(J_7)</td>
<td>EJ7</td>
<td>-0.326E-6</td>
</tr>
<tr>
<td>(J_8)</td>
<td>EJ8</td>
<td>-0.209E-6</td>
</tr>
<tr>
<td>(J_9)</td>
<td>EJ9</td>
<td>-0.094E-6</td>
</tr>
<tr>
<td>Earth's tesseral harmonics (C_{2n}, S_{2n})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{22})</td>
<td>C22</td>
<td>2.4369E-6</td>
</tr>
<tr>
<td>(S_{22})</td>
<td>S22</td>
<td>-1.4005E-6</td>
</tr>
<tr>
<td>(C_{31})</td>
<td>C31</td>
<td>2.0192E-6</td>
</tr>
<tr>
<td>(S_{31})</td>
<td>S31</td>
<td>0.2278E-6</td>
</tr>
<tr>
<td>(C_{32})</td>
<td>C32</td>
<td>0.7783E-6</td>
</tr>
<tr>
<td>(S_{32})</td>
<td>S32</td>
<td>-0.7552E-6</td>
</tr>
<tr>
<td>(C_{33})</td>
<td>C33</td>
<td>0.7387E-6</td>
</tr>
<tr>
<td>(S_{33})</td>
<td>S33</td>
<td>1.4343E-6</td>
</tr>
<tr>
<td>(C_{41})</td>
<td>C41</td>
<td>-0.5175E-6</td>
</tr>
<tr>
<td>(S_{41})</td>
<td>S41</td>
<td>-0.4814E-6</td>
</tr>
<tr>
<td>(C_{42})</td>
<td>C42</td>
<td>0.3444E-6</td>
</tr>
<tr>
<td>(S_{42})</td>
<td>S42</td>
<td>0.702E-6</td>
</tr>
<tr>
<td>(C_{43})</td>
<td>C43</td>
<td>1.039E-6</td>
</tr>
<tr>
<td>(S_{43})</td>
<td>S43</td>
<td>-0.1192E-6</td>
</tr>
<tr>
<td>(C_{44})</td>
<td>C44</td>
<td>-0.1846E-6</td>
</tr>
<tr>
<td>(S_{44})</td>
<td>S44</td>
<td>0.2508E-6</td>
</tr>
<tr>
<td>Earth's angular velocity (rad/s)</td>
<td>EOMEGA</td>
<td>7.292115147E-5</td>
</tr>
<tr>
<td>Sun's gravitational constant (km(^3)s(^{-2}))</td>
<td>SUNMU</td>
<td>1327127E5</td>
</tr>
<tr>
<td>Moon's gravitational constant (km(^3)s(^{-2}))</td>
<td>SELMU</td>
<td>4902.756</td>
</tr>
<tr>
<td>Earth's precession rate (rad/s)</td>
<td>PREC</td>
<td>6.079E-12</td>
</tr>
</tbody>
</table>

PROGRAM DESCRIPTION

The program starts by reading all the input data and carrying out any necessary transformations. The latter define the orbit as the cartesian
components of the geocentric position and velocity vectors at epoch; if a
covariance matrix is to be propagated, this may also have to be transformed so
that its elements refer to position and velocity components. Certain flags are
set and those constants which are a function of the input data are calculated.

A simple heading giving the perturbing forces included (i.e. air drag,
luni-solar perturbations) is written to the line printer.

The integration period and interpolation interval are converted to days
and the time of the first interpolation found relative to epoch. The integration,
which may be forwards or backwards in time, is begun, and after each integration
step the required interpolations are performed. The time of the first interpola-
tion occurring after the latest step is then set. After each interpolation,
according to the output options chosen, the interpolated position and velocity
components may be written directly to the line printer (and if required to a
permanent disc file) or transformed into osculating elements and/or range, range
rate, azimuth and elevation for a given ground station. These latter forms are
stored consecutively in an unformatted scratch disc file. The associated
covariance matrix may also be written directly to the line printer.

At each integration step, the rate of change of the radius vector is
calculated. This quantity changes sign at an apse enabling the integration
steps on either side to be identified. Interpolations are performed to find the
time of the apse and the corresponding osculating elements and radial distance.
This information is then written to a second unformatted scratch disc file.

When the integration is complete, each ephemeris is read back, one line at
a time, from the scratch files and output on the line printer. Finally, the
date, time (MJD and fraction of a day) and components of position and velocity
for the last integration step are printed. This information may be used to
restart the integration at a future time. A sample line printer output is given
in Fig.3.

7 DATA DECK

7.1 Overall description

This section describes the input data for POINT, which, for convenience,
is treated here as a set of punched cards. There are 24 possible records which
may appear in a data deck, and the number present for any one run will be not
less than 4. The order of the cards is as follows:
(i) time card
(ii) control cards
(iii) station cards
(iv) orbit information cards
(v) covariance matrix.

Items (iii) and (v) are options and may be omitted in appropriate circumstances.
All records are read in free format except for those specifying RAE or SDC
elements and those specifying a covariance matrix. Listings of specimen data
decks are given in Fig.4. (The first deck shown was used to generate the output
given in Fig.3.) In the descriptions of the data cards which follow, all para-
meters and constants are referred to by their Fortran-variable names.

7.2 The time card

The time card contains five parameters specifying the epoch of the orbital
elements, the time span of the integration, the interpolation interval and the
time at which the first ephemerides are required.

MJD This specifies the MJD number of the epoch at which the orbital
parameters of the satellite are defined.

EP This is the time of (the input) epoch, expressed as a fraction of
a day relative to MJD.

Both MJD and EP are set to zero if the orbit is specified by SDC elements since
the epoch is specified in the standard format (read by subroutine SDC2EL).

TINT This specifies the time-interval of the ephemeris, in hours.

DT This is the required interpolation interval, in minutes (negative if
the integration is backwards in time).

This is the time at which the first ephemerides are required in
hours from epoch. If TINT = 0.0 , it is assumed to be DT minutes
from epoch.

7.3 First control card

This control card contains eight parameters (all integer), which control
the working of the program.

I This indicates the form in which the orbital parameters are provided
(see section 7.6). If I = 1 , a set of injection conditions in
kilometres, kilometres per second and degrees is read in the order
specified in section 2. If \(I = 2 \), a set of position and velocity components in kilometres, kilometres per second is read. If \(I = 3 \) a set of osculating elements in kilometres and degrees is provided. If \(I = 4 \), SDC two-line elements are read. If \(I = 5 \), RAE mean elements are provided.

NM

This indicates the matrix operations to be performed (see section 7.7). If \(NM = 0 \), there are no matrix operations. If \(NM = 1 \), a covariance matrix in terms of injection conditions (with units feet, feet per second, degrees) is read, and a matrix in terms of position and velocity components (in units kilometres, kilometres per second) derived from it. If \(NM = 2 \), a covariance matrix in terms of position and velocity components in kilometres, kilometres per second is read.

NOTPT

If \(NOTPT > 0 \), an ephemeris of time and corresponding position and velocity components (in days, kilometres, kilometres per second) is written to an unformatted disc file at constant time intervals (DT).

NPV

If \(NPV = 1 \), an ephemeris of time, position components, radial distance, velocity components and speed is written to the line printer.

NEL

If \(NEL = 1 \), an ephemeris of time, osculating elements and radial distance is written to the line printer.

NAP

If \(NAP = 1 \), a table of apses giving time, osculating elements and radial distance is written to the line printer.

NAE

If \(1 \leq NAE \leq 4 \), tables of look angles for NAE stations giving times, azimuth, elevation, range and range rate are written to the line printer.

LSP

If \(LSP = 1 \), luni-solar perturbations are included in the integration.

7.4 Second control card

This card contains one control parameter, one parameter which is used both as a control parameter and a data item and two data parameters.

\(Cl \)

Although the integration step length (\(H \)) is set in the BLOCK DATA segment, it may be modified to \(H/Cl \) by setting \(Cl \neq 0 \) (\(Cl \) must be negative if backward integration is required).
ARMA
This is the area-to-mass ratio of the satellite (m²/kg). If set to 0.0, the air drag terms are excluded from the integration.

SMEAN
This is the value of the solar 10.7cm radiation flux averaged over 3 days and measured in units of 10⁻²² W m⁻² Hz⁻¹. If ARMA = 0.0, then SMEAN = 0.0.

SOLBAR
This is the value of the solar 10.7cm radiation flux averaged over 3 months and measured in units of 10⁻²² W m⁻² Hz⁻¹. If ARMA = 0.0, then SOLBAR = 0.0.

7.5 Station cards
Tables of look angles may be produced for NAE stations, where NAE ≤ 4.
One card is provided for each station and has four parameters.

SLT
This is the station's geodetic latitude (degrees).

SLO
This is the station's geocentric longitude (degrees).

H
This is the station's height (m) above the geoid.

STANAM
This is the station name of no more than 20 characters.

7.6 Orbit information cards
Orbit information may be supplied in one of five forms, each of which requires one or more cards. The form is indicated by the parameter I on the first control card.

<table>
<thead>
<tr>
<th>I</th>
<th>Number of cards</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Injection parameters (km, km/s, deg)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Geocentric position and velocity components (km, km/s)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Osculating elements (km, deg)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>SDC two-line elements</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>RAE mean elements</td>
</tr>
</tbody>
</table>

7.7 Covariance matrix
The covariance matrix is supplied on twelve cards. The form is indicated by the parameter NM on the first control card. Each card contains three elements punched in 3E15.8 format. Cards one and two hold the first row, cards three and four the second row and so on.
8 DESCRIPTION OF OUTPUT

A specimen of the line printer output is shown in Fig.3. Time is given in days and fractions of a day, distances in kilometres and angles in degrees.

A total of six output options are available:

1. An ephemeris of time, position components, radial distance, velocity components and speed written to the line printer.

2. A propagated covariance matrix, printed after each interpolation.

3. An ephemeris of time, position and velocity components written to an unformatted disc file.

4. An ephemeris of time, osculating elements and radial distance written to the line printer.

5. Tables of look angles for a maximum of four stations. Each table comprises time, azimuth, elevation, range and range rate; this information is only printed if the elevation is greater than or equal to 0.0\(^\circ\).

6. A table of apses written to the line printer. Each entry gives the time, osculating elements and radial distance of the apse. If no apses are found, an appropriate comment is printed.

Finally at the end of each output, the time of the last integration step is printed together with the position and velocity components at that step.

All or any combination of the options may be chosen. However, option 2 is meant to be used with option 1 since the program is designed to print the propagated matrix after each line of option 1. If option 2 is chosen without option 1, the program will function correctly, but time will not be printed with each matrix.

9 PROGRAMS DERIVED FROM POINT

POINT has been designed as a versatile program with a number of input and output options. However, for some tasks which require much computation, these options may not be required and it may well be more efficient in terms of execution time and core store to produce a special version of the program. The on-line editor makes this a straightforward task.

Such a version was produced for the studies of the proposed Astronomical Roentgen Observatory (ASRO)\(^1\). Other versions which currently exist are POINT2, PTATMAN and PTDEC.
POINT2 is used to generate random transfer orbits for the synchronous mission analysis program SYNMAP and has been described elsewhere12.

PTATMAN comprises the standard version of POINT plus the facility to include a gross attitude manoeuvre, such as would be carried out in a transfer orbit, to realign a spacecraft for the firing of an apogee boost motor. This manoeuvre is assumed to be impulsive (and applied at apogee) and the program is supplied with transverse, normal and radial delta-velocity components. An extra card, punched in free format, is inserted after the second control card in the standard POINT data deck. This card contains the apogee number (punched as an integer) and the three delta-velocity components. One other feature of this version is that the number of stations for which look angles may be produced has been increased from four to five, since this is the number usually associated with the launch phase of a synchronous orbit mission.

PTDEC is used to find the time at which a satellite decays, i.e. the time at which it falls below a given altitude. The program is provided with the area-mass ratio of the satellite and either a set of geocentric position and velocity components or a set of SDC two-line elements. Air drag, luni-solar perturbations and zonal harmonics up to J_9 are automatically included but tesseral harmonics are omitted. The orbit is integrated forward, and at each perigee, the osculating elements, perigee radius and preceding apogee radius are printed. The integration ceases when either the satellite's altitude falls below a given value or a specified time limit has elapsed.

Acknowledgment

The authors wish to thank Mr. A.W. Odell for his helpful advice and assistance with numerical techniques.
Appendix A

POINT PROGRAM UNITS

ANGLE reduces an angle to the range 0 to 2π
ANGLI reduces an angle to the range −π to π
BLOCK DATA sets certain constants
COTOEL converts coordinates to osculating elements
DEQRSPT integrates differential equations
EAFKEP determines eccentric anomaly from Kepler's equation
ELTOCO converts osculating elements to coordinates
INFIND (a) finds a named area on a disc file
INTFRC (a) converts a number into its integer and fractional parts
INTPTA computes the position and velocity components and covariance matrix by interpolation
INTPTB computes the position and velocity components between integration steps by interpolation
IPTOCO converts injection parameters to coordinates
MATMUL performs matrix multiplication
MODAT computes atmospheric density
ORBINT controls orbit integration and interpolation
OUTPUT transforms position and velocity into required form and stores
PDAUXP auxiliary for DEQRSPT; computes perturbing accelerations
POSVEL computes position and velocity components from RAE mean elements
PRINT produces line printer output from information stored on discs
RAZEL computes range, range rate, azimuth and elevation for given ground station
READEL reads RAE 5-card orbital elements
REIP reads input data
RELEASE (b) releases peripheral unit
ROTATE performs rotations about an axis through a given angle at a given angular velocity
SCPROD (a) forms scalar product
SDC2EL reads and converts SDC 2-line elements to RAE mean elements
SETPD sets initial values of partial derivatives
SHPAUX computes short-periodic perturbations
SMPOS reads sun/moon coordinates from disc and interpolates
SOLVIN performs interpolation
TRMAT transposes a matrix
TRINV determines polar coordinates from cartesian (two-dimensional)
UTD4 (b) permits disc/core transfers
(a) The subprograms INFIND, INTFRC and SCPROD are written in PLAN and are used as semi-compiled segments.

(b) The subprograms RLEASE and UTD4, though not part of standard FORTRAN, are provided automatically by the 1900 series FORTRAN compilers, and are not described here.
Appendix B

SUBPROGRAM SPECIFICATIONS

FUNCTION ANGLE

Summary - The function reduces an angle \(x \) (in radians) to the range \(0 \leq x < 2\pi \).

Language - 1900 Fortran.

Author - Diana W. Scott (April 1969).

Function statement - FUNCTION ANGLE(X).

Input argument

\[X \] - Angle \(x \) in radians.

Output function

\[\text{ANGLE} \] - Value of \(x \pm 2n\pi \), such that \(0 \leq \text{ANGLE} < 2\pi \).

Use of COMMON - None.

Source deck - 6 cards, including 1 comment card (ICL code).

Local storage used - 1 real variable.

Subordinate subprograms - None.

Explanation - The standard function AMOD is used to give the fractional part of \(x/2\pi \). If this is negative, \(2\pi \) is added to the result.
FUNCTION ANGL1

Summary
- The function reduces an angle \(x \) to the range \(-\pi < x \leq \pi\).

Language
- 1900 Fortran.

Author

Function statement
- FUNCTION ANGL1(X)

Input argument
- \(X \)
 Angle \(x \) in radians.

Output function
- \(\text{ANGL1} \)
 The value of \(x \pm 2n\pi \) such that \(-\pi < \text{ANGL1} \leq \pi\).

Use of COMMON
- None.

Source deck
- 7 cards, including one common card (ICL code).

Local storage used
- 1 real variable.

Subordinate subprograms
- None.

Explanation
- The standard function AMOD is used to give the fractional part of \(x/2\pi \). If this is greater than \(\pi \), \(2\pi \) is subtracted. If it is less than, or equal to, \(-\pi \), \(2\pi \) is added.
Summary

The Fortran BLOCK DATA segment is used to set initial values for certain quantities stored in common blocks `/PETURB/`, `/CINTEG/`, `/CONST/` and `/CON/`.

Language

- 1900 Fortran.

Author

Data in `/PETURB/`

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALFCD</td>
<td>1.1</td>
<td>Product C_D.</td>
</tr>
<tr>
<td>RATE</td>
<td>1.1</td>
<td>Ratio of angular velocity of the atmosphere to that of the earth.</td>
</tr>
</tbody>
</table>

Data in `/CINTEG/`

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>$2\pi/96$</td>
<td>Integration step length.</td>
</tr>
<tr>
<td>PD (18)</td>
<td>All elements 0.0</td>
<td>Partial derivatives of position.</td>
</tr>
<tr>
<td>PDVEL (18)</td>
<td>All elements 0.0</td>
<td>Partial derivatives of velocity.</td>
</tr>
</tbody>
</table>

Data in `/CONST/`

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU</td>
<td>398601.3km3s$^{-2}$</td>
<td>Earth's gravitational constant.</td>
</tr>
<tr>
<td>EJ2</td>
<td>1082.637E-6</td>
<td>Earth's second zonal harmonic J_2.</td>
</tr>
<tr>
<td>EJ3</td>
<td>-2.5310E-6</td>
<td>Earth's third zonal harmonic J_3.</td>
</tr>
<tr>
<td>EJ4</td>
<td>-1.6190E-6</td>
<td>Earth's fourth zonal harmonic J_4.</td>
</tr>
<tr>
<td>C22</td>
<td>2.4369E-6</td>
<td>Tesseral harmonic coefficient C_{22}.</td>
</tr>
<tr>
<td>S22</td>
<td>-1.4005E-6</td>
<td>Tesseral harmonic coefficient S_{22}.</td>
</tr>
<tr>
<td>C33</td>
<td>0.7387E-6</td>
<td>Tesseral harmonic coefficient C_{33}.</td>
</tr>
<tr>
<td>S33</td>
<td>1.4343E-6</td>
<td>Tesseral harmonic coefficient S_{33}.</td>
</tr>
<tr>
<td>C44</td>
<td>-0.1846E-6</td>
<td>Tesseral harmonic coefficient C_{44}.</td>
</tr>
<tr>
<td>S44</td>
<td>0.2508E-6</td>
<td>Tesseral harmonic coefficient S_{44}.</td>
</tr>
<tr>
<td>C31</td>
<td>2.0192E-6</td>
<td>Tesseral harmonic coefficient C_{31}.</td>
</tr>
<tr>
<td>S31</td>
<td>0.2278E-6</td>
<td>Tesseral harmonic coefficient S_{31}.</td>
</tr>
<tr>
<td>C42</td>
<td>0.3444E-6</td>
<td>Tesseral harmonic coefficient C_{42}.</td>
</tr>
<tr>
<td>S42</td>
<td>0.7021E-6</td>
<td>Tesseral harmonic coefficient S_{42}.</td>
</tr>
<tr>
<td>ERAD</td>
<td>6378.163km</td>
<td>Earth's mean equatorial radius.</td>
</tr>
<tr>
<td>Variable name</td>
<td>Value</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>EOMEGA</td>
<td>$7.292115147E-5\text{rad/s}$</td>
<td>Earth's angular velocity.</td>
</tr>
<tr>
<td>PREC</td>
<td>$6.079E-12\text{rad/s}$</td>
<td>Earth's precession rate.</td>
</tr>
<tr>
<td>SUNMU</td>
<td>$1.327127E11\text{km}^3\text{s}^{-2}$</td>
<td>Sun's gravitational constant.</td>
</tr>
<tr>
<td>SELMU</td>
<td>$4902.756\text{km}^3\text{s}^{-2}$</td>
<td>Moon's gravitational constant.</td>
</tr>
</tbody>
</table>

Source deck - 18 cards (ICL code).
SUBROUTINE COTOEL

Summary
- The subroutine derives the standard elliptic (osculating) orbital elements of an earth satellite, given its position and velocity components.

Language
- ASA Fortran (Standard Fortran 4).

Author

Subroutine statement
- SUBROUTINE COTOEL (X, Y, Z, XDOT, YDOT, ZDOT, EMU, A, E, ORBINC, RANODE, ARGPER, EM, EN).

Input arguments
- X, Y, Z
 Geocentric cartesian components, (x, y, z), of the satellite, x towards the vernal equinox and z towards the north pole.
- XDOT, YDOT, ZDOT
 Velocity of the satellite, (ẋ, ẏ, ż), measured in the same coordinate system.
- EMU
 Earth's gravitational constant, μ.

Output arguments
- A
 Semi-major axis, a, in the same units as x, y, z.
- E
 Eccentricity, e.
- ORBINC
 Orbital inclination, i.
- RANODE
 Right ascension of the ascending node, Ω.
- ARGPER
 Argument of perigee, ω.
- EM
 Mean anomaly, M.
- EN
 Mean motion, n.

Use of COMMON
- None.

Source deck
- 30 cards, including four comment cards (ICL code).

Local storage used
- 13 real variables.

Subordinate subprograms
- The subroutine TRINV.

Explanation
- Although the subroutine essentially transforms from the six components of the position and velocity of a satellite to its six orbital elements, a seventh input argument permits an arbitrary value of the constant μ.
to be used; the seventh output argument, \(n \), is derived from \(a \) and \(u \) by the
relation \(\frac{n}{a^2} = \mu \) (Kepler's third law). This means that the subroutine may be
used very generally; e.g. for a planet, taking the sun's \(\mu \) and interpreting \(\Omega \)
as celestial longitude. Units of time and distance are arbitrary but must, of
course, be consistent; all angles are in radians.

The subroutine has been written to give maximum accuracy. All angles are
derived from knowledge of both sine and cosine, and in such an order that there
is no difficulty near the singularities at \(e = 0, i = 0 \) and \(i = \pi \). The
general method is that of Brouwer and Clemence\(^{13} \) (section 27 of chapter 1).

The first quantities to be derived are \(a, e \) and the eccentric anomaly,
\(E \). (NB The Fortran variable \(E \) refers to the eccentricity and not the eccentric
anomaly.) These come from the relations

\[
\frac{1}{a} = \frac{2}{r} - \frac{v^2}{\mu},
\]

\[
e \cos E = \frac{rv^2}{\mu} - 1
\]

and

\[
e \sin E = \frac{(x^2 + y^2 + z^2)}{(\mu a)^{\frac{1}{2}}}
\]

where \(r = (x^2 + y^2 + z^2)^{\frac{1}{2}} \) and \(v^2 = x^2 + y^2 + z^2 \).

Then \(M \) follows at once, since

\[
M = E - e \sin E.
\]

Note that if \(e \) is close to zero \(E \) is ill-determined, reflecting the
indeterminancy of perigee - and in fact if \(e = 0 \), \(E \) is set to \(0 \). This does
not matter at all, since whatever position of perigee is specified by the value
taken for \(E \), the value of \(M \) is fully consistent with it.

The values of \(i, \Omega \) and \(\omega \) are derived from the basic matrix relation

\[
\begin{pmatrix}
\cos \omega & \sin \omega & 0 \\
-sin \omega & \cos \omega & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos i & \sin i \\
0 & -\sin i & \cos i
\end{pmatrix}
\begin{pmatrix}
\cos \Omega & \sin \Omega & 0 \\
-sin \Omega & \cos \Omega & 0 \\
0 & 0 & 1
\end{pmatrix}
= \begin{pmatrix}
P_x \\
Q_x \\
R_x
\end{pmatrix}
\begin{pmatrix}
P_y \\
Q_y \\
R_y
\end{pmatrix}
\begin{pmatrix}
P_z \\
Q_z \\
R_z
\end{pmatrix}
\]
where \(P_x = (x/r) \cos E - \frac{1}{2} (x/r) \sin E \),
\(Q_x = (1 - e^2)^{-\frac{1}{2}} [(x/r) \sin E + \frac{1}{2} (x/r) \sin E] \),
\(R_x = \frac{1}{2} (x/r) \sin E \),
and similarly for \(P_y, P_z, Q_y, Q_z, R_y \) and \(R_z \).

Thus \(i \) and \(\Omega \) are derived from

\[
\sin i \sin \Omega = R_x,
\]
\[
- \sin i \cos \Omega = R_y,
\]
\[
\cos i = R_z,
\]

with an indeterminacy in \(\Omega \) when \(i \) is close to 0 or \(\pi \) \((\Omega \) is set to 0 if \(\sin i = 0 \)).

Finally \(\omega \) is determined from

\[
\sin i \cos \omega = Q_z
\]
and
\[
\sin i \sin \omega = P_z
\]

where we have to be sure that no difficulty arises over the \(e \)-singularity or either of the \(i \)-singularities.

There is no trouble near the \(e \)-singularity since the quantities \(e \cos E \)
and \(e \sin E \) are used (through \(Q_z \) and \(P_z \)), in the derivation of \(\omega \), in the
same ratio as in the derivation of \(E \), so that \(E + \omega \) is always correct.
(When \(E \) is set conventionally to 0 because \(e = 0 \), \(e \cos E \) is set to 1 (!) to
ensure the correct ratio between \(Q_z \) and \(P_z \).

In the same way, \(\omega \) has to be compatible with \(\Omega \) near the \(i \)-singularity,
and this is automatic when \(z \) and \(\dot{z} \) are not both exactly zero, since \(\Omega \) and \(\omega \) both depend on the ratio of these two quantities. When \(z \) and \(\dot{z} \) are both
exactly zero, the correct value of \(\omega \) is achieved by replacing \(P_z \) and \(Q_z \) by
\(P_y \) and \(Q_y \), with an additional factor to ensure that \(\omega \) is in the correct
quadrant.
SUBROUTINE DEQRSPT

Summary
- The subroutine integrates a set of up to 22 simultaneous second-order differential equations of the form
 \[\ddot{y}_i = f_i(t, y_1, \ldots, y_N, \dot{y}_1, \ldots, \dot{y}_N) \], \(i = 1, \ldots, N \), using a Gaussian eighth-order second-sum predictor-corrector \(^14\).

The integration is started using a Butcher sixth-order seven stage Runge-Kutta process \(^15\) to set up the difference table required before the second-sum procedure can take over.

Language
- 1900 Fortran.

Authors

Subroutine statement
- SUBROUTINE DEQRSPT (NTRY, DAUX).

Input arguments
- NTRY
 1 for an initialization entry to the subroutine, and
 2 for all normal entries (see Explanation).

- DAUX
 The auxiliary subroutine which evaluates \(\ddot{y}_i \).

Output arguments
- None.

Use of COMMON
- Certain quantities in common block /CINTEG/ are used as follows:

Input arguments in /CINTEG/ -
- NEQ
 Number of equations (normally 4 or 22).

- H
 Integration step size, h (positive or negative).

Input and output arguments in /CINTEG/ -
- T
 Independent variable, t.

- Y(22)
 Dependent variables, \(y_i \).

- YP(22)
 First derivatives, \(\dot{y}_i \).

- Y2P(22)
 Second derivatives, \(\ddot{y}_i \), as computed by the auxiliary subroutine DAUX.

Output arguments in /CINTEG/ -
- I AUX
 Set to -1 following the initialisation entry (NTRY=1), to 0 if T has been changed (during a normal entry), and to 1 otherwise.
Source deck — 218 cards (ICL code).

Local storage used — 10 integer variables, 1 logical variable, 63 real variables and 814 real-array elements.

Subordinate subprograms — The auxiliary subroutine, named in the call to DEQRSPT which takes the role of DAUX.

Explanation — DEQRSPT integrates a set of \(N(<22) \) simultaneous second-order differential equations of the form
\[
\ddot{y}_i = f_i(t, y_1, \ldots, y_N, \dot{y}_1, \ldots, \dot{y}_N),
\]
i = 1, \ldots, N, using a Gaussian eighth-order second-sum predictor corrector. The integration is started using a Butcher \((6,7)\) R-K process to set up the difference table required before the second-sum procedure takes over.

Prior to any integration, DEQRSPT must first be called with \(NTRY = 1 \). This is the initialization entry in which the step size \(h' (= \frac{1}{2}h) \) is set for the Butcher integration and DAUX is called to evaluate \(\ddot{y}_i \) at \(t_0 \). All subsequent entries are made with \(NTRY = 2 \), and one integration step (two, whilst still in the Butcher mode) is performed before control is returned to the calling program.

If \(y_{i,k} \) and \(\dot{y}_{i,k} \) are the values of \(y_i \) and \(\dot{y}_i \) at \(t = t_k \) the formulae used in the next Butcher step to evaluate \(y_{i,k+1}, \dot{y}_{i,k+1} \) and \(\ddot{y}_{i,k+1} \), the values of \(y_i, \dot{y}_i \) and \(\ddot{y}_i \) at \(t = t_k + h' \), are:

\[
y_{i,k+1} = y_{i,k} + \sum_{s=1}^{7} w_{s}k_{is},
\]

\[
\dot{y}_{i,k+1} = \dot{y}_{i,k} + \sum_{s=1}^{7} w_{s}k_{is},
\]

and

\[
\ddot{y}_{i,k+1} = f_i(t_k + h', y_{i,k+1}, \ldots, y_N, k+1; \dot{y}_1, k+1, \ldots, \dot{y}_N, k+1),
\]

where

\[
k_{is} = h'f_i \left(t_k + c_{s}h', y_{i,k} + \sum_{j=1}^{s-1} a_{s}k_{ij}, \dot{y}_i \right),
\]

\[
t_{is} = \dot{y}_{i,k} + \sum_{j=1}^{s-1} a_{s}k_{ij},
\]

\[
s = 1, \ldots, N,
\]

\[
 i = 1, \ldots, N
\]
and the remaining quantities are given by the following table

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_2</td>
<td>a_{21}</td>
</tr>
<tr>
<td>c_3</td>
<td>a_{31}</td>
</tr>
<tr>
<td>c_4</td>
<td>a_{41}</td>
</tr>
<tr>
<td>c_5</td>
<td>a_{51}</td>
</tr>
<tr>
<td>c_6</td>
<td>a_{61}</td>
</tr>
<tr>
<td>c_7</td>
<td>a_{71}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
<th>w_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{11}{120}$</td>
<td>0</td>
<td>$\frac{27}{40}$</td>
<td>$\frac{27}{40}$</td>
<td>$-\frac{4}{15}$</td>
<td>$-\frac{4}{15}$</td>
<td>$\frac{11}{120}$</td>
</tr>
</tbody>
</table>

Given $y_{i,0}$ and $\dot{y}_{i,0}$, $\ddot{y}_{i,0}$ is obtained from DAUX, and the first two Butcher steps of size h' then give $y_{i,1}$, $\dot{y}_{i,1}$ and $\ddot{y}_{i,1}$ at time $t_1 = t_0 + h$. The process is repeated until $y_{i,8}$, $\dot{y}_{i,8}$ and $\ddot{y}_{i,8}$ are obtained after a total of 16 steps (eight calls to the subroutine). The Butcher process is now complete.

On the ninth call (with NTRY = 2) to DEQRSPRT the following difference table is constructed for each $\dddot{y}_i = f_i$.
First the known \bar{y}_i are differenced to give the part of the table to the right of the \bar{y}, and then the first and second sums $v_{i,4}^{-1}$ and $v_{i,3}^{-2}$ are formed, using the equations

$$v_{i,3}^{-2} = h^{-2}y_{i,4} - B_0\bar{y}_{i,4} - B_2\bar{y}_{i,5} - B_4\bar{y}_{i,6} - B_6\bar{y}_{i,7} - B_8\bar{y}_{i,8}$$
The remaining v^{-2} and v^{-1} quantities above the dotted line are defined on the basis that the difference between any entry and the entry above must equal the entry on the right. Actually only $v_{1,8}^{-1}$ and $v_{1,8}^{-2}$ are required explicitly and these are given by

$$
v_{1,8}^{-1} = v_{1,4}^{-1} + \ddot{y}_{1,5} + \ddot{y}_{1,6} + \ddot{y}_{1,7} + \ddot{y}_{1,8}
$$

and

$$
v_{1,8}^{-2} = v_{1,3}^{-2} + 5v_{1,4}^{-1} + 4\ddot{y}_{1,5} + 3\ddot{y}_{1,6} + 2\ddot{y}_{1,7} + \ddot{y}_{1,8}
$$

A table containing the coefficients used in the above and following equations is appended.

The ninth normal call to the subroutine continues with an integration step, using the Gaussian (predictor) formulae:

$$
y_{i,9} = h^2 \left(v_{1,8}^{-2} + C_0 \ddot{y}_{1,8} + C_1 v_{1,8}^{-1} + C_2 v_{1,8}^0 + C_3 v_{1,8}^1 + C_4 v_{1,8}^2 + C_5 v_{1,8}^3 + C_6 v_{1,8}^4 + C_7 v_{1,8}^5 + C_8 v_{1,8}^6 \right)
$$

and

$$
\dot{y}_{i,9} = h \left(\dot{v}_{1,8}^{-1} + F_0 \ddot{y}_{1,8} + F_1 v_{1,8}^{-1} + F_2 v_{1,8}^0 + F_3 v_{1,8}^1 + F_4 v_{1,8}^2 + F_5 v_{1,8}^3 + F_6 v_{1,8}^4 + F_7 v_{1,8}^5 + F_8 v_{1,8}^6 \right)
$$

which require only the quantities immediately above the dotted line in the table.

$\ddot{y}_{i,9}$ is then obtained using DAUX and the row of differences under the diagonal line found. This row is then used to obtain corrected values of $y_{i,9}$ and $\dot{y}_{i,9}$ using the equations.
\[y_{i,9} = h^2 \left(v_{i,8}^{-2} + D_0 v_{i,9}^1 + D_1 v_{i,9}^1 + D_2 v_{i,9}^2 + D_3 v_{i,9}^3 + D_4 v_{i,9}^4 + \ldots \right) \]

\[\hat{y}_{i,9} = h \left(v_{i,8}^{-1} + E_0 v_{i,9}^1 + E_1 v_{i,9}^1 + E_2 v_{i,9}^2 + E_3 v_{i,9}^3 + E_4 v_{i,9}^4 + \ldots \right) \]

\[\ddot{y}_{i,9} = h \left(v_{i,8}^{-1} + E_0 v_{i,9}^1 + E_1 v_{i,9}^1 + E_2 v_{i,9}^2 + E_3 v_{i,9}^3 + E_4 v_{i,9}^4 + \ldots \right) \]

\[\dddot{y}_{i,9} = h \left(v_{i,8}^{-1} + E_0 v_{i,9}^1 + E_1 v_{i,9}^1 + E_2 v_{i,9}^2 + E_3 v_{i,9}^3 + E_4 v_{i,9}^4 + \ldots \right) \]

\[y_{i,9} \] is then redetermined, and the row of differences out to \(v_{i,9}^8 \) under the dotted line recalculated. This row is then used to obtain the final corrected values of \(y_{i,9} \) and \(\hat{y}_{i,9} \) using the above equations.

| Coefficients for \(A_i, B_i, C_i, D_i, E_i \) and \(F_i \) |
|---|---|---|---|---|---|---|---|
| \(i \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| \(A_i \) | \(-\frac{1}{2} \) | \(-\frac{1}{12} \) | \(\frac{1}{24} \) | \(11 \) | \(\frac{11}{1440} \) | \(-\frac{191}{60480} \) | \(\frac{191}{120960} \) | 2497 | \(-\frac{2497}{3628800} \) |
| \(B_i \) | \(\frac{1}{12} \) | 0 | \(-\frac{1}{240} \) | 0 | \(\frac{31}{60480} \) | 0 | \(-\frac{289}{3628800} \) | 0 | \(\frac{317}{22809600} \) |
| \(C_i \) | \(\frac{1}{12} \) | \(\frac{19}{240} \) | \(\frac{3}{40} \) | 863 | \(\frac{12096}{4032} \) | 275 | \(\frac{33953}{518400} \) | \(\frac{8183}{129600} \) | \(\frac{3250433}{53222400} \) |
| \(D_i \) | \(\frac{1}{12} \) | 0 | \(-\frac{1}{240} \) | \(\frac{1}{240} \) | \(-\frac{221}{60480} \) | \(-\frac{19}{6048} \) | \(\frac{9829}{3628800} \) | \(\frac{407}{172800} \) | \(\frac{330157}{159667200} \) |
| \(E_i \) | \(-\frac{1}{2} \) | \(-\frac{1}{12} \) | \(-\frac{1}{24} \) | \(-\frac{19}{720} \) | \(-\frac{3}{160} \) | 863 | \(\frac{275}{24192} \) | \(\frac{33953}{3628800} \) | \(\frac{8183}{1036800} \) |
| \(F_i \) | \(\frac{1}{2} \) | 5 | \(\frac{12}{8} \) | 251 | 95 | \(\frac{19087}{288} \) | \(\frac{5257}{60480} \) | \(\frac{1070017}{172800} \) | \(\frac{25713}{3628800} \) |
FUNCTION EAFKEP

Summary
- The function solves Kepler's equation; i.e. it provides the eccentric anomaly of a celestial body, E, given the orbital eccentricity, e, and mean anomaly, M.

Kepler's equation is \(M = E - e \sin E \).

Language
- ASA Fortran (Standard Fortran 4).

Author

Function statement
- FUNCTION EAFKEP (EM, ECC).

Input arguments
- EM
 Mean anomaly, M (radians).
- ECC
 Eccentricity, e.

Output function
- EAFKEP
 Eccentric anomaly, E.

Use of COMMON
- None.

Source deck
- 13 cards, including 3 comment cards (ICL code).

Local storage used
- 3 real variables.

Subordinate subprograms
- None.

Explanation
- A first approximation to E is given by \(E_1 = M \).

Improved approximations are given by Newton's method; thus

\[
E_{i+1} = E_i + \frac{(M - E_i + e \sin E_i)}{(1 - e \cos E_i)}
\]

The process ends after three iterations if \(e < 0.003 \), and otherwise after five.

This ensures sufficient accuracy at all times, while making the subroutine independent of the word-length of the computer. (If the magnitude of \(|E_{i+1} - E_i| \) were used as a criterion for convergence, the numerical value it was compared with would have to vary from computer to computer.)
SUBROUTINE ELTOCO

Summary
- The subroutine converts osculating Kepler elements into position and velocity components.

Language
- ASA Fortran (Standard Fortran 4).

Author

Subroutine statement

Input arguments

- A Semi-major axis, a
- E Eccentricity, e
- EI Orbital inclination, i
- BO Right ascension of ascending node, Ω
- SO Argument of perigee, ω
- EM Mean anomaly M if EMU > 0, and true anomaly v if EMU < 0
- EMU Earth's gravitational constant, μ, the absolute value is used.

Output arguments

- X, Y, Z The geocentric cartesian position coordinates (x, y, z) of the satellite, x towards the vernal equinox and z towards the north pole.
- XDOT, YDOT, ZDOT Velocity coordinates (\dot{x}, \dot{y}, \dot{z}) of the satellite measured in the same coordinate system.

Use of COMMON
- None.

Source deck
- 26 cards (ICL code).

Local storage used
- 7 real variables.

Subordinate subprograms
- The function EAFKEP and the subroutine ROTATE.

Explanation
- If M is supplied, it is converted to the eccentric anomaly E by the function EAFKEP, and \sin v and \cos v are computed using:
\[\sin v = (1 - e^2)^{1/2} \sin E / (1 - e \cos E) \]

and

\[\cos v = (\cos e - e) / (1 - e \cos E) \]

Given \(\sin v \) and \(\cos v \), \(r, x, y, z, \dot{x}, \dot{y}, \dot{z} \) are computed using:

\[
\begin{align*}
 r &= a(1 - e^2) / (1 + e \cos v) \\
 x &= r \cos v \\
 y &= r \sin v \\
 z &= 0 \\
\dot{x} &= -\left[\mu / (a(1 - e^2)) \right]^{1/2} \sin v \\
\dot{y} &= \left[\mu / (a(1 - e^2)) \right]^{1/2} (e + \cos v)
\end{align*}
\]

and

\[\dot{z} = 0 \]

Three rotations are then performed using subroutine ROTATE, one about the normal to the orbital plane (z-axis) by an angle \(\omega \), one about the nodal line (x-axis) by an angle \(i \) and one about the polar axis (z-axis) by an angle \(\Omega \), giving the required result.

If \(M \) is supplied then \(e \) should be <1. If \(v \) is supplied this limitation does not apply.
FUNCTION INFIND

Summary - The function finds the location of a named area on a specified disc file.

Language - PLAN for use with 1900 Fortran.

Function statement - FUNCTION INFIND (NAME).

Input argument

NAME - Name of an area on the disc file up to 12 characters in length; must be array element or text (Hollerith) constant.

Output function

INFIND - Number specifying an area on the disc file, 0 if the name is not found in the index.

Use of COMMON

- The first 128 integer locations of blank common are used as temporary working space.

Source deck

- 37 cards, including 3 comment cards (IBM 'bcd' code).

Local storage used

- 37 words for program, 7 words for data.

Subordinate subprograms - The subroutine UTD4.

Explanation

- The subroutine assumes that an index has been set up on the disc file using subroutine INITD and that information has been put in the index using subroutine ADDINF. Associated with each name in the index is a number specifying an area on the disc file. If this name is not found, INFIND is set to 0; otherwise it is set to the associated number.

Remark: A Fortran version of this subroutine exists.
FUNCTION INTFRC

Summary
- The function computes the integral and fractional parts of a number.

Language
- PLAN, for use with 1900 Fortran.

Author
- A.W. Odell (February 1971).

Function statement
- FUNCTION INTFRC (X).

Input and output arguments
- X
 Real number, which is truncated to its fractional part.
- INTFRC
 Integral part of X.

Output function
- None.

Use of COMMON
- None.

Source deck
- 23 cards including 3 comment cards (ICL code).

Local storage used
- 18 words for program.

Subordinate subprograms
- None.

Explanation
- X is split into its mathematical integral part and its fractional part. For example:

\[X = -3.4 \]
\[I = \text{INTFRC} (X) \]

would result in I being set to -4 and X to 0.6.

A Fortran version of this subroutine is also available.
SUBROUTINE INTPTA

Summary
The subroutine calculates the cartesian components of
the geocentric position and velocity of an earth satel-
pite at constant time intervals by interpolation
between two given points in the orbit. These points
are defined by position, velocity and acceleration
components at specified times. If required, the
subroutine will also interpolate for the elements of
the covariance matrix.

Language
- 1900 Fortran.

Author
- M.D. Palmer (July 1974)

Subroutine statement
- SUBROUTINE INTPTA (TP, TIM, PPVA, PDI, PDV, T2, ABSTIM).

Input arguments

TP
Time \(t_1 \) prior to the first interpolation, measured in
days from epoch.

TIM
Time \(t_2 \) after the first interpolation, measured in
days from epoch.

(When integrating backwards, TP and TIM will both
be negative.)

PPVA(9)
Satellite geocentric position, velocity and acceleration
components at time \(t_1 \),
\((x_1, y_1, z_1, \dot{x}_1, \dot{y}_1, \dot{z}_1, x'_{1}, y'_{1}, z'_{1}) \equiv (r_1, v_1, \dot{v}_1) \).

PDI(18)
Partial derivatives of position at time \(t_1 \),
\(\frac{\partial r_1}{\partial \tau} \),
\(\frac{\partial x_1}{\partial \tau} \),
\(\frac{\partial y_1}{\partial \tau} \),
\(\frac{\partial z_1}{\partial \tau} \),
\(\frac{\partial \dot{x}_1}{\partial \tau} \),
\(\frac{\partial \dot{y}_1}{\partial \tau} \),
\(\frac{\partial \dot{z}_1}{\partial \tau} \).

PDV(18)
Partial derivatives of velocity at time \(t_1 \),
\(\frac{\partial \dot{r}_1}{\partial \tau} \),
\(\frac{\partial \dot{x}_1}{\partial \tau} \),
\(\frac{\partial \dot{y}_1}{\partial \tau} \),
\(\frac{\partial \dot{z}_1}{\partial \tau} \).

PDA(18)
Partial derivatives of acceleration at time \(t_1 \),
\(\frac{\partial \ddot{r}_1}{\partial \tau} \),
\(\frac{\partial \ddot{x}_1}{\partial \tau} \),
\(\frac{\partial \ddot{y}_1}{\partial \tau} \),
\(\frac{\partial \ddot{z}_1}{\partial \tau} \).

ABSTIM
The absolute value of \(t_2 \).
Output arguments

T2

The absolute value of the time of the first interpolation after t_2.

Use of COMMON

- Certain quantities in common blocks /CINTEG/ and /INTP/ are used as follows:

Input arguments in /CINTEG/-

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJDOCH</td>
<td>Modified Julian day number of epoch.</td>
</tr>
<tr>
<td>N(I)</td>
<td>N(I) = 4 if only the position and velocity components are required and N(I) = 22 if the covariance matrix is also required.</td>
</tr>
<tr>
<td>PP(3)</td>
<td>Satellite’s geocentric position components at time t_2, $\mathbf{r}_2 = (x_2, y_2, z_2)$.</td>
</tr>
<tr>
<td>PD(18)</td>
<td>Partial derivatives of position at time t_2, $\partial \mathbf{r}_2 / \partial (r_0, v_0)$.</td>
</tr>
<tr>
<td>PDVEL(18)</td>
<td>Derivatives with respect to the independent variable s of the partial derivatives of position at t_2, $d \left[\frac{\partial \mathbf{r}_2}{\partial (r_0, v_0)} \right] / ds$.</td>
</tr>
<tr>
<td>TVEL</td>
<td>Value of dt/ds at time t_2.</td>
</tr>
<tr>
<td>PV(3)</td>
<td>Satellite’s velocity components at time t_2, $\mathbf{v}_2 = (\dot{x}_2, \dot{y}_2, \dot{z}_2)$.</td>
</tr>
<tr>
<td>PA(3)</td>
<td>Satellite’s acceleration components at time t_2, $\mathbf{a}_2 = (\ddot{x}_2, \ddot{y}_2, \ddot{z}_2)$.</td>
</tr>
<tr>
<td>PDACCT(18)</td>
<td>Partial derivatives of acceleration at time t_2, $\partial \mathbf{a}_2 / \partial (r_0, v_0)$.</td>
</tr>
</tbody>
</table>

Input arguments in /INTP/-

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP</td>
<td>Time of epoch, expressed as a fraction of a day relative to MJDOCH.</td>
</tr>
<tr>
<td>FDT</td>
<td>Interval between interpolations (days).</td>
</tr>
<tr>
<td>COVX</td>
<td>Covariance matrix in terms of the geocentric position and velocity components at epoch, $\text{cov}(r_0, v_0)$.</td>
</tr>
</tbody>
</table>
NOTPT If NOTPT > 0, the interpolated output is stored in a disc file.

Input and output arguments in /INTP/ -

TINT On input, the time (t) of the first interpolation measured in days from epoch. On output, the time of the first interpolation after \(t_2 \), in days from epoch. (If integrating backwards, TINT is negative.)

Subordinate subprograms - The subroutines COTOEL, MATMUL, OUTPUT, RAZEL, TRAMAT and TRINV and the functions ANGLE and INTFRC.

Local storage used - 108 real array elements, 24 real variables and 3 integer variables.

Source deck - 68 cards (ICL code).

Explanation - The subroutine is designed to carry out a series of interpolations at constant time intervals between consecutive steps in an orbit integration. After the interpolated position and velocity components have been obtained, OUTPUT is called to execute the output options available with POINT. If NOTPT > 0, the MJD, fraction of a day, position and velocity components are stored in an unformatted disc file (channel 5).

The formulae used for interpolation are:

\[
\begin{align*}
\frac{f(t)}{f'(t)} &= q^3 \left[(1 + 3p + 6p^2)f(t_1) + hp(1 + 3p)f'(t_1) + \frac{h^2}{2}p^2f''(t_1) \right] \\
&\quad + p^3 \left[(1 + 3q + 6q^2)f(t_2) - hq(1 + 3q)f'(t_2) \right] \\
&\quad + \frac{h^2}{2}q^2f''(t_2)
\end{align*}
\]

for position components, and

\[
\begin{align*}
\frac{f'(t)}{f''(t)} &= 30h^{-1}p^2q^2\left[f(t_2) - f(t_1)\right] + q^2(1 + 5p)(1 - 3p)f'(t_1) \\
&\quad + p^2(1 + 5q)(1 - 3q)f'(t_2) \\
&\quad + \frac{h}{2}pq^2(2 - 5p)f''(t_1) - \frac{h}{2}p^2q(2 - 5q)f''(t_2)
\end{align*}
\]
for velocity components, where \(h = t_2 - t_1 \), \(p = (t - t_1)/h \), \(q = 1 - p \) and \(f(t_1), f'(t_1), f''(t_1) \) are the position, velocity and acceleration components at time \(t_1 \).

The subroutine will, if required, interpolate for the partial derivatives of position and velocity, and use them to obtain a covariance matrix, \(X \), at the required time by means of the transformation

\[
X = A \, \text{cov}(r_0, v_0) \, A^T
\]

where

\[
A = \begin{bmatrix}
\frac{\partial x}{\partial x_0} & \frac{\partial y}{\partial x_0} & \frac{\partial z}{\partial x_0} & \frac{\partial x}{\partial y_0} & \frac{\partial y}{\partial y_0} & \frac{\partial z}{\partial y_0} & \frac{\partial x}{\partial z_0} & \frac{\partial y}{\partial z_0} & \frac{\partial z}{\partial z_0} \\
\frac{\partial x}{\partial x_0} & \frac{\partial y}{\partial x_0} & \frac{\partial z}{\partial x_0} & \frac{\partial x}{\partial y_0} & \frac{\partial y}{\partial y_0} & \frac{\partial z}{\partial y_0} & \frac{\partial x}{\partial z_0} & \frac{\partial y}{\partial z_0} & \frac{\partial z}{\partial z_0} \\
\frac{\partial x}{\partial x_0} & \frac{\partial y}{\partial x_0} & \frac{\partial z}{\partial x_0} & \frac{\partial x}{\partial y_0} & \frac{\partial y}{\partial y_0} & \frac{\partial z}{\partial y_0} & \frac{\partial x}{\partial z_0} & \frac{\partial y}{\partial z_0} & \frac{\partial z}{\partial z_0} \\
\frac{\partial x}{\partial x_0} & \frac{\partial y}{\partial x_0} & \frac{\partial z}{\partial x_0} & \frac{\partial x}{\partial y_0} & \frac{\partial y}{\partial y_0} & \frac{\partial z}{\partial y_0} & \frac{\partial x}{\partial z_0} & \frac{\partial y}{\partial z_0} & \frac{\partial z}{\partial z_0} \\
\end{bmatrix}
\]

and \(\text{cov}(r_0, v_0) \) is the covariance matrix, in terms of the radial distance \(r_0 \), and satellite velocity, \(v_0 \), at the start of the integration.

\(A \) is obtained by interpolation between the partial derivatives of position and velocity at \(t_1 \) and \(t_2 \), the computation requiring the partial derivatives of acceleration at those times. The partial derivatives of position are held in the arrays PDI and PD respectively, the order of storage being
and similarly for PD(1).

The partial derivatives of velocity at t_1 are held in the array PDV, the order of storage being,

$$\text{PDV}(1)-\text{PDV}(6) \quad \frac{x}{x_0}, \frac{y}{y_0}, \frac{z}{z_0}, \frac{x}{x_0}, \frac{\dot{x}}{x_0}, \frac{\ddot{x}}{x_0}, \frac{\dddot{x}}{x_0}, \frac{\dddot{y}}{y_0}, \frac{\dddot{z}}{z_0}$$

$$\text{PDV}(7)-\text{PDV}(12) \quad \frac{y}{x_0}, \frac{y}{y_0}, \frac{z}{z_0}, \frac{x}{x_0}, \frac{\dot{x}}{x_0}, \frac{\ddot{x}}{x_0}, \frac{\dddot{x}}{x_0}, \frac{\dddot{y}}{y_0}, \frac{\dddot{z}}{z_0}$$

$$\text{PDV}(13)-\text{PDV}(18) \quad \frac{z}{x_0}, \frac{z}{y_0}, \frac{z}{z_0}, \frac{z}{x_0}, \frac{\dot{z}}{x_0}, \frac{\ddot{z}}{x_0}, \frac{\dddot{z}}{x_0}, \frac{\dddot{y}}{y_0}, \frac{\dddot{z}}{z_0}$$

The partial derivatives of velocity at t_2 are not available explicitly but are found from

$$\frac{d}{ds} \left(\frac{3r_2}{3 \left(\frac{r_0}{v_0} \right)} \right) \left/ \frac{dt}{ds} \right.$$

where s is the independent variable defined by $dt/ds = r^{3/2} \mu^{-1}$. dt/ds is the Fortran variable TVEL and

$$\frac{d}{ds} \left(\frac{3r_2}{3 \left(\frac{r_0}{v_0} \right)} \right)$$

is the array PDVEL.

The partial derivatives of acceleration at t_1 and t_2 are held in the arrays PDA and PDACCT respectively, the order of storage being

$$\text{PDA}(1)-\text{PDA}(6) \quad \frac{x}{x_0}, \frac{y}{x_0}, \frac{z}{x_0}, \frac{x}{x_0}, \frac{\dot{x}}{x_0}, \frac{\ddot{x}}{x_0}, \frac{\dddot{x}}{x_0}, \frac{\dddot{y}}{y_0}, \frac{\dddot{z}}{z_0}$$

$$\text{PDA}(7)-\text{PDA}(12) \quad \frac{y}{x_0}, \frac{y}{y_0}, \frac{z}{z_0}, \frac{x}{x_0}, \frac{\dot{x}}{x_0}, \frac{\ddot{x}}{x_0}, \frac{\dddot{x}}{x_0}, \frac{\dddot{y}}{y_0}, \frac{\dddot{z}}{z_0}$$

$$\text{PDA}(13)-\text{PDA}(18) \quad \frac{z}{x_0}, \frac{z}{y_0}, \frac{z}{z_0}, \frac{z}{x_0}, \frac{\dot{z}}{x_0}, \frac{\ddot{z}}{x_0}, \frac{\dddot{z}}{x_0}, \frac{\dddot{y}}{y_0}, \frac{\dddot{z}}{z_0}$$
and similarly for PDACCT.

The matrix \(X \) is written to the line printer and, if NOTPT > 0, it is also written to the unformatted disc file.
Summary

The subroutine calculates the cartesian components of the geocentric position and velocity of an earth satellite at a given time by interpolation between two points in the orbit. These points are defined by position, velocity and acceleration components at specified times.

Language

- 1900 Fortran.

Author

- M.D. Palmer (July 1974)

Subroutine statement

- SUBROUTINE INTPTB (TINT, TP, TPVM, PPVA, PT, VT).

Input arguments

- TINT
 Time, t_0, at which the interpolation is required.
- TP
 Time, t_1, of the point prior to the interpolation.
- TIME T
 Time, t_2, of the point after the interpolation.
- PPVA(9)
 Satellite's geocentric position, velocity and acceleration components at time t_1 (x_1, y_1, z_1 etc.).

Output arguments

- PT(3)
 Satellite's geocentric position components at time t (x, y, z).
- VT(3)
 Satellite's geocentric velocity components at time t ($\dot{x}, \dot{y}, \dot{z}$).

Use of COMMON

- Certain arguments in the common block /CINTEC/ are used as follows:

Input arguments

- PP(3)
 Satellite's geocentric position components at time t_2 (x_2, y_2, z_2).
- V(3)
 Satellite's geocentric velocity components at time t_2 ($\dot{x}_2, \dot{y}_2, \dot{z}_2$).
- XACCT(3)
 Satellite's geocentric acceleration components at time t_2 ($\ddot{x}_2, \ddot{y}_2, \ddot{z}_2$).
Local storage used — 23 real variables and 1 integer variable.

Subordinate subprograms — None.

Source deck — 40 cards (ICL code).

Explanation — The subroutine obtains a satellite's geocentric position and velocity components at a given time by interpolation between two points in the orbit. These will normally be adjacent steps in a numerical integration.

These equations used for interpolation are:

\[
f(t) = q^3 \left[(1 + 3p + 6p^2)f(t_1) + hp(1 + 3p)f'(t_1) + \frac{h^2}{2} p^2 f''(t_1) \right] \\
+ p^3 \left[(1 + 3q + 6q^2)f(t_2) - hq(1 + 3q)f'(t_2) \\
+ \frac{h^2}{2} q^2 f''(t_2) \right]
\]

for position components and

\[
f'(t) = 30h^{-1} p^2 q^2 \left[f(t_2) - f(t_1) \right] + q^2 (1 + 5p)(1 - 3p)f'(t_1) \\
+ p^2 (1 + 5q)(1 - 3q)f'(t_2) \\
+ \frac{h^2}{2} pq^2 (2 - 5p)f''(t_1) - \frac{h}{2} p^2 q(2 - 5q)f''(t_2)
\]

for velocity components, where \(h = t_2 - t_1 \), \(p = (t - t_1)/h \), \(q = 1 - p \) and \(f(t_1), f'(t_1) \) and \(f''(t_1) \) are the position, velocity and acceleration components at time \(t_1 \).
SUBROUTINE IPTOCO

Summary
- The subroutine computes the geocentric cartesian components of the position and velocity of an earth satellite in PROP axes, given the date and time and a set of the standard parameters used to define orbit injection.

Language
- USA Standard Fortran (USAS X3.9 - 1966).

Authors
- G.E. Cook and R. Clarke (October 1972).

Subroutine statement

Input arguments
- V
 Speed, v.
- CA
 Climb angle, θ.
- AZ
 Azimuth of velocity vector, ψ (measured E of N).
- R
 Radial distance, r.
- XLAT
 Geocentric latitude, ϕ.
- XLONG
 Longitude, λ.
- MJD
 Modified Julian Day number.
- TIME
 Time (fraction of a day) such that t is given by $MJD + TIME$.

Output arguments
- X, Y, Z
 Geocentric coordinates of satellite, x, y, z.
- XDOT, YDOT, ZDOT
 Geocentric components of velocity vector, $\dot{x}, \dot{y}, \dot{z}$.
- XLONG
 Longitude in inertial axes, λ'.

Use of COMMON
- None.

Source deck
- 22 cards (ICL code).

Local storage used
- 8 real variables.

Subordinate subprograms
- None.

Explanation
- Units of length and time are arbitrary, except for the variables MJD and TIME; angles are in radians.
The components of position and velocity are evaluated relative to the following coordinate system: the origin 0 is at the earth's centre and Oz points towards the north pole; Ox lies in the plane of the true equator of date, but instead of pointing towards the true equinox of date it points towards a projection of the mean equinox of the epoch 1950.0 (MJD 33281.9234); Oy completes the right-handed system Oxyz.

The injection conditions are specified relative to an earth-fixed system with longitude measured eastwards from the Greenwich meridian. The longitude λ' relative to the inertial system defined above is found by adding $\hat{\theta}$ to λ, where $\hat{\theta}$ is the 'modified sidereal angle' given by

$$\hat{\theta} = 100.075542 + 360.985612288(t - 33282.0),$$

i.e. the origin has been adjusted slightly from 1950.0. (The modified sidereal angle differs from sidereal time only because of the choice of a non-standard reference direction.)

The geocentric components of position and velocity are obtained from the following equations:

$$x = r \cos \phi \cos \lambda'$$

$$y = r \cos \phi \sin \lambda'$$

$$z = r \sin \phi$$

$$\dot{x} = v \{\sin \theta \cos \phi \cos \lambda' - \cos \theta \left(\cos \psi \sin \phi \cos \lambda + \sin \psi \sin \lambda\right)\}$$

$$\dot{y} = v \{\sin \theta \cos \phi \sin \lambda' + \cos \theta \left(\sin \psi \cos \lambda - \cos \psi \sin \phi \sin \lambda\right)\}$$

$$\dot{z} = v \{\sin \theta \sin \phi + \cos \theta \cos \psi \cos \phi\}.$$
SUBROUTINE MATMUL

Summary
- The subroutine performs matrix multiplications.

Language
- USA Standard Fortran (USAS X3.9 - 1966).

Author

Subroutine statement
- SUBROUTINE MATMUL (EM1, EM2, EM3, II, KK, JJ, IA, IB).

Input arguments
- EM1 Matrix of dimension (II,KK).
- EM2 Matrix of dimension (KK,JJ).
- II Actual number of rows in EM1.
- KK Actual number of columns in EM1 and rows in EM2.
- JJ Actual number of columns in EM2.
- IA Maximum number of rows in EM1 as given in the dimension statement of the calling segment.
- IB Maximum number of rows dimensioned for EM2 in the calling segment.

Output arguments
- EM3 Matrix of dimension (II,JJ).

Use of COMMON
- None.

Source deck
- 13 cards, including 4 comment cards (ICL code).

Local storage used
- 3 integer variables.

Subordinate subprograms
- None.

Explanation
- The subroutine performs the matrix multiplication

\[M_1M_2 = M_3 \]
SUBROUTINE MODAT

Summary
- The subroutine evaluates upper-atmosphere density, density scale height and scale height gradient using a simple analytic model.

Language
- 1900 Fortran.

Authors

Subroutine statement
- SUBROUTINE MODAT (HEIT, TINF, TGRADO, DEN, SCALHT, SHGRAD).

Input arguments
- HEIT
 Height above the earth's surface, y.
- TINF
 Exospheric temperature, T_∞.
- TGRADO
 Atmospheric temperature gradient dT/dy at the reference altitude, y_0 (120km).

Output arguments
- DEN
 Atmospheric density, ρ (g/cm³).
- SCALHT
 Density scale height (km).
- SHGRAD
 Density scale height gradient.

Use of COMMON
- None.

Source deck
- 46 cards, including 2 comment cards (ICL code).

Local storage used
- 24 real array elements, 16 real variables, 1 integer variable.

Subordinate subprograms
- None.

Explanation
- The values of density and density scale height are obtained from a simple analytic model of the Earth's upper atmosphere. If g denotes the local value of the acceleration due to gravity, the geopotential height above the reference altitude y_0 is defined by

\[\zeta = \int_{y_0}^{y} \frac{g(y)}{g(y_0)} \, dy, \]

so that
\[\zeta = (y - y_0)(R + y_0)/(R + y) , \]

(2)

\(R \) being the mean radius of the Earth. The temperature of the atmosphere is represented as a function of geopotential height by the expression

\[T(y) = T_\infty \{1 - a \exp(-\tau \zeta)\} , \]

(3)

where \(T_\infty \) is the exospheric temperature and \(a \) and \(\tau \) are constants defined by

\[a = 1 - \frac{T(y_0)}{T_\infty} , \]

(4)

and

\[\tau = \frac{1}{T_\infty - T(y_0)} \left(\frac{dT}{dy} \right)_{y=y_0} . \]

(5)

If the atmosphere is assumed to be in diffusive equilibrium above the reference altitude, the number density \(n_i \) of the \(i \)th constituent of molecular (or atomic) mass \(m_i \) is given by

\[\frac{1}{n_i} \frac{dn_i}{dy} = - \frac{m_i g_i}{kT} - \frac{1}{T} \frac{dT}{dy} (1 + \alpha) , \]

(6)

where \(k \) is Boltzmann's constant and \(\alpha \) is the thermal diffusion factor.

With the temperature profile (3), equation (6) can be integrated to give

\[n_i = n_i(y_0) \left\{ \frac{1 - a}{1 - a \exp(-\tau \zeta)} \right\}^{1+y_i+\alpha} \exp(-\gamma_i \tau \zeta) , \]

where \(\gamma_i = \frac{m_i g_i(y_0)}{\tau kT_\infty} . \)
The density ρ is given by

$$\rho = \sum_i n_i m_i.$$

For the constant boundary conditions at the reference altitude of 120 km, we use the values assumed by Jacchia16 in the construction of his static diffusion profiles:

- $T(120) = 355$ K
- $n(N_2) = 4.0 \times 10^{11}$ cm$^{-3}$
- $n(O_2) = 7.5 \times 10^{10}$ cm$^{-3}$
- $n(O) = 7.6 \times 10^{10}$ cm$^{-3}$
- $n(He) = 3.4 \times 10^7$ cm$^{-3}$

For hydrogen we also follow Jacchia and take the concentration at 500 km to vary with T_∞ according to the relation

$$\log_{10} n(H; 500) = 73.13 - 39.40 \log_{10} T_\infty + 5.5 (\log_{10} T_\infty)^2.$$

The thermal diffusion factor α is taken as -0.4 for helium and as zero for the other constituents.
SUBROUTINE ORBINT

Summary
- The subroutine starts and controls the integration of an elliptic orbit. During the integration, which may be forwards or backwards in time, it initiates interpolations at constant time intervals and, if required, will determine the apses of the orbit. The time of the apse, the osculating elements and radial distance are written to an unformatted disc file.

Language
- 1900 Fortran.

Author
- M.D. Palmer (February 1975).

Subroutine statement
- SUBROUTINE ORBINT.

Use of COMMON
- Certain quantities in the common blocks /CINTEG/, /CONST/, /CSMOON/ and /INTP/ are used as follows:

Input arguments in /CINTEG/-

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJDOCH</td>
<td>Modified Julian day number of epoch.</td>
</tr>
<tr>
<td>N(1)</td>
<td>The number of equations to be integrated.</td>
</tr>
<tr>
<td>PP(3)</td>
<td>Satellite's geocentric position components, (\mathbf{r} = (x, y, z)), initially at epoch (r_0) and subsequently at the latest integration step ((MJE + TME)) (km).</td>
</tr>
<tr>
<td>PDV(18)</td>
<td>Partial derivatives of position at the latest integration step (\frac{\partial \mathbf{r}}{\partial (r_0, v_0)}).</td>
</tr>
<tr>
<td>PDVEL(18)</td>
<td>Derivatives with respect to the independent variable (s) of the partial derivatives of position (\frac{d}{ds} \left[\frac{\partial \mathbf{r}}{\partial (r_0, v_0)} \right]).</td>
</tr>
<tr>
<td>V(3)</td>
<td>Satellite's geocentric velocity components, (\mathbf{v} = (\dot{x}, \dot{y}, \dot{z})), initially at epoch (v_0) and subsequently at the latest integration step (km/s).</td>
</tr>
<tr>
<td>A(3)</td>
<td>Satellite's geocentric acceleration components, (\mathbf{a} = (\ddot{x}, \ddot{y}, \ddot{z})) at the latest integration step (km/s²).</td>
</tr>
<tr>
<td>PDACCT(18)</td>
<td>Partial derivatives of acceleration at the latest integration step (\frac{\partial \mathbf{a}}{\partial (r_0, v_0)}).</td>
</tr>
</tbody>
</table>
Input arguments in /CONST/ -

EMU
Earth's gravitational constant \((\text{km}^3/\text{s}^2) \).

Input arguments in /CSMOON/ -

MJD
Modified Julian day number of the current time.

TIMET
The current time, in fractions of a day, relative to MJD.

Input arguments in /INTP/ -

EP
The time of epoch measured in fractions of a day relative to MJDOCH.

TINT
The time at which the next interpolation is required. Initially this is in hours from epoch and subsequently in days from epoch. If the integration is backwards in time, TINT must be negative.

TOR
Duration of the integration (hours).

Output arguments in /CINTEG/ -

XVEL, YVEL, ZVEL
The initial values of \(dx/ds, dy/ds, dz/ds \).

T
The time, in seconds, of epoch relative to MJDOCH (i.e. \(T = EP \times 86400.0 \)).

Input and output argument in /CINTEG/ -

TVEL
The value of \(dt/ds \) at the latest integration step (s\(^{-1}\)).

Input and output arguments in /INTP/ -

DT
On input, the interpolation interval in minutes. On output, the interpolation interval in fractions of a day. (If the integration is backwards in time, DT must be negative.)

NAP
Flag controlling the detection of apses. Initially \(NAP = 1 \) if apses are to be found and subsequently \(NAP = N + 1 \) where \(N \) is the number of apses already found.

Local storage used
- 69 real array variables, 17 real variables and 1 integer variable.
Subordinate subprograms — The subroutines COTOEL, DEQRSPT, INTPTA, INTPTB, MODAT, OUTPUT, POAUXP, SETPD, SMPOS and TRINV and the functions ANGLE, ANGLI, INTFRC, SOLVIN and SCPRUD.

Source deck — 60 cards (ICL code).

Explanation — The subroutine starts and controls the forward, or backward, integration of a satellite orbit. The variables TVEL (dt/ds), XVEL (dx/ds), YVEL (dy/ds) and ZVEL (dz/ds) are set in terms of the independent variable s. If a covariance matrix is to be propagated, the subroutine SETPD is called to set initial values of the array PDVEL. T is set to the time of epoch in seconds, and TIOR and DT are converted to fractions of a day. TINT, the time of the first interpolation relative to epoch is input with units of hours and is converted into a time in days and fractions of a day.

The integration is started by calling DEQRSPT with the statement CALL DEQRSPT (IND, PDAUXP). On the first call IND = 1 and on the second and subsequent calls IND = 2.

After each integration step, the time elapsed from epoch is calculated in days. If a table of apses is required, the length of the radius vector, \(\mathbf{r}_i \), and its rate of change \(\mathbf{r}'_i \), are determined. If \(\mathbf{r}'_i \mathbf{r}'_{i-1} < 0 \) there is an apse between the last two integration steps and SOLVIN is used to find its time and radial distance. INTPTB is called to find the position and velocity components at the apse and these are converted to osculating elements using COTOEL. This information is written unformatted to disc channel 4.

A check is made to see if the next required interpolation falls between the last two integration steps. If so, INPTA is called to carry out this interpolation and any others which fall between the two steps. When this is completed, INTPTS sets TINT to the time of the next required interpolation and returns control.

Before the next integration step, the geocentric position and velocity components, and if the matrix is to be propagated, the partial derivatives of position, velocity and acceleration are stored. The integration is continued until the time of the latest step, measured from epoch, exceeds TIOR.
SUBROUTINE OUTPUT

Summary
- The subroutine, given a set of earth satellite geocentric position and velocity components (POSVEL), provides any combination of the following output options:

(i) Write POSVEL to line printer.
(ii) Convert POSVEL to osculating elements and write to disc.
(iii) Compute range, range rate, azimuth and elevation of the satellite from the specified ground stations and write to disc.

Language
- 1900 Fortran.

Author
- M. D. Palmer (February 1975).

Subroutine statement
- SUBROUTINE OUTPUT (PT, VT, T, MJD, P).

Input arguments
- PT(3) Satellite's geocentric position components (x,y,z) at epoch MJD + T (km).
- VT(3) Satellite's geocentric velocity components (\dot{x}, \dot{y}, \dot{z}) at epoch MJD + T (km).
- MJD Modified Julian day number of epoch.
- T Time, in fractions of a day relative to MJD.
- P Radial distance at epoch (P = (x^2 + y^2 + z^2)^{1/2}) (km).

Use of COMMON
- Certain arguments in the common blocks /STATION/, /CONST/ and /INTP/ are used as follows:

Input argument in /CONST/ -
- EMU Earth's gravitational constant (km^3/s^2).

Input argument in /INTP/ -
- NPV If NPV > 0 , then MJD, T, POSVEL, radial distance and velocity are written to the line printer.

Input argument in /STATION/ -
- IS Number of ground stations.
Appendix B

Input and output arguments in /INTP/ -

NEL

On input, if NEL > 0, the POSVEL is converted to osculating elements and written to disc. If this occurs NEL is incremented by 1.

NAE

On input, if NAE > 0, the range, range rate, azimuth and elevation of the satellite relative to the specified ground stations are calculated and written to disc. If this occurs, NAE is incremented by 1.

Local storage used

- 10 real variables, 1 integer variable.

Source deck

- 29 cards (ICL code).

Subordinate subprograms

- The subroutines COTOEL, RAZEL and TRINV and the function ANGLE.

Explanation

- The subroutine is provided with an epoch and a corresponding POSVEL and radial distance. A number of output options are available and these are controlled by the flags NPV, NAE and NEL.

If NPV > 0, the satellite's velocity is calculated and then MJD, T, x, y, z, radial distance, \(\dot{x}, \dot{y}, \dot{z} \) and velocity are written to the line printer.

If NEL > 0, the POSVEL is converted to osculating elements, using subroutine COTOEL. MJD, T, the osculating elements and radial distance are then written to an unformatted disc file on channel 3 and NEL incremented by 1.

If NAE > 0, the sidereal angle at epoch is calculated and then look angles for each station are found using subroutine RAZEL. For each ground station, MJD, T, azimuth, elevation, range and range rate are written to the unformatted disc file on channel 3 and NAE incremented by 1.
SUBROUTINE PDAUXP

Summary

- The subroutine calculates the Cartesian components of the geocentric accelerations due to the gravitational attractions of the earth, sun and moon, atmospheric drag and the precession of the earth's polar axis. It will also, if required, evaluate the partial derivatives of the acceleration components with respect to the initial components of the position and velocity at epoch.

Language

- 1900 Fortran.

Author

- M.D. Palmer (November 1974).

Subroutine statement

- Subroutine PDAUXP.

Use of COMMON

- Certain quantities in the common blocks /CINTEG/, /CON/, /CONST/, /CSMOON/ and /PETURB/ are used as follows:

Input arguments in /CINTEG/

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJDOCH</td>
<td>Modified Julian day number of epoch.</td>
</tr>
<tr>
<td>NEQ</td>
<td>Number of equations being integrated (22 if partial derivatives of acceleration are required, 4 otherwise).</td>
</tr>
<tr>
<td>IAUX</td>
<td>Flag, see explanation.</td>
</tr>
<tr>
<td>X, Y, Z</td>
<td>Cartesian position components ((x, y, z) = \mathbf{r}).</td>
</tr>
<tr>
<td>PD(18)</td>
<td>Partial derivatives of position with respect to the initial position ((r_0)) and velocity ((v_0)); (\frac{\partial \mathbf{r}}{\partial (r_0, v_0)}).</td>
</tr>
<tr>
<td>XVEL, YVEL, ZVEL</td>
<td>The latest values of (\frac{dx}{ds}), (\frac{dy}{ds}) and (\frac{dz}{ds}).</td>
</tr>
<tr>
<td>T</td>
<td>Time, (t), relative to MJDOCH (seconds).</td>
</tr>
<tr>
<td>PDVEL(18)</td>
<td>Derivatives with respect to the independent variable (s) of the partial derivatives of position</td>
</tr>
</tbody>
</table>

\[
\frac{d}{ds} \begin{bmatrix} \frac{3\mathbf{r}}{\mathbf{r}^3} \end{bmatrix}.
\]
Appendix B

Input arguments in /CON/ -

EJ5, EJ6, EJ7, EJ8, EJ9

Coefficients of the earth's zonal harmonics, J_5, J_6, \ldots, J_9.

| C32, S32 | Fully normalized coefficients of certain tesseral harmonics, viz. $C_{32}, S_{32}, C_{41}, S_{41}, C_{43}, S_{43}$.
| C41, S41 |
| C43, S43 |

Input arguments in /CONST/ -

EMU, EJ2, EJ3, EJ4

Coefficients of the earth's zonal harmonics, J_2, J_3, J_4.

| C22, S22 | Fully normalized coefficients of certain tesseral harmonics, viz. $C_{22}, S_{22}, C_{31}, S_{31}, C_{33}, S_{33}, C_{42}, S_{42}$.
| C31, S31 |
| C33, S33 |
| C42, S42 |
| C44, S44 |

ERAD

Mean equatorial radius of the earth, R.

EOMEGA

Mean rotation rate of the earth's polar axis, in rad/s.

SUNMU

Sun's gravitational constant, μ_s.

SELMU

Moon's gravitational constant, μ_m.

Input arguments in /CSMOON/ -

XS, YS, ZS

Cartesian components of the sun's position (r_s) at the current time, computed if IAUX < 0.

XM, YM, ZM

Cartesian components of the moon's position (r_m) at the current time, computed if IAUX < 0.

Input arguments in /PETURB/ -

SMEAN

Mean value over three days of the solar 10.7cm radiation flux in units of 10^{-22} W m$^{-2}$ Hz$^{-1}$.

SOLBAR

Mean value over three solar rotations of the 10.7cm radiation flux in units of 10^{-22} W m$^{-2}$ Hz$^{-1}$.

RATE

Angular velocity of the atmosphere, ω_a in rad/s.

ARMA

The product $AM \times \text{HALFCD} \times 1000$ where AM is the satellite's area-to-mass ratio and HALFCD is the quantity δCD where CD is the satellite's drag coefficient. If $ARMA = 0.0$, drag terms are excluded.
TNITE

Minimum night-time temperature (K).

LSP

If LSP > 0 , luni-solar perturbations are included.

NSR

If NSR > 0 , solar radiation pressure terms are included but see explanation.

Output arguments in /CINTEG/ -

XACC, YACC, ZACC

Values of $\frac{d^2x}{ds^2}$, $\frac{d^2y}{ds^2}$, $\frac{d^2z}{ds^2}$ at the current time.

TVEL

Value of $\frac{dt}{ds}$ at the current time.

PDACC(18)

Second derivatives with respect to the independent variable s of the partial derivatives of position

$$\frac{d^2}{ds^2} \left[\frac{3}{r(t_0, v_0)} \right].$$

XVELT, YVELT, ZVELT

Cartesian components of velocity, \dot{x}, \dot{y}, \dot{z}, at the current time.

XACCT, YACCT, ZACCT

Cartesian components of acceleration, \ddot{x}, \ddot{y}, \ddot{z}, at the current time.

PDACCT(18)

Partial derivatives of acceleration with respect to the initial position and velocity at epoch

$$\frac{d^2}{dt^2} \left[\frac{3x}{s(t_0, v_0)} \right].$$

Output arguments in /CSMOON/ -

MJDT

Modified Julian day number of the current time.

TIMET

The current time, in fractions of a day, relative to MJDT.

Source deck

- 155 cards (ICL code).

Local storage used

- 51 real variables and 3 integer variables.

Subordinate subprogram

- The subroutines MODAT, SMPOS and TRINV and the functions ANGLE, ANGL1, INFIND and SCPROD.

Explanation

- When the subroutine is called for the first time, or for a change of epoch, IAUX must be set to -1. For subsequent entries, when the time has changed since the previous entry, IAUX should be set to zero. If the
time has not changed IAUX may be set to 1 to prevent recomputation of certain terms. (All these cases are allowed for by the calling segment in POINT.)

The cartesian components of the geocentric acceleration acting on the satellite are found by adding contributions from the gravitational attractions of the earth, sun and moon, atmospheric drag and the precession of the earth's polar axis. The subroutine is structured so as to permit the easy insertion of solar radiation pressure at a future date.

The earth harmonic terms are:

\[
\frac{\mu_e}{r^3} \sum_{n,m} R_n^m \left(\frac{1}{r} \left(\frac{m+1}{2} \right) \right) \left(\frac{1}{r} \left(\frac{m+1}{2} \right) \right) + mW^{m-1}e^{-j\theta p(m)}(\hat{x} + j\hat{y})
\]

where the sidereal angle \(\theta = \theta_0 + \omega_e t \),

\(W = (x + jy)/re^{j\theta} \),

\(p_n^{(m)} \) is the mth derivative of the Legendre polynomial, \(P_n(z/r) \)

\(E_{0,0} = 1 \)

\(E_{n,0} = -J_n \)

and

\[
E_{n,m} = \frac{2(2n + 1)(n - m)!/(n + m)!}{(n + m)!} \left(C_{n,m} - j\xi_{n,m} \right)
\]

Terms are included up to the ninth zonal harmonic and the 4,4 tesseral harmonic.

The accelerations due to the gravitational attractions of the sun and moon are given by

\[
u_b \left[\frac{(r_b - r)}{|r_b - r|^3} - \frac{r_b}{|r_b|^3} \right]
\]

b being 's' for the sun and 'm' for the moon.

Atmospheric drag is included if \(ARMA \neq 0 \). A modified version of the Jacchia 1965 model is used to find the ambient air density. Firstly the subroutine computes the satellite's height and latitude (\(\phi \)), the declination of the sun (\(\delta \)) and the hour angle (H) of the satellite relative to the sun. The exospheric temperature (\(T_e \)) is determined using the equation,
\[T_\infty = T_{\text{NITE}} \left[1 + 0.28 \theta + 0.28 \left[\cos \left(\frac{\phi - \delta}{2} \right)^2 - \theta \right] \left[\cos \frac{\gamma}{2} \right]^{2.5} \right], \]

where \(\theta = \sin \left[\frac{\phi + \delta}{2} \right]^{2.5} \)

and \[\tau = \left[H - 0.78539816 + 0.20943951 \sin \left[1 + 0.78539816 \right] \right]. \]

The atmospheric temperature gradient at the reference altitude (120km) is given by:

\[T_{\text{grad}} = (T_\infty - 355)(0.029 \exp\left[-x^2/2\right]) \]

where \(x = \frac{T_\infty - 800}{750 + 1.722 \times 10^{-4}(T_\infty - 800)^2} \).

Subroutine MODAT is called to determine the atmospheric density \(\rho \).

The force acting on the satellite is given by \(\frac{1}{2} \rho |V|^2 C_D \) where \(C_D \) is the drag coefficient, \(S \) is the effective cross-sectional area perpendicular to the air flow and \(\bar{V} \) is the velocity of the satellite relative to the ambient air. \(\bar{V} \) is given by

\[\bar{V} = v - \omega_a \times r \]

where \(\bar{r} \) and \(\bar{v} \) are the position and velocity vectors of the satellite.

If the cartesian components of \(\bar{V} \) are \(V_x, V_y, V_z \) then the contributions to the acceleration components are:

\[\ddot{x} = -\frac{SC_D}{2M} |V|V_x, \quad \text{etc.} \]

where \(M \) is the mass of the satellite.

The variable \(\text{ARMA} \) is the quantity \(\frac{SC_D}{2M} \times 1000 \), the 1000 being a unit conversion factor.

The contribution to the acceleration due to the precession term is

\[p(\dot{x}\dot{z} - \dot{z}\dot{x}) \].
If required, the subroutine also evaluates the partial derivatives of the accelerations with respect to the initial position \(\mathbf{r}_0 \) and velocity \(\mathbf{v}_0 \) at epoch, i.e.

\[
\frac{d^2}{dt^2} \frac{\partial \mathbf{r}}{\partial (\mathbf{r}_0, \mathbf{v}_0)}
\]
SUBROUTINE POSVEL

Summary
- The subroutine computes the geocentric cartesian components of position and velocity (POSVEL) of an earth satellite given the date, time and a set of 'PROP-type' orbital elements.

Language
- 1900 Fortran.

Author
- M.D. Palmer (February 1975).

Subroutine statement

Input arguments
- ELEMT(6,6) Array of coefficients used to define mean orbital elements (see explanation).
- MJD Modified Julian day number of the given date.
- TIME Time, as a fraction of a day after MJD, at which the POSVEL is required.
- MJDOCH Modified Julian day number for 'PROP-type' orbital elements.

Note: Normally MJD = MJDOCH and TIME = 0.0.

Output arguments
- X, Y, Z, XDOT, YDOT, ZDOT POSVEL.

Use of COMMON
- Certain arguments in the common block /CONST/ are used as follows:

Input arguments in /CONST/ -
- EMU Earth's gravitational constant.
- EJ2 Earth's second zonal harmonic, J₂.
- ERAD Mean equatorial radius of the earth, R.

Source deck
- 115 cards including 18 comment cards (ICL code).

Local storage used
- 4 integer variables, 37 real variables and 60 real array elements.
Subordinate subprograms — Subroutine SHPAUX.

Explanation — The subroutine is essentially the same as subroutine SATXYZ used in the program PROP \(^6\). It will normally be used to produce a POSVEL from 'PROP-type' elements at the epoch corresponding to the elements, i.e. \(MJD = MJDOCH\) and \(TIME = 0.0\). The standard elements, eccentricity \(e\), inclination, \(i\), right ascension, \(\Omega\), argument of perigee, \(\omega\), and mean anomaly, \(M\), are assumed to be polynomials in time of the form

\[
e = e_0 + e_1 t + e_2 t^2 + e_3 t^3 + e_4 t^4 + e_5 t^5.
\]

The coefficients are stored in the array ELEM(6,6). The first five rows contain six coefficients for \(e\), \(i\), \(\Omega\), \(\omega\) and \(M\) and the first five elements of the sixth row are set to the values of the corresponding coefficients in the fourth-degree polynomial for mean motion.

The base elements (osculating elements with short and long periodic perturbations removed) are computed from the appropriate polynomials, whose degrees are specified by the elements of the array NOMIAL(6), set in a DATA statement. For the standard case mentioned above, i.e. \(t = 0.0\), the elements of NOMIAL are set to zero. Long-periodic perturbations for this case are zero and so only the short-periodic terms need be incorporated in the computation which is identical to that in PROP.

Firstly \(\bar{a}\) (semi-major axis), \(\bar{q} = (1 - e^2)^{1/2}\), \(\bar{E}\) (eccentric anomaly), \(\bar{v}\) (true anomaly), \(\bar{p} = (\bar{a}q)^2\) and \(\bar{u} = (v + \omega)\) are computed. Subroutine SHPAUX then computes the short periodic perturbations. The formulae of section B.8 of Ref.17 are evaluated to obtain the POSVEL.
SUBROUTINE PRINT

Summary
- The subroutine reads the unformatted disc output produced by subroutines OUTPUT and ORBINT and writes it to the line printer.

Language
- 1900 Fortran.

Author

Subroutine statement
- SUBROUTINE PRINT (IS, NEL, NAP, NAE, K, STANAM).

Input arguments
- IS
 The number of ground stations for which tables of look angles have been produced.

- NEL
 If NEL > 0, NEL = N + 1 where N is the number of lines of osculating elements stored on disc.

- NAP
 If NAP > 0, NAP = N + 1 where N is the number of lines in the table of apses stored on disc.

- NAE
 If NAE > 0, NAE = N + 1 where N is the number of lines in each table of look angles stored on disc.

- K
 The number of different sets of output held on disc channel 3, 0 ≤ K ≤ 5.

- STANAM(4,5)
 Array, holding as text, the names of the ground stations for which look angles have been determined.

Use of COMMON
- None.

Local storage used
- 10 real variables and 4 integer variables.

Subordinate subprograms
- None.

Source deck
- 50 cards (ICL code).

Explanation
- The subroutines OUTPUT and ORBINT store unformatted information on disc channels 3 and 4 respectively. PRINT recovers this information and writes it to the line printer on channel 2.

The information produced by OUTPUT falls into two categories, namely (a) tables of time, osculating elements and radial distance, and (b) tables of time, azimuth, elevation, range and range rate for up to four ground stations. The data is stored on disc channel 3 consecutively and in chronological order.
PRINT recovers and lists the information from each table separately, one line at a time. The table of osculating elements is recovered first followed by the tables of look angles. For the latter, only those lines in which the elevation >0.0 are actually printed.

ORBINT produces a table of apses which is written one line at a time to disc channel 4. PRINT recovers this information and writes it directly to the line printer. If no apses have been detected, an appropriate comment is printed.

A title is printed before each table.
SUBROUTINE RAZEL

Summary
- The subroutine calculates the azimuth, elevation, range and range rate of an earth satellite for a given ground station.

Language
- 1900 Fortran.

Author
- M.D. Palmer (March 1975).

Subroutine statement
- SUBROUTINE RAZEL (SD, I, XX, YY, ZZ, XD, YD, ZD, AZ, EL, R, RR).

Input arguments
- **SD**
 - Sidereal angle at epoch (rad).
- **I**
 - Station number in the range 1 ≤ I ≤ 4.
- **XX**
 - Satellite's geocentric position components (x, y, z) (km).
- **ZZ**
 - Satellite's geocentric position components (x, y, z) (km).
- **XD**
 - Satellite's geocentric velocity components (ẋ, ẏ, ż) (km/s).
- **YD**
 - Satellite's geocentric velocity components (ẋ, ẏ, ż) (km/s).

Output arguments
- **AZ**
 - Azimuth (rad).
- **EL**
 - Elevation (rad).
- **R**
 - Range (km).
- **RR**
 - Range rate (km/s).

Use of COMMON
- Certain arguments in the common blocks /STATION/ and /CONST/ are used as follows:

Input arguments in /STATION/ -
- **SL** (4)
 - Sin φ_1, where φ_1 is the geodetic station latitude (i = 1, 4).
- **CL** (4)
 - Cos φ_1.
- **Al** (4)
 - \[\frac{R_p^2 \cos \phi_i}{(R_p^2 \cos^2 \phi_i + R_e^2 \sin^2 \phi_i)} + h_p \cos \phi_i \]
 - the earth's polar radius, \(R_p \) is the earth's mean equatorial radius and \(h_p \) is the station's height above the geoid (i = 1, 4).
The geocentric station longitude, λ_i, rad $(i = 1,4)$.

Input argument in /CONST/ -

EOMEGA
Mean rotation rate of the earth, ω_e (rad/s).

Subordinate subprograms - None.

Source deck - 19 cards (ICL code).

Local storage used - 5 real variables.

Explanation - POINT will produce, as an output option, an ephemeris of look angles (azimuth, elevation, range and range rate) for each of four ground stations. Each call to RAZEL gives a set of look angles for one station for a given point in time, the station being identified by the value of I $(1 \leq I \leq 4)$.

Consider a cross-section of the earth containing the north and south poles and the station. Assume an axis system in this plane so that O_x lies along the semi-major axis of the ellipse, O_z along the minor axis and O_y completes the right-handed set. The coordinates of a ground station are given by

$$x_s = \frac{R^2 \cos \phi}{(R_e \cos^2 \phi + R_p \sin^2 \phi)^{\frac{1}{2}}} + h \cos \phi$$

$$y_s = 0.0$$

$$z_s = \frac{R^2 \cos \phi}{(R_e \cos^2 \phi + R_p \sin^2 \phi)^{\frac{1}{2}}} + h \sin \phi$$

where ϕ is the station's geodetic latitude and h is its height above the spheroid. The satellite's coordinates (x,y,z) in PROP axes may be transformed into the above axis system by a rotation about the z-axis through an angle of $(\lambda + \theta)$, where λ is the station's geocentric longitude and θ is the sidereal angle. Thus the satellite's coordinates become
\[x' = x \cos (\lambda + \theta) + y \sin (\lambda + \theta) \]

\[y' = y \cos (\lambda + \theta) - x \sin (\lambda + \theta) \]

\[z' = z \]

and the range \((r)\) of the satellite is given by

\[r = \left[(x' - x_s)^2 + (y' - y_s)^2 + (z' - z_s)^2 \right]^{\frac{1}{2}}. \]

The satellite's transformed velocity components are

\[\dot{x}' = \dot{x} \cos (\lambda + \theta) + \dot{y} \sin (\lambda + \theta) + \omega_e y \]

\[\dot{y}' = \dot{y} \cos (\lambda + \theta) - \dot{x} \sin (\lambda + \theta) - \omega_e z \]

\[\dot{z}' = \dot{z} \]

where \(\omega_e\) is the earth's rotation rate. The satellite's range rate \(\dot{r}\) is given by

\[\dot{r} = (\dot{x}'x' + \dot{y}'y' + \dot{z}'z')/r. \]

The azimuth \((A)\) and elevation \((E)\) of the satellite from the station are found in a 'local' axis system with the origin at the station, the \(x\)-axis along the local vertical, the \(z\)-axis along the local north and the \(y\)-axis in the direction of local east. The coordinates \((x_L', y_L', z_L')\) of the satellite in this system are:

\[x_L' = (x' - x_s) \cos \phi + (z' - z_s) \sin \phi \]

\[y_L' = y' \]

\[z_L' = (z' - z_s) \cos \phi - (x' - x_s) \sin \phi \]

Thus

\[A = \text{ATAN2}(y_L', z_L') \]

and

\[E = \text{ATAN2}[x_L', (y_L'^2 + z_L'^2)^{\frac{1}{2}}] \]

A rigorous derivation of this theory is given in Ref. 18.
The subroutine reads RAE orbital elements from a set of five punched cards and stores them in a standard array.

Language
- 1900 Fortran.

Author
- M.D. Palmer (March 1975).

Subroutine statement
- SUBROUTINE READEL (ELEMT, MJDOCH).

Output arguments
- ELEMT(6,6) Array of coefficients used to define orbital elements (see explanation).
- MJDOCH MJD of the midnight epoch at which the elements are defined.

Use of COMMON
- None.

Source deck
- 15 cards (ICL code).

Local storage used
- 6 real array elements, 3 real variables and 3 integer variables.

Subordinate subprograms
- None.

Explanation
- The subroutine is essentially the same as the subroutine ELREAD used in the program PROP. It is assumed that the five basic orbital elements of an earth satellite, e, i, Ω, ω, M may be represented by polynomials in time of degree five, e.g.

\[
e = e_0 + e_1 t + e_2 t^2 + e_3 t^3 + e_4 t^4 + e_5 t^5.
\]

The six coefficients for each polynomial are read from one card and stored in one row of the array ELEMT. The first five elements of the sixth row are set to the values of the corresponding coefficients in the fourth degree polynomial in mean motion as follows:

\[
ELEMT(6,j) = j ELEMT(5,j+1) \quad \text{for} \quad j = 1,5.
\]

The coefficients, as read, have units of degrees and days and these are changed to radians and seconds before storage.

The five data cards must contain MJDOCH in cols. 1 to 5 and a serial number (1, ..., 5) in col. 7. A check is made that the cards are in the correct sequence and, if not, a STOP99 instruction is obeyed.
SUBROUTINE REIP

Summary
- The subroutine reads the input data for POINT and, where necessary, converts it to the form required by the main program.

Language
- 1900 Fortran.

Author

Subroutine statement
- SUBROUTINE REIP.

Use of COMMON
- Certain quantities in the common blocks /CINTEG/, /CONST/, /INTP/, /PETURB/ and /STATION/ are used as follows:

Input arguments in /CONST/ -

EMU Earth's gravitational constant, \(\mu \) (km\(^3\)/s).
ERAD Mean equatorial radius of the earth, \(R \) (km).
EOMEGA Mean rotation rate of the earth \(\omega_e \) in rad/s.

Input arguments in /PETURB/ -

HALFCD The quantity \(\frac{1}{2}C_D \) where \(C_D \) is the satellite's drag coefficient.

Output arguments in /CINTEG/ -

MJD Modified Julian day number of epoch.
NM Number of equations to be integrated.
X, Y, Z Cartesian components of the satellite's geocentric position \((x, y, z) \) at epoch (km).
XD, YD, ZD Cartesian components of the satellite's geocentric velocity \((\dot{x}, \dot{y}, \dot{z}) \) at epoch (km/s).

Output arguments in /INTP/ -

EP Time of epoch, in fractions of a day relative to MJDCH.
DT Interpolation interval, min.
TINT The time from epoch at which the first interpolation is required, hours.
TOR Integration period, hours.
NPV = 1 if an ephemeris of geocentric position and velocity components (POSVEL) is required.

NEL = 1 if an ephemeris of osculating elements is required.

NAP = 1 if a table of apses is required.

NAE = 1 if tables of look angles are required.

COV(6,6) Covariance matrix corresponding to the POSVEL.

NOTPT = 1 if an ephemeris of POSVEL and, if specified, the propagated covariance matrix is to be written to a permanent disc file.

Output arguments in /PETURB/ -

ARMA The product AM x HALFCD x 1000.0, where AM is the area-to-mass ratio of the satellite in m²/kg. If ARMA ≠ 0.0, drag terms are included in the integration.

TNITE Nighttime minimum exospheric temperatures (K).

SMEAN Mean value over three days of the solar 10.7cm radiation flux in units of 10⁻²² W m⁻² Hz⁻¹.

SOLBAR Mean value over three solar rotations of the 10.7cm radiation flux in units of 10⁻²² W m⁻² Hz⁻¹.

RATE Angular velocity of the atmosphere, rad/s.

LSP = 1 if luni-solar perturbations are included in the integration.

NSR A spare variable, to be used as a flag should solar radiation pressure terms be incorporated in the integration.

Output arguments in /STATION/ -

K The number of ground stations for which tables of look angles are required (K ≤ 4).

SLT(4) Sin φ_i , where φ_i is the geodetic station latitude (i = 1,...,4).

CLT(4) Cos φ_i (i = 1,...,4).
\[A_1(4) = \frac{R_e^2 \cos \phi_i}{(R_e^2 \cos^2 \phi_i + R_p^2 \sin^2 \phi_i)^{1/2}} + h_i \cos \phi_i \text{ where } R_p \text{ and } R_e \text{ are the earth's polar and mean equatorial radii} \]

\[A_2(4) = \frac{R_p^2 \sin \phi_i}{(R_e^2 \cos^2 \phi_i + R_p^2 \sin^2 \phi_i)^{1/2}} + h_i \sin \phi_i \]

\[SLO(4) \text{ The geocentric station longitude } \lambda_i \text{, rad (i = 1,...,4).} \]

\[STANAM(4,5) \text{ Array holding the ground station names as text.} \]

Input and output arguments in /CINTEG/-

- **H**
 - On input, the integration step length as set in BLOCK DATA. On output H/C1 (C1 \(\neq 0 \)) where C1 is an input data item.

Subordinate subprograms

- The subroutines ELTOCO, IPTOCO, MATMUL, POSVEL, RELEASE, ROTATE, SDC2EL, SETPD, SHPAUX and TRAMAT and the functions ANGLE and EAFKEP.

Source deck

- 130 cards (ICL code).

Local storage used

- 113 real array elements, 18 real variables and 2 integer variables.

Explanation

- The subroutine determines the position and velocity of an earth satellite at a given epoch in terms of its geocentric cartesian components in the PROP axes system. The components may be read directly or input in an alternative form and converted. The four alternative forms are:

 (i) a standard set of launch vehicle injection conditions (speed, climb angle, azimuth, radius, latitude and longitude);

 (ii) a set of osculating elements (semi-major axis, eccentricity, inclination, right ascension of the ascending node, argument of perigee and mean anomaly);

 (iii) a set of USAF Space Defense Center (SDC) two line-elements; and

 (iv) a set of RAE five-line mean elements.
A choice of the perturbations to be included in the integration is provided and there are a number of output formats.

One option is to propagate the covariance matrix associated with the position and velocity components. The initial covariance matrix may be provided either

(i) in terms of the position and velocity components (km and km/s)

or (ii) in terms of injection conditions with units of ft/s, degrees and feet. In this case, the orbit must also be supplied as a set of injection conditions.

In the latter case, the subroutine carries out a transformation of the form:

$$\text{cov}(X_0) = A \text{cov}(Y_0) A^T$$

where \(\text{cov}(X_0)\) is the covariance matrix in terms of position and velocity components,

\(\text{cov}(Y_0)\) is the injection covariance matrix

and \(A\) is the matrix of partial derivatives given by

$$
\begin{bmatrix}
\frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} & \frac{\partial x}{\partial z} & \frac{\partial x}{\partial \psi} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \lambda} \\
\frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial y}{\partial z} & \frac{\partial y}{\partial \psi} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \lambda} \\
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & \frac{\partial z}{\partial z} & \frac{\partial z}{\partial \psi} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \lambda} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} & \frac{\partial \psi}{\partial v} & \frac{\partial \theta}{\partial v} & \frac{\partial \lambda}{\partial v} \\
\frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} & \frac{\partial z}{\partial \theta} & \frac{\partial \psi}{\partial \theta} & \frac{\partial \theta}{\partial \theta} & \frac{\partial \lambda}{\partial \theta} \\
\frac{\partial x}{\partial \lambda} & \frac{\partial y}{\partial \lambda} & \frac{\partial z}{\partial \lambda} & \frac{\partial \psi}{\partial \lambda} & \frac{\partial \theta}{\partial \lambda} & \frac{\partial \lambda}{\partial \lambda}
\end{bmatrix}
$$

where \(x, y, z\) are the position components,

\(\dot{x}, \dot{y}, \dot{z}\) the velocity components,

\(v\) the speed at injection,

\(\theta\) the climb angle,

\(\psi\) the azimuth,
\(r \) the radial distance, \\
\(\phi \) the geocentric latitude \\
and \(\lambda' \) the longitude in inertial space.

\(\lambda' \) is defined by \(\lambda' = \hat{\theta} + \lambda \) where \(\lambda \) is the geocentric longitude and \(\hat{\theta} \) is the modified sidereal angle given by

\[
\hat{\theta} = 100.075542 + 360.985612288(t - 33282.0)
\]

where \(t = \text{MJD} + \text{EP} \).

It can be shown that:

\begin{align*}
\text{Row 1} & \quad \frac{\partial x}{\partial v} = \frac{\partial x}{\partial \theta} = \frac{\partial x}{\partial \psi} = 0.0, \quad \frac{\partial x}{\partial r} = \cos \phi \cos \lambda' \\
& \quad \frac{\partial x}{\partial \phi} = -r \sin \phi \cos \lambda', \quad \frac{\partial x}{\partial \lambda} = -r \cos \phi \sin \lambda'
\end{align*}

\begin{align*}
\text{Row 2} & \quad \frac{\partial y}{\partial v} = \frac{\partial y}{\partial \theta} = \frac{\partial y}{\partial \psi} = 0.0, \quad \frac{\partial y}{\partial r} = \cos \psi \sin \lambda' \\
& \quad \frac{\partial y}{\partial \phi} = -r \sin \phi \sin \lambda', \quad \frac{\partial y}{\partial \lambda} = r \cos \phi \cos \lambda'
\end{align*}

\begin{align*}
\text{Row 3} & \quad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial \psi} = 0.0, \quad \frac{\partial z}{\partial r} = \sin \phi \\
& \quad \frac{\partial z}{\partial \phi} = r \cos \phi, \quad \frac{\partial z}{\partial \lambda} = 0.0
\end{align*}

\begin{align*}
\text{Row 4} & \quad \frac{\partial x}{\partial \theta} = \sin \theta \cos \phi \cos \lambda' - \cos \theta \left[\cos \psi \sin \phi \cos \lambda' + \sin \psi \sin \lambda' \right] \\
& \quad \frac{\partial x}{\partial \psi} = v \left[\cos \theta \cos \phi \cos \lambda' + \sin \theta \left[\cos \psi \sin \phi \cos \lambda' + \sin \psi \sin \lambda' \right] \right] \\
& \quad \frac{\partial x}{\partial r} = v \cos \theta \left[\sin \psi \sin \phi \cos \lambda' - \cos \psi \sin \lambda' \right] \\
& \quad \frac{\partial x}{\partial \phi} = v \sin \theta \cos \phi \sin \lambda'
\end{align*}

\(\frac{\partial x}{\partial \lambda} = 0.0 \)
\[
\frac{\ddot{x}}{\partial \phi} = v[- \sin \theta \sin \phi \cos \lambda' - \cos \theta \cos \psi \cos \phi \cos \lambda']
\]
\[
\frac{\ddot{x}}{\partial \lambda'} = v[- \sin \theta \cos \phi \sin \lambda' + \cos \theta \left[\cos \psi \sin \phi \sin \lambda' - \sin \psi \cos \lambda'\right]]
\]

Row 5
\[
\frac{\ddot{y}}{\partial \phi} = \sin \theta \cos \phi \sin \lambda' + \cos \theta \left[\sin \phi \cos \lambda' - \cos \psi \sin \phi \sin \lambda'\right]
\]
\[
\frac{\ddot{y}}{\partial \theta} = v \left[\cos \theta \cos \phi \sin \lambda' - \sin \theta \left[\sin \psi \cos \lambda' - \cos \psi \sin \phi \sin \lambda'\right]\right]
\]
\[
\frac{\ddot{y}}{\partial \psi} = v \cos \theta \left[\cos \psi \cos \lambda' + \sin \phi \sin \psi \sin \lambda'\right]
\]
\[
\frac{\ddot{y}}{\partial r} = 0.0
\]
\[
\frac{\ddot{y}}{\partial \phi} = v[- \sin \theta \sin \phi \sin \lambda' - \cos \theta \cos \psi \cos \phi \sin \lambda']
\]
\[
\frac{\ddot{y}}{\partial \lambda'} = v \left[\sin \theta \cos \phi \cos \lambda' + \cos \theta \left[- \sin \psi \sin \lambda' - \cos \psi \sin \phi \cos \lambda'\right]\right]
\]

Row 6
\[
\frac{\ddot{z}}{\partial \phi} = \sin \theta \sin \phi + \cos \theta \cos \phi \cos \phi
\]
\[
\frac{\ddot{z}}{\partial \theta} = v \cos \theta \sin \phi - v \sin \theta \cos \psi \cos \phi
\]
\[
\frac{\ddot{z}}{\partial \psi} = -v \cos \theta \sin \psi \cos \phi
\]
\[
\frac{\ddot{z}}{\partial r} = 0.0
\]
\[
\frac{\ddot{z}}{\partial \phi} = v \sin \theta \cos \phi - v \cos \theta \cos \psi \sin \phi
\]
\[
\frac{\ddot{z}}{\partial \lambda'} = 0.0
\]
SUBROUTINE ROTATE

Summary - The subroutine performs rotations, about the z-axis by a given angle at a given angular velocity.

Language - ASA Fortran (Standard Fortran 4).

Subroutine statement - SUBROUTINE ROTATE (X, Y, XDOT, YDOT, ANGLE, ANGVEL).

Input arguments -

ANGLE Angle \(\theta \), through which coordinates are to be rotated - anticlockwise.

ANGVEL Angular velocity, \(\omega \), to be applied to velocity coordinates - anticlockwise.

Input and output arguments -

X \(x \) coordinate.

Y \(y \) coordinate.

XDOT \(\dot{x} \) coordinate.

YDOT \(\dot{y} \) coordinate.

Use of COMMON - None.

Source deck - 11 cards (ICL code).

Local storage used - 3 real variables.

Subordinate subprograms - None.

Explanation - The rotation is equivalent to the following

\[(x, y) \rightarrow (x \cos \theta - y \sin \theta, y \cos \theta + x \sin \theta)\]

followed by

\[(\dot{x}, \dot{y}) \rightarrow (\dot{x} \cos \theta - \dot{y} \sin \theta - \omega y, \dot{y} \cos \theta + \dot{x} \sin \theta + \omega x)\]
FUNCTION SCPROD

Summary
- The function gives the scalar (inner) product of two arrays.

Language
- PLAN, for use with 1900 Fortran.

Author

Function statement
- FUNCTION SCPROD (A, B, NA, NB, N).

Input arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1), B(1)</td>
<td>Locations of the first elements to be multiplied (must be array elements).</td>
</tr>
<tr>
<td>NA, NB</td>
<td>Increments in the arrays, A, B of elements to be multiplied.</td>
</tr>
<tr>
<td>N</td>
<td>Number of elements to be multiplied.</td>
</tr>
</tbody>
</table>

Output function
- SCPROD
 \[\sum_{i=1}^{N} A(1+(i-1)NA)B(1+(i-1)NB) \]

Use of COMMON
- None.

Source deck
- 25 cards, including 1 comment card (ICL code).

Local storage used
- 2 words for variables, plus 22 words for program.

Subordinate subprograms
- None.

Explanation
- The arrays in the calling routine may have any dimensions although they are treated as one-dimensional arrays in the function. For simplicity A and B are dimensioned '1'. This may cause the function to fail in TRACE2, so it should not be compiled in this mode. If \(N \leq 0 \), the function will return zero.
SUBROUTINE SDC2EL

Summary
- The subroutine reads a set of Space Defense Center (SDC) two-line elements and converts them to an equivalent set of 'PROP' type elements.

Language
- 1900 Fortran.

Author
- M.D. Palmer (December 1974).

Subroutine statement
- SUBROUTINE SDC2EL (MJDOCH, ELEMT).

Output arguments
- MJDOCH
 Modified Julian day number of epoch.
- ELEMT(6,6)
 Array of PROP-type orbital elements.

Use of COMMON
- Certain arguments in the common block /CONST/ are used as follows:

Input arguments in /CONST/
- EMU
 Earth's gravitational constant, \(\mu \) (km\(^3\)/s\(^2\)).
- XJ2
 Earth's second zonal harmonic coefficient, \(J_2 \).
- XJ3
 Earth's third zonal harmonic coefficient, \(J_3 \).
- ERAD
 Earth's mean equatorial radius, \(R \) (km).

Subordinate subprograms
- None.

Local storage used
- 5 integer variables and 16 real variables.

Source deck
- 71 cards including 10 comment cards (ICL code).

Explanation
- This subroutine is essentially the subroutine SDCELS used in the program PROP\(^6\). A set of orbital elements consists of eccentricity, \(e \), inclination, \(i \), right ascension of ascending node, \(\Omega \), argument of peri\(\gamma \), \(w \), mean anomaly, \(M \), and mean motion, \(n \). With the exception of mean motion, these elements may be assumed to be polynomials in time, i.e.

\[
e = e_0 + e_1 t + e_2 t^2 + \ldots \text{ etc.}
\]

where \(e_1, e_2, \text{ etc.} \) are the 'rate elements'.
SDC elements differ from PROP elements in the following ways:

(i) PROP elements are for midnight epochs, whereas SDC elements relate to an ascending node.

(ii) PROP elements follow the long-periodic motion of the satellite, but SDC elements have been 'corrected' for long-periodic perturbations associated with a nominal value of the earth's third zonal harmonic.

(iii) The origin of the right ascension of the ascending node is the mean equinox of date for SDC but the 1950.0 equinox for PROP.

(iv) SDC elements \(i_0, \Omega_0, \omega_0 \) are in degrees and the SDC units for the M-polynomial quantities are revolutions and days, whereas PROP elements are stored in units of radians and seconds.

The quantities read from the first SDC card are card number, satellite identification number, year of epoch, day of year, fraction of day, \(M_2 \) and \(M_3 \). It is read in the format

\[
(11, 1X, 15, 2X, A8, 1X, 12, 13, F9.8, 1X, F10.8, 1X, E8.5) .
\]

The second card contains card number, satellite, \(i_0, \Omega_0, e_0, \omega_0, M_0 \) and \(M_1 \), and is read in the format

\[
(11, 1X, 15, 2(1X, F8.4), 1X, F7.7, 2(1X, F8.4), 1X, F11.8) .
\]

The semi-major axis, which is an auxiliary element, is computed from

\[
a = a_{osc} \left[1 - \frac{J_2}{4} \left(\frac{R}{a_{osc}} \right)^2 \left(2 - 3 \sin^2 i_0 \right) \left(1 - e_0^2 \right)^{-3/2} \right]
\]

where the osculating semi-major axis, \(a_{osc} \), is given by \(a_{osc} = \left(\frac{\mu}{n_0^2} \right)^{1/3} \)

where \(n_0 \) is \(M_1 \) converted to rad/s.

\(\Omega_1 \) and \(\omega_1 \) are computed from

\[
\Omega_1 = - \frac{P}{2} \cos i_0 \quad \text{and} \quad \omega_1 = P \left[1 - \frac{5}{4} \sin^2 i_0 \right]
\]

where

\[
P = 3J_2 \left(\frac{R}{a(1 - e_0^2)} \right)^2 n_0 .
\]
The time in days, \(\tau \), by which the new epoch is later than the epoch of the SDC elements is found. \(\Omega_0, \omega_0 \) and \(M_0 \) are replaced by \(\Omega_0 + \Omega_1 \tau, \omega_0 + \omega_1 \tau \) and \(M_0 + M_1 \tau + M_2 \tau^2 + M_3 \tau^3 \), respectively, and \(M_1 \) and \(M_2 \) by \(M_1 + 2M_2 \tau + 3M_3 \tau^2 \) and \(M_2 + 3M_3 \tau \). Coefficients of the mean-motion polynomial are obtained from \(n_j = (j + 1)M_{j+1} \) for \(j = 0, 1, 2 \) and 3.

\(\Omega_0 \) is decreased by \(3.506 \times 10^{-5}D \) where \(D \) is the number of days elapsed from 1950.0, to allow for equinox conversion.

The SDC long-periodic perturbations are computed from

\[
L_L = -\frac{K_3}{4} \left[\frac{3 + 5c}{1 + c} \right] e_0 \cos \omega_0
\]

and

\[
a_{yNL} = -\frac{K_3}{2},
\]

where \(c = \cos i_0 \)

and \(K_3 = J_3 \sin i_0 / J_2 a(1 - e_0^2) \).

\(M_0 \) is replaced by \(M_0 + L_L \), \(e_0 \) by \([c^2 + S^2]^{\frac{1}{2}} \) and \(\omega_0 \) by \(\tan^{-1}(S/C) \), where \(C = e_0 \cos \omega_0 \) and \(S = e_0 \sin \omega_0 + a_{yNL} \). \(M_0 \) is adjusted such that \(M_0 + \omega_0 \) remains constant.

The derived PROP elements are stored in the following positions of the array ELEMT: \(e_0, i_0, \omega_0, M_0 \) and \(n_0 \) make up the first column; \(M_0 \), in the fifth row, is followed by \(M_1, M_2 \) and \(M_3 \); \(n_0 \) in the sixth row is followed by \(n_1 \) and \(n_2 \). All other elements of ELEMT are set to zero.
SUBROUTINE SETPD

Summary
- The subroutine sets the initial, non-zero values of the partial derivatives \(\frac{\partial r}{\partial \sigma(r_0, v_0)} \) and \(\frac{d}{ds} \left(\frac{\partial r}{\partial (r_0, v_0)} \right) \).

Language
- 1900 Fortran.

Author
- M.D. Palmer (February 1973).

Subroutine statement
- SUBROUTINE SETPD.

Use of COMMON
- Certain arguments in the common block /CINTEG/ are used as follows:

Input argument
- TVEL
 - The initial value of dt/ds.

Output arguments
- PD(18)
 - Array holding the partial derivatives of position \(\frac{\partial r}{\partial (r_0, v_0)} \).
- PDVEL(18)
 - Array holding partial derivatives \(\frac{d}{ds} \left(\frac{\partial r}{\partial (r_0, v_0)} \right) \).

Source deck
- 8 cards (ICL code).

Local storage used
- 1 integer variable.

Subordinate subprograms
- None.

Explanation
- Before using DEQRSPT to integrate the 22 equations of motion, the initial non-zero values of two partial derivative matrices must be set as follows:

\[
\begin{bmatrix}
\frac{\partial x}{\partial r_0} & \frac{\partial x}{\partial v_0} & \frac{\partial y}{\partial r_0} & \frac{\partial y}{\partial v_0} & \frac{\partial z}{\partial r_0} & \frac{\partial z}{\partial v_0} \\
\frac{\partial x}{\partial x_0} & \frac{\partial y}{\partial x_0} & \frac{\partial z}{\partial x_0} \\
\frac{\partial y}{\partial x_0} & \frac{\partial y}{\partial y_0} & \frac{\partial z}{\partial y_0} \\
\frac{\partial z}{\partial x_0} & \frac{\partial z}{\partial y_0} & \frac{\partial z}{\partial z_0}
\end{bmatrix}
\]
\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}
\]

and

\[
\frac{d}{ds} \left[\frac{3r}{3(r_0 \cdot \nu_0)} \right] = \begin{bmatrix}
\text{PDVEL(1)} & \ldots & \text{PDVEL(6)} \\
\text{PDVEL(7)} & \ldots & \text{PDVEL(12)} \\
\text{PDVEL(13)} & \ldots & \text{PDVEL(18)}
\end{bmatrix}
\begin{bmatrix}
dt \\
ds
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{\partial x}{\partial x_0} & \frac{\partial y}{\partial x_0} & \frac{\partial z}{\partial x_0} & \frac{\partial x}{\partial y_0} & \frac{\partial y}{\partial y_0} & \frac{\partial z}{\partial y_0} \\
\frac{\partial x}{\partial y_0} & \frac{\partial y}{\partial y_0} & \frac{\partial z}{\partial y_0} & \frac{\partial x}{\partial z_0} & \frac{\partial y}{\partial z_0} & \frac{\partial z}{\partial z_0} \\
\frac{\partial x}{\partial z_0} & \frac{\partial y}{\partial z_0} & \frac{\partial z}{\partial z_0} & \frac{\partial x}{\partial \nu_0} & \frac{\partial y}{\partial \nu_0} & \frac{\partial z}{\partial \nu_0}
\end{bmatrix}
\begin{bmatrix}
dt \\
ds
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & \frac{dt}{ds} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{dt}{ds} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{dt}{ds}
\end{bmatrix}
\]

where \(s\) is the independent variable given initially by \(\frac{dt}{ds} = r_0^{3/2} \nu^{-1/2}\),
\(r_0 = (x_0, y_0, z_0)\) being the initial radius vector to the satellite and,
\(v_0 = (\dot{x}_0, \dot{y}_0, \dot{z}_0)\) the initial velocity of the satellite and \(\nu\) the earth's gravitational constant.
SUBROUTINE SHPAUX

Summary
- The subroutine calculates the short-periodic perturbations, due to the zonal harmonic J_2, in an earth satellite's orbit.

Language
- 1900 Fortran.

Author

Subroutine statement
- SUBROUTINE SHPAUX (ECC, SI, CI, OMEGA, V, SV, CV, U, FMANOM, F, P, POVERR, Q, TSP, EJ2, ERAD, EMU).

Input arguments
- ECC
 - Eccentricity, e.
- SI
 - $\sin i$, where i is the inclination.
- CI
 - $\cos i$.
- OMEGA
 - Argument of perigee, ω (rad).
- V
 - True anomaly, v (rad).
- SV
 - $\sin v$.
- CV
 - $\cos v$.
- U
 - Argument of latitude, u (rad).
- FMANOM
 - Fractional part of mean anomaly, M_f (rad).
- F
 - $\sin^2 i$.
- P
 - Semi-latus rectum, p (km).
- POVERR
 - p/r, where r is the satellite's radial distance (km).
- Q
 - $(1 - e^2)^{\frac{1}{2}}$.
- EJ2
 - Earth's second zonal harmonic, J_2.
- ERAD
 - Mean equatorial radius of the earth (km).
- EMU
 - Earth's gravitational constant, μ (km^3/s^2).

Output arguments
- TSP(6)
 - Array of short-periodic perturbations, (see explanation).

Use of common
- None.
Source deck — 30 cards including 3 comment cards (ICL code).

Local storage used — 14 real variables.

Subordinate subprograms — None.

Explanation — The subroutine is essentially the same as the subroutine SHOPER used in the program PROP. It computes the short-periodic perturbations required by the subroutine POSVEL. Input elements are assumed to be the mean elements of Merson, and the expressions for the short-periodic perturbations are:

\begin{align*}
di_s &= C \sin i \cos i, \\
d\Omega_s \sin i &= -K(v - M_f + e \sin v - S) \sin i \cos i, \\
du_s + d\Omega_s \cos i &= Kh\left[v - M_f + e \sin v + \frac{1}{2}ge \sin v (g \cos v)\right] \\
&\quad + \frac{1}{2}KF\left[i \sin 2u + e \sin (2u - v)\right], \\
dp_s/2p &= \left(\frac{h}{p}\right)^{\frac{1}{2}}K(hq + fc), \\
hr_s/p &= \left(\frac{1}{p}\right)^{\frac{1}{2}}K[h \sin v (-qe + g(p/r)^2) - f(p/r)^2 \sin 2u], \\
\end{align*}

where

\begin{align*}
K &= 1 \left(\frac{R}{p}\right)^2, \\
C &= \cos 2u + e \left[\cos (2u - v) + \frac{1}{2} \cos (2u + v)\right], \\
S &= \sin 2u + e \left[\sin (2u - v) + \frac{1}{2} \sin (2u + v)\right], \\
h &= 1 - f, \\
g &= e/(1 + q).
\end{align*}

The perturbations are stored, in the above order, in the array TSP.
SUBROUTINE SMPOS

Summary
- The subroutine computes the geocentric cartesian coordinates (km) of the sun and moon at a given time.

Language
- ASA Fortran (Standard Fortran 4).

Author

Subroutine statement
- SUBROUTINE SMPOS.

Dummy arguments
- None.

Use of COMMON
- Certain quantities in common block /CSMOON/ are used as follows:

Input arguments in /CSMOON/ -

MJDT Modified Julian day number of the required time.
TIMET Time, as a fraction of a day, since 0 hours on MJDT.

Output arguments in /CSMOON/ -

XS, YS, ZS The cartesian coordinates \((x_s, y_s, z_s) = r_s\) of the sun.
XM, YM, ZM The cartesian coordinates \((x_m, y_m, z_m) = r_m\) of the moon.

Input and output argument in /CSMOON/ -

TABLE(43) Working space.

Source deck - 27 cards including 1 comment card (ICL code).

Local storage used - 2 integer variables, 1 logical variable.

Subordinate subprograms - The subroutine UTD4, and the functions INFINI) and SCPROD.

Explanation
- The subroutine obtains the sun-moon coordinates by interpolation in a table of daily positions, with 2nd and 4th differences, using Everett's interpolation formula. The table is read from a disc file when required, using the subroutine UTD4. It is stored in an area called SUNMOONTABLE, the location of which is found using the function INFINDF. The area is contained in a disc file, which must have been opened, before entry to SMPOS, as peripheral unit ED7.

The table is stored as follows: firstly, the modified Julian day numbers of the first and last sets of coordinates (2 integers), then data for each midnight as follows (sets of 18 reals): \(r_s, r_m, \Delta^2 r_s, \Delta^4 r_s, \Delta^2 r_m, \Delta^4 r_m\).
If f_0, f_1 denote values of f at $t = 0$ and $t = 1$, Everett's interpolation formula to the 4th differences\(^2\) gives:

$$f(t) = D_0 + t(D_1 + (t - 1)(D_2 + (t + 1)(D_3 + (t - 2)(D_4 + (t + 2)D_5))))$$

where $D_{2n} = \delta^{2n}f_0/(2n)!$, $D_{2n+1} = \delta^{2n}(f_1 - f_0)/(2n + 1)!$.

The data was originally obtained on punched cards from JPL\(^3,4\) and has been transformed, before storing on the disc, into the SAO/PROP\(^6\) system of axes, using the subroutine AX1950. If the time input to SMPOS lies outside the range of data stored on the disc, a STOP77 statement will be obeyed.
FUNCTION SOLVIN

Summary
- Given a function and its derivative at two points, the function solves four problems involving cubic interpolation.

Language
- ASA Fortran (Standard Fortran 4).

Author

Function statement
- FUNCTION SOLVIN (MODE, M, F0, F1, FDO, FDI, F).

Input arguments
- MODE
 Number specifying problem to be solved, see explanation.
- H
 Difference, \(h \), between the arguments of the function (i.e. \(h = x_1 - x_0 \)).
- F0, F1
 Function values \(f_0 \) at \(x = x_0 \) and \(f_1 \) at \(x = x_1 \).
- FDO, FDI
 Derivative values \(f'_0 \), at \(x = x_0 \) and \(f'_1 \) at \(x = x_1 \).
- F
 Required function value or argument - see explanation.

Output function
- SOLVIN
 Solution to problem - see explanation.

Use of COMMON
- None.

Source deck
- 33 cards, including 5 comment cards (ICL code).

Local storage used
- 9 real variables.

Subordinate subprograms
- None.

Explanation
- A cubic polynomial \(P(x) = f_0 + f'_0 x + a_2 x^2 + a_3 x^3 \) is first fitted to the data giving \(a_2 = (3B - A)/h \) and \(a_3 = (A - 2B)/h^2 \) where
\[
A = f'_n - f_0
defining B = (f_1 - f_0)/h - f'_0.

Then,
1. if MODE = 1, Newton's method is used to find the value of \(x \) for which \(P(x) = F \),
2. if MODE = 2, Newton's method is used to find the value of \(x \) for which \(P'(x) = F \),
3. if MODE = 3, \(P(F) \) is evaluated, and
4. if MODE = 4, \(P'(F) \) is evaluated.
SUBROUTINE TRAMAT

Summary - The subroutine performs matrix transposition.

Language - 1900 Fortran.

Input arguments

- A
 - The matrix to be transposed.

- K
 - Number of rows in A.

- L
 - Number of columns in A.

Output arguments

- AT
 - The transposed matrix.

Use of COMMON - None.

Source deck - 7 cards (ICL code).

Local storage used - 2 integer variables.

Subordinate subprograms - None.

Explanation - The subroutine interchanges the rows and columns of a matrix A to form the transpose A^T, i.e.

$$A^T(i,j) = A(j,i)$$
SUBROUTINE TRINV

Summary
- The subroutine obtains polar coordinates from (two-dimensional) cartesian coordinates.

Language
- ASA Fortran (Standard Fortran 4).

Author

Subroutine statement
- SUBROUTINE TRINV (Y, X, R, TH).

Input arguments
- Y
 Cartesian y-coordinate (arbitrary).
- X
 Cartesian x-coordinate (arbitrary).

Output arguments
- R
 Polar r-coordinate.
- TH
 Polar θ-coordinate.

Use of COMMON
- None.

Source deck
- 8 cards, including 2 comment cards (ICL code).

Local storage used
- None.

Subordinate subprograms
- None.

Explanation
- The equations \(r \cos \theta = x \), and \(r \sin \theta = y \) are solved for \(r \) and \(\theta \), using the standard ATAN2 function to give \(\theta \) between \(-\pi\) and \(+\pi\). If \(x = y = 0 \) the ATAN2 function is not used and \(\theta \) is set to zero.

Remarks
- (1) The subroutine, if used twice, provides a convenient solution of the three-dimensional cartesian-to-polar transformation. Thus to solve the equations,

\[
\begin{align*}
 r \sin \theta \cos \phi &= x, \\
 r \sin \theta \sin \phi &= y, \\
 r \cos \theta &= z
\end{align*}
\]

for \(r, \theta \) and \(\phi \), the following two statements will suffice:

\[
\begin{align*}
 \text{CALL TRINV (Y, X, RSINTH, PHI)}, & \quad \text{giving } r \sin \theta \text{ and } \phi \\
 \text{CALL TRINV (RSINTH, Z, R, TH)}, & \quad \text{giving } r \text{ and } \theta
\end{align*}
\]
Moreover, this solution will give maximum accuracy for θ and ϕ, with both angles set in the correct quadrant.

(2) The actual input and output arguments must be distinct.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E.G. Orozco</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P.R. Peabody & J.F. Scott</td>
<td>JPL ephemeris tapes E9510, E9511 and E9512. JPL Technical Memorandum 33-167 (1964)</td>
</tr>
<tr>
<td></td>
<td>E.G. Orozco</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Y. Kozai</td>
<td>The motion of a close earth satellite. Astronom. J. 64, 367 (1959)</td>
</tr>
<tr>
<td></td>
<td>F. Nouel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J.L. Pieplu</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Title, etc.</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>C.A. Wagner</td>
<td>Private communication to R.H. Merson (1971)</td>
</tr>
<tr>
<td>12</td>
<td>G.E. Cook</td>
<td>The synchronous mission analysis program SYNMAP.</td>
</tr>
<tr>
<td></td>
<td>M.D. Palmer</td>
<td>RAE Technical Report (to be issued)</td>
</tr>
<tr>
<td>13</td>
<td>D. Brouwer</td>
<td>Methods of celestial mechanics.</td>
</tr>
<tr>
<td>14</td>
<td>S. Herrick</td>
<td>Astrodynamics Vol. II.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Van Nostrand Reinhold Company, London (1972)</td>
</tr>
<tr>
<td>16</td>
<td>L.G. Jacchia</td>
<td>Static diffusion models of the upper atmosphere with empirical temperature profiles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smithsonian Contributions to Astrophysics 8, 215 (1965)</td>
</tr>
<tr>
<td>17</td>
<td>R.H. Gooding</td>
<td>A PREP users' manual.</td>
</tr>
<tr>
<td>18</td>
<td>A.W. Odell</td>
<td>The SKYNET2 ephemeris program SKEPH2.</td>
</tr>
<tr>
<td>19</td>
<td>R.H. Merson</td>
<td>The dynamic model for PROP, a computer program for the refinement of the orbital parameters of an earth satellite.</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Interpolation and allied tables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EMSO</td>
</tr>
</tbody>
</table>

Reports quoted above are not necessarily available to members of the public or commercial organisations.
Descent by a vertical line indicates the call of a subordinate subprogram. Subprograms in a block are at the same level.

Fig. 1 Calling structure for POINT program units
Fig. 2

REIP
- Read data

SET constants
- PERFORM first integration step

DEQRSPT
- PERFORM next integration step

SOLVIN/INTPTB
- **YES**
 - Interpolate to find time of apse
 - Deduce osculating elements at apse
 - Write time of apse and elements to scratch disc file
- **NO**

INTPTA
- Does next interpolation lie between integration steps?
 - **YES**
 - Perform all interpolations between steps.
 - Calculate elements and look-angles
 - Write elements and look-angles to scratch disc file; POSVEL to lineprinter and permanent disc file
 - **NO**

STORE time of step and position and velocity components

PRINT
- **NO**
 - Has end of interpolation period been reached?
 - **NO**
 - **YES**
 - Recover information from scratch files and write it to lineprinter

Fig. 2 Simplified flow chart for POINT if all options exercised
Fig. 3

Sample lineprinter output

<table>
<thead>
<tr>
<th>WJD</th>
<th>X (km)</th>
<th>Y (km)</th>
<th>Z (km)</th>
<th>X (km/s)</th>
<th>Y (km/s)</th>
<th>Z (km/s)</th>
<th>V (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4344.5</td>
<td>26467.32</td>
<td>335.4</td>
<td>2085</td>
<td>219.4666</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
<tr>
<td>4344.5</td>
<td>27560.57</td>
<td>39.01</td>
<td>367.1</td>
<td>219.3782</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
</tbody>
</table>

Osculating Elements

<table>
<thead>
<tr>
<th>WJD</th>
<th>X (km)</th>
<th>Y (km)</th>
<th>Z (km)</th>
<th>X (km/s)</th>
<th>Y (km/s)</th>
<th>Z (km/s)</th>
<th>V (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4344.5</td>
<td>26467.32</td>
<td>335.4</td>
<td>2085</td>
<td>219.4666</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
<tr>
<td>4344.5</td>
<td>27560.57</td>
<td>39.01</td>
<td>367.1</td>
<td>219.3782</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
</tbody>
</table>

Look Angles for The MSL

<table>
<thead>
<tr>
<th>WJD</th>
<th>X (km)</th>
<th>Y (km)</th>
<th>Z (km)</th>
<th>X (km/s)</th>
<th>Y (km/s)</th>
<th>Z (km/s)</th>
<th>V (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4344.5</td>
<td>26467.32</td>
<td>335.4</td>
<td>2085</td>
<td>219.4666</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
<tr>
<td>4344.5</td>
<td>27560.57</td>
<td>39.01</td>
<td>367.1</td>
<td>219.3782</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
</tbody>
</table>

Look Angles for New Landers

<table>
<thead>
<tr>
<th>WJD</th>
<th>X (km)</th>
<th>Y (km)</th>
<th>Z (km)</th>
<th>X (km/s)</th>
<th>Y (km/s)</th>
<th>Z (km/s)</th>
<th>V (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4344.5</td>
<td>26467.32</td>
<td>335.4</td>
<td>2085</td>
<td>219.4666</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
<tr>
<td>4344.5</td>
<td>27560.57</td>
<td>39.01</td>
<td>367.1</td>
<td>219.3782</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
</tbody>
</table>

Look Angles for Upper Atmosphere

<table>
<thead>
<tr>
<th>WJD</th>
<th>X (km)</th>
<th>Y (km)</th>
<th>Z (km)</th>
<th>X (km/s)</th>
<th>Y (km/s)</th>
<th>Z (km/s)</th>
<th>V (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4344.5</td>
<td>26467.32</td>
<td>335.4</td>
<td>2085</td>
<td>219.4666</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
<tr>
<td>4344.5</td>
<td>27560.57</td>
<td>39.01</td>
<td>367.1</td>
<td>219.3782</td>
<td>172.3782</td>
<td>50.5802</td>
<td>2545.86</td>
</tr>
</tbody>
</table>

Elliptic Orbit Integration

Lunar Solar Perturbations Not Included

Solar Radiation Pressure Not Included

Drift Is

Integration Interval = 120.0 Mins

Time of First Interpolation from Epoch = 10.856842

Fig. 3

Fig. 3 Sample lineprinter output
43445 0.0 12.0 120.0 0.0
3 0.0 111 14.0
0.0 0.00461649 150.0 150.0
-4.6667 55.4439 0.0 175
13.6167 164.45 0.0 115
42.435 288.3667 0.0 NEW HAMPSHIRE
54.8167 257.9 0.0 VANSTENEGC
24467.522 0.73185226 27.5000 219.4461 172.5765 0.0000

Time card
}\{ Control cards
}\{ Station cards
Osculating elements

<table>
<thead>
<tr>
<th>Time card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control cards</td>
</tr>
<tr>
<td>Injection parameters</td>
</tr>
</tbody>
</table>

Covariance matrix of injection parameters

43445 0.0 12.0 120.0 0.0
1 1 1 1 1 1 1
0.0 0.000461649 150.0 150.0
4.84581286 0.0000 117.3029 65.3363 2.4204 386.0000
-1.05337579 + 0 1.82701771E -02 -2.43645356E -01 4.32425643E -01
-9.96475395E -01 1.19355366E -02 -3.73616311E -06 2.30450526E + 01
-2.34053026E + 01 -3.92134666E -03 2.92982897E -03 4.32425643E -01
-4.53485796E -01 -3.73616311E -06 1.06834810E -02
-6.76569615E -01 -6.08416942E -06 -6.20077460E -05 -1.05337579E + 04
-2.34053026E + 01 -6.76569615E -01 -6.76569615E -01
-1.27327905E + 07 -5.26264397E + 00 8.27599456E + 00
-8.27599456E + 00 -1.39536662E + 02 -6.08169420E -06
-5.26264397E + 00 2.40459017E -03 -3.83190211E -03
-9.96475395E -01 -2.34053026E + 01 -6.20077460E -05
-2.75985658E + 00 -3.83190211E -03 6.80415065E -03

Fig.4 Specimen data decks for POINT
REPORT DOCUMENTATION PAGE

Overall security classification of this page

UNLIMITED

As far as possible this page should contain only unclassified information. If it is necessary to enter classified information, the box above must be marked to indicate the classification, e.g. Restricted, Confidential or Secret.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RAE TR 76129</td>
<td>N/A</td>
<td>N/A</td>
<td>UNLIMITED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. DRIC Code for Originator</th>
<th>6. Originator (Corporate Author) Name and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>850100</td>
<td>Royal Aircraft Establishment, Farnborough, Hants, UK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. Sponsoring Agency’s Code</th>
<th>6a. Sponsoring Agency (Contract Authority) Name and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

7. Title

The elliptic orbit integration program POINT

<table>
<thead>
<tr>
<th>7a. (For Translations) Title in Foreign Language</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7b. (For Conference Papers) Title, Place and Date of Conference</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. Author 1. Surname, Initials</th>
<th>9a. Author 2</th>
<th>9b. Authors 3, 4 ...</th>
<th>10. Date</th>
<th>Pages</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook, G.E.</td>
<td>Palmer, M.D.</td>
<td></td>
<td>Sept.1976</td>
<td>93</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Distribution statement</th>
<th>(a) Controlled by</th>
<th>(b) Special limitations (if any)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Descriptors (Keywords)</th>
<th>(Descriptors marked * are selected from TEST)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. Abstract</th>
</tr>
</thead>
</table>

POINT is a computer program which evaluates the development of an earth satellite orbit by numerical integration. Provision is made for the inclusion of the following perturbations:

1. earth’s gravitational potential,
2. atmospheric drag, and
3. the gravitational attractions of the sun and moon.

A detailed description of the program is given, with full instructions for its use.