STATE IDENTIFICATION OF REACTION PRODUCTS. (U)
MAR 77 R N ZARE
AFOSR-TR-77-0215 NL
AF-AFOSR-2551-73
The final scientific report contains a chronological bibliography of 14 publications supported by this contract, as well as a brief summary emphasizing our attempts to make a prototype chemically-driven electronic transition laser.
FINAL SCIENTIFIC REPORT

Period: June 1, 1973—February 28, 1977

Contract: AFOSR-73-2551

Title: The State Identification of Reaction Products

Institution: The Trustees of Columbia University in the City of New York

Principal Investigator: Richard N. Zare
Richard N. Zare
Higgins Professor of Natural Science
Department of Chemistry
Columbia University
New York, NY 10027
(212) 280-2017

Acknowledgment: Research sponsored by Air Force Office of Scientific Research, AFSC, USAF

Distribution: Approved for public release; distribution unlimited
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed and is approved for public release IAW AFR 193-12 (7b). Distribution is unlimited.

A. D. BLOCK
Technical Information Officer
Availability Statement: Qualified requester may obtain additional copies from the Defense Documentation Center; all others should apply to the National Technical Information Service.

Condition of Reproduction: Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.
A. Chronological Bibliography of Publications Supported
By AFOSR-73-2551

* Reprints received by AFOSR.
† Preprint enclosed; no reprints available.
** Preprint received by AFOSR; no reprints available.
*** Preprints received by AFOSR; reprints will be forwarded on publication of article.
B. Summary

As stated in the introduction to the original proposal, the use of chemical energy to drive a laser system is attractive from both the standpoints of efficiency of operation and energy storage capabilities. Many research groups have been and continue to be engaged in the search for such a chemical laser. Unfortunately, no one has yet succeeded. Although there are many metal-oxidant reactions

\[M + XY \rightarrow MX + Y + \Delta E \]

that are highly exothermic, and thus candidates for laser driving systems, two obstacles must be overcome to produce a chemical laser: the metal has to be produced in the vapor phase at high densities; and the energy liberated from the reaction must be channeled to produce a population inversion in the lasing species.

The first problem was attacked here through the use of a laser blow-off technique\(^1,2\) to provide the required high metal atom fluxes. With this method, the reactions of Cu, Al, Ba, and Sn with the oxidizers \(N_2O\) and \(F_2\) were studied. In many instances, bright chemiluminescence was observed with an optical
multichannel analyzer, but all attempts to find laser emission were futile. It has since been found3 that the metal vapor produced by laser blow-off rapidly condenses to form minute suspended particles under conditions similar to those used in the above studies. Such particles destroy the Q of the laser cavity and would have prevented lasing even if a population inversion had been produced by the reactions. It is possible that there are conditions under which the formation of particles can be eliminated, but this problem severely limits the utility of this technique as a general diagnostic tool.

All of the reactions studied are sufficiently exoergic to produce the MX in an excited electronic state. However, studies of the various reactions under beam conditions show4 that, while some excited state products are formed, the bulk of the MX is found in the ground electronic state with much of the excess energy appearing as vibrational and rotational excitation. The energy that is deposited in the excited electronic states is also spread over many vibrational and rotational levels. Both of these problems may be overcome by transferring the energy stored in the MX, both vibrational and electronic, to an atomic system. Preliminary work has
been done on such a scheme using rare-earth metals, primarily Sm, as both the metal reactant to produce the energy and the atomic acceptors of the energy. Such a system holds promise since the rare-earths have low lying electronic states that can be populated by energy transfer and laser emission has been observed from these states.\(^5\) In an attempt to directly produce excited atoms, the reactions

\[\text{Zn, Cd + ICl} \rightarrow \text{I + ZnCl, CdCl}\]

have been studied. Angular momentum propensity rules indicate that the I atoms liberated should be predominately in the excited \(^2\)P\(_{\frac{3}{2}}\) state leading to the possibility of laser emission at 1.315\(\mu\). A conventional photodissociation I\(^*\) laser has been built to probe these reactions systems for the presence of I\(^(2\)P\(_{\frac{3}{2}}\)).

Since ground state reactants lead primarily to ground state products, work is currently under way to investigate the reactions of excited state species to see if the production of excited state products can be enhanced. One potential laser system has been investigated. A doubled, high power Nd\(^3+\): YAG laser was used to excite I\(_2\) to the B state which was then
reacted with F₂. Although laser emission from the I₂ as well as chemiluminescence from the IF was observed, no laser transitions in IF were found.

Although no chemically-driven laser emission has been found, several problems have been delineated and the direction of future effort indicated. A way must still be found to produce large metal atom concentrations. Certain possibilities, besides the attempt to eliminate particle formation in laser blow-off generation, include the use of exploding wires and the dissociation of organometallic compounds. Effort must also be expended in the study of energy transfer from high vibrational levels of metal diatomic molecules to metal atoms. The search for schemes of direct production of excited atoms by chemical reaction should also continue. And finally, there should be further investigation of the reactions of excited species.

The above has been written as a summary of our attempts to make a prototype chemical laser. However, during this grant period significant progress has been made on developing basic techniques for understanding reaction kinetics on a microscopic level. This is attested to by the papers published during this period.
References

3 R. C. Oldenborg, private communication.

5 P. Cahuzac, Le J. De Physique, 32, 499 (1971).