UNCLASSIFIED

VLF/LF REFLECTIVITY OF THE POLAR IONOSPHERE, 20 JULY-20 SEPTEMBER, ETC(U)

OCT 76 J E RASMUSSEN, J P TURTLE, R J MCLAINE

RADC-TR-76-327
VLF/LF Reflectivity of the Polar Ionosphere
20 July - 20 September 1975

JOHN E. RASMUSSEN
RALPH J. McLAIN, Capt, USAF
JOHN P. TURTLE
WAYNE I. KLEMETTI

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
GRIFFISS AIR FORCE BASE, NEW YORK 13441
This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

This technical report has been reviewed and approved for publication.

E.Q. Lewis
Approved: E.A. LEWIS, Chief
VLF/ULF Techniques Branch

Approved: Allen C. Schell, Acting Chief
Electromagnetic Sciences Division

FOR THE COMMANDER

John R. Kean
Plans Office
This report provides a summary of high latitude ionospheric reflectivity as observed by the USAF high resolution VLF/LF ionosounder operating in northern Greenland. Ionospheric reflectivity parameters, including reflection heights and coefficients, are presented as a function of time of day. VLF long path propagation measurements, along with magnetometer and riometer data, are presented as supplemental information.
Preface

The authors thank in particular Dr. Edward A. Lewis for valuable discussions on preparing this paper, Mr. Royce C. Kahler of Barkley & Dexter Labs for help with the equipment that made the measurements possible, and Mr. Jens Ostergaard of the Danish Meteorological Institute for the outstanding operation at Qanaq, Greenland.

This research effort was funded in part by the Defense Communication Agency under the Tri-Service Propagation Program.
<table>
<thead>
<tr>
<th></th>
<th>VLF/LF Reflectivity Data for the Polar Ionosphere, Day</th>
<th>Illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>DAY 229 (17 Aug) – DAY 235 (23 Aug) 1975</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>DAY 236 (24 Aug) – DAY 242 (30 Aug) 1975</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>DAY 243 (31 Aug) – DAY 249 (6 Sep) 1975</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>DAY 250 (7 Sep) – DAY 256 (13 Sep) 1975</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>DAY 257 (14 Sep) – DAY 263 (20 Sep) 1975</td>
<td>21</td>
</tr>
</tbody>
</table>
VLF/LF Reflectivity of the Polar Ionosphere
20 July — 20 September 1975

1. INTRODUCTION

This paper provides a summary of high latitude ionospheric reflectivity, as observed by the USAF's high resolution VLF/LF ionosounder operating in northern Greenland.1,2,3,4,5 As shown in Figure 1, the transmitter is located at Thule Air Base, Greenland (76° 33'N. Lat., 68° 40'W. Long.), and the receiving site is 106 km north at the Danish Meteorological Institute's Ionospheric Observatory in Qanaq, Greenland (77° 24'N. Lat., 69° 20'W. Long., Geomagnetic Lat. 89° 06'N.). The ionosounding transmissions consist of a series of extremely short

(Received for publication 26 October 1976)

(less than 150 μsec) VLF pulses, precisely controlled in time, and radiated from a 130 meter vertical antenna. At the receiving site, orthogonal loop antennas are used to separate the two polarization components of the ionospherically reflected skywave signal. One antenna, oriented in the plane of propagation, is used to sense the groundwave and the "parallel" component of the downcoming skywave. The second loop, nulled on the groundwave, senses the "perpendicular" skywave component. The signal from each of the antennas is digitally averaged to improve the signal-to-noise ratio of the individual received waveforms before they are recorded on magnetic tape. An example of the observed waveforms is given in Figure 2, where the parallel waveform (Figure 2a) consists of (1) a groundwave propagated pulse, (2) a quiet interval, followed by (3) the first-hop skywave signal. The perpendicular waveform is shown in Figure 2b.
Ionospheric reflection parameters are derived by computer (AFGL's CDC 6600) processing of the ground and ionospherically reflected waveforms with allowance made for factors such as ground conductivity (see Section 4) and antenna patterns.

Although the data are recorded about once per minute, for this paper the waveforms are averaged into 2-hr time blocks and the resulting information is presented in a weekly format (Figures 3 through 11) as described below.

2. OBSERVED WAVEFORMS

In part A of Figures 3 through 11 a set of averaged parallel and perpendicular waveforms is presented for the time block centered near local noon of the indicated day. Each of these waveforms is comprised of 256 digitally averaged points spaced 2 μsec apart. In part B of the figures, the groundwave Fourier amplitudes are shown as a function of frequency. Although the data presented in parts C through L of the figures are generally limited to frequencies in the first, or principal, lobe of the spectrum, information at higher frequencies can be used when sufficient signal-to-noise conditions exist. There is, however, a frequency range around each spectral null where insufficient signal exists for measurements. During the period covered by this report, the transmitted pulse waveform was changed to lower the frequency of the maximum spectral amplitude from about 17 kHz to 11 kHz.
3. REFLECTION HEIGHTS

The group mirror height (GMH) of reflection was obtained by determining the group delay of the skywave relative to the groundwave and attributing this time difference, by simple geometry (assuming a sharply bounded mirror-like ionosphere), to a difference in propagation distance. As discussed in Lewis et al., the group delay can be defined as the rate of change of phase with frequency. For the GMH data presented in this paper, a finite frequency difference of 1.0 kHz was used, and the corresponding phase difference as a function of frequency for the groundwave and both skywave signals was obtained by Fourier analysis of the respective pulses. The GMH calculations took into account ground conductivity \(10^{-3} \text{ mho/meter} \) is assumed, and the corrections of Wait and Howe were applied.

Group mirror heights are plotted as a function of frequency in parts C and D of Figures 3 through 11, as obtained from the parallel and perpendicular waveforms, respectively. The GMH's are also presented as a function of time-of-day for the average frequency of 16.5 kHz in figure parts E and I. As the frequency of maximum spectral amplitude was lowered for the period covered by this report, additional GMH's were also calculated at 10.5 kHz. These are shown in parts R and V. The GMH plots also include an average reflection height for reference purposes. Each point of the reference height is a weekly average, by time block, for the 7-day period indicated. Parts G and T give the average, by time block, for the daily parallel GMH data of parts E and R, and parts K and X give the corresponding perpendicular GMH averages from the daily data of parts I and V.

4. REFLECTION COEFFICIENTS

Assuming that the ionosphere acts as a "mirror" at the GMH, plane wave reflection coefficients were obtained by comparing the ratio of the skywave Fourier amplitude at a specific frequency to that of the groundwave, taking into account wave spreading, earth curvature, ground conductivity, path lengths, and antenna patterns including ground image effects.

The reflection coefficient \(|R|\) was obtained from analysis of the parallel skywave component and is plotted as a function of frequency in part C of Figures 3 through 11. The \(|R|\) coefficient for 16 kHz is plotted as a function of time-of-day in part F and \(|R|\) for 10 kHz appears in part S. For comparison, the average

coefficients for the indicated reference weeks are also plotted. From the perpendicular skywave pulse, the coefficient R_1 was obtained and appears as a function of frequency in part D. The 16 kHz R_1 is shown along with its reference in part J, while R_1 for 10 kHz appears in part W. Parts H and L present the average, by time block, of the daily 16 kHz $R_{1\parallel}$ and $R_{1\perp}$ data presented in parts F and J, respectively, while parts U and Y give the average of the 10 kHz $R_{1\parallel}$ and $R_{1\perp}$ data from parts S and W.

For certain coefficient data points, plotted as asterisks (*), the reflection coefficient appears without a corresponding GMH. For these particular data, only the skywave-groundwave ratios could be obtained, as the skywaves were too weak to provide reliable group delay information. The reflection coefficients were therefore estimated using a nominal GMH of 80 km in the calculations. These estimated coefficient values are included in the averages presented in parts H, L, Y and Y, but the assumed heights are not used in the GMH averages shown in parts G, K, T and X.

5. SUPPLEMENTARY INFORMATION

For purposes of comparison and interpretation, certain supplementary data are presented. Figure parts M and N give the received VLF phase and amplitude from the 17.8 kHz station NAA (transmitter location: Cutler, Maine), as observed at Thule AB over a 3500-km propagation path. Part O of the figures shows the magnitude of the horizontal component of the polar magnetic field observed with a three-axis fluxgate magnetometer, and part P presents 30-MHz riometer data, an indicator of D-region particle precipitation. These supplementary data were recorded at 30-sec intervals by AFGL's Geopole Observatory at Thule AB; the curves represent the average of 10-min periods. The solar zenith angle is given in part Q of Figures 3 through 11 for the indicated mid-week date.

6. ADDITIONAL COMMENTS

It is noted that a minor Polar Cap Absorption (PCA) event occurred on DAY 233. The 1 dB of signal decrease on the 30 MHz riometer plot of Figure 7p indicates increased ionospheric absorption due to enhanced energetic particle levels during the event. Although the ionosounder was off on DAY 233, it was back in operation on DAY 234 and the effects associated with the event can be seen to continue through DAY 235.
This paper is one of a series. Comments and suggestions for improving its usefulness should be addressed to the VLF/ULF Techniques Branch (ETEE), Electromagnetic Sciences Division, Deputy for Electronic Technology (RADC/ETEE), Hanscom AFB, Massachusetts 01731.
Figure 3. VLF/LF Reflectivity Data for the Polar Ionosphere

DAY 201 (20 July) – DAY 307 (28 July) 1975
Figure 4. VLF/LF Reflectivity Data for the Polar Ionosphere,
DAY 208 (27 July) – DAY 214 (2 Aug) 1975
Figure 5. VLF/LF Reflectivity Data for the Polar Ionosphere, DAY 215 (3 Aug) – DAY 221 (9 Aug) 1978
Figure 6. VLF/LF Reflectivity Data for the Polar Ionosphere,
Figure 7. VLF/LF Reflectivity Data for the Polar Ionosphere, DAY 229 (17 Aug) – DAY 235 (23 Aug) 1975
Figure 8: VI.SFFLF Reflectivity Data for the Polar Ionosphere.

DAY 238 (24 Aug) - DAY 242 (30 Aug) 1975
Figure 9. VLF/LF Reflectivity Data for the Polar Ionosphere, DAY 243 (31 Aug) – DAY 249 (7 Sep) 1975
Figure 10. VLF/LF Reflectivity Data for the Polar Ionosphere, DAY 250 (7 Sept) — DAY 251 (13 Sep) 1975
Figure 11. VLF/LF Reflectivity Data for the Polar Ionosphere.
DAY 263 (20 Sep) - DAY 257 (14 Sep) 1975
References

MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced development programs in command, control, and communications (C3) activities, and in the C3 areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.