ESTIMATION OF A MIXING DISTRIBUTION FUNCTION

J. R. Blum and V. Susarla

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

October 1976

(Received August 3, 1976)

Sponsored by
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park
North Carolina 27709

Health, Education and Welfare
Bethesda, Maryland 20014

National Institute of Health
Bethesda, Maryland 20014

National Science Foundation
Washington, D.C. 20550

Approved for public release
Distribution unlimited

University of Wisconsin—Milwaukee
Milwaukee, Wisconsin 53201
Technical Summary Report # 1690
October 1976

ABSTRACT

Let \(\mathcal{A} = \{ f(\cdot, 0) : 0 \in J \} \), \(J \) an interval, be a family of univariate probability densities (wrt Lebesgue measure) on an interval \(I \). First, a necessary and sufficient condition is proved for \(\mathcal{A} \) to be identifiable whenever \(\mathcal{A} \subseteq C_0(J) \), the class of continuous functions on \(J \) vanishing at \(\infty \). If \(f_G \) is a \(G \)-mixture of the densities in \(\mathcal{A} \) with \(G \) unknown, an estimator \(G_n \) based on \(f_G \) and \(\mathcal{B} = \{ f(x, \cdot) : x \in I \} \) is provided such that \(G_n \xrightarrow{w} G \) under certain conditions on \(\mathcal{A} \). If \(X_1, \ldots, X_n \) are iid random variables from \(f_G \), an estimator \(\hat{G}_n \) is provided such that \(G_n(X_1, \ldots, X_n, \cdot) \xrightarrow{w} G(\cdot) \) almost surely under certain conditions on \(\mathcal{A} \) and \(G \). Furthermore, it is shown that \(|f_G(x) - f_G(x)| \xrightarrow{a.s.} 0 \) and in \(L_2 \) with rates like \(O(n^{-c}) \) \((c > 0) \) under certain conditions on the density estimator \(\hat{f}_G(x) \) involved in the definition of \(\hat{G}_n \). The conditions of various theorems are verified in the case of location parameter and scale parameter families of densities.

AMS(MOS) Subject Classification - 60F05, 62099.

Key Words - Identifiability, weak convergence, mixing distribution, empirical Bayes.

Work Unit Number 4 - Probability, Statistics, and Combinatorics

Sponsored by;
1) The United States Army under Contract Number DAAG29-75-C-0024;
2) Grant from the Graduate School of the University of Wisconsin-Milwaukee;
3) HEW, NIH Grant 1-RO-1-GM 23129-01;
4) National Science Foundation Grant MCS76-05952.
1. Introduction and summary. Let f be a Borel measurable function from \mathbb{R}^2 to $(0, \infty)$ such that $\int_I i(x, \theta)dx = 1$ for each θ in J where I and J are intervals contained in $\mathbb{R} = (-\infty, \infty)$ and \mathcal{B} and \mathcal{G} be the collections of sections of f with the first coordinate (in I) and the second coordinate (in J) fixed respectively. For a probability distribution function G on J, let

$$f_G(x) = \int_J f(x, \theta)dG(\theta), \ x \ in \ I.$$

We provide an equivalent condition for the identifiability of G (for the definition of identifiability, see (A1)) in Section 2. In Section 3, we consider the problem of estimating G in terms of f_G and \mathcal{G}. To obtain an estimate G_n of G, we solve a system of equalities and inequalities and then show that G_n converges weakly to $\left(\begin{array}{c}w \rightarrow \end{array}\right) G$ under some conditions on \mathcal{G}. If G and G_n are unknown, but iid random variables X_1, \ldots, X_n, \ldots are observable (this is the standard empirical Bayes situation of Robbins [4] described in Section 4), then we construct (in Section 4)

Sponsored by:
1) The United States Army under Contract Number DAAG29-75-C-0024;
2) Grant from the Graduate School of the University of Wisconsin-Milwaukee;
3) HEW, NIH Grant 1-R0-1-GM 23129-01;
4) National Science Foundation Grant MCS76-05952.
estimates $\hat{G}_n(X_1, \ldots, X_n)$ which $\overset{w}{\rightarrow} G(\cdot)$ almost surely (a.s.) under some conditions on \mathcal{A}. It is then immediate that $\int \theta f(x, \theta) dG_n \rightarrow \int \theta f(x, \theta) dG(\theta)$ a.s. whenever $\theta f(x, \theta) \in C(J)$. Furthermore, it is shown that our method of construction of G_n provides rates for a.s. and L_2 convergences of $f_{\hat{G}_n}(x) - f_G(x)$ to zero for each x under some additional conditions on \mathcal{A}. In Section 5, all the above results are shown to hold for location and scale parameter families of Lebesgue densities under rather weak conditions.

The results of Section 3 are not only of mathematical interest, but also provide an intuitive basis for the results of Section 4. In Sections 4 and 5, we take $I = J = \mathbb{R}$ as other cases can be treated with obvious modifications of the method presented here. Throughout, G is assumed to be a distribution function with support in J. The estimator and its properties are compared with three other estimators for G in Section 6. In Section 4, we discuss the application of the main result of this paper to empirical Bayes estimation problems.

2. Identifiability. For the distribution function G in (1.1) to be estimable in terms of f_G and \mathcal{A}, it is obvious that the following condition should be satisfied.

$$f_{G}(x) = f_{H}(x) \text{ for all } x \text{ in } I \Rightarrow H - G = 0 .$$

This condition is called the Identifiability (of \mathcal{A}) condition. (For example, see Teicher [7].)
With $C_0(J)$ denoting the Banach space of continuous functions on the interval J which vanish at ∞ and normed by

\[(2.1) \quad \|g\| = \sup \{|g(y)| \mid y \text{ in } J\},\]

we obtain

Theorem 2.1. Let $\mathcal{B} \subseteq C_0(J)$. Then (Al) holds if and only if \mathcal{B} generates $C_0(J)$ in the supremum norm (2.1).

Proof. Let (Al) hold. Let B be the closed subspace generated by \mathcal{B}.

If $B \neq C_0(J)$, then there exists a g in $C_0(J) - B$ and a bounded linear functional Φ on $C_0(J)$ such that $\Phi(g) = 1$ and $\Phi(f^*) = 0$ for f^* in B.

Also, by the Riesz representation theorem, there exist non-decreasing non-negative functions K_1 and K_2 of bounded variations on J such that

\[\Phi(f) = \int_J f(y) \, d(K_1 - K_2)(y) \quad \text{for } f \text{ in } C_0(J).\]

Since $\Phi(f^*) = 0$ for f^* in B, it follows that \[\int_J f(x, \theta) \, dK_1(\theta) = \int_J f(x, \theta) \, dK_2(\theta) \quad \text{for all } x \text{ in } I \text{ which, by (Al), implies that } K_1 - K_2 \text{ is constant. But then, this implies that } \Phi(g) = \int_J g(y) \, d(K_1 - K_2)(y) = 0 \quad \text{which is a contradiction since } \Phi(g) = 1. \text{ Hence } \mathcal{B} \text{ generates } C_0(J).\]

Conversely, let \mathcal{B} generate $C_0(J)$ and (1.1) hold at G and H. We show that $G - H = 0$. By assumption

\[(2.2) \quad \int_J f(x, \theta) \, dG(\theta) = \int_J f(x, \theta) \, dH(\theta) \quad \text{for all } x \text{ in } I.\]

Since \mathcal{B} generates $C_0(J)$ in the supremum norm, (2.2) can be extended to
Since \(\Phi(g) = \int_J g(\theta) \, dG(\theta) \) is a bounded linear functional on \(C_0(J) \) whenever \(G \) is of bounded variation on \(J \), the uniqueness part of the Riesz representation theorem and (2.3) show that \(G = H \) constant. This completes the proof of the theorem since \(G \) and \(H \) are distribution functions on \(J \).

3. Construction of an estimator of \(G \) in (1.1). In this section, we define an estimator \(\hat{G}_n \) ((3.6)) of \(G \) in terms of \(\hat{f}_G \) and \(\hat{\theta} \). We consider in detail the case \(I = J = \mathbb{R} \) only and point out the required changes if \(I \) or (or and) \(J \) is an (are) interval(s). Throughout this section, the integration is over \((-\infty, \infty) \), and the limits are as \(n \to \infty \) unless otherwise stated.

For a fixed partition

\[
\begin{align*}
\theta_{n, -1} (-\infty) &< \theta_{n, 0} (-n) < \theta_{n, 1} < \ldots \\
\theta_{n, m(n)} &= \theta_{n, m(n)+1} = \infty
\end{align*}
\]

(3.1)

with

\[
\delta_n = \max \{ \theta_{n, j} - \theta_{n, j-1} \mid j = 1, \ldots, m(n) \} \to 0
\]

(3.2)

and for \(x \) in \(\mathbb{R} \), and for \(l = -1, \ldots, m(n) \), let

\[
M_{n, l}(x) = \sup \{ f(x, \theta) \mid \theta_{n, l} \leq \theta \leq \theta_{n, l+1} \}
\]

(3.3)
and

\[(3.4) \quad m_n, \ell(x) = \inf \{ f(x, 0) \mid \theta_n, \ell \leq 0 \leq \theta_n, \ell+1 \} \]

Let \(p_n = \{p_{n, -1}, \ldots, p_{n, m(n)}\} \) be such that

\[
\begin{align*}
(i) \quad & p_{n, \ell} \geq 0 \quad \text{and} \quad \sum_{\ell=-1}^{m(n)} p_{n, \ell} = 1, \\
(ii) \quad & \sum_{\ell=-1}^{m(n)} p_{n, \ell} M_{n, \ell}(x) \geq f_{G}(x) \quad \text{and} \\
(iii) \quad & \sum_{\ell=-1}^{m(n)} p_{n, \ell} m_{n, \ell}(x) \leq f_{G}(x)
\end{align*}
\]

where (ii) and (iii) hold for \(x \) in \(\{\theta_n, 0, \ldots, \theta_n, m(n)\} \).

Let \(P_n = \{p_n \mid p_n \text{ is a solution of (3.5)}\} \). That \(P_n \) is not empty follows since one such solution is given by \(p_{n, \ell} = \int_{\theta_n, \ell}^{\theta_n, \ell+1} dG \) for \(\ell = -1, \ldots, m(n) \).

For any \(p_n \) in \(P_n \), define

\[
(3.6) \quad G_n(y) = \begin{cases}
0 & y < \theta_n, 0 \\
0 + p_{n, -1} + p_{n, 0} & \theta_n, 0 \leq y < \theta_n, 1 \\
\sum_{\ell=-1}^{l} p_{n, \ell} & \theta_n, l \leq y < \theta_n, l+1, \ell = 1, \ldots, m(n)
\end{cases}
\]

Clearly \(G_n \) is a discrete distribution function on \(\mathbb{R} \).

Note. The solution of (3.5) is a simple linear programming problem and there are efficient computational algorithms available for the solution of such inequalities. (3.5) can be solved theoretically for \(p_n \) without the assumption that \(x \) is in \(\{\theta_n, 0, \ldots, \theta_n, m(n)\} \), but such a solution might be difficult to obtain.
The result leading to $G_n \xrightarrow{w} G$ is

Theorem 3.1. Let $f(x, \cdot) \in C_0(R)$,

(A2) $\lim_{x' \to x} \sup_{0} |f(x, \theta) - f(x', 0)| = 0$, and

(A3) for each $\varepsilon > 0 \exists \delta, \delta' > 0 \exists |x' - x| < \delta$ and

$$|\theta - \theta'| < \delta \Rightarrow |f(x', \theta') - f(x', 0)| < \varepsilon.$$

Then

$$\int f(x, \theta) dG_n(\theta) = \int f(x, \theta) dG(\theta) = f_G(x).$$

Proof. Without loss of generality, let $|x| < n$. By the choice of the partition (3.1) and (3.2), there exists a sequence $\{\theta_n, j(n)\}$ such that $\theta_n, j(n) \to x$. We also observe that $f(x, \cdot) \in C_0(R)$ and (A2) imply that (3.7) for each $\varepsilon > 0 \exists \delta, M > 0 \exists |x' - x| \leq \delta$, $|\theta| > M \Rightarrow f(x', \theta) < \varepsilon$.

By the definitions of p_n and G_n given in (3.4) and (3.6) respectively,

$$\sum_{k=1}^{m(n)} p_n, k \cdot m_n, k (\theta_n, j(n)) \leq \int f(\theta_n, j(n), \theta) dG_n(\theta) \leq \sum_{k=1}^{m(n)} p_n, k M_n, k (\theta_n, j(n)).$$

Now observe that $0 \leq D_n$ (= the difference between the extreme sides of (3.8))

$$\leq \sum_{k=1}^{m(n)} p_n, k \cdot \{M_n, k (\theta_n, j(n)) - m_n, k (\theta_n, j(n))\}$$

$$\leq \sup\{f(x', \theta) - f(x', \theta') \mid |x - x'| \leq \delta, |\theta - \theta'| \leq \delta\}$$

$$+ \sup\{f(x', \theta) \mid |x' - x| \leq \delta, |\theta| \geq n\}.$$

-6-
by the choice of the partition \(\{ \theta_{n}^{1}, \ldots, \theta_{n}^{m(n)+1} \} \) and the sequence \(\{ \theta_{n}, j(n) \} \). This last expression (and hence \(D_{n} \)) \(\to 0 \) due to (A3) and (3.7). Hence, since the lhs of (3.8) \(\leq \int f(\theta_{n}, j(n)) \, dG_{n}^{\theta} \leq \) rhs of (3.8) due to (ii) and (iii) of (3.5),

\[
(3.9) \quad \int f(\theta_{n}, j(n)) \, dG_{n}^{\theta} \to 0.
\]

But \(f_{G_{n}}^{\theta}(\theta_{n}, j(n)) \to f_{G}(x) \) by (A2) since \(\theta_{n}, j(n) \to x \). For the same reason,

\[
\int f(\theta_{n}, j(n)) \, dG_{n}^{\theta} \to \int f(x) \, dG(x) \to 0.
\]

This completes the proof in view of (3.9).

Corollary 3.1. Let \(\sigma \subset C_{0}(R) \), (A1); (A2) and (A3) hold for each \(x \) in \(R \). Then \(G_{n} \xrightarrow{w} G \). If, in addition, \(\sigma(x, \theta) \in C(R) \), then

\[
\int \sigma(x, \theta) \, dG_{n}(\theta) \to \int \sigma(x, \theta) \, dG(\theta).
\]

Proof. By Theorem 3.1,

\[
(3.10) \quad \int f(x) \, dG_{n}(\theta) \to \int f(x) \, dG(\theta) \quad \text{for each } x \text{ in } R.
\]

Since \(\sigma \subset C_{0}(R) \) and (A1) holds, \(\sigma \) generates \(C_{0}(R) \) in the supremum norm (2.1) by Theorem 2.1. Therefore, (3.10) can be extended to

\[
\int g(\theta) \, dG_{n}(\theta) \to \int g(\theta) \, dG(\theta) \quad \text{for each } g \text{ in } C_{0}(R) \text{ which is equivalent to the first result. The second result is a consequence of the first result since}
\]

\(\sigma(x, \theta) \in C(R) \).

Remark 3.1. If \(\bar{I} = [a, b] \) and \(\bar{I} = [c, d] \) with \(-\infty < a, b, c, \) and \(d < \infty \),

then take \(\theta_{n, \infty} = a < \theta_{n}, 0 < \ldots < \theta_{n}, m(n) < \theta_{n}, m(n) + 1 = b \) with \(\delta_{n} = \max\{ \theta_{n, j - \delta_{n}}, \theta_{n, j} - \theta_{n, j-1} \mid j = 0, 1, \ldots, m(n)+1 \} \to 0 \) and solve (3.5) at
the nth stage when \(x \) is in \(\{x_1, x_2, \ldots, x_{m(n)+1}\} \) where \(\{x_1, x_2, \ldots, x_{m(n)+1}\} \) is dense in \(I \).

4. Estimation of \(G \) when \(f \) is unknown. In this section, assume that the distribution function \(G \) and \(f \) are unknown, \(I = J = R \) and that \(X_1, \ldots, X_n \) are iid random variables with common density \(f \). We exhibit \(\hat{G}_n(\cdot) = \hat{G}_n(X_1, \ldots, X_n, \cdot) \) such that \(\hat{G}_n \xrightarrow{w} G \) almost surely (a.s.). An application of and motivation for the results of this section is given in the lengthy Remark 4.2.

Let \(\hat{f}_G(x) = \hat{f}_G(X_1, \ldots, X_n, x) \) be an estimator of \(f_G(x) \) such that

(A4) \[\| \hat{f}_n(\cdot) - f_G(\cdot) \| \to 0 \text{ a.s.} \]

where \(\| \| \) denotes the sup norm. For each fixed \(n \), let \(\hat{P}_n \) be the class of solutions obtained for (3.5) when \(f \) in (ii) and (iii) is replaced by \(\hat{f}_G - \epsilon \) and \(\hat{f}_G + \epsilon \) respectively where \(\epsilon(=\epsilon_n) \) is the smallest positive number for which the class \(\hat{P}_n \) is not empty. This method of choosing \(\hat{P}_n \) does not require \(\epsilon \) to be known in advance, \(\hat{P}_n \) is well-defined for each \(n \), and the method involves a linear programming problem.

Whenever the sample sequence is in the a.s. event \(A \) guaranteed to exist by (A4), the \(\epsilon(=\epsilon_n) \) corresponding to that sample sequence at stage \(n \) converges to zero for the following reason. Let \(\epsilon_n^* = 2 \| \hat{f}_G(x_1, \ldots, x_n, \cdot) - f_G(\cdot) \| \). Then \(\epsilon_n^* \to 0 \) by assumption. Moreover, \(\hat{P}_n \) is not empty for large \(n \) since \(\| \hat{f}_G(x_1, \ldots, x_n, \cdot) - f_G(\cdot) \| < \epsilon_n^* \) implies
that \(\hat{p}_n = \{ \hat{p}_{n,-1}, \ldots, \hat{p}_{n,m(n)} \} \), with \(\hat{p}_{n,f} = \int_{\theta}^{\theta_{n,f+1}} dG \) for \(f = -1, \ldots, m(n) \),

is a solution belonging to \(\hat{p}_n \). Since \(\epsilon(= \epsilon_n) < \epsilon^*_n \), \(\epsilon \to 0 \). Define

\[\hat{G}_n(\cdot) = G_n(x_1, \ldots, X_n, \cdot) \]

(4.1) \(\hat{G}_n(y) = G_n(y) \) of (3.6) with \(p_{n,f} \) replaced by \(\hat{p}_{n,f} \) where \(\hat{p}_n = \{ \hat{p}_{n,-1}, \ldots, \hat{p}_{n,m(n)} \} \) is in \(\hat{p}_n \).

With the above notation, we obtain the following two theorems. The first theorem is an analogue of Theorem 3.1 for \(\hat{G}_n \). The second theorem provides rates of convergence for \(f_{\hat{G}_n}(x) - f_G(x) \to 0 \) a.s. and \(- \to 0 \) in \(L^2 \).

Theorem 4.1. Let (A1) and (A4) and for each \(x \) in \(R \), the conditions of Theorem 3.1 holds. Then \(\hat{G}_n \to G \) a.s. If, in addition, \(\theta f(x, \theta) \in C(R) \), then \(\int \theta f(x, \theta) d\hat{G}_n(\theta) \to \int \theta f(x, \theta) dG(\theta) \) a.s.

Proof. Let the sample sequence \(\{x_1, \ldots, x_{n}, \ldots\} \) be a fixed point in the a.s. event \(A \) guaranteed to exist by (A4). We show that \(\hat{G}_n(x_1, \ldots, x_{n}, \cdot) \to G(\cdot) \).

Unless otherwise stated, let \(x \) be fixed. Without loss of generality, let \(n > |x| \) and let \(\epsilon_n \) be as in the discussion preceding (4.1) and let

\[\epsilon^*_n = \| f_{\hat{G}_n}(x_1, \ldots, x_{n}, \cdot) - f_G(\cdot) \| . \]

As in the proof of Theorem 3.1, let \(\theta_{n,j(n)} \to x \). By the construction of \(\hat{p}_n \) and \(G_n \),

\[m(n) \sum_{f=-1}^{\theta_{n,j(n)}} \hat{p}_{n,f} m_n f(\theta_{n,j(n)}) \leq \int f(\theta_{n,j(n)}, \theta) d\hat{G}_n(\theta) = \]

\[f_{\hat{G}_n}(\theta_{n,j(n)}) \leq \sum_{f=-1}^{m(n)} \hat{p}_{n,f} \theta_{n,j(n)} \cdot \]

-9-
The difference between the extreme sides of (4.2) goes to zero due to
(A2) and (A3) as in the proof of Theorem 3.1. Also, by the construction
preceding (4.1), and the assumption on \hat{f}_G, the lhs of (4.2)
\[\geq \hat{f}_G \left(\frac{\theta}{n}, j(n) \right) - \varepsilon_n \geq \hat{f}_G \left(\frac{\theta}{n}, j(n) \right) - \varepsilon_n - \varepsilon_n^*\]
and the rhs of (4.2)
\[\leq \hat{f}_G \left(\frac{\theta}{n}, j(n) \right) + \varepsilon_n + \varepsilon_n^*\]
for large n. Now recall that $0 \leq \varepsilon_n \leq \varepsilon_n^* \to 0$.
Hence
\[\int \hat{f}(\theta, j(n)) \, d\hat{G}(\theta) \to \lim \hat{f}_G \left(\frac{\theta}{n}, j(n) \right) = f_G(x)\]
since (A2) implies that f_G is continuous at x and $\theta, j(n) \to x$. For the same reasons,
\[\int \hat{f}(\theta, j(n)) \, d\hat{G}(\theta) \to \int f(x, \theta) \, d\hat{G}(\theta) \to 0\].
Therefore,
\[\int \hat{f}(\theta, j(n)) \, d\hat{G}(\theta) = \int f(x, \theta) \, dG(\theta)\]
for all x in \mathbb{R}.

Now the conditions $B \subset C_0(\mathbb{R})$ and (A1) imply (as in the proofs of
Theorem 3.1 and Corollary 3.1) that (4.3) can be extended to
\[\int g(\theta) \, d\hat{G}(\theta) \to \int g(\theta) \, dG(\theta)\]
for all g in $C_0(\mathbb{R})$ which is equivalent to $\hat{G}_n(x_1, \ldots, x_n, \ldots) \overset{w}{\to} G(\cdot)$. Since \{x_1, \ldots, x_n, \ldots\} is an arbitrary point in A
with $P(A) = 1$, the proof of the first part of the theorem is complete. The
second part follows from the first part since $\theta f(x, \theta) \in C(\mathbb{R})$.

One advantage of our method of construction of \hat{G}_n is that the rate
results of \hat{f}_G can be used to obtain the corresponding rate results for
f_G as the following theorem shows. Recall that δ_n is defined by (3.2).

Theorem 4.2. Let the conditions of Theorem 4.1 hold and let (A4) hold
with rate $O(\alpha_n)$ with $\alpha_n \to 0$. If

\[\sup_{|x' - x| < \delta_n} \sup_{\theta} \{|f(x, \theta) - f(x', \theta)|\} < \gamma_n\]

-10-
with $\gamma_n \downarrow 0$ as $\delta_n \downarrow 0$, then $\left[\max \{ \alpha_n, \gamma_n \} \right]^{-1} \left| \hat{f}_{G_n} (x) - f_G(x) \right| = 0(1)$ a.s. (a.s. set is independent of x, but $0(1)$ could depend on x).

Additionally, if

$$\sup \{ E(\hat{f}_{G_n}(x') - f_G(x))^2 \| x' - x \| \} = 0(1),$$

then $\left[\max \{ \sigma_n^2, \beta_n^2, \gamma_n^2 \} \right]^{-1} E(\left(f_{\hat{G}_n}(x) - f_G(x) \right)^2) = 0(1)$. (Again, $0(1)$ could depend on x.)

Note. (A5) is actually (A2) with a rate of convergence property.

Proof. Let $\{ \theta_n, j(n) \}$ be such that $\| x - \theta_n, j(n) \| < \delta_n$. By Theorem 4.1, $\hat{G}_n \Rightarrow G$ a.s. The results now follow from the following set of inequalities:

$$\left| \hat{f}_{G_n}(x) - f_G(x) \right| \leq \left| \hat{f}_{G_n}(\theta_n, j(n)) - f_G(\theta_n, j(n)) \right| +$$

$$+ \left| \hat{f}_{G_n}(x) - \hat{f}_{G_n}(\theta_n, j(n)) \right| + \left| f_G(x) - f_G(\theta_n, j(n)) \right|$$

$$\leq \left| \hat{f}_{G_n}(\theta_n, j(n)) - f_G(\theta_n, j(n)) \right| + 2\gamma_n$$

where the second inequality follows from (A5). Now observe that

$$\left| \hat{f}_{G_n}(\theta_n, j(n)) - f_G(\theta_n, j(n)) \right| \leq \left| \hat{f}_{G_n}(\theta_n, j(n)) - \hat{f}_{G_n}(\theta_n, j(n)) \right|$$

$$+ \left| \hat{f}_{G_n}(\theta_n, j(n)) - f_G(\theta_n, j(n)) \right| \leq \epsilon_n + \left| \hat{f}_{G_n}(\theta_n, j(n)) - f_G(\theta_n, j(n)) \right|$$

$$\left| \hat{f}_{G_n}(\theta_n, j(n)) - f_G(\theta_n, j(n)) \right| \leq \epsilon_n + \left| \hat{f}_{G_n}(\theta_n, j(n)) - f_G(\theta_n, j(n)) \right|$$

-12-
where the last inequality follows from the construction of \hat{G}_n (for example, see the argument following (4.2)). Now the first result follows from (4.4), (4.5) and (A4) while the second result follows from (4.4), (4.5) and (A6).

Remark 4.1. If I and/or J are finite intervals, then apply the modifications suggested in Remark 3.1.

Remark 4.2. Here, we discuss an application of Theorem 4.1 to the standard empirical Bayes decision problem of Robbins [4]. In an empirical Bayes decision problem, there is a sequence of iid vectors $\{(\theta_n, X_n)\}$ where $\theta_n \sim G$, an unknown distribution and given $\theta_n = \theta$, $X_n \sim f(\cdot, \theta_\theta)$ ($\in \mathcal{G}$). X_n is observable while θ_n is not. The empirical Bayes problem involves exhibiting $\{t_n(X_1, \ldots, X_n)\}$ such that the Bayes risk of using t_n in deciding about θ_n less the minimum Bayes risk of deciding (using X_n) about θ_n converges to zero, hopefully with a rate. Robbins [4] named such rules as asymptotically optimal empirical Bayes rules (a.o.e.B).

In this situation, one can use Theorem 4.1 as follows: Use X_1, \ldots, X_n to estimate G by \hat{G}_n as in Theorem 4.2. Then take $t_{n+1} = t_n(X_1, \ldots, X_n)$ as the Bayes rule of deciding (using X_{n+1}) about θ_{n+1} when the prior distribution is $\lambda_n \Phi + (1-\lambda_n)\hat{G}_n$ where Φ is the standard normal distribution function and $0 < \lambda_n < 1$ as $n \to \infty$. Such a rule $\{t_n\}$ cannot only be shown to be a.o.e.B., but also componentwise admissible under fairly general conditions on \mathcal{G}, G and the loss function involved in the definition of the Bayes risk. For example in the problem of empirical
Bayes Squared error loss estimation of θ, the above method and the dominated convergence theorem provide a.o.e.B. estimators which are component admissible (with θ restricted to $[a,b]$) provided G is in the class of all distributions with support in $[a,b]$, $-\infty < a < b < \infty$.

The compactness of the support of G is not an unrealistic assumption. If the prior distribution does not have a compact support, the asymptotic optimality of the above procedure can be obtained by appealing to an unpublished lemma of Le Cam and Scheffe's theorem. All these details, which are too long, will appear elsewhere. Before closing, we note that one has to use both parts of Theorem 4.1 namely, the convergence of $f_{G_n}^\hat{\theta}$ to f_G and that of $\int \theta f(\cdot, \theta) \, d\hat{G}_n$ to $\int \theta f(\cdot, \theta) \, dG$ to obtain the above empirical Bayes results.

To obtain rate of convergence results in the above empirical Bayes estimation problem, we make the following change. Instead of solving the equations as described in the paragraph preceding (4.1), solve the equations (3.5) with f_G in (ii) and (iii) replaced by $\hat{f}_G - \eta$ and $\hat{f}_G + \eta$ respectively along with the following equations:

$$\sum_{l=-1}^{m(n)} p_{n,l} \sup \{ \theta f(x, \theta) \mid \theta_n, l < \theta < \theta_n, l+1 \} > \hat{h}_G(x) - \eta$$

$$\sum_{l=-1}^{m(n)} p_{n,l} \inf \{ \theta f(x, \theta) \mid \theta_n, l < \theta < \theta_n, l+1 \} < \hat{h}_G(x) + \eta$$

where $\hat{h}_G(\cdot)$ is an estimator of $h_G(\cdot) = \int \theta f(\cdot, \theta) \, dG$ and η is the smallest positive number for which the above five equations (i) through (v) can be solved simultaneously. Such a solution, as in Theorem 4.2, will lead to
simultaneous rates for the mean square convergences of \hat{f}_G and \hat{h}_G to f_G and h_G respectively. In turn, these mean square convergences results can be applied to obtain rates in the above empirical Bayes estimation problem along with componentwise admissibility since the function to be estimated is simply $h_G(\cdot)/f_G(\cdot)$ based on X_1, \ldots, X_n. This method of obtaining componentwise admissible procedures has been used in a nonparametric context in Susarla and Phadia [6].

5. Examples. We consider two examples, one involving a location parameter family of densities on $I = \mathbb{R} (-\infty, \infty)$ and the other involving a scale parameter family of densities on $I = [0, \infty)$. All densities are wrt Lebesgue measure on the real line or on $[0, \infty)$.

To consider the location parameter case, assume that

(5.1) h is a continuous density with $h(x) \to 0$ as $|x| \to \infty$.

If

(5.2) $f(x, \theta) = h(x - \theta), \quad -\infty < \theta, \ x < \infty$,

then we have

Theorem 5.1. If f is defined via (5.2) and satisfies (Al), then G_n of

(3.6) $\xrightarrow{w} G$. If, in addition,

(5.3) $\sup \{|h'(t)| \mid t \in \mathbb{R}\} < \infty$

(5.4) $\hat{f}_G(x) = (na_n)^{-1} \sum_{j=1}^{n} k((x - X_j)/a_n)$

-14-
where X_1, \ldots, X_n are iid $f_G(x) = \int h(x - 0) dG(0)$, k is the standard normal density and $a_n^4 = n^{-1}$, then \hat{G}_n of (4.1) $\xrightarrow{w} G$ a.s. provided ε_n of (A4) $= n^{-c}$ with $0 < 4c < 1$. If $\delta_n = 0(n^{-\gamma})$ with $\gamma > 1$, then
\[
|f_{\hat{G}_n}(x) - f_G(x)| = 0(n^{-c}) \text{ a.s. Moreover, } E[(f_{\hat{G}_n}(x) - f_G(x))^2] = 0(n^{-\min\{2c, 1-2c\}}).
\]

Proof. The first part of the theorem follows from Corollary 3.1 upon observing that (5.1) implies the conditions (A2) and (A3) and that $\mathcal{G} \subseteq C_0(R)$.

For the second result, observe that (5.1) and (5.3), respectively, imply that f_G and f'_G are bounded. Therefore Corollary 2.6 with $r = 0$ of Schuster [5] obtains that
\[
n^c \| \hat{f}_G - f_G \| \to 0 \text{ a.s.}
\]
where $\| \|$ stands for the supremum norm and $0 < 4c < 1$. Thus (A4) also holds with $\varepsilon_n = n^{-c}$. Now Theorem 4.1 obtains the result $\hat{G}_n \xrightarrow{w} G$ a.s.

The third part of the theorem follows since
\[
\sup_{|x' - x| < \delta_n} \sup_{\theta} \{ |f(x, \theta) - f(x', \theta)| \} < \delta_n \|h'\|
\]
implying (A5) with $\gamma_n = \delta_n = n^{-\gamma}$. To obtain the L_2 convergence result, we verify (A6) with $\beta_n^2 = n^{-\min\{2c, 1-2c\}}$ as follows:

\[
(5.5) \quad E[(\hat{f}_{G}(x') - f_{G}(x'))^2] = \text{var}(\hat{f}_{G}(x')) + (E[\hat{f}_{G}(x')] - f_{G}(x'))^2.
\]

By the definition of \hat{f}_G and Lemma 2.3 of Schuster [5], $|E[\hat{f}_G(x')] - f_{G}(x')| \leq c_1 n$ for some constant c_1, and since k is bounded by unity.
and since X_1, \ldots, X_n are iid, $\text{var}(\hat{f}_G(x')) \leq (n^2\alpha_n^{-1})^{-1}$. Hence, since $a_n = n^{-c}$, (5.5) $= 0(n^{-\min\{2c,1-2c\}})$. This verifies (A6) since $0 < 4c < 1$
and so the last result follows.

For considering the scale parameter case, assume that h is a continuous density on $[0, \infty)$ with

\[
\begin{align*}
&\text{(i)} \quad \sup \{y h(y) : y \geq n\} \to 0, \quad \sup \{|h'(y)| : y \geq 0\} < \infty \\
&\text{(ii)} \quad \sup \{y h'(y) : y \geq 0\} < \infty \quad \text{and} \\
&\text{(iii)} \quad \sup \{y^2 |h'(y)| : y \geq 0\} < \infty
\end{align*}
\]

If

\[
f(x, \theta) = \theta h(x \theta) \quad \text{for} \quad x, \theta > 0,
\]
then we have the following theorem whose proof is omitted since it is similar to that of Theorem 5.1.

Theorem 5.2. If f is defined via (5.7) and satisfies (A1), then G_n of (3.6) $\xrightarrow{w} G$. If, in addition,

\[
\int \theta^2 \text{d}G(\theta) < \infty
\]
and \hat{G} is defined by (5.4) where X_j are iid $f_G(\int_0^\infty \theta h(x \theta) \text{d}G(\theta))$, then \hat{G} of (4.1) $\xrightarrow{w} G$ a.s. provided ε_n of (A5) $= n^{-c}$ with $0 < 4c < 1$.

If $\varepsilon_n = 0(n^{-\gamma})$ with $\gamma > 1$ then $|f_{\hat{G}_n}(x) - f_{G_n}(x)| = 0(n^{-c})$ a.s. Moreover $E[(f_{\hat{G}_n}(x) - f_{G_n}(x))^2] = O(n^{-\min\{2c,1-2c\}})$.

Remark 5.1. Theorem 5.1 includes the family of normal densities indexed by the mean and with known variance while Theorem 5.2 includes the family
of scale parameter exponential distributions with the second moment of the mixing distribution finite.

Remark 5.2. The results of this paper can be extended when both the arguments x and θ are vectors and can be applied to mixtures of discrete probability distributions with appropriate changes. It is well-known that the family of binomial distributions $\{B(n, p) \mid 0 < p < 1\}$ is not identifiable. That this is the case can be readily seen from Theorem 2.1 since the class of polynomials of degree at most n does not generate $C_0[0, 1]$.

6. Some other estimators and comparison with our estimator. We briefly describe three methods of estimation of G and compare their results with those presented here. In the method by Deely and Kruse [2], the finite interval Λ (on which G is assumed to have support) is partitioned by the points $\lambda_{n'} \ldots, \lambda_{nn}$ so that there is a sequence $\{\mathfrak{I}_n\}$ of classes of distributions such that the support of each distribution in \mathfrak{I}_n is in $\{\lambda_{n'}, \ldots, \lambda_{nn}\}$ and for every G with support in Λ, there exists a sequence $\{G_n\}$ with G_n in \mathfrak{I}_n and $G_n \xrightarrow{w} G$. Then their method chooses a G^*_n in \mathfrak{I}_n which minimizes the sup distance $\|F_n - F_H\|$ where H is in \mathfrak{I}_n, $nF_n(\cdot) = \sum_{j=1}^{n} I[X_j \leq \cdot]$ and $F_H(\cdot) = \int F(\cdot, \theta) dH$ where $F(\cdot, \theta)$ is a distribution function for each θ. They point out that their method involves finding an optimal strategy in a game with a payoff matrix which depends on F_n, and $\lambda_{ln'}, \ldots, \lambda_{nn'}$. They point out that Λ can be taken to be \mathbb{R}. Choi [1] uses the Wolfowitz distance function.
\[d(\hat{G}, G) = \int (\hat{G}(x) - G(x))^2 \, d\hat{G}(x) \] and in the words of Deely and Kruse [2], the computational feasibility of Choi's method is not clearly established. Moreover, Choi's [1] method needs the solution of a dynamic programming problem, and considers only finite mixtures. Meeden [3] constructs a probability distribution on \(\mathcal{S} \), the class of all probability distributions on \([0, \infty)\) and then show that the Bayes estimate based on the first \(n \) observations corresponding to the constructed prior converges \(\xrightarrow{w} \) to the true element \(G_0 \) in \(\mathcal{S} \). Again the solution of finding estimates by Meeden's [3] method appears as hard as we have in the paper. Our estimators have the simplicity that they need only a linear programming computation (see the note following (3.6)), have some distance properties (Theorem 4.2), and will give componentwise admissible empirical Bayes estimators with and without rates with a small amount of extra work if the support of the prior is in a compact set. It is not clear how one can recover rate results for the density \(\hat{f}_G \) and \(\hat{h}_G \) from the weak convergence results of the above three authors.
REFERENCES

Let $\mathcal{G} = \{f(\cdot, \theta) | \theta \in \Theta \}$, J an interval, be a family of univariate probability densities (wrt Lebesgue measure) on an interval I. First, a necessary and sufficient condition is given for \mathcal{G} to be identifiable. If f_G is a G-mixture of densities in \mathcal{G} with G unknown, an estimator G_n based on f_G and \mathcal{G} is provided so that $G_n \xrightarrow{w} G$. If both G and f_G are unknown but iid random variables X_1, \ldots, X_n with common density f_G are available, an estimator $G_n \xrightarrow{w} G$ a.s. under certain conditions. Some other distance properties f_G are investigated. The results are applied to location and scale parameter families of densities and to empirical Bayes decision problems.