PARAMETERIZATION OF THE ATMOSPHERIC HEATING RATE FROM 15 TO 120°C

NOV 76 D F STROBEL

UNCLASSIFIED
NRL-MR-3398
Parameterization of the Atmospheric Heating Rate from 15 to 120 km Due to O₂ and O₃ Absorption of Solar Radiation

DARRELL F. STROBEL
Plasma Dynamics Branch
Plasma Physics Division

November 1976

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
PARAMETERIZATION OF THE ATMOSPHERIC HEATING RATE FROM 15 TO 120 KM DUE TO \(\text{O}_3 \) AND \(\text{O}_4 \) ABSORPTION OF SOLAR RADIATION.

The atmospheric heating rate due to \(\text{O}_3 \) and \(\text{O}_4 \) absorption of solar radiation is parameterized with an accuracy of \(\pm 5 \) percent in the altitude region 15-120 km. For relevant wavelengths the effects of multiple scattering and ground reflection are also included. These parameterizations are computationally fast, efficient, and suitable for use in numerical models of atmospheric circulation.
CONTENTS

- INTRODUCTION .. 1
- EXACT HEATING RATE CALCULATION 2
- PARAMETERIZATION OF THE O$_3$ HEATING RATE 4
- PARAMETERIZATION OF THE O$_2$ HEATING RATE 8
- PARAMETERIZATION OF DIFFUSE SCATTERED SOLAR RADIATION ... 12
- SUMMARY ... 16
- ACKNOWLEDGMENTS .. 16
- REFERENCES ... 17
PARAMETERIZATION OF THE ATMOSPHERIC HEATING RATE FROM 15 TO 120 KM DUE TO O₂ AND O₃ ABSORPTION OF SOLAR RADIATION

INTRODUCTION

In order to numerically simulate the earth's upper atmospheric circulation, accurate and computationally efficient parameterizations of solar radiative heating are required. Of major interest is the solar radiative heating by ozone absorption in the Hartley region (2000–3000Å), Huggins bands (3000–3500Å) and the Chappius bands (4500–7500Å). Above the mesopause O₂ absorption of solar uv radiation in the Schumann–Runge bands (1750–2050Å) and Schumann–Runge continuum (1250–1750Å) must also be included.

For ozone heating rates two different parameterizations have been previously developed. Lindzen and Will (1973) assumed that the O₃ absorption cross sections are either constant or have an exponential variation over individual wavelength intervals. With these assumptions, they obtained simple analytic formulas for the O₃ heating rate. The advantage of this method is that improved solar flux and/or cross section data can easily be incorporated into the parameterization scheme. An alternate approach has been developed by Lacis and Hansen (1974) for general circulation models. They found analytic expressions for the O₃ heating rate profiles by numerical fits to exact profiles. However, to incorporate revised solar flux and/or cross section data this method requires a repetition of their fitting procedures to obtain new numerical coefficients. This approach is obviously not as flexible in some respects as the Lindzen and Will (1973) formulas. Accordingly, the latter is adopted to represent O₂ and O₃ heating rates by insolation from 15 to 120 km.

Note: Manuscript submitted October 18, 1976.
EXACT HEATING RATE CALCULATION

To develop parameterizations for any atmospheric circulation model, it is best to have "exact" or detailed calculations available to assess their accuracy. The solar fluxes and the O_2 and O_3 absorption cross sections adopted for the exact calculation are tabulated in Table 1. Since we will indicate how to incorporate improved fluxes and cross sections in the parameterizations, we do not need to justify the selected input data (e.g., the controversial solar flux values in the 1750-2050 Å region).

The solar fluxes were selected from the following sources: Broadfoot (1972), Brueckner et al. (1976), CIAP Monograph 1, Donnelly and Pope (1973) and Smith and Gottlieb (1975). The O_2 and O_3 cross sections are based on Blake (1973), CIAP Monograph 1, Hudson (1971) and Hudson and Mahle (1972). Calculation of the O_2 and O_3 heating rates is straightforward for all wavelengths of interest with the exception of solar radiation penetration through the absorbing O_2 Schumann-Runge bands (1750-2050 Å). McConnell (1974) has noted that transmission of solar radiation in each band i, T_r_i, can be adequately represented by

$$T_{r_i} = \exp \left\{ -(\gamma_i N_2 + \delta_i N_2^2) \right\} \tag{1}$$

where N_2 is the column density of O_2 along the solar radiation path, γ_i and δ_i are coefficients given in Table 2. The total O_2 heating rate in the Schumann-Runge bands (SRB) is

$$Q_{SRB}(O_2) = \sum_{i=1}^{19} F_i \sigma_i T_{r_i} [O_2] \tag{2}$$
where \(F_i \) is the solar flux integrated over each band, \([O_2]\) is the \(O_2 \) number density and the cross section \((\sigma_i)\) is given by

\[
\sigma_i^{-1} = \alpha_i + \beta_i N_2^{1/2}
\]

with \(\alpha_i \) and \(\beta_i \) tabulated in Table 2. An accuracy of within 20 percent of the experimental data of Hudson and Mahle (1972) can be achieved with these expressions and coefficients. The \(O_2 \) column density was computed using a 16 point Gaussian quadrature integration scheme.

Net heating rates \((\varepsilon Q)\) defined as the energy absorbed minus the chemical energy stored by the dissociated products were computed with efficiency factors,

\[
\varepsilon_j = \left(\frac{hc}{\lambda_j} - D \right) \frac{hc}{\lambda_j}
\]

where \(D \) is the dissociation energy of the absorbing molecules (1.05 ev for \(O_3 \) and 5.12 ev for \(O_2 \)), \(\lambda_j \) is the wavelength of the photon, \(h \) is Planck's constant and \(c \) is the speed of light.
PARAMETERIZATION OF THE \(\text{O}_3 \) HEATING RATE

For the Chappius bands (c) we follow Lindzen and Will (1973) and write the \(\text{O}_3 \) heating rate \((Q_c) \) as

\[
\frac{Q_c}{[\text{O}_3]} = F_c \sigma_c e^{-\sigma_c N_3}
\]

where \([\text{O}_3] \) is the \(\text{O}_3 \) number density and \(N_3 \) its column density along the solar radiation path. We find that

\[
F_c = 3.7 \times 10^5 \text{ ergs cm}^{-2} \text{ sec}^{-1}
\]

\[
\sigma_c = 2.85 \times 10^{-21} \text{ cm}^2
\]

gives the best fit to exact calculations of \(Q_c \). \(\sigma_c \) is 0.62 times the peak \(\text{O}_3 \) cross section at ~6000Å and \(F_c \) is 0.7 times the integrated flux over the Chappius bands. The net heating rate \(\varepsilon_c Q_c \) is obtained with \(\lambda_c = 6000\text{Å} \) for the efficiency factor \(\varepsilon_c \) from equation (4).

A similar approximation is appropriate for the Hartley region (Ha) from 2425-2775Å. Thus

\[
\frac{Q_{\text{Ha}}}{[\text{O}_3]} = F_{\text{Ha}} \sigma_{\text{Ha}} e^{-\sigma_{\text{Ha}} N_3}
\]

where

\[
F_{\text{Ha}} = 5460 \text{ ergs cm}^{-2} \text{ sec}^{-1}
\]

\[
\sigma_{\text{Ha}} = 8.8 \times 10^{-18} \text{ cm}^2
\]
with σ_{Ha} equal to 0.8 times the peak O_3 cross section at $\lambda = 2525 \text{ Å}$ and F_{Ha} the integrated flux over the 2425–2775 Å interval. The net heating rate $\varepsilon_{\text{Ha}O_3}$ is calculated with $\lambda_j = 2500 \text{ Å}$ in equation (4).

In the Huggins bands (Hu, defined here as the 2775–3600 Å interval) we assume, as Lindzen and Will (1973), that the O_3 cross section has an exponential variation

$$\sigma = \sigma_{\text{Hu}} e^{-\lambda \lambda_{-1}}.$$ \hspace{1cm} (9)

To obtain greater accuracy than Lindzen and Will (1973), we break the Huggins bands up into two intervals. The heating rate is

$$\frac{Q_{\text{Hu}}}{[O_3]} = \int_{\lambda_{\text{short}}}^{3600 \lambda} I_1 \sigma e^{-\sigma N \lambda_{3} d\lambda} + \int_{\lambda_{\text{long}}}^{\lambda_{\text{long}}} I_2 \sigma e^{-\sigma N \lambda_{3} d\lambda}$$

or

$$\frac{Q_{\text{Hu}}}{[O_3]} = \frac{1}{MN_3} \left[I_1 + (I_2 - I_1) \exp \left[-\sigma_{\text{Hu}N \lambda_{3} e^{-\lambda_{\text{long}}} \lambda_{-1}} \right] - I_2 \exp \left[-\sigma_{\text{Hu}N \lambda_{3} e^{-\lambda_{\text{short}}} \lambda_{-1}} \right] \right]$$ \hspace{1cm} (10)

where the atmosphere is optically thin at 3600 Å. Numerically, an excellent fit to the exact heating rate is obtained with

$$I_1 = 59.2 \text{ergs cm}^{-2} \text{sec}^{-1} \text{ Å}^{-1}$$

$$I_2 = 49.3 \text{ergs cm}^{-2} \text{sec}^{-1} \text{ Å}^{-1}$$

$$M = 0.0127 \text{ Å}^{-1}$$

$$\lambda_{\text{short}} = 2805 \text{ Å}$$
\[
\lambda_{\text{long}} = 3055 \ \text{Å}
\]
\[
\sigma_{\text{Hu}} = 0.0125 \text{ cm}^2.
\]

The intensities \(I_1\) and \(I_2\) can be related to fluxes integrated over the respective wavelength intervals. \(\Delta \lambda_1 = 3600 - \lambda_{\text{long}} = 3450\) Å and
\[\Delta \lambda_2 = \lambda_{\text{long}} - \lambda_{\text{short}} = 2500\] Å. Thus,
\[F_1 = I_1 \Delta \lambda_1 = 2.04 \times 10^4 \text{ ergs cm}^{-2} \text{ sec}^{-1}\] and
\[F_2 = I_2 \Delta \lambda_2 = 1.23 \times 10^4 \text{ ergs cm}^{-2} \text{ sec}^{-1}.\] From Table 1 the integrated flux over interval 1 is \(4.4 \times 10^4 \text{ ergs cm}^{-2} \text{ sec}^{-1}\) and
\[F_1\] is 0.46 times this value, while the integrated flux over the interval 2775–3055 Å interval is \(1.25 \times 10^4 \text{ ergs cm}^{-2} \text{ sec}^{-1}\) and \(F_2\) is equal to this flux. In interval 1 the atmosphere is partially optically thin and all photons are not absorbed.

In the Herzberg continuum (2060–2425 Å) both \(O_2\) and \(O_3\) absorb solar radiation and the principal region of heating occurs at 35–55 km. Adequate representation of this heating \((Q_{\text{Hz}})\) can be obtained with

\[
Q_{\text{Hz}} = F_{\text{Hz}} \left\{ \sigma_{\text{Hz}}(O_2)[O_2] + \sigma_{\text{Hz}}(O_3)[O_3] \right\} \exp \left[-\sigma_{\text{Hz}}(O_2) N_2 \right.
- \sigma_{\text{Hz}}(O_3) N_3 \right] \] (12)

and

\[
F_{\text{Hz}} = 1.5 \times 10^3 \text{ ergs cm}^{-2} \text{ sec}^{-1}
\]
\[
\sigma_{\text{Hz}}(O_2) = 6.6 \times 10^{-24} \text{ cm}^2
\]
\[
\sigma_{\text{Hz}}(O_3) = 4.9 \times 10^{-18} \text{ cm}^2
\]
\[
\lambda_j = 2290 \text{ Å to calculate } \sigma_{\text{Hz}}
\]

where \(F_{\text{Hz}}\) is 0.79 times the integrated flux in this wavelength region.

The parameterizations for the Chappius, Huggins, and Hartley bands are accurate to better than 2 percent. With the inclusion of
the Herzberg continuum parameterization the accuracy for the summed
\(\text{O}_3 \) heating rates decreases to 5 percent, primarily because equation (12)
underestimates the actual heating rate below 42 km. In Figures 1 and 2 the individual contributions to the total and net heating rates,
respectively, are illustrated based on the above parameterizations.
They are diurnally-averaged heating rates at the equator during equinox.
The model atmosphere used in the computations is given in Table 3.
Conversion factors for heating rates in \(\text{O}_3 \text{ day}^{-1} \) to ergs cm\(^{-3}\) sec\(^{-1}\) are
given in Table 4.

Above 45 km \(\text{O}_3 \) absorption in the Hartley region is the dominant
heat source, whereas below 28 km the Chappuis band absorption is
dominant. In the intermediate region the Huggins bands dominate.
The secondary peak in the heating rate at \(\approx 85 \) km corresponds to the
secondary maximum in the \(\text{O}_3 \) concentration in the model atmosphere.
Thus, thermodynamically, this \([\text{O}_3] \) peak is expected to be quite
important and its absolute value must be accurately known. Absorption
in the Herzberg continuum makes a small contribution to the heating
rate.
PARAMETERIZATION OF THE O₂ HEATING RATE

The Schumann–Runge continuum (SRC) can be split up into two main regions: 1250–1520Å where the O₂ cross section \(\sim 10^{-17} \text{ cm}^2 \), and 1520–1750Å where the O₂ cross section is proportional to \(e^{-\lambda} \). For the 1250–1520Å region we may approximate the heating as

\[
\frac{Q_{\text{SRC}}}{[O_2]} = F_{\text{SRC}} \sigma_{\text{SRC}} e^{-\sigma_{\text{SRC}} N_2}
\]

with

\[
F_{\text{SRC}} = 1.1 \text{ erg cm}^{-2} \text{ sec}^{-1}
\]
\[
\sigma_{\text{SRC}} = 1 \times 10^{-17} \text{ cm}^2
\]
\[
\epsilon_{\text{SRC}} = 0.41 \text{ for net heating}
\]

where \(F_{\text{SRC}} \) is the integrated flux over this wavelength region and \(\sigma_{\text{SRC}} \) is the average cross section. For the 1520–1750Å region we divide it into two intervals with \(\sigma(O_2) \sim e^{-\lambda} \) and obtain a total heating rate of

\[
\frac{Q_{\text{SRC}}}{[O_2]} = \frac{1}{N_2} \left\{ \frac{I_N}{M} e^{-\sigma_N N_2} + \frac{I_s - I_N}{M} e^{-\sigma_m N_2} - \frac{I_s}{M} e^{-\sigma_s N_2} \right\}
\]

where \(I_N \) denotes long wavelength end of spectrum, \(I_s \) denotes short wavelength end and \(\sigma_m \) denotes O₂ cross section at the junction of these intervals (\(\sim 1660Å \)). The following values were found to give an excellent fit.
\[
\frac{I_L}{M} = 3.43 \text{ ergs cm}^{-2} \text{sec}^{-1}
\]
\[
\frac{I_S}{M} = 1.35 \text{ ergs cm}^{-2} \text{sec}^{-1}
\]
\[
\sigma_L = 2.9 \times 10^{-19} \text{ cm}^2
\]
\[
\sigma_m = 1.54 \times 10^{-18} \text{ cm}^2
\]
\[
\sigma_s = 1.1 \times 10^{-17} \text{ cm}^2
\]

\(I_L\) is approximately 0.6 times the integrated solar flux in the 1660-1750\AA\ interval, while \(I_S\) is approximately 0.5 times the solar flux in the 1520-1660\AA\ interval. The \(O_2\) cross sections \(\sigma_L\), \(\sigma_m\), and \(\sigma_s\) are approximately the values at 1750, 1660, and 1520\AA, respectively. To compute the net heating rate we recommend

\[
\frac{\varepsilon I_L}{M} = 0.98 \text{ ergs cm}^{-2} \text{sec}^{-1}
\]
\[
\frac{\varepsilon I_S}{M} = 0.43 \text{ ergs cm}^{-2} \text{sec}^{-1}
\]
\[
\sigma_L = 2.9 \times 10^{-19} \text{ cm}^2
\]
\[
\sigma_m = 1.7 \times 10^{-18} \text{ cm}^2
\]
\[
\sigma_s = 1.15 \times 10^{-17} \text{ cm}^2
\]

where \(\varepsilon \approx 0.3\).

The main contribution to atmospheric heating from the \(O_2\) Schumann-Runge bands (SRB) occurs in the 60-100 km region. In view of the uncertainty in the solar flux magnitude in the Schumann-Runge bands coupled with the complexity of its transmission through the atmosphere, we demand only an accuracy of \(\pm 20\) percent in this parameterization. The following expression represents the total
heating rate in the 60–100 km region

\[\frac{Q_{SRB}}{[O_2]} = \frac{1}{aN_2 + bN_2^{1/2}} \]

(17)

where

\[a = 0.143 \text{ cgs units} \]

\[b = 9.64 \times 10^8 \text{ cgs units} \]

(18)

and if \(N_2 < 10^{18} \text{ cm}^2 \), then

\[\frac{Q_{SRB}}{[O_2]} = 9.03 \times 10^{-9} \text{ ergs sec}^{-1} \]

(19)

For the net heating rate we obtain

\[a = 0.67 \text{ cgs units} \]

\[b = 3.44 \times 10^9 \text{ cgs units} \]

(20)

and if \(N < 10^{18} \text{ cm}^2 \), then

\[\frac{Q_{SRB}}{[O_2]} = 2.43 \times 10^{-19} \text{ ergs sec}^{-1} \]

(21)

By appropriate scaling of both coefficients, heating rates for alternate solar flux values can be obtained.

The individual contributions to the \(O_2 \) heating rates from the above parameterizations are shown in Figures 1 and 2. Near 60 km the total \(O_2 \) heating rate is accurate only to ± 25 percent, but above 75 km it improves to within 5 percent. Heating in the Schumann–Runge bands is the dominant heat source between 88 and 96 km, while absorption in the SR continuum is most important above 96 km. The relative
importance of the SR bands in the 80-90 km region depends significantly on the \(\text{O}_3 \) concentration there.

The overall accuracy of the parameterized heating rates is \(\pm 5 \) percent over the altitude region 15-120 km. Below approximately 80 km the \(\text{O}(\text{3P}) \) formed by \(\text{O}_3 \) and \(\text{O}_2 \) dissociation recombines quickly, and the actual heating rate of the atmosphere is the total photon energy absorbed. Above 80 km the \(\text{O}(\text{3P}) \) produced by \(\text{O}_3 \) and \(\text{O}_2 \) dissociation may be transported significantly in the vertical direction before recombining, and the actual heating rate is the net heating rate (\(\epsilon Q \)) plus the chemical energy released by locally recombining \(\text{O}(\text{3P}) \). To a good first approximation we can estimate the actual heating rate by summing the total \(\text{O}_3 \) heating rate and the net \(\text{O}_2 \) heating rate. In Figure 3 this estimated actual heating rate is illustrated for solstitial conditions. Only the latitudinal variation of solar radiation was included; the model atmosphere was invariant with latitude. Our heating rate agrees well with the results of Park and London (1974) when the comparison is made at the same density levels.
PARAMETERIZATION OF DIFFUSE SCATTERED SOLAR RADIATION

Solar radiation longward of 3000Å is not strongly absorbed in the earth's atmosphere and can undergo multiple scattering in the atmosphere by molecules and particles. Fortunately, in atmospheric heating calculations the major scattering effects are in the Chappius bands region of the solar spectrum (Lacis and Hansen, 1974). Their results strongly suggest that the diffuse solar radiation can be modeled by a pure O₃ absorption region on top of a reflecting layer with an effective albedo \(\omega_o \) that depends on the ground reflectivity \(R_g \) and lower atmosphere albedo \(R_a \) as follows:

\[
\omega_o = R_a + [1 - R_a] \frac{0.856 R_g}{1 - 0.144 R_g} \tag{22}
\]

Let the vertical optical depth due to O₃ absorption be

\[
\tau^* = \int_0^\infty n \sigma dz \tag{23}
\]

where \(n \) is the O₃ number density, \(\sigma \) is its cross section, \(z \) is height, and \(d\tau = -n \sigma dz \). With \(\theta \) as the solar zenith angle and \(s \) as the distance along the solar radiation path (increasing in positive value with decreasing \(z \)), we define \(\mu = \cos \theta \) and \(\mu ds = -dz \). The intensity \(I \) of the solar radiation is separated into upward \(I^+ \) and downward \(I^- \) components. The associated flux is

\[
F = \int_{-1}^1 I \mu d\mu = \int_0^1 I^+ \mu d\mu + \int_{-1}^0 I^- \mu d\mu \tag{24}
\]
and the corresponding heating rate is

\[Q = - \nabla \cdot F = - \int_{-1}^{1} \frac{dI}{dz} \mu d\mu \] (25)

for a plane parallel atmosphere. For visible sunlight in the purely absorbing atmosphere the equation of transfer is simply

\[\mu \frac{dI}{d\tau} = I \] (26)

since atmospheric thermal emission is negligible. Equation (26) has the solution

\[I = I_0 e^{\mu} . \] (27)

For the downward intensity component the boundary condition is applied at the top of the atmosphere and is

\[I^-(\tau = 0, \mu) = F_\Theta \delta(\mu + \mu_0) \] (28)

where \(F_\Theta \) is the downward directed solar flux with direction \(\mu_0 \). Thus

\[I^-(\tau, \mu) = F_\Theta \delta(\mu + \mu_0) e^{\mu}, \mu < 0 . \] (29)

For the upward intensity component the boundary condition is applied at the reflecting surface (\(\tau = \tau^* \)) and is a Lambert surface with albedo \(\omega_0 \),

\[I^+(\tau^*, \mu) \text{ is isotropic} \]

\[F^+ = \omega_0 F^- \text{ at } \tau = \tau^* . \] (30)
Then at τ^*

$$F^+ = \int_0^1 I^+(\tau^*, \mu) \, \mu \, d\mu = \frac{1}{2} I^+ (\tau^*, \mu) = \omega_0 \int_{-1}^{0} I^- (\tau^*, \mu) \, \mu \, d\mu$$

or with equation (24)

$$I^+(\tau^*, \mu) = 2\omega_0^2 \mu_0 \frac{\mu}{\mu_0}$$

and

$$I^+(\tau, \mu) = 2\omega_0^2 \mu_0 \frac{\mu}{\mu_0} e^{-\frac{\mu_0}{\mu} (\tau^* - \tau)}$$

(32)

Since $d\tau = -\sigma dz$, equation (25) becomes upon substitution of equation (26)

$$Q = \sigma n \int_{-1}^{1} I d\mu$$

and integration over all angles with the upward (32) and downward (29) components of intensity gives

$$Q = F_0 e^{-\sigma n} + 2\omega_0^2 \mu_0 \frac{\mu}{\mu_0} E_2 (\tau^* - \tau) \sigma n$$

(33)

where the exponential integral E_2

$$E_2(x) = \int_0^1 \frac{\mu}{\mu} e^{-\frac{\mu}{\mu}}$$

represents the transmission of the reflected light off the surface. This second term in equation (33) is thus the heating due to diffuse
reflected and scattered solar radiation, whereas the first term in equation (33) represents direct solar radiation heating.

Lacis and Hansen (1974) recommend a simple approximation for the transmission function E_2. It is

$$E_2(\tau^* - \tau) \approx e^{-(\tau^* - \tau) M}$$

where M is the magnification factor for the vertical optical depth and has an effective value of 1.9 for diffuse radiation.

Comparisons of their detailed calculations with the results obtained from the following expression

$$Q = F_0 \sigma n \left\{ e^{\frac{-\tau}{\mu_0}} + 2w_0 \mu_0 e^{\frac{-\tau^*}{\mu_0}} e^{-1.9(\tau^* - \tau)} \right\}$$

(34)

show good agreement for diffuse radiative heating (within 10 percent). If the effective albedo is $\bar{\omega}_0 = 0.25$, a reasonable global average, then the O_3 heating rate from Chappius bands absorption is increased by 30 percent throughout the ozone layer due to diffuse solar radiation. This description of diffuse radiation should also prove adequate for the 3000-4000Å solar uv radiation.
SUMMARY

The atmospheric heating rates due to O_2 and O_3 absorption of solar radiation have been successfully parameterized with an accuracy of \pm 5 percent from 15 to 120 km. In addition, the diffuse solar radiation produced by multiple scattering and ground reflection has been adequately described with a simple radiative transfer model of a purely absorbing layer on top of a reflecting layer. These parameterizations are suitable for use in complex numerical models of atmospheric circulation.

ACKNOWLEDGMENTS

I would like to thank J. C. McConnell for communicating the Schumann-Runge Band Coefficients in Table 2 used to generate the "exact" heating rate calculation. This research was supported by the Naval Air Systems Command.
REFERENCES

McConnell, J. C., Private communication, 1974.

<table>
<thead>
<tr>
<th>λ(Å)</th>
<th>Flux (ergs cm(^{-2}) sec(^{-1}))</th>
<th>σ(O(_2))(cm(^2))</th>
<th>σ(O(_3))(cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>7500</td>
<td>1.27(4)</td>
<td>3.5(-22)</td>
<td></td>
</tr>
<tr>
<td>7400</td>
<td>1.30(4)</td>
<td>3.8(-22)</td>
<td></td>
</tr>
<tr>
<td>7300</td>
<td>1.34(4)</td>
<td>4.2(-22)</td>
<td></td>
</tr>
<tr>
<td>7200</td>
<td>1.37(4)</td>
<td>5.4(-22)</td>
<td></td>
</tr>
<tr>
<td>7100</td>
<td>1.40(4)</td>
<td>6.5(-22)</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>1.43(4)</td>
<td>8.2(-22)</td>
<td></td>
</tr>
<tr>
<td>6900</td>
<td>1.47(4)</td>
<td>1.0(-21)</td>
<td></td>
</tr>
<tr>
<td>6800</td>
<td>1.50(4)</td>
<td>1.3(-21)</td>
<td></td>
</tr>
<tr>
<td>6700</td>
<td>1.54(4)</td>
<td>1.6(-21)</td>
<td></td>
</tr>
<tr>
<td>6600</td>
<td>1.54(4)</td>
<td>2.0(-21)</td>
<td></td>
</tr>
<tr>
<td>6500</td>
<td>1.56(4)</td>
<td>2.4(-21)</td>
<td></td>
</tr>
<tr>
<td>6400</td>
<td>1.62(4)</td>
<td>2.9(-21)</td>
<td></td>
</tr>
<tr>
<td>6300</td>
<td>1.62(4)</td>
<td>3.4(-21)</td>
<td></td>
</tr>
<tr>
<td>6200</td>
<td>1.68(4)</td>
<td>3.9(-21)</td>
<td></td>
</tr>
<tr>
<td>6100</td>
<td>1.72(4)</td>
<td>4.5(-21)</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>1.75(4)</td>
<td>4.6(-21)</td>
<td></td>
</tr>
<tr>
<td>5900</td>
<td>1.78(4)</td>
<td>4.0(-21)</td>
<td></td>
</tr>
<tr>
<td>5800</td>
<td>1.82(4)</td>
<td>4.3(-21)</td>
<td></td>
</tr>
<tr>
<td>5700</td>
<td>1.83(4)</td>
<td>4.3(-21)</td>
<td></td>
</tr>
<tr>
<td>5600</td>
<td>1.83(4)</td>
<td>3.5(-21)</td>
<td></td>
</tr>
<tr>
<td>5500</td>
<td>1.85(4)</td>
<td>3.1(-21)</td>
<td></td>
</tr>
<tr>
<td>5400</td>
<td>1.89(4)</td>
<td>2.7(-21)</td>
<td></td>
</tr>
<tr>
<td>5300</td>
<td>1.89(4)</td>
<td>2.3(-21)</td>
<td></td>
</tr>
<tr>
<td>5200</td>
<td>1.85(4)</td>
<td>1.7(-21)</td>
<td></td>
</tr>
<tr>
<td>5100</td>
<td>1.87(4)</td>
<td>1.5(-21)</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>1.93(4)</td>
<td>9.4(-22)</td>
<td></td>
</tr>
<tr>
<td>4900</td>
<td>1.92(4)</td>
<td>6.7(-22)</td>
<td></td>
</tr>
<tr>
<td>4800</td>
<td>1.96(4)</td>
<td>5.7(-22)</td>
<td></td>
</tr>
<tr>
<td>4700</td>
<td>1.99(4)</td>
<td>2.7(-22)</td>
<td></td>
</tr>
<tr>
<td>4600</td>
<td>2.00(4)</td>
<td>2.4(-22)</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>1.97(4)</td>
<td>1.2(-22)</td>
<td></td>
</tr>
<tr>
<td>4450</td>
<td>9.5(3)</td>
<td>3.5(-22)</td>
<td></td>
</tr>
<tr>
<td>4350</td>
<td>8.9(3)</td>
<td>1.0(-21)</td>
<td></td>
</tr>
<tr>
<td>4350</td>
<td>9.0(3)</td>
<td>4.2(-21)</td>
<td></td>
</tr>
<tr>
<td>3250</td>
<td>7.8(3)</td>
<td>1.5(-20)</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>6.4(3)</td>
<td>6.2(-20)</td>
<td></td>
</tr>
<tr>
<td>3075</td>
<td>2.6(3)</td>
<td>1.5(-19)</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>3.9(3)</td>
<td>3.5(-19)</td>
<td></td>
</tr>
<tr>
<td>2925</td>
<td>5.2(3)</td>
<td>1.2(-18)</td>
<td></td>
</tr>
<tr>
<td>2825</td>
<td>2.4(3)</td>
<td>3.3(-18)</td>
<td></td>
</tr>
<tr>
<td>2725</td>
<td>2.4(3)</td>
<td>6.8(-18)</td>
<td></td>
</tr>
<tr>
<td>2625</td>
<td>1.9(3)</td>
<td>1.0(-17)</td>
<td></td>
</tr>
<tr>
<td>2525</td>
<td>8.1(2)</td>
<td>1.1(-17)</td>
<td></td>
</tr>
<tr>
<td>2450</td>
<td>3.5(2)</td>
<td>9.8(-18)</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td>2.9(2)</td>
<td>5.0(-25)</td>
<td></td>
</tr>
<tr>
<td>2350</td>
<td>2.9(2)</td>
<td>1.4(-24)</td>
<td></td>
</tr>
<tr>
<td>2300</td>
<td>3.1(2)</td>
<td>3.3(-24)</td>
<td></td>
</tr>
<tr>
<td>2250</td>
<td>3.4(2)</td>
<td>5.3(-24)</td>
<td></td>
</tr>
<tr>
<td>$\lambda(\AA)$</td>
<td>Flux (ergs cm$^{-2}$ sec$^{-1}$)</td>
<td>$\sigma(O_2)(cm^2)$</td>
<td>$\sigma(O_3)(cm^2)$</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2200</td>
<td>2.9(2)</td>
<td>7.6(-24)</td>
<td>1.8(-18)</td>
</tr>
<tr>
<td>2150</td>
<td>2.4(2)</td>
<td>9.6(-24)</td>
<td>1.0(-18)</td>
</tr>
<tr>
<td>2100</td>
<td>1.5(2)</td>
<td>1.1(-23)</td>
<td>5.5(-19)</td>
</tr>
<tr>
<td>2060</td>
<td>2.0(1)</td>
<td>1.3(-23)</td>
<td>3.8(-19)</td>
</tr>
<tr>
<td>2025</td>
<td>1.7(1)</td>
<td>See Table 2</td>
<td>3.3(-19)</td>
</tr>
<tr>
<td>2000</td>
<td>1.4(1)</td>
<td></td>
<td>3.1(-19)</td>
</tr>
<tr>
<td>1985</td>
<td>7.0(0)</td>
<td>"</td>
<td>3.3(-19)</td>
</tr>
<tr>
<td>1972</td>
<td>5.8(0)</td>
<td>"</td>
<td>3.6(-19)</td>
</tr>
<tr>
<td>1947</td>
<td>1.0(1)</td>
<td>"</td>
<td>4.1(-19)</td>
</tr>
<tr>
<td>1924</td>
<td>7.0(0)</td>
<td>"</td>
<td>4.5(-19)</td>
</tr>
<tr>
<td>1902</td>
<td>6.5(0)</td>
<td>"</td>
<td>5.2(-19)</td>
</tr>
<tr>
<td>1882</td>
<td>5.2(0)</td>
<td>"</td>
<td>5.9(-19)</td>
</tr>
<tr>
<td>1863</td>
<td>4.2(0)</td>
<td>"</td>
<td>6.5(-19)</td>
</tr>
<tr>
<td>1846</td>
<td>2.8(0)</td>
<td>"</td>
<td>6.8(-19)</td>
</tr>
<tr>
<td>1830</td>
<td>2.7(0)</td>
<td>"</td>
<td>7.0(-19)</td>
</tr>
<tr>
<td>1816</td>
<td>2.5(0)</td>
<td>"</td>
<td>7.3(-19)</td>
</tr>
<tr>
<td>1804</td>
<td>1.8(0)</td>
<td>"</td>
<td>7.5(-19)</td>
</tr>
<tr>
<td>1793</td>
<td>1.3(0)</td>
<td>"</td>
<td>7.7(-19)</td>
</tr>
<tr>
<td>1783</td>
<td>1.2(0)</td>
<td>"</td>
<td>7.9(-19)</td>
</tr>
<tr>
<td>1775</td>
<td>8.1(-1)</td>
<td>"</td>
<td>8.1(-19)</td>
</tr>
<tr>
<td>1769</td>
<td>6.7(-1)</td>
<td>"</td>
<td>8.2(-19)</td>
</tr>
<tr>
<td>1763</td>
<td>1.3(0)</td>
<td>"</td>
<td>8.2(-19)</td>
</tr>
<tr>
<td>1750</td>
<td>1.0(0)</td>
<td>"</td>
<td>8.3(-19)</td>
</tr>
<tr>
<td>1740</td>
<td>1.7(0)</td>
<td>3.7(-19)</td>
<td></td>
</tr>
<tr>
<td>1720</td>
<td>1.5(0)</td>
<td>5.9(-19)</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>1.3(0)</td>
<td>8.5(-19)</td>
<td></td>
</tr>
<tr>
<td>1680</td>
<td>8.7(-1)</td>
<td>1.2(-18)</td>
<td></td>
</tr>
<tr>
<td>1660</td>
<td>7.7(-1)</td>
<td>1.8(-18)</td>
<td></td>
</tr>
<tr>
<td>1640</td>
<td>5.6(-1)</td>
<td>2.5(-18)</td>
<td></td>
</tr>
<tr>
<td>1620</td>
<td>4.0(-1)</td>
<td>3.4(-18)</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>3.2(-1)</td>
<td>4.7(-18)</td>
<td></td>
</tr>
<tr>
<td>1580</td>
<td>2.9(-1)</td>
<td>6.0(-18)</td>
<td></td>
</tr>
<tr>
<td>1560</td>
<td>3.4(-1)</td>
<td>7.3(-18)</td>
<td></td>
</tr>
<tr>
<td>1540</td>
<td>3.3(-1)</td>
<td>8.5(-18)</td>
<td></td>
</tr>
<tr>
<td>1520</td>
<td>2.0(-1)</td>
<td>1.0(-17)</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>1.5(-1)</td>
<td>1.1(-17)</td>
<td></td>
</tr>
<tr>
<td>1480</td>
<td>1.3(-1)</td>
<td>1.2(-17)</td>
<td></td>
</tr>
<tr>
<td>1460</td>
<td>1.1(-1)</td>
<td>1.3(-17)</td>
<td></td>
</tr>
<tr>
<td>1440</td>
<td>8.3(-2)</td>
<td>1.5(-17)</td>
<td></td>
</tr>
<tr>
<td>1420</td>
<td>7.0(-2)</td>
<td>1.5(-17)</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>1.3(-1)</td>
<td>1.4(-17)</td>
<td></td>
</tr>
<tr>
<td>1380</td>
<td>4.8(-2)</td>
<td>1.3(-17)</td>
<td></td>
</tr>
<tr>
<td>1360</td>
<td>6.3(-2)</td>
<td>8.0(-18)</td>
<td></td>
</tr>
<tr>
<td>1340</td>
<td>1.2(-1)</td>
<td>2.3(-18)</td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>4.3(-2)</td>
<td>1.4(-18)</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>7.6(-2)</td>
<td>5.0(-19)</td>
<td></td>
</tr>
<tr>
<td>1280</td>
<td>6.9(-3)</td>
<td>2.8(-19)</td>
<td></td>
</tr>
<tr>
<td>1260</td>
<td>1.6(-2)</td>
<td>4.3(-19)</td>
<td></td>
</tr>
</tbody>
</table>

*The solar fluxes are integrated over wavelength intervals whose center value is given. Note that the values in parentheses are the powers of 10 by which the primary tabular entry is to be multiplied.
Table 2: Schumann-Runge Band Coefficients (cgs units)

<table>
<thead>
<tr>
<th>Band</th>
<th>Wavelength (Å)</th>
<th>a_1</th>
<th>b_1</th>
<th>c_1</th>
<th>d_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2025.0</td>
<td>8.2595(22)</td>
<td>6.9850(8)</td>
<td>1.1983(-23)</td>
<td>6.4880(-14)</td>
</tr>
<tr>
<td>2</td>
<td>2000.0</td>
<td>8.0106(22)</td>
<td>-3.5546(9)</td>
<td>1.2662(-23)</td>
<td>9.6723(-14)</td>
</tr>
<tr>
<td>3</td>
<td>1985.0</td>
<td>7.3112(22)</td>
<td>2.2040(9)</td>
<td>1.3033(-23)</td>
<td>3.0529(-13)</td>
</tr>
<tr>
<td>4</td>
<td>1971.8</td>
<td>1.8757(22)</td>
<td>1.0081(11)</td>
<td>1.2899(-23)</td>
<td>1.7876(-12)</td>
</tr>
<tr>
<td>5</td>
<td>1947.0</td>
<td>1.4232(22)</td>
<td>1.0586(11)</td>
<td>1.2204(-23)</td>
<td>2.6838(-12)</td>
</tr>
<tr>
<td>6</td>
<td>1924.0</td>
<td>1.2321(21)</td>
<td>2.5293(11)</td>
<td>1.4519(-23)</td>
<td>5.4926(-12)</td>
</tr>
<tr>
<td>7</td>
<td>1902.4</td>
<td>4.6314(20)</td>
<td>1.7798(11)</td>
<td>1.8859(-23)</td>
<td>8.3986(-12)</td>
</tr>
<tr>
<td>8</td>
<td>1882.2</td>
<td>1.4269(20)</td>
<td>1.3011(11)</td>
<td>1.5313(-23)</td>
<td>1.2232(-11)</td>
</tr>
<tr>
<td>9</td>
<td>1863.4</td>
<td>6.8431(19)</td>
<td>7.8005(10)</td>
<td>4.9293(-23)</td>
<td>1.9898(-11)</td>
</tr>
<tr>
<td>10</td>
<td>1846.2</td>
<td>5.9996(19)</td>
<td>4.6831(10)</td>
<td>7.7757(-23)</td>
<td>3.1147(-11)</td>
</tr>
<tr>
<td>11</td>
<td>1830.6</td>
<td>1.9521(19)</td>
<td>3.9664(10)</td>
<td>1.0391(-22)</td>
<td>3.5539(-11)</td>
</tr>
<tr>
<td>12</td>
<td>1816.4</td>
<td>7.2957(17)</td>
<td>3.1870(10)</td>
<td>2.1977(-22)</td>
<td>5.0541(-11)</td>
</tr>
<tr>
<td>13</td>
<td>1803.6</td>
<td>9.0621(18)</td>
<td>1.5782(10)</td>
<td>4.6920(-22)</td>
<td>9.0615(-11)</td>
</tr>
<tr>
<td>14</td>
<td>1792.6</td>
<td>1.2199(18)</td>
<td>2.4265(10)</td>
<td>1.1067(-21)</td>
<td>6.7403(-11)</td>
</tr>
<tr>
<td>15</td>
<td>1782.6</td>
<td>4.0394(18)</td>
<td>2.4928(10)</td>
<td>2.1219(-21)</td>
<td>6.1440(-11)</td>
</tr>
<tr>
<td>16</td>
<td>1774.6</td>
<td>8.2969(18)</td>
<td>1.1984(10)</td>
<td>3.0367(-21)</td>
<td>1.0362(-10)</td>
</tr>
<tr>
<td>17</td>
<td>1768.6</td>
<td>5.5205(18)</td>
<td>5.2439(9)</td>
<td>8.7466(-21)</td>
<td>1.8609(-10)</td>
</tr>
<tr>
<td>18</td>
<td>1763.2</td>
<td>5.0849(18)</td>
<td>2.5956(9)</td>
<td>2.1935(-20)</td>
<td>2.4514(-10)</td>
</tr>
<tr>
<td>19</td>
<td>1750.0</td>
<td>3.3967(18)</td>
<td>1.4959(9)</td>
<td>5.2699(-20)</td>
<td>3.1771(-10)</td>
</tr>
</tbody>
</table>

1. These coefficients were supplied by McConnell (1974).
<table>
<thead>
<tr>
<th>Z(km)</th>
<th>T(°k)</th>
<th>O</th>
<th>O(_2)</th>
<th>N(_2)</th>
<th>O(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>216.6</td>
<td>3(6)</td>
<td>8.586(17)</td>
<td>3.191(18)</td>
<td>2(12)</td>
</tr>
<tr>
<td>20</td>
<td>216.6</td>
<td>1(7)</td>
<td>3.920(17)</td>
<td>1.457(18)</td>
<td>3.1(12)</td>
</tr>
<tr>
<td>25</td>
<td>221.7</td>
<td>5(7)</td>
<td>1.720(17)</td>
<td>6.391(17)</td>
<td>4.5(12)</td>
</tr>
<tr>
<td>30</td>
<td>230.7</td>
<td>2(8)</td>
<td>7.823(16)</td>
<td>2.908(17)</td>
<td>3.1(12)</td>
</tr>
<tr>
<td>35</td>
<td>241.5</td>
<td>3.5(8)</td>
<td>3.651(16)</td>
<td>1.357(17)</td>
<td>1.6(12)</td>
</tr>
<tr>
<td>40</td>
<td>255.3</td>
<td>1.5(9)</td>
<td>1.752(16)</td>
<td>6.513(16)</td>
<td>6.7(11)</td>
</tr>
<tr>
<td>45</td>
<td>267.7</td>
<td>3(9)</td>
<td>8.794(15)</td>
<td>3.269(16)</td>
<td>2.1(11)</td>
</tr>
<tr>
<td>50</td>
<td>271.6</td>
<td>9(9)</td>
<td>4.660(15)</td>
<td>1.732(16)</td>
<td>7(10)</td>
</tr>
<tr>
<td>55</td>
<td>263.9</td>
<td>2(10)</td>
<td>2.565(15)</td>
<td>9.535(15)</td>
<td>2.2(10)</td>
</tr>
<tr>
<td>60</td>
<td>249.3</td>
<td>2.5(10)</td>
<td>1.414(15)</td>
<td>5.255(15)</td>
<td>7(9)</td>
</tr>
<tr>
<td>65</td>
<td>232.7</td>
<td>2.3(10)</td>
<td>7.564(14)</td>
<td>2.812(15)</td>
<td>2.2(9)</td>
</tr>
<tr>
<td>70</td>
<td>216.2</td>
<td>2(10)</td>
<td>3.863(14)</td>
<td>1.436(15)</td>
<td>7(8)</td>
</tr>
<tr>
<td>75</td>
<td>205.0</td>
<td>4(10)</td>
<td>1.824(14)</td>
<td>6.792(14)</td>
<td>2(8)</td>
</tr>
<tr>
<td>80</td>
<td>195.0</td>
<td>6.2(10)</td>
<td>8.204(13)</td>
<td>3.104(14)</td>
<td>3.1(8)</td>
</tr>
<tr>
<td>85</td>
<td>185.1</td>
<td>1.4(11)</td>
<td>3.548(13)</td>
<td>1.365(14)</td>
<td>1.2(8)</td>
</tr>
<tr>
<td>90</td>
<td>183.8</td>
<td>1.66(11)</td>
<td>1.422(13)</td>
<td>5.585(13)</td>
<td>2.7(7)</td>
</tr>
<tr>
<td>95</td>
<td>190.3</td>
<td>1.91(11)</td>
<td>5.483(12)</td>
<td>2.218(13)</td>
<td>4.6(6)</td>
</tr>
<tr>
<td>100</td>
<td>203.5</td>
<td>4.150(11)</td>
<td>1.991(12)</td>
<td>8.710(12)</td>
<td>1.3(6)</td>
</tr>
<tr>
<td>105</td>
<td>228.0</td>
<td>4.436(11)</td>
<td>6.653(11)</td>
<td>3.597(12)</td>
<td>1.5(5)</td>
</tr>
<tr>
<td>110</td>
<td>265.5</td>
<td>3.228(11)</td>
<td>2.500(11)</td>
<td>1.585(12)</td>
<td>1.4(4)</td>
</tr>
<tr>
<td>115</td>
<td>317.1</td>
<td>2.148(11)</td>
<td>1.086(11)</td>
<td>7.447(11)</td>
<td>1.2(3)</td>
</tr>
<tr>
<td>120</td>
<td>380.6</td>
<td>1.422(11)</td>
<td>5.420(10)</td>
<td>3.793(11)</td>
<td>1.5(2)</td>
</tr>
<tr>
<td>Z (km)</td>
<td>Factor</td>
<td>Z (km)</td>
<td>Factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.26(-2)</td>
<td>70</td>
<td>1.02(-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.03(-2)</td>
<td>75</td>
<td>4.80(-6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.52(-3)</td>
<td>80</td>
<td>2.19(-6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.06(-3)</td>
<td>85</td>
<td>9.59(-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>9.60(-4)</td>
<td>90</td>
<td>3.90(-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.60(-4)</td>
<td>95</td>
<td>1.54(-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2.31(-4)</td>
<td>100</td>
<td>6.01(-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1.23(-4)</td>
<td>105</td>
<td>2.43(-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>6.75(-5)</td>
<td>110</td>
<td>1.06(-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.73(-5)</td>
<td>115</td>
<td>5.07(-9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1.99(-5)</td>
<td>120</td>
<td>2.63(-9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1 — Diurnally-averaged total heating rates at the equator as a function of altitude in the Chappius (C), Huggins (Hu), Hartley (Ha), Herzberg (Hz), Schumann-Runge Bands (SRB), and Continuum (SRC) wavelength regions of the solar spectrum. Solar declination angle = 0°, equinox.
Fig. 3 — Contours of constant estimated heating rate for solstitial conditions. Model atmosphere is assumed invariant with latitude.
DISTRIBUTION LIST

DIRECTOR
Defense Advanced Resch Proj Agency
Architect Building
1400 Wilson Blvd.
Arlington, Va. 22209
ATTN: Strategic Tech Office
ATTN: LTC. W. A. Whitaker
ATTN: STO CAPT. J. Justice

Defense Communication Engineer Center
1860 Wiehle Avenue
Reston, Va. 22090
ATTN: CODE R820 R. L. Crawford
ATTN: CODE R410 W. D. Dehart

DIRECTOR
Defense Communications Agency
Washington, D. C. 20305
ATTN: CODE 960
ATTN: CODE 480

Defense Documentation Center
Cameron Station
Alexandria, Va. 22312
ATTN: TC 12 copies

DIRECTOR
Defense Intelligence Agency
Washington, D. C. 20331
ATTN: W. Wirttig DC - 7D
ATTN: DT - 18

DIRECTOR
Defense Nuclear Agency
Washington, D. C. 20305
ATTN: STSI Archives
ATTN: STVL
ATTN: STTL Tech Library 2 copies
ATTN: DDST
ATTN: RAAE
ATTN: RAAE Charles A. Blank
ATTN: Warren W. Berning
ATTN: RAAE Harold C. Fitz, Jr.
ATTN: RAAE MAJ. John Clark
DIR OF DEFENSE RSCH & ENGINEERING
Washington, D. C. 20301
ATTN: DD/S&SS John B. Walsh
ATTN: AOD/EPS LTC W. A. WHITAKER
ATTN: AD/S&AS Daniel Brockway

COMMANDER
Field Command
Defense Nuclear Agency
Kirtland AFB, NM 87115
ATTN: FCPRL

Interservice Nuclear Weapons School
Kirtland AFB, NM 87115
ATTN: Document Control

DIRECTOR
Joint Strat TGT Planning Staff Jcs
Offutt AFB
Omaha, NB 68113
ATTN: JLTW-2
ATTN: JPST G. D. Burton
ATTN: JPST MAJ. J. S. Green

CHIEF
Livermore Division Fld Command DNA
Lawrence Livermore Laboratory
P. O. Box 502
Livermore, CA 94550
ATTN: FCPRL

COMMANDER
National Military Comd Sys Support Ctr
Pentagon
Washington, D. C. 20301
ATTN: B211
ATTN: DP DIRECTOR FOR CSPO

DIRECTOR
National Security Agency
Ft. George G. Meade, Md. 20755
ATTN: W14 Pat Clark
ATTN: Frank Leonard

OJCS/J-3
The Pentagon
Washington, D. C. 20301
ATTN: J-3 OPS ANAL BR. COL. Underhill
OJCS/J-6
The Pentagon
Washington, D.C. 20301
ATTN: J-6

DIRECTOR
Telecommunications & Command & Control Systems
Washington, D.C. 20301
ATTN: ASST DIR Info & Space Sys
ATTN: DEF ASST SEC Sys

Weapons Systems Evaluation Group
400 Army-Navy Drive
Arlington, Va. 22202
ATTN: DOCUMENT CONTROL

COMMANDER
Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, Md. 20783
ATTN: AMXDO-NP

COMMANDER
TRASANA
White Sands Missile Range, NM 88002
ATTN: EAB

DIRECTOR
U.S. Army Ballistic Research Labs
Aberdeen Proving Ground, Md. 21003
ATTN: AM-CA Franklin E. Niles

U.S. Army Communications Command
C-B Services Division
Pentagon Bldg. 2D513
Washington, D.C. 20310

COMMANDER
U.S. Army Electronics Command
Fort Monmouth, N.J. 07703
ATTN: AMSEL-TL-ENV Hans A. Bomke

COMMANDER
U.S. Army Material Command
5001 Eisenhower Avenue
Alexandria, Va. 22333
ATTN: AMCRD-WN-ME John F. Corrigan
COMMANDING OFFICER
Naval Intelligence Support CTR
1301 Suitland Road, Bldg. 5
Washington, D. C. 20390
ATTN: Mr. Dubbin Stic 12

DIRECTOR
Naval Research Laboratory
Washington, D. C. 20375
ATTN: HDQ COMM DIR Bruce Wald
ATTN: CODE 5460 Radio Propagation BR
ATTN: CODE 7701 Jack D. Brown
ATTN: CODE 7700 Division Superintendent 25 copies
ATTN: CODE 7750 Branch Head 150 copies

COMMANDING OFFICER
Naval Space Surveillance System
Dahlgren, Va. 22448

COMMANDER
Naval Surface Weapons Center
White Oak, Silver Spring, Md. 20910
ATTN: CODE 1224 Navy Nuc Prgms Off

DIRECTOR
Strategic Systems Project Office
Navy Department
Washington, D. C. 20375
ATTN: NSP-2141

COMMANDER
ADC/AD
ENT AFB, Co., 80912
ATTN: ADDA

Headquarters
U. S. Army Elect Warfare Lab (ECOM)
White Sands Missile Range, NM 88002
ATTN: E. Butterfield

AF Cambridge Resh Labs, AFSC
L. G. Hanscom Field
Bedford, Ma 01730
ATTN: LKB Kenneth S. W. Champion
ATTN: OPR James C. Ulwick
ATTN: OP John S. Garing
ATTN: OPR Alva T. Stair
AF Weapons Laboratory, AFSC
Kirtland AFB, NM 87117
ATTN: John M. Kamm SAS
ATTN: SUL
ATTN: DYT CAPT. David W. Goetz
ATTN: DYT MAJ. Don Mitchell

AFTAC
Patrick AFB, Fl. 32925
ATTN: TF MAJ. E. Hines
ATTN: TF/CAPT. Wiley
ATTN: TN

Air Force Avionics Laboratory, AFSC
Wright-Patterson AFB, Oh. 45433
ATTN: AFAL AWWE Wade T. Hunt

Assistant Chief of Staff
Studies and Analysis
Headquarters, U. S. Air Force
Washington, D. C. 20330
ATTN: LTC. A. D. Dayton

Headquarters
Electronics Systems Division (AFSC)
L. G. Hanscom Field
Bedford, Ma. 01730
ATTN: XRE LT. Michaels
ATTN: LTC J. Morin CDEF XRC
ATTN: YSEV LTC. David C. Sparks

COMMANDER
Foreign Technology Division, AFSC
Wright-Patterson AFB, Oh. 45433
ATTN: TD-BTA LIBRARY

HQ USAF/RD
Washington, D. C. 20330
ATTN: RDQ

COMMANDER
Rome Air Development Center, AFSC
Griffith AFB, N. Y. 13440
ATTN: EMTLD Doc Library

COMMANDER IN CHIEF
Strategic Air Command
Offutt AFB, NB 68113
ATTN: XPFS MAJ. Brian C. Stephan
544IES
Offutt AFB, NB 68113
ATTN: RDPO LT. Alan B. Merrill

Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, NM 87544
ATTN: DOC CON for R. F. Taschek
ATTN: DOC CON for Milton Peek

Sandia Laboratories
P. O. Box 5800
Albuquerque, NM 87115
ATTN: DOC CON for A. Dean Thronbrough
ATTN: DOC CON for W. D. Brown
ATTN: DOC CON for D. A. Dahlgren, ORG 1722

University of California
Lawrence Livermore Laboratory
P. O. Box 808
Livermore, CA 94550
ATTN: Tech Info Dept L-3

Department of Commerce
National Oceanic & Atmospheric Admin.
Environmental Research Laboratories
Boulder, CO 80302
ATTN: Joseph H. Pope
ATTN: C. L. Rufenach

Department of Commerce
Office for Telecommunications
Institute for Telecomm Science
Boulder, CO 80302
ATTN: Glenn Falcon
ATTN: G. Reed
ATTN: L. A. Berry

Department of Transportation
Transportation Rsch. System Center
Kendall Square
Cambridge, MA 02142
ATTN: TER G) Harwolles

NASA
Goddard Space Flight Center
Greenbelt, Md 20771
ATTN: CODE 750 T. Golden
NASA
600 Independence Ave., S. W.
Washington, D. C. 20546
ATTN: M. Dubin
ATTN: J. Holtz

Aerodyne Research, Inc.
Tech/Ops Building
20 South Avenue
Burlington, MA 01803
ATTN: M. Camac
ATTN: F. Bien

Aerospace Corporation
P. O. Box 92977
Los Angeles, CA 90009
ATTN: T. M. Salmi
ATTN: S. P. Bower
ATTN: V. Josephson
ATTN: SMFA for P/W
ATTN: R. Grove
ATTN: R. D. Rawcliffe
ATTN: T. Taylor
ATTN: Harris Mayer
ATTN: D. C. Cartwright

Analytical Systems Corporation
25 Ray Avenue
Burlington, MA 01803
ATTN: Radio Sciences

Avco-Everett Research Laboratory, Inc.
2385 Revere Beach Parkway
Everett, MA 02149
ATTN: Richard M. Patrick

Boeing Company, The
P. O. Box 3707
Seattle, WA 98124
ATTN: D. Murray
ATTN: Glen Keister

Brown Engineering Company, Inc.
Cummings Research Park
Huntsville, AL 35807
ATTN: David Lambert MS 18

California at San Diego, Univ. of
Building 500 Mather Campus
3172 Miramar Road
La Jolla, CA 92037
ATTN: Henry G. Booker
Calspan
P. O. Box 235
Buffalo, N. Y. 14221
ATTN: Romeo A. Deliberis

Computer Sciences Corporation
P. O. Box 530
6565 Arlington Blvd.
Falls Church, VA 22046
ATTN: H. Blank
ATTN: Barbara F. Adams

Comsat Laboratories
P. O. Box 115
Clarksburg, Md. 20734
ATTN: R. R. Taub

Cornell University
Department of Electrical Engineering
Ithaca, N. Y. 14850
ATTN: D. T. Farley, Jr.

ESL, Inc.
495 Java Drive
Sunnyvale, CA 93102
ATTN: J. Roberts
ATTN: V. L. Mower
ATTN: James Marshall
ATTN: R. K. Stevens

General Electric Company
Tempo-Center for Advanced Studies
816 State Street
Santa Barbara, CA 93102
ATTN: Don Chandler
ATTN: DASIAC
ATTN: DASIAC Art Feryok
ATTN: Warren S. Knapp

General Electric Company
P. O. Box 1122
Syracuse, N. Y. 13201
ATTN: F. A. Reibert

General Research Corporation
P. O. Box 3587
Santa Barbara, CA 93105
ATTN: John Ise, Jr.
Geophysical Institute
University of Alaska
Fairbanks, AK 99701
ATTN: Technical Library
ATTN: Neil Brown
ATTN: T. N. Davis

GTE Sylvania, Inc.
189 B Street
Needham Heights, MA 02194
ATTN: Marshall Cross

HRB-SINGER, Inc.
Science Park, Science Park Road
P. O. Box 60
State College, PA 16801
ATTN: Larry Feathers

Honeywell Incorporated
Radiation Center
2 Forbes Road
Lexington, MA 02173
ATTN: W. Williamson

Illinois, University of
Department of Electrical Engineering
Urbana, IL 61801
ATTN: K. C. Yeh

Institute for Defense Analyses
400 Army-Navy Drive
Arlington, VA 22202
ATTN: Ernest Bauer
ATTN: Hans Wolfhard
ATTN: J. M. Aein
ATTN: Joel Bengston

Int'l Tel & Telegraph Corporation
500 Washington Avenue
Nutley, N. J. 07110
ATTN: Technical Library

ITT Electro-Physics Laboratories, Inc.
9140 Old Annapolis Road
Columbus, Md. 21043
ATTN: John M. Kelso
Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, MD 20910
ATTN: Document Librarian

Lockheed Missiles & Space Co., Inc.
P. O. Box 504
Sunnyvale, CA 94088
ATTN: Dept. 60-12

Lockheed Missiles and Space Company
3251 Hanover Street
Palo Alto, CA 94304
ATTN: Billy M. McCormac, Dept 52-14
ATTN: Martin Walt, Dept 52-10
ATTN: Richard G. Johnson, Dept 52-12
ATTN: J. B. Reagan, Dept 52-12
ATTN: John Kumer
ATTN: Robert D. Sears, Dept 52-14

MIT Lincoln Laboratory
P. O. Box 73
Lexington, MA 02173
ATTN: Mr. Walden, X113
ATTN: D. Clark
ATTN: James H. Pannell, L-246
ATTN: Lib A-052 for David M. Towle

Martin Marietta Corporation
Denver Distribution
P. O. Box 179
Denver, CO 80201
ATTN: Special Projects Program 248

Maxwell Laboratories, Inc.
9244 Balboa Avenue
San Diego, CA 92123
ATTN: A. J. Shannon
ATTN: V. Fargo
ATTN: A. N. Rostocker

McDonnell Douglas Corporation
5301 Bolsa Avenue
Huntington Beach, CA 92647
ATTN: J. Moule
ATTN: N. Harris
Physical Dynamics, Inc.
P. O. Box 1069
Berkeley, CA 94701
ATTN: Joseph B. Workman

Physical Sciences, Inc.
607 North Avenue, Door 18
Wakefield, MA 01880
ATTN: Kurt Wray

R & D Associates
P. O. Box 3580
Santa Monica, CA 90403
ATTN: Robert E. Lelevier
ATTN: Forest Gilmore
ATTN: Richard Latter
ATTN: William B. Wright, Jr.

R & D Associates
1815 N. Ft. Myer Drive
11th Floor
Arlington, VA 2209
ATTN: Herbert J. Mitchell

Rand Corporation, The
1700 Main Street
Santa Monica, CA 90405
ATTN: Cullen Crain
ATTN: James Oakley

Science Applications, Inc.
P. O. Box 2331
La Jolla, CA 92038
ATTN: Daniel A. Hamlin
ATTN: D. Sachs
ATTN: E. A. Straker

Space Data Corporation
1331 South 26th Street
Phoenix, AZ 85034
ATTN: Edward F. Allen
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025
ATTN: M. Baron
ATTN: L. L. Cobb
ATTN: Walter G. Chestnut
ATTN: David A. Johnson
ATTN: Charles L. Rino
ATTN: E. J. Fremouw
ATTN: Ray L. Leadabrand

Stanford Research Institute
306 Wyyn Drive, N. W.
Huntsville, AL 35805
ATTN: Dale H. Davis

Technology International Corporation
75 Wiggins Avenue
Bedford, MA 01730
ATTN: W. P. Boquist

TRW Systems Group
One Space Park
Redondo Beach, CA 90278
ATTN: P. H. Katsos
ATTN: J. W. Lowery

Utah State University
Logan, UT 84321
ATTN: C. Wyatt
ATTN: D. Burt
ATTN: Kay Baker
ATTN: Doran Baker

Visidyne, Inc.
19 Third Avenue
North West Industrial Park
Burlington, MA 01803
ATTN: William Reidy
ATTN: Oscar Manley
ATTN: T. C. Degges
ATTN: J. W. Carpenter