EXPERIMENTAL EVALUATION OF THE EFFECT OF ROTATION ON THE AERODYNAMIC CHARACTERISTICS OF TWO HELICOPTER ROTOR HUB FAIRING SHAPES

by

Peter S. Montana

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Report ASED-364

September 1976

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

BETHESDA MARYLAND 20084
An experiment was performed to demonstrate that the drag of rotor hub fairings for high speed helicopters is not a function of advance ratio. Two hub fairing shapes were evaluated both with and without simulated blade shanks over a range of hub advance ratios from 0.5 to infinity. It was determined that the drag coefficient (and most other coefficients) is constant for hub advance ratios greater than about 3.0.
TABLE OF CONTENTS

ABSTRACT .. 1
ADMINISTRATIVE INFORMATION 1
UNITS OF MEASUREMENT 1
SYMBOLS ... 2
INTRODUCTION ... 3
APPARATUS .. 3
MODELS .. 4
DATA CORRECTION AND ACCURACY 5
DISCUSSION AND RESULTS 6
REFERENCES .. 8

LIST OF FIGURES

Figure 1 — Model Description 9
Figure 2 — Drag Coefficient Versus Hub Advance Ratio 13
Figure 3 — Lift Coefficient Versus Hub Advance Ratio 21
Figure 4 — Pitching Moment Coefficient Versus Hub Advance Ratio 29
Figure 5 — Side Force Coefficient Versus Hub Advance Ratio 37
Figure 6 — Yawing Moment Coefficient Versus Hub Advance Ratio 45
Figure 7 — Rolling Moment Coefficient Versus Hub Advance Ratio 53
Figure 8 — Lift to Drag Ratio Versus Hub Advance Ratio 61

LIST OF TABLES

Table 1 — Blade Shank Geometry 4
Table 2 — Configuration Notation 5
Table 3 — Wind Tunnel Force and Moment Measurement Accuracies 5
ABSTRACT

An experiment was performed to demonstrate that the drag of rotor hub fairings for high speed helicopters is not a function of advance ratio. Two hub fairing shapes were evaluated both with and without simulated blade shanks over a range of hub advance ratios from 0.5 to infinity. It was determined that the drag coefficient (and most other coefficients) is constant for hub advance ratios greater than about 3.0.

ADMINISTRATIVE INFORMATION

The experimental program reported herein was funded jointly by the Naval Air Systems Command (AIR-320D) and the National Aeronautics and Space Administration (Langley Research Center) under task area WF41.421.201 and purchase request L-97786 respectively. The David W. Taylor Naval Ship Research and Development Center (DTNSRDC) work units were 1-1619-105 and 1-1619-108.

UNITS OF MEASUREMENT

All data recorded during this experiment were either measured in or converted directly to U.S. customary (US) units. Hence, U.S. customary units are the primary units in this report. Metric units are given either adjacent to the US units in parentheses or opposite US units in the case of graphs. Angular measurement is the only exception. The unit degrees is not converted to radians on graphs.
SYMBOLS

\[C_D \] Drag Force Coefficient
\[C_L \] Lift Force Coefficient
\[C_M \] Pitching Moment Coefficient
\[C_N \] Yawing Moment Coefficient
\[C_Y \] Side Force Coefficient
\[d' \] Rotor Diameter
\[D \] Drag Force
\[L \] Lift Force
\[L' \] Rolling Moment
\[M \] Pitching Moment
\[N \] Yawing Moment
\[q \] Dynamic Pressure
\[s \] Reference Area
\[V \] Free Stream Velocity
\[\mu \] Rotor Advance Ratio
\[\mu_H \] Hub Advance Ratio
\[\Omega \] Angular Velocity
\[\rho \] Density of Air

\[D \] Drag Force
\[L \] Lift Force
\[L' \] Rolling Moment
\[M \] Pitching Moment
\[N \] Yawing Moment
\[q \] Dynamic Pressure
\[s \] Reference Area
\[V \] Free Stream Velocity
\[\mu \] Rotor Advance Ratio
\[\mu_H \] Hub Advance Ratio
\[\Omega \] Angular Velocity
\[\rho \] Density of Air

2.5 ft (0.76 m)
INTRODUCTION

Future improvements in helicopter flight performance will be directly related to the reduction of helicopter fuselage aerodynamic drag. Numerous publications have shown the validity of this statement. The Navy program in this area, titled the Helicopter Drag Technology Program, is funded under the cognizance of the Naval Air Systems Command with the participation of the U.S. Army Air Mobility Research and Development Laboratory (Eustis Directorate) in the area of interactive graphics and of the National Aeronautics and Space Administration (Langley Research Center) in the area of rotor hub-pylon drag. A portion of the experimental evaluations of the latter effort is documented in this report.

The purpose of this experiment was to demonstrate the independence of rotor hub fairing drag from hub advance ratio, \(\mu_H \), for high speed helicopters. This premise was stated in reference 4, a report on the wind tunnel evaluation of three non-rotating rotor hub fairings which included a brief survey of literature pertaining to rotor hub drag. Of the three rotor hub fairing shapes evaluated in reference 4, two were selected to be evaluated over a hub advance ratio range from 0.5 to 12.0. The hub advance ratio range can encompass rotor advance ratios from 0.025 to 2.40 depending the rotor hub diameter to rotor diameter ratio.

The models were tested both with and without simulated rotor blade shanks over the following ranges of parameters: rotor shaft angle of attack, \(-5.0 (0.0873)\) and 0 degrees (radians); wind tunnel velocity, 50. (15.24), 75. (22.86), 100. (30.48), 125. (38.10), 150. (45.72), 175. (53.34), 200. (60.96), and 225. (68.58) feet (meters) per second; and angular velocity, 0, 143. (14.97), 286. (29.95), 501. (52.46), 716. (74.98), and 875. (91.63) revolutions per minute (radians per second).

APPARATUS

The experiment was conducted in the David W. Taylor Naval Ship Research and Development Center's (DTNSRDC) 8- by 10-Foot Subsonic North Wind Tunnel. The hub fairings were mounted on the rotor drive system which was fastened to the wind tunnel balance frame. The output of sensors mounted in the rotor drive system and of the wind tunnel balance, and air flow information were digitally recorded on magnetic tape with a
Beckman high speed data acquisition system.

MODELS

The two hub fairing models were both thirty inches in diameter and twenty-five percent thick. One model was an oblate ellipsoid and the other had a reflexed curvature cross section. The models, which are described in Figure 1, are identical to those statically evaluated in reference 4. There were a total of four configurations tested; each fairing was tested by itself and with blade shanks. The four shanks were simulated by the blades of the DTNSRDC reverse blowing circulation control rotor (RB-CCR) described in detail in reference 7. The blade characteristics are summarized in Table 1. The blade root characteristics given are for the intersection of the blades with the hub of the rotor drive system. For this experiment, the blade collective angle was set at -2 degrees (0.0349 radians), and blowing was not employed. Configuration notation is defined in Table 2.

<table>
<thead>
<tr>
<th>Table 1 - BLADE SHANK GEOMETRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLADE</td>
</tr>
<tr>
<td>Diameter, ft (m)</td>
</tr>
<tr>
<td>Number of Blades</td>
</tr>
<tr>
<td>Chord, in. (cm)</td>
</tr>
<tr>
<td>Solidity Ratio</td>
</tr>
<tr>
<td>Geometric Twist, deg.</td>
</tr>
<tr>
<td>AIRFOIL</td>
</tr>
<tr>
<td>Thickness Ratio, t/C</td>
</tr>
<tr>
<td>Camber Ratio, δ/C</td>
</tr>
<tr>
<td>Trailing Edge Radius, R_{TE}/C</td>
</tr>
<tr>
<td>Slot Height Ratio, h/c</td>
</tr>
</tbody>
</table>
Table 2 - CONFIGURATION NOTATION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Hub</td>
</tr>
<tr>
<td>HB</td>
<td>Hub with Blade Shanks</td>
</tr>
<tr>
<td>E</td>
<td>Elliptical</td>
</tr>
<tr>
<td>R</td>
<td>Reflex Curvature</td>
</tr>
<tr>
<td>()</td>
<td>Rotor Shaft Angle of Attack in Degrees</td>
</tr>
<tr>
<td>EH(0)</td>
<td>Elliptical Hub at 0 Degrees</td>
</tr>
<tr>
<td>EH(-5)</td>
<td>Elliptical Hub at -5 Degrees</td>
</tr>
<tr>
<td>EHB(0)</td>
<td>Elliptical Hub with Blade Shanks at 0 Degrees</td>
</tr>
<tr>
<td>EHB(-5)</td>
<td>Elliptical Hub with Blade Shanks at -5 Degrees</td>
</tr>
<tr>
<td>RH(0)</td>
<td>Reflex Hub at 0 Degrees</td>
</tr>
<tr>
<td>RH(-5)</td>
<td>Reflex Hub at -5 Degrees</td>
</tr>
<tr>
<td>RHB(0)</td>
<td>Reflex Hub with Blade Shanks at 0 Degrees</td>
</tr>
<tr>
<td>RHB(-5)</td>
<td>Reflex Hub with Blade Shanks at -5 Degrees</td>
</tr>
</tbody>
</table>

DATA CORRECTIONS AND ACCURACY

The only corrections applied to the data* were for solid blockage and for hydraulic hose pressure forces due to the rotor drive motor. No corrections were applied for rotor support tare or interference. The accuracy of the wind tunnel balance system is summarized in Table 3 below.

Table 3 - WIND TUNNEL FORCE AND MOMENT MEASUREMENT ACCURACIES

<table>
<thead>
<tr>
<th>Force/Moment</th>
<th>Accuracy</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift Force</td>
<td>0.25 lb.</td>
<td>(1.1 N)</td>
</tr>
<tr>
<td>Drag Force</td>
<td>0.05 lb.</td>
<td>(0.22 N)</td>
</tr>
<tr>
<td>Side Force</td>
<td>0.25 lb.</td>
<td>(1.1 N)</td>
</tr>
<tr>
<td>Pitching Moment</td>
<td>0.10 lb ft.</td>
<td>(0.14 N·m)</td>
</tr>
<tr>
<td>Yawing Moment</td>
<td>0.10 lb ft.</td>
<td>(0.14 N·m)</td>
</tr>
<tr>
<td>Rolling Moment</td>
<td>0.10 lb ft.</td>
<td>(0.14 N·m)</td>
</tr>
</tbody>
</table>

*The data presented is in wind axes coefficient form with reference area of 4.91 square feet (0.456 square meter) and reference length of 2.5 feet (0.76 meter).
DISCUSSION AND RESULTS

The purpose of this experiment was to demonstrate the independence of rotor hub fairing drag from hub advance ratio for high speed helicopters. To accomplish this goal, four rotor hub fairing configurations (two with simulated blade shanks) were evaluated over a wide range of advance ratios for two shaft angles of attack. The variety of wind and rotational speeds used yielded rotor advance ratio ranges of 0.025 to 0.60 and 0.10 to 2.4 for hub diameter to rotor diameter ratios of 0.05 and 0.20 respectively. The ranges represent a complete survey of the spectrum of rotor advance ratios. (Current conventional helicopters operate with a maximum rotor advance ratio of 0.40 which translates into hub advance ratios of 8.0 and 2.0 for small and large hubs respectively.)

The data recorded during this test are presented in Figures 2 through 7 as force or moment coefficients versus hub advance ratio in the order of C_D, C_L, C_M, C_Y, C_N, and C_L''. In addition lift to drag ratio versus hub advance ratio is presented in Figure 8.

GENERAL OBSERVATIONS

In general, as hub advance ratio increases, the force and moment coefficients approach constants for each configuration. For the hub fairings without simulated blade shanks, all of the coefficients have reached their constant values for hub advance ratios greater than 3.0. The drag, pitching moment, and lateral coefficients become constants at somewhat lower values of hub advance ratio.

For the hub fairing with simulated blade shanks, the data is not as dramatic. The drag and side force, and yawing moment coefficients are constants for hub advance ratios greater than 4.0. The relatively thin blade shanks contribute significant amounts of thrust at low advance ratios and this results in the delay in the stabilization of the coefficients of the shank configurations. Two coefficients, C_M and C_L'', at a shaft angle of attack of -5 degrees (-0.087 radians), are functions of both rotor rotational speed and wind speed. In all other cases, all coefficients are functions of hub advance ratio only. There is a small amount of scatter in the data due to the excitation of some rotor and support structural vibrational modes. The effect of these vibrations is usually negligible, although an occasional spurious point appears in the data.
QUANTITATIVE OBSERVATIONS

1. The reflex hub had about 30 percent less drag than the elliptical hub and the reflex hub with shanks had about 20 percent less drag than the elliptical hub with shanks.

2. The lift curve slope of the reflex hub was about 40 percent greater than that of the elliptical hub. The shank configurations had essentially the same lift curve slope.

3. The elliptical hub configurations had lower pitching moment coefficients than the reflex hub configurations.

4. Without shanks mounted, the lateral coefficients were essentially zero.

5. The shank aerodynamics usually dominated the aerodynamics of the hub shank configurations.

6. The stopped rotor data gives a very good approximation of the high advance ratio data in all cases.
REFERENCES

Figure 1(a) – Model Description
Figure 2 – Drag Coefficient Versus Hub Advance Ratio
Figure 2 – (continued)
Figure 2 – (continued)
Figure 2 – (concluded)
Figure 3 – Lift Coefficient Versus Hub Advance Ratio
Figure 3 – (continued)
Figure 3 – (continued)
Figure 3 – (continued)
Figure 3 – (concluded)
Figure 4 – Pitching Moment Coefficient Versus Hub Advance Ratio
Figure 4 – (continued)
Figure 4 – (continued)
Figure 4 - (continued)
Figure 4 - (concluded)
Figure 5 – Side Force Coefficient Versus Hub Advance
Figure 5 - (continued)
Figure 5 – (continued)
Figure 5 – (continued)
Figure 5 — (continued)
Figure 6 – Yawing Moment Coefficient Versus Hub Advance Ratio
Figure 6 — (continued)
Figure 7 – Rolling Moment Coefficient Versus Hub Advance Ratio
Figure 7 - (continued)
Figure 7 - (continued)
Figure 7 - (continued)
Figure 7 – (concluded)
Figure 8 — Lift to Drag Ratio Versus Hub Advance Ratio
Figure 8 – (continued)
Figure 8 – (continued)
Figure 8 – (concluded)