DEPARTMENT OF THE ARMY
UNITED STATES ARMY AVIATION TEST BOARD
Fort Rucker, Alabama 36360

STEBG-TD-V

SUBJECT: Final Report of Support of Engineering Design Test of Electroluminescent Panels and Rotor Tip Lights,
USATECOM Project No. 4-9-5002-01

SEE DISTRIBUTION

1. Reference

2. Background

In March 1968, US Army Materiel Command initiated a program to provide equipment to permit helicopter formation flight during hours of darkness. The concept ranged from relatively simple lights and electroluminescent panels with rotor tip lights to complex night vision devices. The initial phase of the program consisted of procuring equipment and subjecting it to engineering design (ED) test. On 16 April 1969, US Army Test and Evaluation Command directed the US Army Aviation Test Board to support US Army Electronics Command with this ED test.

3. Description of Materiel

The night vision devices for formation flight consist of eight electroluminescent (EL) panels mounted on a UH-1() helicopter (as shown in enclosure 1), rotor tip lights, and two control units—one located on the upper pedestal and one on the lower console. The panels are 2 inches

Approved for public release; distribution unlimited
STEBG-TD-V

SUBJECT: Final Report of Support of Engineering Design Test of Electroluminescent Panels and Rotor Tip Lights, USATECOM Project No. 4-9-5002-01

by 10 inches, with a louvered overlay to prevent detection below -5° and above $+10^\circ$ from the horizontal axis of the aircraft. The rotor tip lights are 1 inch by 2 inches by 1/2 inch and are located above the rotor tip tiedown on each blade end. Each tip light consists of five incandescent bulbs.

4. OBJECTIVES were

To determine whether the electroluminescent panels and rotor tip lights offer an improved visual reference during night VFR formation flying and an increase in operational capability over the currently existing UH-1 night formation lighting system.

5. SCOPE AND METHOD

a. The USAAVNTBD provided support of this ED test in the vicinity of Fort Rucker, Alabama, during April-June 1969. The EL panels and rotor tip lights were installed on a UH-1C Helicopter and tested for 35 flight hours using a follower aircraft in formation in total dark night operations.

b. Nineteen aviators flew night formation without the use of radios. Eleven flights were in left echelon and eight were in trail. The following light configurations were used:

(1) Navigation/position lights.
(2) Navigation/position and rotor tip lights.
(3) EL panels (minimum).
(4) EL panels (minimum) and rotor tip lights.
(5) EL panels (maximum).
(6) EL panels (maximum) and rotor tip lights.
STEBG-TD-V
SUBJECT: Final Report of Support of Engineering Design Test of Electroluminescent Panels and Rotor Tip Lights, USATECOM Project No. 4-9-5002-01

6. RESULTS

a. All the pilots that flew formation stated that the EL panels with rotor tip lights were an improvement over the present formation lights. They were easier to follow and less tiring to the eyes, and pilots could maintain position with greater confidence.

b. It was determined that the rotor tip lights were the best single light configuration and gave the most information quickest to the follower. (See inclosures 2 and 3.) When the pilot made the slightest degree of bank, acceleration, or deceleration, the rotor tip lights indicated the change prior to movement of the airframe. These lights were helpful in marginal weather and when performing formation Ground-Controlled Approaches.

c. Panels No. 1 and 2 (inclosure 1), when aligned with each other, indicated to the follower pilot a definite angle (42°) to help him maintain position in echelon formation; however, at this angle, the follower pilot had to look around the door post to see the panels. Panel No. 4 was a green "L" incorporating No. 5 as a red triangle and the space between these two lights was a solid black line. This combination helped to determine 200-foot ranges when two distinct lights were seen by the average pilot. The two panels converged into one orange light at a distance greater than 200 feet. The tail-rotor drive-shaft light (No. 6) helped as a cross reference in trail formation in that when the pilot could see the panel, he knew instantly that he was not in the proper position. It offered no significant use for echelon formation.

d. The louvered overlay was not satisfactory for combat operations. All the EL panels could be seen from the ground at a lateral distance of 250 feet with the aircraft in straight and level flight at altitudes up to 1,500 feet, and at greater distances with the aircraft in a turn. The front door panel (No. 3) and upper tail-rotor panel (No. 8) were visible from the ground at a lateral distance of 3,400 feet with the aircraft at an altitude of 1,000 feet. The main-rotor tip lights could be seen from the ground when the aircraft was at 100 feet altitude, especially if any banks or decelerations were made.
STEBG-TD-V
SUBJECT: Final Report of Support of Engineering Design Test of Electroluminescent Panels and Rotor Tip Lights, USATECOM Project No. 4-9-5002-01

e. Landings were made without difficulty; however, the panels did not provide a reflection to determine proximity to the ground. As a result, the pilot of the lead aircraft had to use either the landing light or a fixed light on the ground when making approaches.

7. DISCUSSION

a. The rotor tip lights formed a "halo" that could be seen from above or below. A shielded light, that could be seen only from above, mounted on the main-rotor head would provide vertical position data to the follower pilot. When the "halo" and rotor head light were seen, it would indicate that the follower helicopter was above the lead helicopter. When the "halo" without the rotor head light is seen, it would indicate that the follower helicopter was below the lead helicopter.

b. This test was conducted using only one helicopter equipped with EL panels and rotor tip lights. Data are not available for formation flying with more than one helicopter equipped with these night vision devices. Prior to further USATECOM testing, EDT should include night formation flights of three or more helicopters equipped with EL panels and rotor tip lights.

8. CONCLUSIONS

a. The electroluminescent panels and rotor tip lights offer an improved visual reference during night VFR formation flight.

b. The panels and lights increase operational capability over that afforded by the current UH-1 night formation lighting system.

FOR THE PRESIDENT:

[Signature]
P. V. SCHUMAN
Captain, AGC
Adjutant

5 Incl
1. Lighting Diagram
2. Comment Summary
3. Comment Summary
4. Support List
5. DD Form 1473
STEBG-TD-V
SUBJECT: Final Report of Support of Engineering Design Test of Electroluminescent Panels and Rotor Tip Lights, USATECOM Project No. 4-9-5002-01

DISTRIBUTION:
Commanding General 60 copies
US Army Electronics Command
ATTN: AMSEL-RD-GTT
Fort Monmouth, New Jersey 07703

Commanding General 2 copies
US Army Test and Evaluation Command
ATTN: AMSTE-BG
Aberdeen Proving Ground, Maryland 21005

Commanding General 3 copies
US Army Combat Developments Command
ATTN: USACDC LnO, USATECOM
Aberdeen Proving Ground, Maryland 21005
ECHELON FORMATION

For each type of maneuver or operation listed, the box or boxes across the row were checked to indicate the combination of lights which gave the best information to the follower. In some instances the pilot indicated several configurations as being adequate.

<table>
<thead>
<tr>
<th>POSITION / NAVIGATION</th>
<th>Red & Green Side Lights</th>
<th>White Cabin Lights</th>
<th>White Tip Lights</th>
<th>Rotor</th>
<th>Amber & Green Top Panels</th>
<th>Front Green Door Panel</th>
<th>Green L</th>
<th>Red Triangle</th>
<th>Tall Rotor Drive Shaft Cover Panel</th>
<th>Top Tail Panels</th>
<th>Lower Tail Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Right Turn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Left Turn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ascent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Descent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Landing</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6. Take Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Distance Estimation</td>
<td></td>
</tr>
<tr>
<td>a. 200 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. 500 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 1000 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Rendezvous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Straight & Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
TRAIL FORMATION

For each type of maneuver or operation listed, the box or boxes across the row were checked to indicate the combination of lights which gave the best information to the follower. In some instances the pilot indicated several configurations as being adequate.

<table>
<thead>
<tr>
<th>POSITION / NAVIGATION</th>
<th>Red & Green Side Lights</th>
<th>White Cabin Lights</th>
<th>White Tail Lights</th>
<th>Rotor Tip Lights</th>
<th>Amber & Green Top Panels</th>
<th>Front Green Door Panel</th>
<th>Green L</th>
<th>Red Triangle</th>
<th>Tail Rotor Drive Shaft Cover Panel</th>
<th>Top Tail Panels</th>
<th>Lower Tail Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Right Turn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2. Left Turn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3. Ascent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Descent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Landing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6. Take Off</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Distance Estimation</td>
<td></td>
</tr>
<tr>
<td>a. 200 ft.</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>b. 500 ft.</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>c. 1000 ft.</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8. Rendezvous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Straight & Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
SUPPORT LIST

The following support was provided during the test:

1. Nineteen subject aviators.
2. Thirty-eight safety aviators.
3. Thirty-five flying hours.
4. Cost of parts installed on subject aircraft 28 April - 10 June 1969: $2,464.34.
5. Man-hours expended to maintain the aircraft: 150 ($453).
6. Man-hours expended to pick up parts at other installations: 8 ($41.52).
7. Fuel used for aircraft to pick up parts at other installations: 330 gallons ($38.61).
8. Fuel used for test aircraft: 2,150 gallons ($251.55).
ENGINEERING DESIGN TEST OF ELECTROLUMINESCENT PANELS AND ROTOR TIP LIGHTS

Final Report of Support, April - June 1969

JONES, PAT W., CW3

July 1969

6. REPORT DATE

7. TOTAL NO. OF PAGES

9. ORIGINATOR'S REPORT NUMBER(S)

Firing Code: 0

10. AVAILABILITY/LIMITATION NOTICES

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

US Army Electronics Command
Fort Monmouth, New Jersey 07703

13. ABSTRACT

The US Army Aviation Test Board provided support to US Army Electronics Command in conducting the engineering design test of electroluminescent panels and rotor tip lights. The test was conducted to determine whether the panels and lights offer an improved visual reference during night VFR formation flying and an increase in operational capability over the currently existing UH-1 night formation lighting system. The panels and lights were installed on a UH-1C Helicopter and tested in the vicinity of Fort Rucker, Alabama, during April - June 1969. Several lighting configurations were used in both trail and echelon formations. The test items were an improvement over the present formation lights. The rotor tip lights were the best single light configuration, providing the most information to the follower pilot. Both the panels and the rotor tip lights were visible from the ground at varying distances, depending on the lighting configuration and the attitude and altitude of the helicopter. It was concluded that the electroluminescent panels and rotor tip lights offer an improved visual reference during night VFR formation flight and that the panels and lights increase operational capability over that afforded by the current UH-1 night formation lighting system.
Engineering Design Test
Electroluminescent Panels
Rotor Tip Lights
UH-1C Helicopter
Night Formation Flight

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, day, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. 8c. & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through qualified DDC users shall request through"

(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

(5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.