Title
Depolarized Rayleigh Scattering and Orientational Motion of Polyethylene Glycols.

Authors
Dane R. Jones and C. H. Wang

Performing Organization Name and Address
Department of Chemistry
University of Utah, SLC, UT 84112

Control Office Name and Address
Office of Naval Research
Chemistry Program Office
Arlington, VA 22217

Monitoring Agency Name and Address
Unclassified

Distribution Statement (of this Report)
- According to the attached distribution list
- Others may obtain copies of this report from the Office of Technical Service, Department of Commerce.

Distribution Statement (of the abstract entered in Block 20, if different from Report)
Unclassified

Abstract
The depolarized Rayleigh light scattering spectra of pure polyethylene glycols and their solutions in an optically isotropic solvent were studied as a function of polymer molecular weight, concentration and temperature. Reorientational relaxation times were obtained by fitting the observed spectra to Lorentzian functions convoluted with the experimental spectrum. The relaxation times were found to increase with increasing molecular weight and with dilution. The depolarized Rayleigh results for the polyethylene glycols were compared with theoretical predictions.
OFFICE OF NAVAL RESEARCH

Contract N00014-75-C-0908

Task No. NR 051-562

TECHNICAL REPORT NO. 12

DEPOLARIZED RAYLEIGH SCATTERING AND ORIENTATIONAL
MOTION OF POLYETHYLENE GLYCOL

by

Dane R. Jones and C. H. Wang

Prepared for Publication
in the
Journal of Chemical Physics

Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

October 6, 1976

Reproduction in whole or in part is permitted for any purpose of the
United States Government

Approved for Public Release; Distribution Unlimited.
Depolarized Rayleigh Scattering
and Orientational Motion of
Polyethylene Glycol

Dane R. Jones† and C.H. Wang*
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

†Present address: Department of Chemistry, California Polytechnic
State University, San Luis Obispo, CA 93407

Abstract

The depolarized Rayleigh light scattering spectra of pure polyethylene glycols and their solutions in an optically isotropic solvent were studied as a function of polymer molecular weight, concentration and temperature. Reorientational relaxation times were obtained by fitting the observed spectra to Lorentzian functions convoluted with the experimental spectrum. The relaxation times were found to increase with increasing molecular weight and with dilution. The depolarized Rayleigh results for the polyethylene glycols were compared with results for other polymer systems and with results obtained using other types of relaxation studies. By studying the dependence of the relaxation times on viscosity, temperature and concentration and comparing the results with theoretical predictions of molecular and end-group reorientations, we have associated the depolarized Rayleigh spectra of polyethylene glycol with rotation of the entire polymer molecule.
I. Introduction

Dielectric relaxation, nuclear magnetic resonance spin-lattice relaxation and neutron scattering can yield information on the orientational motion of polymers in the liquid state. In a previous work, it was shown that polarized Brillouin - Rayleigh scattering could be used to determine the effects of density fluctuations in pure polymers.\(^1\)

Depolarized Rayleigh light scattering could also be used to study molecular motion of polymer melts and solutions. The mechanisms for depolarized Rayleigh scattering are density fluctuations and anisotropy fluctuations, as both can modulate the Rayleigh polarizability tensor. However, depolarized Rayleigh scattering due to density fluctuations is small relative to the anisotropy fluctuations, and in most cases an unambiguous separation of density and anisotropic effects can be obtained.

Depolarized Rayleigh scattering spectra have been measured for several small molecules by Pecora and co-workers\(^2\) and in this laboratory\(^3\). It has been found that the depolarized spectra of small molecules are primarily determined by overall molecular rotational motion. Therefore, we expect that the spectra of polymers in solution might also be dependent on overall rotational motion.

In a previous paper\(^4\) (hereafter referred to as I), we demonstrated how depolarized Rayleigh scattering could be used to study the segmental motion in pure polypropylene glycols. In polymers, at least three different types of motions can give rise to depolarized Rayleigh scattering. The first type of motion is rotation of the entire molecule. For a dilute solution of relatively small cylindrically symmetric polymer molecules, the depolarized Rayleigh spectrum is a single Lorentzian with half-width at half-height (HWHH) given by\(^5\)
\[\Gamma = \left(\frac{1}{2\pi} \right) 6 \, D_R \]

(1)

where \(\Gamma \) is the HWHH in Hz and \(D_R \) is the rotational diffusion coefficient.

For asymmetric molecules, the molecular reorientational spectrum becomes the sum of as many as five Lorentzians. The depolarized Rayleigh relaxation time, \(\tau_{Ray} \) is related to the HWHH of the experimental Lorentzian spectrum by

\[\tau_{Ray}^{-1} = (2\pi \Gamma) \]

(2)

In contrast to Raman scattering, depolarized Rayleigh spectral power density for concentrated solutions of scattering molecules depends on both single particle motions and static and dynamic correlated motions of molecular pairs. In concentrated solutions pair correlations may become important and the measured relaxation time, \(\tau_{Ray} \), is related to the single particle relaxation time, \(\tau_s \), by

\[\tau_{Ray} = \tau_s \left(\frac{1 + fn}{1 + gn} \right) \]

(3)

where \(f \) and \(g \) measure the strength of static and dynamic pair correlations and \(n \) is the number density of the scatterers.

A second form of orientational motion in polymers which can give rise to depolarized Rayleigh scattering is the internal rotation of end groups or of unhindered side chains. This orientational motion is also characterized by a single relaxation time for orientational motion of a given cylindrically symmetric group and could also show effects due to pair correlations. In general, this relaxation time should be much shorter than the reorientation time for the entire molecule since it is expected that small groups will reorient very quickly.

Polymers can undergo a third type of motion through local movements of polymer segments (not the collective motion of the Rouse-Zimm type). As we have discussed in I, this polymer backbone motion can give rise to depolarized Rayleigh scattering through two mechanisms: segmental reorientation and seg-
mental center of mass motion. The segmental center of mass motion which is the dominant mechanism for the polarized Brillouin scattering contributes to the depolarized Rayleigh scattering spectrum because the polarizability anisotropy of the segment depends on position.

The three types of motion are expected to have different concentration dependences. Polymer molecules generally expand in solution due to the excluded volume effect and solvent-solute interaction. Thus, when viscosity and temperature effects are taken into account, the reorientation of the entire polymer molecule should become slower as the polymer concentration is decreased. On the other hand, the concentration effects on simple end groups and unhindered side chains should be small. However, if strong inter-group forces (e.g. hydrogen bonding) are present, the concentration effects could be fairly large and should depend on such factors as solvent and the presence of intramolecular interactions. Local backbone segmental motion is also expected to become slower as the polymer concentration is decreased since larger segments of the backbone are free to move as the polymer swells with dilution.

The molecular weight (or degree of polymerization) of the polymer can affect the Rayleigh relaxation time. The rotation of the entire molecule should be significantly slower for higher molecular weight samples of the same polymer. On the other hand, the end group or side chain reorientations and the backbone segmental motion will show little change with molecular weight.

We used these ideas in I to analyze the depolarized Rayleigh scattering spectra from a series of polypropylene glycols ranging in molecular weight from 425 to 4000. In this work, we report results of depolarized Rayleigh light scattering study of polyethylene glycols [H-O-(CH$_2$-CH$_2$-O)$_n$-H] as a function of molecular weight, concentration and temperature. The relaxation times obtained from the depolarized Rayleigh spectra are analyzed in light
of the above discussion in an attempt to relate the times to the various possible relaxation processes in this system of polymers.

II. Experimental

The depolarized Rayleigh spectra were taken using the apparatus described in I. The single mode incident laser output at 488.0 nm ranged from 0.3 to 0.5 W. All spectra were obtained using a 90° scattering angle with the incident light polarized perpendicular to the scattering plane and the scattered light polarized parallel to the scattering plane. The scattered light was analyzed using a piezoelectrically scanned Fabry-Perot interferometer fitted with plane mirrors. For the spectra reported here, plate separations ranging from 0.989 to 5.46 cm were used, corresponding to free spectral ranges between 15.2 and 2.74 GHz. The total instrumental finesse ranged from over 70 at the smaller plate separations to 35 at the larger separations. The frequency analyzed light was amplified by a cooled photomultiplier and picoammeter. The resulting signal was displayed on X-Y recorder. The instrumental profile (laser plus interferometer and collection optics) was measured at each plate separation and was found to be fitted well by a Voigt function. After correction for the instrumental contribution and the overlap of adjacent orders, all spectra were found to fit well by a single Lorentzian. There is no indication of a depolarized Brillouin doublet or spectral dip at the line center in any of the liquids studied. The Brillouin spectra measured in the polarized scattering geometry for the pure samples were also obtained as a function of temperature and will be reported elsewhere.

The polyethylene glycol (PEG) samples having average molecular weights of 200 and 400 were obtained from Polysciences, Inc., Warrington PA. Triethylene glycol was obtained from Aldrich Chemical Company, Inc., Milwaukee WI. A 50/50 by volume mixture of carbon tetrachloride and tert-
butyl alcohol was used as a solvent for the solution studied. The depolarized Rayleigh scattering from this solvent was measured and was found to contribute negligibly to the total sample-solvent scattering intensity. The samples were filtered through 0.22 μm Millipore filters into rectangular glass cells. The cell was placed in a brass holder, the temperature of which was controlled with a water-ethylene glycol solution circulated by a Haake FK-2 bath. The temperature is accurate to better than ±1 K. Kinematic viscosities and densities of the samples studied were measured using Cannon-Ubbelhode viscometers and a calibrated pycnometer thermostated in a temperature bath. The absolute viscosities are accurate to better than ±5%.

III. Results and Discussion

Depolarized Rayleigh light scattering spectra were obtained for pure PEG 200 and solutions of triethylene glycol, PEG 200 and PEG 400 in a 50/50 by volume mixture of carbon tetrachloride and tert-butyl alcohol as a function of temperature. Depolarized Rayleigh relaxation times, τ_{Ray}, were obtained from the HWHH of the Lorentzian spectra using Eq. (2). These relaxation times were reproducible to better than 15%. The results of this study, along with the dielectric relaxation times, τ_{DI}, of pure ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol (PEG 200) obtained by Koizumi10 are presented in Table I. Pinnow, Candau and Litovitz11 have obtained depolarized Rayleigh spectra for pure ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They fitted their data for each compound to an Arrhenius equation of the form

$$\tau_{\text{Ray}} = A \exp \left(\frac{E_a}{RT} \right). \quad (4)$$

Using their A and E_a values, we calculated τ_{Ray} values for these compounds. These values are included in Table I. The viscosities of all solutions studied were
also measured and are given in Table I.

Our τ_{Ray} values for a given concentration of a given molecular weight polymer could also be fitted by Eq. (4) and the results are plotted in Fig. 1 along with the results of Pinnow, et al. for pure triethylene glycol. The τ_{Ray} values for pure PEG 200 are significantly larger than those reported by Pinnow, et al., despit the fact that our measured τ_{Ray} values for pure diethylene glycol are in good agreement with their. We are at present unable to explain the difference in τ_{Ray} values for PEG 200 except pointing out that significantly larger Fabry-Perot plate separations have to be used for the study of pure PEG 200 than for the diethylene and triethylene glycol in order to resolve the depolarized Rayleigh component and enable the instrumental width to be properly corrected. At such large separations, great care was also needed to insure that the laser remained in a single mode for the duration of an experiment. We believe that our results represent better τ_{Ray} values for PEG 200.

The τ_{DI} values for the four pure compounds can be compared with the τ_{Ray} values. At infinite dilution (i.e. for single particle motion), the dielectric and depolarized Rayleigh rotational relaxation times for an overall molecular reorientation process occurring by small angular step rotational diffusion are related by $\tau_{\text{DI}} = 3 \, \tau_{\text{Ray}}$. A detailed discussion of the mechanism of molecular orientational relaxation required for this limiting relationship for the diffusion or jump process was given by Pinnow, et al.

It should be pointed out that this relationship is not necessarily valid for concentrated solutions since dielectric relaxation and depolarized Rayleigh scattering have very different pair correlation effects and concentration dependences. Another possibility for $\tau_{\text{DI}} \neq 3 \, \tau_{\text{Ray}}$ is that the dielectric relaxation and depolarized Rayleigh scattering do not probe the same motion. In this case, there would be no limiting relationship between τ_{DI} and τ_{Ray}. As is clear from the values given for pure compounds in Table I, the value of
\(\tau_{\text{Ray}} \) is nearly always larger than that of \(\tau_{\text{DI}} \), in disagreement with the prediction based upon the simple rotational diffusion model. It is also clear from Table I that the values of \(\tau_{\text{Ray}} \) decrease with decreasing polymer concentration. This result can be understood in terms of the effect of solution viscosity, as to be discussed below.

The activation energy data for solutions are the new results. Our \(E_a \) value for pure PEG 200 is 7.0 Kcal/mole, which is about 3 Kcal/mole less than the value reported by Pinnow, et al.11 We are unable to explain this difference, except again pointing out the difficulty of measuring the \(\tau_{\text{Ray}} \) value for PEG 200 and higher molecular weight polymers using the interferometric technique. It is also interesting to point out that our \(E_a \) value is in good agreement with the spin-lattice relaxation result.13 The spin-lattice relaxation, inelastic neutron scattering14 and depolarized Rayleigh scattering in general probe similar types of molecular motion.

Activation energies obtained from the plots in Fig. 1 along with \(E_a \) values obtained by Koizumi10 and Pinnow, et al.11 are given in Table II. More discussion of the significance of these activation energies will be given shortly.

Orientational relaxation times can often be described by a Stokes-Einstein type equation of the form2,3

\[
\tau = C \frac{\eta}{T} + \tau_0
\]

(5)

where \(\eta \) is the solution viscosity, \(T \) the absolute temperature and the constant \(C \) is determined by the size and shape of the particle, boundary conditions at the surface of the orienting particle and other molecular constants. This linear dependence of reorientation time on \(\eta/T \) has been observed experimentally in many liquid systems.2,3,12 In order to better characterize our relaxation times, we have plotted \(\tau_{\text{Ray}} \) versus \(\eta/T \) for the samples. The results are shown in Figs. 2-5. Linear least squares fits of the data to Eq. (5) are also shown.
The fitted values of the slopes C and intercepts τ_0 are given in Table III. Also given are the values of C and τ_0 obtained from the dielectric relaxation data of Koizumi10 and the depolarized Rayleigh data of Pinnow \textit{et al.}11 Koizumi suggests that the τ values for ethylene glycol reflect motion of the whole molecule and that the large τ_{DI} values for diethylene glycol may be attributable to a ring structure of the molecule. For the higher oligomers, the orientation of the end OH groups is believed to be the largest contributor to the dipolar polarization. This interpretation is fairly consistent with the slopes from the τ_{DI} versus n/T plots. For ethylene and diethylene glycol, the slopes are the same and the E_a values from Table II are fairly close. Thus, the dielectric relaxation measurements are probing similar motions in these two molecules and the reorienting units have similar molecular dimensions. The overall length of ethylene glycol is comparable to the length of the diethylene glycol ring structure. For dielectric relaxation data, the triethylene and tetraethylene glycol slopes C are smaller but the activation energies are still \textasciitilde 8 kcal/mole. For these molecules, dielectric relaxation is probing the motion of a smaller unit, such as $-\text{OH}$ or $-\text{CH}_2\text{OH}$, and not rotation of the entire molecule. Since the E_a values for the four homologs are nearly the same, it is possible that they all have the same rate determining step (e.g. rotation of an $-\text{OH}$ or $-\text{CH}_2\text{OH}$).

The τ_{Ray} values for the pure compounds increase monotonically with increasing molecular weight, in contrast to the τ_{DI} data. The τ_{Ray} values for the pure compounds are plotted versus n/T in Fig. 2. The slopes from this plot show a different behavior than the dielectric data. For ethylene and diethylene glycol, the depolarized Rayleigh slopes are the same and are smaller than the corresponding dielectric relaxation slopes. However, as the molecular weight increases further, the depolarized Rayleigh slopes increase significantly suggesting that the size of the rotating unit is increasing with molecular weight.
This is in contrast to our results in I for poly-propylene glycols (PPG). For PPG, the slope of the \(\tau_{Ray} \) versus \(\eta/T \) line was independent of molecular weight but the slope for more dilute solutions was greater than that for the more concentrated solutions. The depolarized Rayleigh scattering from PPG was associated with segmental motion of the polymer backbone. The increase in relaxation time with dilution was a result of the polymer swelling, allowing larger segments to move freely.\(^4\)

In the case of PEG, the Rayleigh relaxation time data show a strong molecular weight dependence, and asymptotic behavior of \(\tau_{Ray} \) is reached slowly. Anderson, et al.\(^5\) have measured the spin-lattice relaxation time of PEG as a function of molecular weight, and have shown that the relaxation time becomes insensitive only when the degree of polymerization is 30 or greater. That is when the molecular weight of PEG is about 1500 or greater. Although we do not imply the same situation to occur in light scattering, it is reasonable to expect that \(\tau_{Ray} \) will become molecular weight dependent at about the same molecular weight range.

For the present Rayleigh scattering experiment, we were unable to measure accurate \(\tau_{Ray} \) values even for pure PEG 400 at any Fabry-Perot plate separation due to the extremely small linewidth associated with orientational motion of the highly viscous polymer. The mechanism of backbone segmental motion which is responsible for the depolarized Rayleigh scattering of PPG is also expected in PEG. However, the observed spectra were not successful. This, thus, indicates either that the backbone segmental motion of PEG does not change the Rayleigh polarizability anisotropy significantly or that the backbone motion is too slow to be resolved by the Fabry-Perot interferometric technique. Because of the unusual helical configuration of PEG,\(^14\) it is likely that the second reason is applicable.

From Figs. 3-5 it is seen that for each system whose concentration dependence was studied, the relaxation times for the more dilute solutions show a stronger \(\eta/T \) dependence than the times for the concentrated solutions and pure polymer.
This result can be explained in terms of the expansion of the polymer molecule upon dilution. We have calculated volumes for the rotating units from the experimental C values using

\[C = \frac{V}{k} \]

(6)

where \(V \) is the volume of the rotating particle and \(k \) is Boltzmann's constant. This formulation assumes "stick" boundary conditions, where fluid adjacent to the rotating particle sticks to the particle and rotates with it. These volumes are included in Tabel III. It is realized these volumes are at best only order of magnitude values, but they should give some insight as to the size of the rotating particle. It is clear these volumes are too large to be associated with end groups, such as -OH or -CH\(_2\)OH. Also, these volumes increase as the degree of polymerization increases, suggesting segmental reorientation is not responsible for the depolarized Rayleigh scattering. The values are consistent, however, if the scattering is interpreted as resulting from rotation of the entire molecule. Also as predicted according to this mechanism, the total molecular volume increases both with increasing molecular weight and with dilution because of the solute-solvent interaction and the excluded volume effect.

The intercepts of the \(\tau \) versus \(n/T \) plots also give information about the rotational motion being investigated. In I, positive non-zero intercepts were obtained for PPG. Thus, the relaxation time is finite at zero viscosity (or infinite temperature). This is reasonable for polymer backbone segmental motion since the segments are bonded to one another and are restricted in their motion even at zero viscosity. The PEG plots shown in Figs. 2-5 all have zero intercepts within the experimental uncertainty. This is consistent with our interpretation of depolarized Rayleigh scattering in these molecules occurring as a result of rotation of the entire molecule.
The activation energies for molecular reorientation obtained from the depolarized Rayleigh experiments agree well with each other and with the dielectric relaxation results (the uncertainties in the E_a values are of the order of 10%) but are significantly larger than values obtained for rotation of lower viscosity liquids composed of small molecules.2,3 The depolarized Rayleigh E_a value for diethylene glycol is somewhat low. Allen, Connor and Pursey13 have studied PEG using nuclear magnetic resonance spin-lattice relaxation. E_a values from their log T_1 versus T^{-1} plots were 7 kcal/mole for diethylene glycol, triethylene glycol and PEG 200. Again these E_a values agree well with those obtained using other techniques suggesting all of the orientational motions involve the same type of process. It is likely this process involves the breaking of hydrogen bonds as it is necessary for hydrogen bonds to be broken both for the movement of end groups and for rotation of the molecule as a whole.

IV. Conclusions

In conclusion, it should be emphasized that although these polyethylene glycols are capable of undergoing several types of orientational motion, only one relaxation time was observed. End group and backbone motion possible give some small contribution to the scattering spectrum but, as is shown above, an interpretation based on rotation of the entire molecule is consistent with the experimental results.

In summary we have studied depolarized Rayleigh scattering spectra of a series of polyethylene glycol solutions as a function of molecular weight, concentration and temperature. The solvent used in this work was a mixture of carbon tetrachloride and tert-butyl alcohol which has negligible depolarized scattering of its own. The relaxation times were obtained by fitting the observed spectra to Lorentzian functions convoluted with the instrumental spectrum. By studying the dependence of the relaxation times on viscosity, concentration and temperature
and comparing the results with theoretical predictions of molecular and end-group reorientations, we have concluded that rotation of the entire polymer molecule is responsible for the depolarized Rayleigh scattering in PEG solutions. This conclusion was reached by examining the various reorientational motions which could possibly contribute to depolarized Rayleigh scattering in these molecules. The relaxation times were found to increase with increasing molecular weight and with dilution. The present results were compared with dielectric relaxation times and other spectroscopic studies. The activation energies observed in depolarized Rayleigh scattering are consistent with those obtained using other techniques.

Acknowledgement

We acknowledge the Office of Naval Research for support of this research.
References

<table>
<thead>
<tr>
<th>Sample</th>
<th>T/K</th>
<th>$t_{\text{Ray/ns}}^a$</th>
<th>$t_{\text{DI/ns}}^b$</th>
<th>n/cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG 400, 21 mole%</td>
<td>275.5</td>
<td>3.2</td>
<td></td>
<td>48.2</td>
</tr>
<tr>
<td></td>
<td>280.8</td>
<td>2.6</td>
<td></td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>288.2</td>
<td>0.96</td>
<td></td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>293.7</td>
<td>0.88</td>
<td></td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>298.4</td>
<td>0.77</td>
<td></td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>306.9</td>
<td>0.63</td>
<td></td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>319.2</td>
<td>0.47</td>
<td></td>
<td>6.84</td>
</tr>
<tr>
<td></td>
<td>327.2</td>
<td>0.35</td>
<td></td>
<td>5.22</td>
</tr>
<tr>
<td>PEG 400, 35 mole%</td>
<td>298.0</td>
<td>1.35</td>
<td></td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td>307.2</td>
<td>0.98</td>
<td></td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>314.6</td>
<td>0.77</td>
<td></td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>320.2</td>
<td>0.61</td>
<td></td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>326.8</td>
<td>0.46</td>
<td></td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>333.2</td>
<td>0.42</td>
<td></td>
<td>7.6</td>
</tr>
<tr>
<td>PEG 200, pure</td>
<td>278.2</td>
<td></td>
<td></td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>293.2</td>
<td>1.41c</td>
<td>0.53</td>
<td>68.5</td>
</tr>
<tr>
<td></td>
<td>302.7</td>
<td>1.34</td>
<td>0.23</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>308.2</td>
<td>0.60c</td>
<td>0.114</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>312.7</td>
<td>0.77</td>
<td></td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>320.7</td>
<td>0.68</td>
<td></td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>323.2</td>
<td>0.28c</td>
<td>0.066</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>333.7</td>
<td>0.40</td>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>339.7</td>
<td>0.375</td>
<td></td>
<td>10.5</td>
</tr>
<tr>
<td>PEG 200, 35 mole%</td>
<td>283.4</td>
<td>1.27</td>
<td></td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>289.6</td>
<td>0.84</td>
<td></td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>293.7</td>
<td>0.77</td>
<td></td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>302.8</td>
<td>0.47</td>
<td></td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>311.7</td>
<td>0.30</td>
<td></td>
<td>8.6</td>
</tr>
<tr>
<td>Triethylene glycol, pure</td>
<td>278.2</td>
<td></td>
<td></td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>293.2</td>
<td>0.78c</td>
<td>0.55</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>308.2</td>
<td>0.39c</td>
<td>0.12</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>323.2</td>
<td>0.21c</td>
<td>0.066</td>
<td>130.0</td>
</tr>
<tr>
<td></td>
<td>353.2</td>
<td>0.070c</td>
<td></td>
<td>5.4</td>
</tr>
<tr>
<td>Triethylene glycol, 35 mole%</td>
<td>289.0</td>
<td>.359</td>
<td></td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>294.8</td>
<td>.262</td>
<td></td>
<td>9.25</td>
</tr>
<tr>
<td></td>
<td>301.3</td>
<td>.211</td>
<td></td>
<td>7.10</td>
</tr>
<tr>
<td></td>
<td>306.7</td>
<td>.188</td>
<td></td>
<td>5.85</td>
</tr>
<tr>
<td></td>
<td>316.8</td>
<td>.127</td>
<td></td>
<td>4.25</td>
</tr>
<tr>
<td>Diethylene glycol, pure</td>
<td>278.2</td>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>293.2</td>
<td>0.24c</td>
<td>0.72</td>
<td>36.8</td>
</tr>
<tr>
<td></td>
<td>308.2</td>
<td>0.15c</td>
<td>0.28</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>323.2</td>
<td>0.10c</td>
<td>0.145</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>353.2</td>
<td>0.052c</td>
<td></td>
<td>4.35</td>
</tr>
<tr>
<td>Ethylene glycol, pure</td>
<td>278.2</td>
<td></td>
<td></td>
<td>44.5</td>
</tr>
<tr>
<td></td>
<td>293.2</td>
<td>0.093c</td>
<td>0.34</td>
<td>44.5</td>
</tr>
<tr>
<td></td>
<td>308.2</td>
<td>0.040c</td>
<td>0.13</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>323.2</td>
<td>0.019c</td>
<td>0.072</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>353.2</td>
<td>0.005c</td>
<td></td>
<td>6.9</td>
</tr>
</tbody>
</table>

a. this work unless otherwise noted.
b. all dielectric times are from Ref. 10.
c. Ref. 11.
<table>
<thead>
<tr>
<th>System</th>
<th>Type of Experiment</th>
<th>E_a/kcal mole$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG 400,35 mole%</td>
<td>depolarized Rayleigha</td>
<td>6.8</td>
</tr>
<tr>
<td>PEG 400,21 mole%</td>
<td>depolarized Rayleigha</td>
<td>7.3</td>
</tr>
<tr>
<td>PEG 200,pure</td>
<td>depolarized Rayleigha</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>depolarized Rayleighb</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>dielectric relaxationc</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>spin-lattice relaxationd</td>
<td>-7</td>
</tr>
<tr>
<td>PEG 200,35 mole%</td>
<td>depolarized Rayleigha</td>
<td>8.8</td>
</tr>
<tr>
<td>Triethylene glycol,pure</td>
<td>depolarized Rayleighb</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>dielectric relaxationc</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>spin-lattice relaxationd</td>
<td>-7</td>
</tr>
<tr>
<td>Triethylene glycol,35 mole%</td>
<td>depolarized Rayleigha</td>
<td>6.5</td>
</tr>
<tr>
<td>Diethylene glycol,pure</td>
<td>depolarized Rayleighb</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>dielectric relaxationc</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>spin-lattice relaxationd</td>
<td>-7</td>
</tr>
<tr>
<td>Ethylene glycol,pure</td>
<td>depolarized Rayleighb</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>dielectric relaxationc</td>
<td>8.0</td>
</tr>
</tbody>
</table>

a) this work
b) Ref. 11
c) Ref. 10
d) Ref. 13
<table>
<thead>
<tr>
<th>System</th>
<th>Type of Experiment</th>
<th>Slope C ns K cm^{-1}</th>
<th>Intercept ns</th>
<th>Volume Å^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG 400, 35 mole%</td>
<td>depolarized Rayleigha</td>
<td>13.6 ± 0.8</td>
<td>0.12 ± 0.10</td>
<td>187</td>
</tr>
<tr>
<td>PEG 400, 21 mole%</td>
<td>depolarized Rayleigha</td>
<td>18.6 ± 2.0</td>
<td>-0.09 ± 0.17</td>
<td>257</td>
</tr>
<tr>
<td>PEG 200, pure</td>
<td>depolarized Rayleigha</td>
<td>9.25 ± 0.6</td>
<td>0.07 ± 0.06</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>depolarized Rayleighb</td>
<td>6.3 ± 0.6</td>
<td>-0.06 ± 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dielectric relaxationc</td>
<td>0.91 ± 0.10</td>
<td>0.02 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>PEG 200, 35 mole%</td>
<td>depolarized Rayleigha</td>
<td>13.2 ± 0.6</td>
<td>-0.05 ± 0.04</td>
<td>182</td>
</tr>
<tr>
<td>triethylene glycol, pure</td>
<td>depolarized Rayleighb</td>
<td>4.6 ± 1.0</td>
<td>-0.06 ± 0.10</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>dielectric relaxationc</td>
<td>1.23 ± 0.03</td>
<td>0.03 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>triethylene glycol, 35 mole%</td>
<td>depolarized Rayleigha</td>
<td>8.2 ± 0.6</td>
<td>0.02 ± 0.02</td>
<td>113</td>
</tr>
<tr>
<td>diethylene glycol, pure</td>
<td>depolarized Rayleighb</td>
<td>1.6 ± 0.2</td>
<td>0.04 ± 0.02</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>dielectric relaxationc</td>
<td>2.25 ± 0.05</td>
<td>0.05 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>ethylene glycol, pure</td>
<td>depolarized Rayleighb</td>
<td>1.4 ± 0.1</td>
<td>-0.01 ± 0.005</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>dielectric relaxationc</td>
<td>2.2 ± 0.1</td>
<td>-0.01 ± 0.01</td>
<td></td>
</tr>
</tbody>
</table>

a) this work
b) Ref. 11
c) Ref. 10
Figure Captions

Figure 1: Depolarized Rayleigh relaxation times as a function of T^{-1}; note logarithmic time scale: ■■■— — — , PEG 400, 35 mole%; PEG 400, 21 mole%; ●●●— — — , PEG 200, pure; ○○○— — — , PEG 200, 35 mole%; △△△— — — , triethylene glycol, pure (from Ref. 11); △△△— — — , triethylene glycol, 35 mole%.

Figure 2: Depolarized Rayleigh relaxation times as a function of n/T for pure liquids:

- ◆— — — , PEG 200 (this work);
- △—— , triethylene glycol (Ref. 11);
- ■—— , diethylene glycol (Ref. 11);
- ♦—— , ethylene glycol (Ref. 11).

Figure 3: Depolarized Rayleigh relaxation times for PEG 400 as a function of n/T: ●●●— — — , 35 mole%; ○○○— — — , 21 mole%.

Figure 4: Depolarized Rayleigh relaxation times for PEG 200 as a function of n/T:

- ◆◆◆— — , pure (this work); ○◇◇— — , 35 mole % (this work);

- , pure (Ref. 11).

Figure 5: Depolarized Rayleigh relaxation time for triethylene glycol as a function of n/T: △△△— — , pure (Ref. 11); △△△— — , 35 mole% (this work).
Fig. 5

![Graph showing the relationship between τ_{Ray}/ns and $\eta T^{-1}/cp K^{-1}$ for Triethylene glycol.](image)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>U.S. Army Research Office P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Research Triangle Park, North Carolina 27709 Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Undersea Research & Development Center San Diego, California 92132 Attn: Technical Library, Code 133</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Naval Weapons Center China Lake, California 93555 Attn: Head, Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Naval Civil Engineering Laboratory Port Hueneme, California 93041 Attn: Mr. W. S. Haynes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ONR Branch Office 1030 East Green Street Pasadena, California 91106 Attn: Dr. R. J. Marcus</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ONR Branch Office 715 Broadway New York, New York 10003 Attn: Scientific Dept.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The Asst. Secretary of the Navy (R&D) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander, Naval Air Systems Command Department of the Navy Washington, D.C. 20360 Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
</tr>
<tr>
<td>No. Copies</td>
<td>No. Copies</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
</tbody>
</table>
| Dr. Stephen H. Carr
Department of Materials Science
Northwestern University
Evanston, Illinois 60201 | 1 |
| Dr. M. Broadhurst
Bulk Properties Section
National Bureau of Standards
U.S. Department of Commerce
Washington, D.C. 20234 | 2 |
| Dr. C.-H. Wang
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112 | 1 |
| Dr. T. A. Litovitz
Department of Physics
Catholic University of America
Washington, D.C. 20017 | 1 |
| Dr. R. V. Submar,ian
Washington State University
Department of Materials Science
Pullman, Washington 99103 | 1 |
| Dr. M. Shen
Department of Chemical Engineering
University of California
Berkeley, California 94720 | 1 |
| Dr. R. S. Porter
Polymer Research Institute and
Polymer Science and Engineering
University of Massachusetts
Amherst, Massachusetts 01002 | 1 |
| Dr. H. Freiser
Department of Chemistry
University of Arizona
Tucson, Arizona 85721 | 1 |
| Dr. V. Stannett
Department of Chemical Engineering
North Carolina State University
Raleigh, North Carolina 27607 | 1 |
| Dr. D. R. Uhlman
Department of Metallurgy and Material Science
Center for Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 | 1 |
| Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910 | 1 |
| Attn: Dr. J. M. Augl
Dr. B. Hartmann | 1 |
| Dr. G. Goodman
Globe Union Inc.
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201 | 1 |
| Picatinny Arsenal
SMUPA—FR—M—D
Dover, New Jersey 07801 | 1 |
| Attn: A. M. Anzalone
Eldg. 3401 | 1 |
| Dr. J. K. Gillham
Princeton University
Department of Chemistry
Princeton, New Jersey 08540 | 1 |
| Douglas Aircraft Co.
3855 Lakewood Boulevard
Long Beach, California 90846 | 1 |
| Attn: Technical Library
Cl 290/36—84
AUTO—Sutton | 1 |
| Dr. E. Baer
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106 | 1 |
| Dr. K. D. Pae
Department of Mechanics and Materials Science
Rutgers University
New Brunswick, New Jersey 08903 | 1 |
NASA-Levis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Attn: Dr. T. T. Serofini, MS-49-1

Dr. Charles H. Sherman, Code TD 121
Naval Underwater Systems Center
New London, Connecticut 1

Dr. William Risen
Department of Chemistry
Brown University
Providence, Rhode Island 02912 1

Dr. Alan Gent
Department of Physics
University of Akron
Akron, Ohio 44304 1

Mr. Robert W. Jones
Advanced Projects Manager
Hughes Aircraft Company
Mail Station D 132
Culver City, California 90230 1

Dr. C. Giori
IIT Research Institute
10 West 35 Street
Chicago, Illinois 60616 1

Dr. David Roylance
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02039

Dr. W. A. Spitzig
United States Steel Corporation
Research Laboratory
Monroeville, Pennsylvania 15146

Dr. T. P. Conlon, Jr., Code 3622
Sandia Laboratories
Sandia Corporation
Albuquerque, New Mexico 87115

Dr. Martin Kaufmann, Head
Materials Research Branch, Code 4542
Naval Weapons Center
China Lake, California 93555