AN OPTIMIZATION STUDY OF A LOW THERMAL POTENTIAL POWER SYSTEM

by

J. R. Buckingham
W. M. Raize
M. D. Kelleher

September 1976
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Isham Linder
Superintendent

J. R. Borsting
Provost

THERMONECONOMIC ANALYSIS OF
VAPOR POWER SYSTEMS

A power generating system using the low thermal potential available from the vertical temperature distribution of the ocean is analyzed as a combined engineering and economic mathematical model. The model is optimized for minimum capital cost employing a sequential unconstrained minimization algorithm. Examples of the kinds of engineering and cost information available from the model are presented.

The work reported herein has been supported by the Energy Programs Office, Code L80, of the Civil Engineering Laboratory, Port Hueneme, California; work request N68305 75 WR-S-0068.

Matthew Kelleher
Associate Professor of Mechanical Engineering

Approved by:

Allen E. Fuhs, Chairman
Department of Mechanical Engineering

Robert R. Fossum
Dean of Research

NPS-69Kk78091
September 1976
An Optimization Study of a Low Thermal Potential Power System

J. R. Buckingham, W. M. Raike, M. D. Kelleher

Naval Postgraduate School
Monterey, California 93940

Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93041

Approved for public release; distribution unlimited.

Nonlinear programming, thermodynamic cycle, ocean thermal energy conversion, system optimization, cost estimation, system engineering.

A power generating system using the low thermal potential available from the vertical temperature distribution of the ocean is analyzed as a combined engineering and economic mathematical model. The model is optimized for minimum capital cost employing a sequential unconstrained minimization algorithm. Examples of the kinds of engineering and cost information available from the model are presented.
A power generating system using the low thermal potential available from the vertical temperature distribution of the ocean is analyzed as a combined engineering and economic mathematical model. The model is optimized for minimum capital cost employing a sequential unconstrained minimization algorithm. Examples of the kinds of engineering and cost information available from the model are presented.
TABLE OF CONTENTS

I. INTRODUCTION ... 12
 A. BACKGROUND .. 12
 B. OBJECTIVES ... 20
II. THE MODEL .. 21
 A. GENERAL DESCRIPTION 21
 B. CYCLE ANALYSIS ... 25
 C. ENGINEERING FRAMEWORK 30
 1. The Boiler ... 30
 2. The Condenser ... 45
 3. The Pumps .. 47
 D. CCSF FRAMEWORK ... 49
 E. ASSEMBLY OF THE MATHEMATICAL MODEL 53
 1. Objective Function and the Constraints 55
 2. The optimization method 57
III. RESULTS AND CONCLUSIONS 62
IV. RECOMMENDATIONS ... 71

Appendix A: COMPUTER PROGRAM AND SAMPLE DATA 73
LIST OF REFERENCES .. 106
INITIAL DISTRIBUTION LIST 109
LIST OF TABLES

1. Material Factors for the Heat Exchangers............. 51
2. Material Factors for the Centrifugal Pumps............. 51
3. Material Factors for the Propeller Pumps.............. 52
4. Definition of the Elements of the Vector X............ 54
5. Problem Input Data... 64
6. Example Problem Solution Summary....................... 65
7. Solution Power Budget.. 68
8. Additional Data from Sample Problem Solution......... 70
LIST OF FIGURES

1. System Schematic Diagram.. 16
2. System Arrangement.. 22
3. Thermodynamic Cycle.. 27
4. Boiler Cross Section.. 31
5. Comparison of a Single Tube Versus a Tube in a Bundle......... 37
6. Thermal Network for a Single... 39
7. Problem Solution Sequence.. 59
8. Cost Breakdown.. 67
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>SYMBOLS</th>
<th>DESCRIPTION</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area</td>
<td>ENGLISH: in², METRIC: cm²</td>
</tr>
<tr>
<td>c</td>
<td>heat capacity</td>
<td>ENGLISH: BTU/lbm-°F, J/kg-°C</td>
</tr>
<tr>
<td>C</td>
<td>capacity rate</td>
<td>ENGLISH: BTU/hr-°F, kW/°C</td>
</tr>
<tr>
<td>d</td>
<td>tube diameter</td>
<td>ENGLISH: in, METRIC: cm</td>
</tr>
<tr>
<td>Ds</td>
<td>diameter of the shell</td>
<td>ENGLISH: ft, METRIC: m</td>
</tr>
<tr>
<td>f</td>
<td>Fanning friction factor</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>factor for the tube</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>bundle boiling</td>
<td>-</td>
</tr>
<tr>
<td>h</td>
<td>inequality constraints</td>
<td>-</td>
</tr>
<tr>
<td>h</td>
<td>equality constraints</td>
<td>-</td>
</tr>
<tr>
<td>h</td>
<td>heat transfer coefficient</td>
<td>ENGLISH: BTU/ft²-hr-°F, kW/m²-°C</td>
</tr>
<tr>
<td>H</td>
<td>enthalpy</td>
<td>ENGLISH: BTU/lbm, J/kg</td>
</tr>
<tr>
<td>H'</td>
<td>enthalpy corrected for subcooling</td>
<td>ENGLISH: BTU/lbm, J/kg</td>
</tr>
<tr>
<td>hs</td>
<td>height from midplane of the boiler to top of the boiler bank</td>
<td>ENGLISH: ft, METRIC: m</td>
</tr>
<tr>
<td>i</td>
<td>vapor quality</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>thermal conductivity</td>
<td>ENGLISH: BTU/hr-ft-°F, kW/m-°C</td>
</tr>
<tr>
<td>Kc</td>
<td>pressure loss factor at the tube entrance</td>
<td>-</td>
</tr>
<tr>
<td>Ke</td>
<td>pressure loss factor at the tube exit</td>
<td>-</td>
</tr>
<tr>
<td>L</td>
<td>tube length</td>
<td>ENGLISH: ft, METRIC: m</td>
</tr>
<tr>
<td>M</td>
<td>mass flow rate</td>
<td>ENGLISH: lbm/hr, METRIC: kg/hr</td>
</tr>
<tr>
<td>n</td>
<td>average number of tubes in a column in the condenser</td>
<td>-</td>
</tr>
<tr>
<td>Nsq</td>
<td>specific speed of a pump</td>
<td>ENGLISH: RPM, METRIC: rpm</td>
</tr>
<tr>
<td>NTU</td>
<td>number of heat transfer units of an exchanger</td>
<td>-</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
<td>ENGLISH: lbf/in², METRIC: kp</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>F</td>
<td>Power</td>
<td>BTU/hr</td>
</tr>
<tr>
<td>fi</td>
<td>Tube pitch</td>
<td>in</td>
</tr>
<tr>
<td>Fr</td>
<td>Prandtl number</td>
<td>-</td>
</tr>
<tr>
<td>q</td>
<td>Heat flux</td>
<td>BTU/hr-ft²</td>
</tr>
<tr>
<td>c</td>
<td>Heat transfer rate</td>
<td>BTU/hr</td>
</tr>
<tr>
<td>Rn</td>
<td>Heat transfer resistance (R1, R2, R3, R4)</td>
<td>hr-°F/BTU</td>
</tr>
<tr>
<td>Fe</td>
<td>Reynolds number</td>
<td>-</td>
</tr>
<tr>
<td>s</td>
<td>Entropy</td>
<td>BTU/lbm°F</td>
</tr>
<tr>
<td>S</td>
<td>Number of shells</td>
<td>-</td>
</tr>
<tr>
<td>SA</td>
<td>Segmental area</td>
<td>ft²</td>
</tr>
<tr>
<td>t</td>
<td>Tube wall thickness</td>
<td>in</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>°F</td>
</tr>
<tr>
<td>u</td>
<td>Velocity</td>
<td>ft/sec</td>
</tr>
<tr>
<td>U</td>
<td>Overall heat transfer coefficient</td>
<td>BTU/ft²-hr-°F</td>
</tr>
<tr>
<td>V</td>
<td>Specific volume</td>
<td>ft³/lbm</td>
</tr>
<tr>
<td>VL</td>
<td>Vapor load</td>
<td>lbm/hr-ft³</td>
</tr>
<tr>
<td>I</td>
<td>Proportionality factor in the transition region</td>
<td>-</td>
</tr>
<tr>
<td>$$</td>
<td>Capital cost</td>
<td>dollars</td>
</tr>
</tbody>
</table>

Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>Heat transfer effectiveness</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>λ</td>
<td>Proportionality factor in the transition region</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
<td>lbm/sec-ft</td>
<td>N/sec-m</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
<td>ft²/sec</td>
<td>m²/sec</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
<td>lbm/ft³</td>
<td>kg/m³</td>
</tr>
<tr>
<td>σ</td>
<td>Surface tension</td>
<td>lbf/ft</td>
<td>N/m</td>
</tr>
<tr>
<td>ϕ</td>
<td>Free flow/frontal area ratio</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
SuScripTs

ab absorbed
b boiler
bulk average of the inlet and outlet temperatures
c condenser
c critical pressure
c the colder fluid in the heat exchanger
car carrera efficiency
cp circulation pump
cyc thermodynamic cycle
f saturated liquid
fg change in the quantity as the fluid changes from all liquid to all vapor
fp feed pump
g saturated vapor
h the hotter fluid in the heat exchanger
he heat exchanger
i inside
in fluid entering the exchanger
l laminar flow regime
m mean temperature difference
c max. possible temperature difference
c outside surface
cut fluid leaving the exchanger
F at constant pressure
rej rejected
sw seawater
sys the system
Tr transition regime
Tu turbulent regime
<table>
<thead>
<tr>
<th>Turbine</th>
<th>Working Fluid</th>
<th>1 State Point 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>wf</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td></td>
<td>2s</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5s</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

A. BACKGROUND

As of 1974, the United States contained only 6% of the world population but was using 33% of the energy consumed each year according to Ref. 1. Approximately one third of the oil used in the U.S. is imported. This heavy dependence on foreign sources for energy coupled with the exhaustion of domestic fossil fuels, particularly oil, in the foreseeable future is causing the U.S. military and civilian sectors of the economy to search for energy sources that would be inexhaustible and independent of foreign control. Increasing fuel costs and environmental problems are other forces pushing the search for alternatives. Nuclear power, once considered the cure-all, is facing severe problems. Costs of construction, operation, and fuel have risen dramatically. Questions concerning the safety of operation of the nuclear plants and of the storage of nuclear wastes have become political issues that have slowed the exploitation of nuclear power. The present nuclear reactors use a fuel that, like petroleum, has a limited availability and whose price is increasing rapidly. The breeder reactor, which would create more fuel than it burns, and the fusion reactor, which would use the hydrogen found in water, are still a long way from producing power for a world whose demands for energy increase each year.

Many people advocate the exploitation of the so-called "free" energy sources. These sources are: (1) the kinetic
energy of moving fluids, such as winds and ocean currents; (2) the potential energy of tides and rivers; (3) the heat generated inside the earth; (4) the direct conversion of solar energy into electricity and heat; and (5) the use of sun warmed water in conjunction with a source of colder water to provide the temperature differential to run a vapor power cycle. None of these sources are truly "free". What is happening is the trading off of the transportation, processing, and environmental costs of a concentrated energy source for the capital, operating, and social costs of converting a very diffuse source into a more concentrated form such as electricity.

The earth can be thought of as a giant heat engine, absorbing energy from the sun and reflecting energy as thermal radiation back to space as pictured in Ref. 2. Since the poles receive less energy than the equator, the atmosphere and ocean attempt to distribute the energy more evenly over the earth. The air is heated by absorption of sunlight and by contact with the surface of the earth. The heated air rises thus setting up surface wind currents as cooler air tries to replace the rising air. The shear stress created by the relative motion between the air and the surface water causes the water to move thus creating the surface water currents. Many currents in the oceans, regardless of depth, originate with the wind shear stress at the air-surface interface. The circulation patterns of the oceans become extremely complex due to the influence of the rotation of the earth and the shapes of the ocean basins.

In general the surface waters near the equator are warmed by the sun and flow towards the poles giving up energy by evaporation, and by convection to the air and by radiation back to space. As these currents cool, some of the water becomes dense enough to sink and then flows back to the equator along the bottom.
The relationship between salinity and temperature and the density of seawater is such as to create a stable stratification of the ocean in many areas. A salinity decrease or a temperature increase reduces the density. The total effect is to create a warm surface current overlaying the cold water returning from the poles. In the tropical waters the surface temperature may exceed 80°F (26.7°C) while 3,000 ft. (914 to 1828 m) down the temperature may be about 40°F (4.4°C). This temperature difference can be used to run a man-made heat engine, like the Ocean Thermal Energy Conversion (OTEC) power plant concept.

The proper choice of a site is critical to the cost of such a heat engine. Since the temperature difference is low compared to conventional thermal power generating methods which typically use temperature differentials exceeding 500°F (260°C), the effect of a 1°F (0.56°C) loss in the AT is much more costly at the low thermal differentials, which are usually less than 50°F (27.8°C) in the ocean. Therefore, the vertical temperature profile of the oceans will control the location of an OTEC power plant. The surface temperatures vary with location and with time. At most places in the ocean there is a seasonal change of the surface water temperature of 5 to 8°F (2.8 to 4.4°C) except in the tropical areas that remain relatively constant according to Ref. 3. However, all regions of the oceans are affected by wind-generated mixing of the surface water that changes the surface temperature by a degree or so and a daily cycle of a few tenths of a degree. Some of the possible U.S. near-shore sites being considered are the waters around the Hawaiian Islands and the Gulf Stream off the southeastern U.S.

In the past, the engineering analysis and the cost estimation have been conducted as if they were separate
functions. In a system with a small temperature differential, such as this one, the engineering design and economic analysis should be linked together as a single procedure because of the capital intensive nature of the ocean thermal power plant. For example, the heat transfer equation \(Q = U A \Delta T \) is coupled to the cost equation for heat exchangers \((C = K A^2) \) through the surface area of the tubes. Because of the small \(\Delta T \) involved the area must be very large to supply the same \(Q \). The other components are all linked together by the engineering and cost equations so that the problem cannot logically be broken into an equipment by equipment optimization. The present analysis considers a closed vapor power system operating on the thermal potential available from the ocean. The economic optimization of the system is carried out to show what information can be gotten, what conclusions can be reached from such analysis and where research effort should be expended to improve the design of the system. This study does not attempt to predict the cost of such a system or to make specific recommendations about the parameters.

A schematic diagram of the system is shown in Figure 1. The warm surface water, the Gulf Stream for example, is pumped through a heat exchanger. There some energy is transferred by boiling the working fluid such as ammonia. The working fluid is piped to a turbine where some of the energy is converted to mechanical energy then to electrical energy in a generator. The unavailable portion of the absorbed energy is rejected to the environment in the condenser and the working fluid is returned to the liquid state. The low temperature in the condenser is maintained by pumping cold ocean water up from the depths. Finally the working fluid is pumped back to the boiler.

The Ocean Thermal Energy Conversion program has received much attention in the last several years from many
FIGURE 1. SYSTEM SCHEMATIC DIAGRAM
researchers funded at first primarily by the National Science Foundation (NSF). Since the establishment of the Energy Research and Development Administration (ERDA), new research contracts are funded mainly by this agency. The U.S. Navy is also funding some research in the OTEC area. Ref. 4, 5 and 6 give a good summary of the work that has been done. While much of the work has concentrated on the heat exchangers, the other components and the system as a whole are receiving attention. Some researchers are concentrating on the environmental and legal questions of such systems. Other teams are considering how to use the energy supplied from an OTEC power plant.

In any design, trade-offs must be made. Capital cost can be traded for operational costs. Pumping power can be traded for heat exchanger size. Trade-offs can involve items that have a common measure such as dollars; some other trade-offs are very hard to measure in common terms such as social and environmental costs. The trade-offs may involve only one component such as a pump or a turbine, but most often the trade-offs affect more than one component or possibly the entire system.

The trade-off process should continue until an optimum design is obtained. From Ref. 7, "The aim of optimization is the selection, out of the multiplicity of potential solutions, of that solution which is the best with respect to some well-defined criterion." In order for the plant design to be optimum, the components must be optimized within the context of the entire system. Some of the parameters for a piece of equipment may have no direct effect on the optimum design of another portion of the system, but some parameters will have significant effects. For example, a heat exchanger is made up of a large number of tubes of a given diameter and length and is designed to have a certain heat transfer rate for a given flow rate of
water pumped through the tubes. The diameters, length and the number of tubes may be optimized for lowest cost of the heat exchanger. This approach leaves out the effect that the tube diameter and the tube length have on the pressure drop across the heat exchanger. Minimizing the cost of the heat exchanger involves minimizing the surface area. This may lead to increasing the pressure drop across the exchanger. The higher the pressure drop the more powerful and the more expensive the pump must be to maintain the flow velocity. This is just one example of the hundreds of trade-offs possible.

Unfortunately, what happens in many cases is that each group of experts working on a particular component optimize that item around some given conditions that may have been set by teams working on some other section of the system. Little analysis is made of how the entire system responds to the coupling constraints. All that the pump manufacturer wants is that the buyer tell him what the flow rate, head and service conditions are and he will quote a price. Before the buyer can decide on the flow rate and head he should first know how the cost of the pump varies as flow rate and head vary so that those two parameters can be optimized in the context of the system.

The problem then becomes one of acquiring sufficient information on how costs vary as certain parameters change. Each manufacturer is able to make estimates of costs for his product but he is reluctant to divulge his information to buyers or competitors. This makes constructing cost curves a hazardous process at best, since the data must be gathered by other methods that may cause large unexplained variances.

Sometimes the optimization analysis is made with assumptions that make the answers questionable value. For example, sometimes the heat transfer coefficient, U, is
assumed fixed in the equation \(q = UA \Delta T \). But, as shown in Ref. 8, for boiling the heat transfer coefficient is very sensitive to the temperature difference with the result that \(q = UA' \Delta T^3 \). The accuracy of the engineering equations should be kept in mind. Most of the equations are correlations to fit experimental data. The correlation was developed for some particular set of data and may disagree significantly when compared to data taken by other experimenters. The limitations of the various relations must be kept in mind when reviewing the results. For a system the size of the OTEC plant, a pilot plant should be constructed in order to prove out the answers given by the calculations before expensive mistakes are made.

As a design progresses, the analysis begins with a general picture containing many simplifying assumptions and proceeds forward with more details added at each stage. This report is the second one written at the Naval Postgraduate School on the subject of OTEC. Commander Furman Sheppard, USN, in his analysis, Ref. 9, attempted to show what kinds of information could be gained from a combined thermal economic model. He advocated the use of zone analysis, as developed by Wismer in Ref. 10, for large complex systems. In Wismer's approach to zone analysis, the system is broken down into zones containing one or more components. The zones are connected by linking variables. Two methods of optimization are possible. For the first method, in each zone, the zone parameters are optimized while the linking variables are held fixed. Then, the zone parameters are held fixed while the linking variables are optimized. The process iterates between optimizing the zone parameters and the linking variables until convergence criteria are satisfied. In the second method the zones are cut off from each other and each linking variable is separated into two variables, one on each side of the cutting plane. The optimization proceeds until the linking
variables on each side of the cuts are equal.

Sheppard’s system did not produce vapor in a boiler but, instead, maintained the working fluid in the liquid state in the warm seawater heat exchanger and vaporized the working fluid, ammonia in his model, by expanding it through a "black box" called a vaporizer. His optimization analysis was confined to the zone containing the warm seawater exchanger, the feed pump, and the warm water circulating pump.

E. OBJECTIVES

The present analysis improves the previous model analysis by replacing the liquid-to-liquid heat exchanger and the vaporizer with a boiler. The boiler model is to be of sufficient detail so that a realistic design is represented. The other major components of the system, such as the turbine, the condenser, and the condenser circulating pumps, are included. A nonlinear programming technique is used to perform the thermal-economic optimization of the completed system. The research reported here is intended to show the usefulness of optimization analysis in the design of a low thermal difference system and to demonstrate some of the problems that must be considered in this type of analysis.
II. THE MODEL

A. GENERAL DESCRIPTION

Vapour power generating cycles usually consist of four processes. Energy is absorbed from a high temperature source and is used to vaporize a working fluid in a boiler. Next, work is extracted by expanding the vapor in an engine, exhausting the vapor at a lower temperature and pressure. The working fluid is then condensed back to the liquid state by rejecting energy to the lower temperature energy sink in the third process. Finally, the liquid is returned to the higher pressure of the boiler by a pump. In the following analysis, the energy source is a current of ocean water heated by the sun and the energy sink is assumed to be colder ocean water from deep currents. The working fluid is assumed to be propane although many other fluids are possible, such as ammonia or the Freons.

Six components are modeled in the following analysis. The hot side heat exchangers, the boilers, vaporize the working fluid which is expanded through a turbine exhausting to a condenser that rejects the unused heat to the cold sink. Three pumps are included, a feed pump returns the working fluid to the boiler and two pumps circulate the warm and cold waters through the boiler and the condenser, respectively. The arrangement of the system is shown in Fig. 2. The nodes are numbered to correspond with the fluid state points shown later, in Fig. 3.
Figure 2. System Arrangement
The analytical model consists of the equations describing the system and a set of parameters to be optimized so as to minimize the capital cost of the plant subject to certain constraints. The objective function, the function to be minimized, is the sum of the capital costs of the pumps, the boiler and the condenser. Although the turbine is a significant capital cost and would affect the design of the system, it is not included in this model. There are two classes of constraints. The first class is the explicit constraints that specify the upper and lower bounds on the parameters. The other class of constraints is the implicit constraints. These are the engineering equations that describe the operation of the power plant. For example, a constraint might say that the temperature inside the boiler must be less than the temperature of the warm seawater because the equations fail if the requirement is not satisfied. Another example would be a power balance that requires that the sum of the energy flows into and out of the system be zero. Additionally, they proscribe the region that the optimization routine may search within for the minimum of the problem. The implicit constraints are of two types, equality and inequality constraints. Inequality constraints set one-sided bounds on the feasible region. Some of the inequality constraints are restrictions placed on the maximum or minimum values of the parameters due to judgments made on the basis of practical engineering considerations. The equality constraints are relationships that must be strictly satisfied at the optimum. The system of equations describing the model fit into the following form:
\[
\begin{align*}
\text{minimize} & \quad f(X) \\
\text{subject to:} & \quad g_i(X) \geq 0, \; i=1,2,\ldots,m \\
& \quad h_i(X) = 0, \; i=m+1,\ldots,m+n
\end{align*}
\]

where \(X \) is the vector of the parameters to be optimized, \(f(X) \) is the capital cost function, \(g_i(X) \) are the inequality constraints and \(h_i(X) \) are the equality constraints. The parameters are the dimensions of the boilers and the condensers, the boiling and condensing pressures, the seawater velocities, and the mass flow rate of the working fluid through the system.

The basis for the economic framework must be set out at the start. All measurable costs are relevant to the final design of the power plant, but, for some types of analysis and design, many costs can be ignored. The life cycle cost of the CTEC must be considered before the decision is made to commit the U.S. and the rest of the world to the consequences of choosing this energy generation scheme as even a partial solution to the energy problem. The life cycle cost consists of the capital costs, the financing costs, and the operating costs. The trade-off of operating cost and capital cost is not considered in this research, because the operating cost is, for the most part, independent of the overall dimensional characteristics of the components. Operating costs are dominated by the structure, site location, and maintenance requirements. Such things as the kind of instrumentation, controls, bearings, and structural materials have more effect on the operational costs than the length of the boiler or the diameter of the boiler shell. Therefore, only the capital costs of the major components, except the turbine, are considered.
To be useful for model analysis cost data must be transformed into a cost estimating relationship (CER) that shows how cost varies with some variable or some combination of variables. The costs must be demonstrated to be highly correlated with the variable chosen. Since the cost relation is only a correlation, the bounds on the accuracy of the equation should be specified by those who develop it. Since the relation is arrived at from a finite body of data, the CER is directly applicable only in the range of the data collected. Extrapolation of the CER outside the range is dangerous because there is no data in that region to support the assumed curve. However, the value of CER's is the use of them to enable the estimator to make a better analysis of a new design than he could if the information is not available. The relevant range of the CER must be kept in mind when analyzing the solutions from the standpoint of the reliability of the answers. Another factor to consider when using cost estimating relationships is whether the equipment the data was taken from is comparable to the system the analyst is considering. If the design, the technology, or the application of the proposed equipment is significantly different from that from which the data is taken, the CER may give unreliable answers.

This analysis begins with the development of the engineering equations that constrain the system. This is followed by the development of a cost framework based on capital costs as the function to be minimized. The engineering and economic relations are linked together in the objective function and the constraints. A description of the algorithm that performs the optimization is included.

B. CYCLE ANALYSIS
The building of the model begins with the analysis of the thermodynamic cycle. Figure 3 is a temperature-entropy diagram of the working fluid on which the cycle is shown. These numbered nodes represent the thermodynamic state points at that location in the system and correspond to the numbers in Fig. 2. The boiling and condensing processes are assumed to be reversible processes. In the pump and the turbine the reversible process is indicated by the subscript "s" on the state point number. In the actual system there are irreversible losses inside each component that are left out of the analytical model or lumped in with other losses. The pressure drops due to frictional losses in the boiler and the condenser are neglected.

State point 1 assumes that the liquid leaving the boiler is saturated. State points 2s and 2 represent the conditions leaving the feed pump. If there were no losses in the pump, the fluid would be at 2s. The fluid enters the boiler to be heated, first, to saturation conditions at state point 3 then boiled at essentially constant pressure. State point 4 shows the vapor leaving the boiler as a saturated vapor. The lines from point 4 to 5s and 5 represent the expansion through the turbine. The path to state point 5 accounts for the losses due to friction and other irreversible processes in the turbine. The remaining heat is then rejected from point 5 to point 1, again assumed to be a constant pressure process.

The theoretical heat transfer rate in the boiler and the condenser is found by subtracting the enthalpy at state points 2 and 1 from the enthalpy of state points 4 and 5, respectively, and multiplying by the total mass flow rate of the working fluid.

\[Q_{ab} = M_{wf}(H_4 - H_2) \]

(1)
CRITICAL POINT 661.6 PSIA

FIGURE 3. THERMODYNAMIC CYCLE
\[Q_{rej} = M_{w}f(H_5 - H_1) \]

(2)

The enthalpy at state point 5 is determined by first finding the moisture content of the fluid exiting the turbine.

\[i = \frac{s_4 - s_f}{s_fg} \]

(3)

The enthalpy at point 5 is determined from

\[H_{55} = H_1 + i H_{f9} \]

(4)

This allows \(P_5 \) to be found from

\[\eta_{tur} = \frac{H_4 - H_{55}}{H_4 - H_5} \]

(5)

where the efficiency of the turbine is assumed known. The power out of the turbine is now known.

\[P_{tur} = M_{w}f(H_4 - H_5) \]

(6)

For the feed pump the change in enthalpy is accounted for by the change in pressure assuming negligible rise in the temperature. The enthalpy of point 2 is determined from

\[\eta_{fp} = \frac{v_f (P_{25} - P_1)}{H_2 - H_1} \]

(7)

where the efficiency is assumed known. The power required to drive the pump is determined from
To gain a better feeling for the low thermal potential systems and to make comparisons with other systems several efficiencies are worthwhile calculating. The first is the Carnot efficiency which defines the maximum efficiency possible for a system operating between two temperature limits in degrees absolute, $0^\circ R (0^\circ K)$.

$$\eta_{\text{car}} = 1 - \frac{T_{\text{cold}}}{T_{\text{hot}}}$$

(9)

The next efficiency calculation takes into account the theoretical thermodynamic cycle and is the ratio of the net power out of the cycle to the heat taken up by the cycle.

$$\eta_{\text{cyc}} = \frac{P_{\text{net}}}{P_{\text{in}}} - \frac{P_{\text{out}}}{Q_{\text{out}}}$$

(10)

This accounts for the thermodynamic inefficiencies inherent in the cycle. Finally, the system efficiency takes into account the other internal consumers of power: the circulation pumps, the pipe losses, and any other losses, such as the antifouling equipment. This calculation accounts for all of the mechanical and electrical inefficiencies of the system.

$$\eta_{\text{sys}} = \frac{\text{NET POWER AT THE EUS BAR}}{Q_{\text{in}}}$$

(11)

For example, if the hot water is at $75^\circ F (23.9^\circ C)$ and
the cold water is assumed at 40°F (4.4°C) the Carnot efficiency is 6.5%. For one typical set of assumptions, as shown in Table 5, where the turbine and the pumps are assumed to be 85% efficient, the cycle efficiency is 2.6% and the system efficiency is 2.4% for one feasible design.

C. ENGINEERING FRAMEWORK

This section describes the design of the components that make up the system. The level of detail of the analysis provides a physically realistic model and closes the loop. The pipe friction losses on the cold and hot water inlets as well as the pipe losses in the working fluid side are neglected. The turbine is included only as an energy transducer and no attempt is made to obtain costs, physical dimensions, or fluid flow characteristics. The efficiencies of the turbine and the pumps are assumed as known constants. The heat absorbed in heating the working fluid to the saturated state is a small portion of the total energy taken up in the boiler; therefore, the sensible heating of the fluid is neglected.

1. The Boiler

The boiler consists of a number of tube-in-shell heat exchangers connected in parallel as shown in Fig. 2. Figure 4 shows the internal arrangement of one shell. The tube bundle is horizontal and boiling occurs on the outside surface of the tubes. The tube bundle is submerged in the working fluid. The working fluid is maintained at a level to just cover the top row of tubes. The warm seawater is pumped through the inside of the tubes.
FIGURE 4. BOILER CROSS SECTION
The clearance between the tubes is fixed at 0.5 inches (1.27 cm) to allow for flaring of the tube ends or other space and strength requirements. Similarly, the tube thickness is fixed at 0.028 inches (0.071 cm), since no strength requirements due to differences between internal and external pressures on the tubes or material loss due to corrosion of the tube surfaces are accounted for.

At the top of the tube bank the leaving vapor contains a large amount of liquid droplets which must be eliminated either in the boiler or by an external separator. In the model the separation takes place in the boiler by allowing sufficient space above the tube bank. Palem and Small, Ref. 11, presented a method for finding the necessary separation volume that considers the effects of surface tension, density of the vapor and the liquid, and the mass flow of the working fluid. First the allowable vapor load is found from:

\[VL = 2290 \rho_l \left[\frac{\sigma}{6.86 \times 10^{-9} (\rho_l - \rho_g)} \right]^{0.5} \] (12)

Vapor load is an expression for the mass flow rate of vapor through a unit volume. The expression for the maximum vapor load limits the flow rate so that the moisture droplets are able to settle out of the vapor before it leaves the boiler. Then the required segmental area is found from:

\[SA = \frac{M_{wf}}{VL L S} \] (13)

The segmental area is the cross sectional area from the top of the tube bank to the top of the shell. Knowing the segmental area the height of the tube bank above the main
diameter is found from

\[SA = 0.25 L^2 \cos \left(\frac{2 \cdot hs}{D_s} \right) - hs(0.25 L^2 - hs^2)^{0.5} \] (14)

Palen and Small also present a much simpler method of determining the total height of the tube bank. The height of the separation volume is set at 40% of shell diameter which results in \(hs \) being equal to 0.1 \(D_s \). Either method can be used alone or the first method can be used as a constraint on the second. For this problem, the segmental area is found by both methods with the first used as a check on the values given by the second.

Since the heat flux calculation is based on a single tube, the number of tubes per shell must be determined in order to find the total energy absorbed by the heat exchanger. The tubes are assumed to be laid out in a 60 degree triangular pattern for maximum compactness. The tubes are located at the vertices of an equilateral triangle. Two cross-sectional areas are calculated. The area of a hexagon whose minor radius is equal to one half the pitch is determined from

\[A = 6 \left(\frac{P}{2} \right)^2 \tan 30^\circ \] (15)

Then the effective cross-sectional area of the tube bank is found by subtracting the clearance area, \(SA \), from the cross-sectional area of the shell after correcting the shell diameter for a clearance space to allow for free flow channels both within the tube bundle and around the outside of the tube bundle. The effective cross-sectional area of the tube bank is divided by the area of the hexagon, found
above, to determine the number of tubes in a shell.

The flow of the liquid and vapor through the tube bank is assumed to be turbulent. The incoming subcooled working fluid from the feed pump mixes with the recirculating fluid returning from higher up in the tube bank. The circulation of the fluid is induced by the boiling process. This mixture enters the tube bank and begins the boiling process. Near the bottom of the tube bank the heat transfer goes mostly to bring the fluid up to the boiling temperature. After the fluid reaches saturated liquid conditions, stable boiling begins. The vapor bubbles rising through the surrounding liquid increase the turbulence around the tubes. As the liquid continues up through the tube bank, the local boiling temperature is decreasing due to the decreasing hydrostatic head. This decrease in the boiling temperature increases the temperature difference and increases the heat flow and increases the bubble generation rate. The vapor generation may become so rapid that a condition called vapor blanketing may occur in the interior of the tube bank where the liquid cannot flow inward fast enough to displace the vapor flowing through the region. This is similar to burnout in convective boiling in that the tubes dry out and the heat transfer rate decreases. This effect becomes pronounced only near the critical heat flux according to Starczewski, in Ref. 8.

All of the heat and mass flow variations in the tube bundle are averaged by performing the calculations for a single tube located at the mid height of the tube bank. This tube is assumed to represent the average of all the tubes in the tube bank. The boiling situation is assumed to be saturated pool boiling. Quoting from Collier, Ref 12, "Pool boiling is defined as boiling from a heated surface submerged in a large volume of stagnant liquid". Since the
fluid volume seen by the tube is neither large nor stagnant, a correction is needed for the effect of being in a tube bundle. Saturated boiling is defined as boiling at a constant temperature and pressure as the liquid changes to a vapor. This is probably not strictly true because the boiling temperature is controlled by the local pressure at each tube, and the fluid is not reaching a stable temperature as it rises in the bundle. The situation is probably closer to convective boiling since the fluid is boiling in a confined channel between the tubes. An additional effect in the boiler is the fact that the hydrostatic head at the bottom of the tube bundle causes the boiling to take place at a higher pressure at the bottom than the ceiling at the top of the bundle where the pressure is equal to the boiler exit pressure. This effect is accounted for by using the average head of the bundle in the heat transfer equations.

The heat transfer analysis of the boiler begins with the basic equation

\[Q = UA \Delta T_m \] (16)

where \(U \) is the overall heat transfer coefficient, \(A \) is the area through which the heat is transferred and \(\Delta T_m \) is a properly defined mean temperature difference. In this paper, the product \(UA \) is treated as a single quantity called the thermal conductance. One may look at the equation as an analogue of the basis electrical equation \(I = E/R \) where \(I \) is equivalent to \(Q \), \(E \) is the same as \(\Delta T_m \) and \(UA \) is \(1/R \). This analogy is used when developing the expression for \(UA \).

In order to account for the effects of the tube seeing many nearby neighbors, the equation is modified by the inclusion of a factor, \(F \), to account for the effects of
the surrounding tubes. Equation 16 is changed to

\[Q = UA F \Delta T_m \]

(17)

where \(F \) is defined as the ratio of the heat flux of the tube bundle to the heat flux for a single tube in a stagnant pool boiling situation. According to Ref. 13, a report published by workers at Heat Transfer Research, Inc. (HTRI) of Alhambra, California, \(F \) is greater than one. In Figure 5, which is sketched from a figure in their report, \(F \) ranges from 4.73 at \(\Delta T_m = 80^\circ F \) to 2.63 at \(\Delta T_m = 40^\circ F \). Since no data is given on the conditions of the test, \(F \) is assumed to be fixed at three.

In order to find \(\Delta T_m \), the heat exchanger effectiveness, \(\xi \), is determined. The effectiveness is defined as the ratio of the actual heat transfer rate to the maximum possible heat transfer rate as shown by

\[\xi = \frac{C_h (T_{hi, in} - T_{hi, out})}{C_{min} (T_{hi, in} - T_{c, in})} \]

(18)

where

\[C = (N C_p)_{fluid} \]

(19)

\[C_{min} = \text{minimum of } C_h \text{ or } C_c \]

(20)

In the boiler, \(T_{hi, in} \) is the temperature of the entering seawater, and \(T_{c, in} \) is the saturation temperature of the working fluid at the pressure at the mid height of the boiler. Reference 14, by Kays and London, contains equations for finding the effectiveness for various flow configurations. In addition to finding \(C_{min} \), \(C_{max} \) must be
FIGURE 5. COMPARISON OF A SINGLE TUBE VERSUS A TUBE IN A BUNDLE
known in order to decide which equation applies. For the case of boiling, \(C_{\text{max}} \) is infinite; therefore, regardless of the flow pattern

\[
\xi = 1 - \exp(-NTU)
\]

(21)

where \(NTU \), the number of heat transfer units of a heat exchanger, is defined as

\[
NTU = \frac{UA}{C_{\text{min}}}
\]

(22)

and

\[
C_{\text{min}} = \frac{M_{\text{sw}}}{C_{p,\text{sw}}} C_{p,\text{aw}}
\]

(23)

\(\Delta T_m \) is found from

\[
\xi = \frac{UA \Delta T_m}{C_{\text{min}} \Delta T_0}
\]

(24)

and the temperature of the sea water at the outlet of the tube is determined from

\[
\xi = \frac{T_{\text{h,in}} - T_{\text{h,out}}}{\Delta T_0}
\]

(25)

where

\[
\Delta T_0 = T_{\text{h,in}} - T_{c,\text{in}}
\]

(26)

The quantity \(UA \) is determined next. Figure 6
FIGURE 6. THERMAL NETWORK FOR A SINGLE TUBE
illustrates the method used. If UA is pictured as the reciprocal of resistance then the flow of energy from one fluid to the other can be pictured as a series electrical circuit and UA is determined from

\[UA = \frac{1}{R1 + R2 + R3 + R4} \] \hspace{1cm} (27)

Reference 15, by Holman, shows how each resistance can be found. R1 is the thermal resistance due to convection on the inside of the tubes, the sea water side.

\[R1 = \frac{1}{\pi \text{h}_{sw} d_1 L} \] \hspace{1cm} (28)

R2 is the thermal resistance of the tube wall.

\[R2 = \frac{\ln(d_o/d_i)}{2 \pi \text{k}_w L} \] \hspace{1cm} (29)

R3 is the thermal resistance attributed to boiling on the outside of the tubes.

\[R3 = \frac{1}{\pi \text{h}_{wf} d_o L} \] \hspace{1cm} (30)

R4 is the thermal resistance due to any other resistances, such as fouling and corrosion deposits.

The heat transfer coefficient on the seawater side, \(\text{h}_{sw} \), is determined from the dimensionless group called the Nusselt number defined as follows for flow inside of tubes.
In order to find the Nusselt number, three distinct regions of flow are allowed for in the problem: laminar, transition, and turbulent flow. The division points are in terms of values of the Reynolds number, \(Re = \frac{ud\rho}{\mu} \).

- **laminar:** \(0 < Re \leq 2,000 \)
- **transition:** \(2,000 < Re \leq 10,000 \)
- **turbulent:** \(10,000 < Re \leq \text{infinity} \)

In the laminar region the Sieder-Tate correlation is used.

\[
Nu_L = 1.86 \left(Re \Pr \frac{d_j}{L} \right)^{1/3}
\]

In the turbulent region the Littus-Boelter correlation is used.

\[
Nu_{Tu} = 0.023 \frac{Re}{Pr}
\]

In the transition region the flow is unstable, but from data in Ref. 14 it appears that a fairly smooth curve drawn from the laminar curve to the turbulent curve adequately represents the value of the Nusselt number in the transition region. This is done by assuming the form

\[
Nu_{Tr} = y \cdot Nu_L + (1 - y) \cdot Nu_{Tu}
\]

where

\[
y = a Re^2 + b \frac{Re}{2} + c Re + d
\]
The coefficients in the polynomial are found by requiring

\[
\text{Nu}_T = \text{Nu}_L \text{ at } Re = 2,000 \\
\text{Nu}_T = \text{Nu}_L \text{ at } Re = 10,000
\]

and that the first derivatives with respect to the Reynolds number match at Re equal to 2,000 and 10,000.

The I.I. Mostinski correlation, from Ref. 16, for single horizontal tube pool boiling is used to find the heat transfer coefficient on the outside of the tube. HIFI's extensive experimentation led Palen, Yarden, and Tabcrek, in Ref. 13, to conclude that Mostinski's equation produced the "most consistent results". His correlation is

\[
h_{wT} = 0.69 \cdot 0.7 \cdot 0.17 \cdot 1.2 \cdot 10 \cdot C.69 (658 \cdot P_c \cdot q \cdot (1.8 + 4 \cdot r + 10 \cdot r)) \quad (36)
\]

where

- \(r = E/P_c \)
- \(P_c = \text{critical pressure of the working fluid (psia)} \)
- \(q = \text{heat flux (BTU/hr-ft)} \)

A final heat flux relation needed is the relation for the maximum heat flux allowed. Mostinski's correlation for a single tube is used.

\[
g_{\text{max}} = 803 \cdot P_c \cdot r^{0.35} \cdot (1 - r)^{0.9} \quad (37)
\]

where the units are the same as in equation (36). From HIFI's data, under unknown conditions, \(g_{\text{max}} \) for the bundle appears to be one third of the \(g_{\text{max}} \) for a single tube.
The power required to pump the salt water through the tubes depends on the pressure drop across the tube bank. There are three causes of the pressure drop. The flow experiences a loss as the water enters into and exits from the tubes in addition to the frictional loss along the tube. From Ref. 14, the pressure drop for a liquid is determined from

\[
\Delta P = 0.5 \rho_{sw} u_{sw} \left(\frac{4 f L}{d_i} + K_e - K_c \right)
\]

In order to determine \(f, K_e \) and \(K_c \), the flow regime must be specified. The regimes are a little different than those for the Nusselt number.

- laminar: \(0 < \text{Re} \leq 2,000 \)
- transition: \(2,000 < \text{Re} \leq 5,000 \)
- turbulent: \(5,000 < \text{Re} \leq \text{infinity} \)

The Fanning friction factor, \(f \), in the laminar regime is

\[
f = \frac{16}{\text{Re}}
\]

In the turbulent regime, the Fanning friction factor is found from the Blasius equation in the range \(5,000 < \text{Re} < 100,000 \)

\[
f = \frac{0.079}{\text{Re}^{0.25}}
\]

which is a close approximation to the Karman - Nikuradse equation.
\[(4 f)^{-0.5} = -0.8 + 0.87 \ln(Re(4 f)^{0.5})\] \hspace{1cm} (41)

which is valid throughout the turbulent region \((Re > 5,000)\), assuming smooth walled tubes. Either equation \((40)\) or \((41)\) may be used with similar results but the Elsasius is better suited to this analysis because the Karman-Nikuradse equation must be solved by iteration. Equation \((41)\) consumes more computer time to solve and can cause accuracy problems if not enough significant digits are evaluated. The friction factor in the transition region is determined by fitting a least squares curve through a hand drawn curve from the end of the laminar curve to the beginning of the turbulent curve.

The entrance effect, \(K_e\), and the exit effect, \(K_c\), depend on the Reynolds number, the free flow to frontal area ratio, \(\Phi\), and, in the laminar region, on the tube length. For the boiler, \(\Phi\) is determined by

\[\Phi = \frac{2}{d_i N} \frac{2}{D_s^2 - 4SA}\] \hspace{1cm} (42)

Figure 5, page 7-13, in Ref. 17 is used to find \(K_e\) and \(K_c\). The effect of Reynolds number and \(L/d\) ratio was eliminated from the relationships in the laminar and the turbulent regimes of the flow, but the Reynolds number was included in the transition region because of the large variation of \(K_c\) with Reynolds number. The following equations are used to find the entrance effect in the various flow regimes.

Laminar: (using the curve for \(4 (L/d)Re = 0.1\))

\[K_{cL} = 1 - 0.4 \Phi\] \hspace{1cm} (43)
1. The Conductor

The design of the condenser is almost the same as the design of the boiler. It is a fixed tube sheet, tube-in-shell heat exchanger. The condenser does not need a separation volume so the entire shell is filled with tubes. In order to allow the entering vapor to reach all of the tubes, channels through the tube bank are needed. The
allowance for this is accomplished by decreasing the shell diameter by a fixed factor when calculating the number of tubes. The calculation of the working fluid side heat transfer coefficient, \(h \), is different. The equation accounts for the condensate from one tube falling on those below it and for the subcooling of the condensate. M.M. Chen's equation, as developed in Ref. 18 and shown in a more simple form in Ref. 17, is used.

\[
h_{wf} = 0.72 \left[1 + 0.2 \left(\frac{C_p \Delta T}{H_{fg}} \right) (n-1) \right] \left[\frac{g \rho_1 (\rho_2 - \rho_3) k^3 H_f}{n \bar{d}_o \Delta T} \right] 0.25
\]

where

\[
h = \text{BTU/ft}^2\text{-hr}^{-\circ}F
\]

\[
\Delta T = T_{sat} - T_w
\]

\[
H_{fg}^* = H_{fg} + \frac{3}{8} C_p \Delta T
\]

\[n = \text{number of tubes in a column}\]

\(H_{fg}^* \) is the enthalpy corrected for subcooling of the condensate. Equation (48) replaces equation (36) in the analysis of the condenser. In the circular shaped tube bank, \(n \) is found by determining the number of tubes in a column of average height.

\[
n = 9.425 \frac{D_s}{\pi} - 1
\]

The definition of \(\Delta T_0 \) becomes
\[\Delta T_o = T_{\text{sat}} - T_{\text{sw,in}} \] \hspace{1cm} (52)

in contrast to equation (26) above. The seawater outlet temperature is found from

\[\xi = \frac{T_{\text{sw, out}} - T_{\text{sw, in}}}{\Delta T_o} \] \hspace{1cm} (53)

which replaces equation (25).

In order to find the heat transfer coefficient, the temperature of the outside tube surface is needed in equation (49); therefore, the thermal network is solved for the outside wall temperature and for the heat flow rate.

\[Q = UA' \left(T_w - T_{\text{bulk}} \right) \] \hspace{1cm} (54)

where

\[UA' = \frac{1}{R1 + R2 + R4} \] \hspace{1cm} (55)

\[T_{\text{bulk}} = \text{average of the inlet and the outlet seawater temp.} \]

There is no factor, \(P \), in the heat transfer equation for condensation since the effect of neighboring tubes is accounted for in equation (47).

3. **Pumps**

There are three pumps in the model. Both circulation pumps for the boiler and the condenser are assumed to be propeller pumps (axial flow pumps). The feed
pumps are assumed to be centrifugal pumps. The differences in the characteristics of the two types of pump show up only in the calculation of capital costs of the pumps in the model.

The choice of the type of pump to apply is made on the basis of the flow rate, GPM, and on the head the pump is working against. Qualitatively, the propeller pump is used where the flow rates are high and the head is low. The centrifugal pumps apply where the flow rate is comparatively low and the head pressure is high. The qualitative picture is placed in better perspective through the calculation of the specific speed from

\[
N_{sq} = \frac{0.5 \times \frac{GPM}{0.75 \times \text{Head}}}{\frac{56}{N_{sq}^2}}
\]

(56)

The centrifugal pump is used when \(500 < N_{sq} < 7,500 \) and the propeller pump applies when \(7,500 < N_{sq} < 15,000 \), according to Ref. 15. The choice of the type of pump is checked after the optimization process has been completed by solving equation (55). If the value of the specific speed is outside of the range, \(500 < N_{sq} < 15,000 \), the maximum efficiency of the pump drops off rapidly; therefore, few pumps are designed to operate outside of this range.

Since the pumps are "black boxes", only the power consumed by the pumps is calculated. The power required to drive the pump is found from

\[
P = \frac{M \Delta P}{\eta_{pump}}
\]

(57)
D. COST FRAMEWORK

As discussed at the start of this report, the capital costs of the major components are the only costs to be considered in this model. The boiler and the condenser are both tube-in-shell heat exchangers assumed to be of the fixed tube sheet type. The only difference being that the shell of the boiler is partly filled with tubes. Both seawater circulation pumps are assumed to be propeller type pumps and made of the same material. The size and number per heat exchanger shell may be different for the boiler and the condenser. The number of working fluid feed pumps, which are the centrifugal type pumps, are assumed to equal the number of boiler shells.

The cost estimating relationships for the heat exchangers and the centrifugal pumps are taken from Ref. 20, by K.M. Guthrie. The equation for the cost of the heat exchangers is

\[\$_{he} = 118.3 \ (F_d + F_p) \ F_m \ I_{he} \ (A_t)^{0.63} \]

(58)

where the constants are calculated from a log-log plot of cost versus total tube surface area and

- \(F_d = 0.8 \) for a fixed tube sheet
- \(F_p = 0.6 \) for pressure correction (p < 150 psi)
- \(F_m = \) material factor from Table 1
- \(I_{he} = \) cost index
- \(A_t = \ g / L N \)

for a relevant range of 100 < A < 10,000 ft².

The cost equation for the centrifugal pumps and the
The cost of associated motors is

\$_{fp} = 1.013 F_m F_o I_{fp} C_H^{0.721} \quad (59)

where the constants are found from a straight line approximation of the log-log plot of cost versus \(C \) for the section of the curve from \(C = 30,000 \) to \(C = 300,000 \) for an electric motor driven pump and

- \(F_o = 1.0 \) for suction temperatures < 250°F (121°C)
- \(I_{fp} = \) cost index
- \(F_m = \) material factor from Table 2
- \(C_H = \) product of the flow rate in GPM and the pressure differential in psi

for a relevant range of 30,000 < \(C_H < 300,000 \). The cost data in Guthrie's article is given for a time base of mid-1968.

Reference 21, also by Guthrie, gives cost data for propeller pumps and centrifugal pumps. The equation for the propeller pumps with the motors is

\$_{cp} = 5.767 F_m F_p I_{cp} \text{Flow}^{0.783} \quad (60)

where the constants are found from the log-log plot of cost versus flow rate for an electric motor driven pump and

- \(F_p = 1.0 \) for a suction pressure < 150 psi
- \(F_m = \) material factor from Table 3
- \(I_{cp} = \) cost index
- \(\text{Flow} = \) flow rate in GPM

for a relevant range of 1,000 < \(\text{Flow} < 100,000 \) GPM. The time base for the propeller pump data is for the end of
Table 1
MATERIAL FACTORS FOR THE HEAT EXCHANGERS

<table>
<thead>
<tr>
<th>Material</th>
<th>Shell</th>
<th>Tube</th>
<th>Fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel</td>
<td>Carbon Steel</td>
<td>Brass</td>
<td>1.00</td>
</tr>
<tr>
<td>Carbon Steel</td>
<td>Carbon Steel</td>
<td>Stainless Steel</td>
<td>3.52</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>Monel</td>
<td>4.95</td>
</tr>
<tr>
<td>Carbon Steel</td>
<td>Monel</td>
<td>Titanium</td>
<td>11.10</td>
</tr>
<tr>
<td>Titanium</td>
<td>Titanium</td>
<td>Titanium</td>
<td>16.60</td>
</tr>
</tbody>
</table>

Table 2
MATERIAL FACTORS FOR THE CENTRIFUGAL FEED PUMPS

<table>
<thead>
<tr>
<th>Material</th>
<th>Fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast Iron</td>
<td>1.00</td>
</tr>
<tr>
<td>Bronze</td>
<td>1.28</td>
</tr>
<tr>
<td>Cast Steel</td>
<td>1.32</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>1.93</td>
</tr>
<tr>
<td>Monel</td>
<td>3.23</td>
</tr>
<tr>
<td>Hastelloy C</td>
<td>2.89</td>
</tr>
<tr>
<td>Titanium</td>
<td>8.98</td>
</tr>
</tbody>
</table>
Table 3

MATERIAL FACTORS FOR PROPELLER PUMPS

<table>
<thead>
<tr>
<th>Material</th>
<th>F_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast Iron</td>
<td>1.00</td>
</tr>
<tr>
<td>Cast Steel</td>
<td>1.28</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>1.64</td>
</tr>
</tbody>
</table>
1970. The costs arrived at from equations (58), (59), and (60) are in dollars per component, for example, dollars per heat exchanger shell. The purpose of the cost index is allow all the equipment to be costed on a common basis. The time difference is assumed to be small enough so that the cost index is set to 1.00 for all the components.

E. ASSEMBLY OF THE MATHEMATICAL MODEL

The engineering and the cost relationships are linked together in the model. The cost equation is the function to be minimized and the implicit and explicit constraints are the engineering equations that restrict the feasible region of the problem. The explicit constraints restrict the variables, the vector X, to positive values. The rest of the model is formulated in the following form:

$$\begin{align*}
\text{minimize} & \quad f(X) \\
\text{subject to:} & \quad g_i(X) \geq 0, \quad i=1,2, \ldots, m \\
& \quad h_i(X) = 0, \quad i=m+1, \ldots, m+n
\end{align*}$$

where the definitions of the elements of X are shown in Table 4. Several of the variables must have only integer values if the system were actually built, but for the objectives of this analysis they are left as continuous real variables. For example, the number of shells may have an integer value in the actual system but this requirement can be accommodated by solving the system for a real value then integerizing the number of shells and solve the problem with the next higher and the next lower integer number of shells. The lower of the two solutions would be chosen. The final resolution of the correct number of shells would
Table 4
DEFINITION OF THE ELEMENTS OF THE VECTOR x

$x(1)$ = velocity of seawater in the boiler
$x(2)$ = " " " condenser
$x(3)$ = cutlet pressure in the boiler
$x(4)$ = inlet " " condenser
$x(5)$ = tube length in the boiler
$x(6)$ = " " " condenser
$x(7)$ = mass flow rate of the working fluid
$x(8)$ = diameter of the boiler shell
$x(9)$ = " " condenser shell
$x(10)$ = outside dia. of a tube in the boiler
$x(11)$ = " " " " condenser
$x(12)$ = number of boiler shells
$x(13)$ = " " condenser shells
probably depend on other than thermodynamic and cost considerations, such as a requirement that one extra shell be included to allow for one shell being down for maintenance. Obviously, the number of tubes in a shell must be an integer value but one extra tube cut of several thousand is a minor matter. In addition, there may be a requirement for extra tubes to allow for a percentage to be plugged when they develop leaks so that the entire shell is not put out of commission by a minor leak in one tube.

1. **Objective Function and the Constraints**

The objective function is the sum of the costs of the boiler and the condenser, and the pumps. The model assumes that there is one circulating pump and one feed pump for each shell in the boiler and that there is one circulating pump for each shell in the condenser. Since there is no cost analysis for the turbine, no assumption is needed about the number of turbines in the system.

There are nineteen constraints in the present program, one of which is optional. The first three concern the saturation pressures in the boiler and the condenser. The next twelve place restrictions on various dimensions of the boiler and the condenser. The last three require that some intermediate calculations stay positive.

Using the objective function as a constraint has proved advantageous in cases where the problem was non-convex or where the program had difficulty in finding a solution. It is used by setting a boundary on the objective function so that the constraint is either infeasible or slightly feasible at the starting point. The proper choice must be found by trial and error. One caution to note is when equality constraints are involved. If the starting
point is near the optimum, the program tries to move away from the boundary and the equality constraints may not be satisfied when the program finishes.

The need for the other eighteen inequality constraints is not obvious when the problem is first formulated. The thermodynamics of the problem require, for example, that the propane saturation temperature be less than seawater temperature in order for the boiler to absorb energy, but the program has no way of knowing that, unless it is specified. If the program can improve the cost and satisfy the other constraints by reversing the relationship it will do so. This inversion may take place only for a short time during the solution of the problem, but, if the equations fail under this condition, the constraint on the temperatures in the boiler is necessary. Most of the other constraints are needed for the same reason.

Some constraints are not added to the problem since they are not binding in the solution. There are two such constraints. The first is the segmental area required to allow separation of the liquid droplets from the vapor. The segmental area set aside by the 40% rule-of-thumb is more than that required by the consideration of the physical properties of propane. The other constraint is the restriction on the maximum heat flux by Mostinski's correlator, equation (37). The constraints do not become binding in the solution.

The three equality constraints contain the calculations of the properties of the various components modeled in this analysis. The first one concerns the boiler. It states that the actual energy absorption rate of the boiler shells must be equal to the energy absorption rate required by the thermodynamic cycle. Similarly, the second equality constraint states that the heat rejected by
the condenser must equal that required by the thermodynamic cycle for the condensation of the vapor from state point 5 back to state point 1 as shown in Fig. 3. The third constraint calculates the power required by the various pumps and the power extracted from the turbine to run the system's pumps and to produce electrical power for consumption. This constraint requires that the power cut of the turbine equal the power used by the pumps and the generator. The net useful power cut of the system is a design objective and is specified as 25MW herein.

2. The Optimization Method

Since the arrival of the electronic computer, a great many nonlinear programming techniques have been developed from early theories and more current research. The computer program, called the Sequential Unconstrained Minimization Technique (SUMT), developed by Wylander, Helens, and McCormick in Ref. 22 is used to optimize the model. Their program implemented much of the theory contained in Ref. 23, by Fiacco and McCormick, about nonlinear programming using unconstrained minimization techniques. SUMT-Version 4 is chosen because of its ability to solve a wide variety of problems. The theoretical requirements for SUMT to be guaranteed to find a local minimum is that there exists some point which satisfies the inequality constraints and that there not be a local minimum at points where \(x \) goes to infinity. If certain convexity conditions are satisfied, then the local minimum found is a global minimum.

SUMT uses a penalty function to transform the constrained optimization problem
minimize \quad f(X)

subject to: \quad g_i(X) \geq 0, \quad i=1,2,\ldots,m

h_i(X) = 0, \quad i=m+1,\ldots,m+n

into a sequence of unconstrained problems of the form

\[F(X,r) = f(X) - r \sum_{i=1}^{m} \ln g_i(X) + \frac{1}{r} \sum_{i=m+1}^{m+n} (h_i(X))^2 \] \quad (61)

where \(F(X,r) \) becomes the function to be minimized. The inequality constraints, \(g(X) \), cause a large penalty to occur as a boundary is approached. The equality constraints add a large penalty whenever \(h(X) \) departs from zero in either direction. The size of the penalties due to \(g(X) \) and \(h(X) \) is controlled by the arbitrary parameter \("r" \). The algorithm solves the problem by solving a series of subproblems. For \(r_1 > r_2 > r_3 \ldots > 0 \), SUMT minimizes \(F(X(r_n),r_n) \) in each subproblem in order to find the minimum of \(f(X) \) as \("r" \) tends to zero. When a minimum of a subproblem is found, \("r" \) is reduced by a factor assigned by the user and the new subproblem is solved. The process continues until the convergence criteria chosen by the user is satisfied. Figure 7 illustrates schematically the results of the sequence of subproblems and the qualitative shape of the penalty function. Three methods of minimization are included in the program. The user may choose either the generalized Newton-Raphson, steepest descent, or McCormick modification of the Fletcher-Powell method.

There are several other options that control the operation of SUMT. The user may choose the initial penalty, \(r \), or if the problem satisfies certain conditions, the user may elect to have SUMT compute the initial \("r" \). There are three choices for the convergence criteria of the
FIGURE 7. PROBLEM SOLUTION SEQUENCE
problem. The criterion used depends on the inequality penalty term being close enough to zero. Another option is the choice of the calculation of the subproblem stopping criterion. Two of the choices compute the inverse of the second partial matrix and the third choice computes only the gradient of the penalty function \(\nabla P(X,r) \). One of the most useful options is extrapolation. After two or three subproblems have been solved SUMT is able to make a first or second order extrapolation to the starting point for the next subproblem. This can speed up the solution of the problem measurably.

The characteristics of the problem limit the choices for each option. The penalty factor couldn't be set by SUMT due to the presence of equality constraints and because the initial \(X \) is usually not close to any boundary. The stopping criterion for the problem is that the inequality penalty term become less than some value, usually \(10^{-7} \). Extrapolation is used, but it makes little difference in the answer or to the solution time whether a two point or three point estimate is made. The subproblem convergence criterion is the magnitude of the gradient of \(f(X,r) \) becoming less than some small number.

The choice of starting penalty, \(r \), affects significantly the solution time and even whether a solution is found in some problems according to Ref. 7. If the initial "r" is too small, the subproblem optimum may be the problem's optimum which may be hard to find or require more calculations than if a much larger "r" is chosen. If "r" is too large, the first few optima lie near the center of the feasible region and are unrelated to the optimum of the objective function.

Scaling of the variables, constraints, and the objective function is necessary. The variables must be
within two or three orders of magnitude of each other. For example, the working fluid flow rate is of the order of 10^7 whereas the tube diameters are of the order 10^6. If the finite difference interval is 10^{-4}, the partial of the equations with respect to the mass flow rate may be lost due to the roundoff error providing the only significant figures. With the constraints and the objective function, unscaling may result in one term in the penalty function being dominant, and the algorithm finds that most of the decrease in the penalty function takes place in the dominate term. The result is that SUMT works hard to decrease that term and does not see the other terms resulting in a meaningless solution.

In making first and second order estimates of the solution, SUMT may generate negative numbers in the x vector. When it evaluates the constraints and objective function for this point, the equations fail and may cause the program to fail depending on the severity of the failure and how many times the error has occurred. This problem is circumvented by testing the vector upon entry into the subroutine where the objective function and the constraints are evaluated and setting the constraint being evaluated equal to some negative constant.

The main program of SUMT is altered so that the problem can be restarted at the current solution without reading in a new problem. This is necessary because the program would give all the indications of having found a solution, but if the problem is restarted it could often find a low value for the objective function. The new solution is compared to the previous solution and if the two solutions are not close enough the problem is restarted after making some changes to particular parameters, options, or constraints depending on the objective the user has in mind.
III. RESULTS AND CONCLUSIONS

One of the major tasks in the development of a nonlinear model is the linking of the model with the optimization program in order to analyze the model. The selection of the proper nonlinear programming technique is essential to the solution. Several techniques require that the objective function and the constraints be in a particular form. For example, Geometric Programming developed by Duffin, Peterson and Zener, in Ref. 24, requires that the equations be polynomials which is not true of the model developed in this paper. SUMT was chosen because of its wide applications to problems of any type. It only requires that there exist some feasible point and that local minima not exist at infinity. It has successfully solved many nonconvex problems.

Two versions of the analytical model are presented. The first is called the iterative version because the calculation of the heat absorption rate and heat rejection rate require iterating on some quantity to find them. Mostinski's correlation, equation (36), contains the heat flux which is an unknown. It is not possible to solve the system of equations explicitly for the heat flux; therefore, a successive approximation technique is used. The calculation of the heat rejected in the condenser involves the same process with the temperature of the outside tube wall as the iterating variable. SUMT is unable to arrive at a consistent solution in the time allowed, up to 90 minutes of computer time. The solutions are quite different for each try with no pattern evident about the direction the solution might lie.
There are several possible explanations for this behavior. Perhaps the behavior of this version of the problem is such that SUMT is not the best choice for the optimizing algorithm or possibly the problem cannot be solved at all in this form. Another source of problems could be the numerical differentiation procedure. Numerical differentiation is subject to severe truncation and round-off error. The subproblem always terminates when SUMT is unable to reduce the penalty function during the next iteration, from one estimate of X to the next estimate. Remember the convergence criterion, never satisfied for this version of the problem, is the magnitude of $\nabla f(X,r)$ becoming less than some small number. No conclusive results could be obtained with this version so the second version is used for the present analysis.

In this second version the heat transfer coefficients on the Propane side of the tube are fixed. This enables the equality constraints for the boiler and the condenser to be calculated to the full accuracy of the computer without increasing the time required. The correlations, equation (36) and (48), are used for comparison with the fixed value. If the calculated value and the fixed value are within 20 to 25% of one another, the solution would be considered to be good since this is the tolerance claimed for the correlations.

SUMT seemed to be able to solve the new problem because a series of seven solutions have been produced where the values of the elements of X and of the objective function vary no more than 3.7% and 1.2%, respectively, about the mean when different starting points and different SUMT control parameters are selected. See Table 6 for a summary of the solutions obtained from the assumed data, as shown in Table 5. The design implications of these results are quite reasonable. The range shows the spread in the solutions.
Table 5
PROBLEM INPUT DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fouling Thermal Resistance Boiler and Condenser</td>
<td>0.0 hr·°F/BTU (0.0 °C/kW)</td>
</tr>
<tr>
<td>Elevation of Boiler Above Condenser</td>
<td>15 ft (4.57 m)</td>
</tr>
<tr>
<td>Channel Allowance</td>
<td>0.83 ft (0.25 m)</td>
</tr>
<tr>
<td>Efficiencies for the Turbine and the Pumps</td>
<td>85%</td>
</tr>
<tr>
<td>Seawater Temperatures - Hot</td>
<td>75°F (23.9°C)</td>
</tr>
<tr>
<td>- Cold</td>
<td>40°F (4.4°C)</td>
</tr>
<tr>
<td>Net Output Power</td>
<td>8.532 x 10^7 BTU/hr (25 MW)</td>
</tr>
<tr>
<td>Bundle Factor (F)</td>
<td>3.0</td>
</tr>
<tr>
<td>Cost Indexes (I)</td>
<td>1.00 for all ccmp.</td>
</tr>
<tr>
<td>Tube Wall Thickness</td>
<td>0.028 in (0.071 cm)</td>
</tr>
<tr>
<td>Min. Distance Between Tubes</td>
<td>0.5 in (1.27 cm)</td>
</tr>
<tr>
<td>Heat Transfer Coefficients for Boiler and Condenser</td>
<td>145 BTU/ft²·hr·°F (0.822 kW/m²·°C)</td>
</tr>
</tbody>
</table>

Materials

- **Boiler and Condenser**: Carbon Steel Shells, Brass Tubes
- **Feed Pumps**: Bronze
- **Circulation Pumps**: Stainless Steel
Table 6

EXAMPLE PROBLEM SOLUTION SUMMARY

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range</th>
<th>Mean</th>
<th>Var</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>3.323-3.347</td>
<td>3.335</td>
<td>0.7</td>
<td>ft/sec</td>
</tr>
<tr>
<td>Pressure</td>
<td>approx 0</td>
<td>118.2</td>
<td>0.0</td>
<td>lb/in²</td>
</tr>
<tr>
<td>Tube length</td>
<td>39.16-40.00</td>
<td>39.71</td>
<td>2.1</td>
<td>ft</td>
</tr>
<tr>
<td>Shell dia.</td>
<td>24.12-25.00</td>
<td>24.91</td>
<td>3.5</td>
<td>ft</td>
</tr>
<tr>
<td>Tube dia.</td>
<td>0.756-0.761</td>
<td>0.758</td>
<td>0.7</td>
<td>in</td>
</tr>
<tr>
<td># of shells</td>
<td>7.141-7.409</td>
<td>7.228</td>
<td>3.7</td>
<td>-</td>
</tr>
<tr>
<td>Condenser:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>2.793-2.823</td>
<td>2.808</td>
<td>1.1</td>
<td>ft/sec</td>
</tr>
<tr>
<td>Pressure</td>
<td>91.53-91.60</td>
<td>91.56</td>
<td>0.1</td>
<td>lb/in²</td>
</tr>
<tr>
<td>Tube length</td>
<td>39.35-40.00</td>
<td>39.78</td>
<td>1.6</td>
<td>ft</td>
</tr>
<tr>
<td>Shell dia.</td>
<td>44.65-45.00</td>
<td>44.89</td>
<td>0.7</td>
<td>ft</td>
</tr>
<tr>
<td>Tube dia.</td>
<td>0.7632-0.7686</td>
<td>0.7660</td>
<td>0.7</td>
<td>in</td>
</tr>
<tr>
<td># of shells</td>
<td>3.297-3.401</td>
<td>3.331</td>
<td>3.1</td>
<td>-</td>
</tr>
<tr>
<td>Mass flow rate</td>
<td>22.12-22.21</td>
<td>22.17</td>
<td>0.4</td>
<td>10⁴ lbm/hr</td>
</tr>
<tr>
<td>System cost</td>
<td>7.578-7.673</td>
<td>7.607</td>
<td>1.2</td>
<td>10⁶ $</td>
</tr>
</tbody>
</table>
The arithmetic mean of the seven solutions is calculated. The difference between the maximum and the minimum values is shown as a percent of the mean. The percent variation gives some idea of how well the solution was determined. Note that the tube length and shell diameter constraints are binding for both the boiler and the condenser. The subproblem still terminates only when the penalty function does not decrease from one iteration to the next. The magnitude of $\nabla_X F(X, \lambda)$ is not becoming small enough to satisfy the convergence criterion. The value never becomes less than 0.02 and is usually greater than 0.5 when a subproblem is stopped by the program.

Useful results are obtainable, however. The engineer can learn much about his problem even from a single point. For example, from the cost breakdown in Figure 6, the portion of the costs attributable to each component can be seen. The heat exchangers, of course, dominate with 78% of the cost. The circulation pumps are about 21% of the cost with the feed pumps being 1.2% of the total cost. Since the efficiency assumed for the circulation pumps is probably too high, these pumps would be even more costly in terms of energy and money. This could indicate the priorities that should be set on the design efforts for improvements of the various components with the highest priority being the highest percentage cost component.

The system’s power distribution is shown in Table 7. The significant features are the large energy absorption rate for the small useful output power and the parasitic pumping power. The lower the efficiency the greater must be the power absorbed for the same output. This is to be expected for this kind of system. The parasitic pumping power (12% of the turbine output) is about twice what it is for a fossil fuel plant.
CON DENSER
$3,333,000
43.9%

BOILER
$2,528,000
33.3%

FEED
PUMPS
$94,100
1.2%

CIRCULATION
PUMPS
$654,000
8.6%

FIGURE 8. COST BREAKDOWN
Table 7
SOLUTION POWER BUDGET

<table>
<thead>
<tr>
<th>Description</th>
<th>EIU/Hz</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Absorption</td>
<td>3.56×10^9</td>
<td>1042.8</td>
</tr>
<tr>
<td>Turbine Shaft Power</td>
<td>9.69×10^7</td>
<td>28.4</td>
</tr>
<tr>
<td>Feed Pumps</td>
<td>4.49×10^6</td>
<td>1.3</td>
</tr>
<tr>
<td>Ehl Circulation Pumps</td>
<td>2.58×10^6</td>
<td>0.8</td>
</tr>
<tr>
<td>Cond Circulation Pumps</td>
<td>4.51×10^6</td>
<td>1.3</td>
</tr>
<tr>
<td>Heat Rejected</td>
<td>3.47×10^9</td>
<td>1015.7</td>
</tr>
<tr>
<td>Net Useful Power</td>
<td>8.53×10^7</td>
<td>25.0</td>
</tr>
</tbody>
</table>
Once the model has been optimized with the number of shells as real variables, the problem can be re-solved twice by fixing the shells at the next higher and the next lower integer number. For the higher number of shells, the cost increased slightly as expected, from 7.607 million dollars average to 7.983 million dollars. The problem with the lower integer number of shells could not be solved due to the constraints on the tube length and the diameter of the shells being binding before the shell numbers were integerized. The program is unable to find a new solution that satisfies the equality constraints.

Table 8 shows some miscellaneous data from the model that deserves comment. The overall heat transfer coefficient of the boiler is approximately three times that for the condenser which is the major reason for the lower cost of the boiler relative to the condenser. However, remember that the bundle factor, equal to 3, is a part of the heat transfer coefficient. More data must be gotten about this factor in order to improve the reliance on any solution. There is a significant difference between the Propane heat transfer coefficients that were assumed and the theoretical values calculated from the correlations. Other values should be tried until the fixed value is within the 20% tolerance on the theoretical value. The flow of seawater through the tubes in both the boiler and the condenser is turbulent. Apparently, the resulting cost savings due to the improved heat transfer rate through a smaller area is more than the increased costs of the higher pumping power needed. It seems likely that the solution obtained is globally optimal; several different starting points were tried. The problem has been started in both the laminar and the turbulent flow regions with no change in the results.
<table>
<thead>
<tr>
<th></th>
<th>Boiler</th>
<th>Condenser</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Fluid Heat Transfer Coefficients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assumed</td>
<td>145.</td>
<td>145.</td>
<td>BTU/hr-ft²-°F</td>
</tr>
<tr>
<td></td>
<td>(0.822)</td>
<td>(0.822)</td>
<td>(kW/m²-°C)</td>
</tr>
<tr>
<td>Theoretical</td>
<td>227.</td>
<td>241.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.29)</td>
<td>(1.37)</td>
<td></td>
</tr>
<tr>
<td>Surface Area per Shell</td>
<td>2.39x10⁵</td>
<td>1.27x10⁶</td>
<td>ft²</td>
</tr>
<tr>
<td></td>
<td>(2.22x10⁴)</td>
<td>(1.18x10⁵)</td>
<td>(m²)</td>
</tr>
<tr>
<td>Seawater Cutlet Temp</td>
<td>72.3</td>
<td>43.8</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>(22.4)</td>
<td>(6.55)</td>
<td>(°C)</td>
</tr>
<tr>
<td>Shell Saturation Temp</td>
<td>66.7</td>
<td>49.9</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>(19.3)</td>
<td>(9.94)</td>
<td>(°C)</td>
</tr>
<tr>
<td>Seawater Pass Flow Rate</td>
<td>4.39x10⁸</td>
<td>9.11x10⁹</td>
<td>lbm/hr</td>
</tr>
<tr>
<td></td>
<td>(1.99x10⁸)</td>
<td>(4.13x10⁹)</td>
<td>(kg/hr)</td>
</tr>
<tr>
<td>Mean Temp Difference</td>
<td>6.67</td>
<td>7.85</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>(3.71)</td>
<td>(4.36)</td>
<td>(°C)</td>
</tr>
<tr>
<td>Overall Heat Transfer Coefficient</td>
<td>310.6</td>
<td>105.0</td>
<td>BTU/hr-ft²-°F</td>
</tr>
<tr>
<td></td>
<td>(1.76)</td>
<td>(0.595)</td>
<td>(kW/m²-°C)</td>
</tr>
<tr>
<td>Heat Flux</td>
<td>2070.0</td>
<td>824.9</td>
<td>BTU/ft²-hr</td>
</tr>
<tr>
<td></td>
<td>(6.528)</td>
<td>(2.602)</td>
<td>(kW/m²)</td>
</tr>
<tr>
<td>Seawater Reynold's no.</td>
<td>19,800.</td>
<td>9,960.</td>
<td></td>
</tr>
</tbody>
</table>

70
IV. RECOMMENDATIONS

The present model has a great deal more information to offer, but some improvements in the model should be made to improve the ability of a nonlinear program to solve the problem. The first recommendation would be to study the equality constraints and place inequality constraints on any variable or grouping of variables if they both can become negative and also must have their logarithms computed. Examples, already included in the program, are the number of tubes in the shells. The heat transfer coefficients for the working fluid side in the boiler and the condenser could be included as equality constraints. This can be done by adding the heat transfer coefficients to the vector x and requiring that the variables be equal to the coefficients as computed by the appropriate correlation. The same could be done with Fahlen and Small's property-dependent calculation of the separation area by equation (12) and (13). From an overall standpoint, the results seem to indicate either the problem is too difficult to be solved efficiently in its present form or that another nonlinear program, other than SUMI, might be better suited to the problem. Numerical differentiation of the constraints in this problem do not seem to help the program to find the solution since the magnitude of $\nabla F(x, l)$ is not near zero when a subproblem steps.

Once the optimization scheme is functioning properly, the model can be used to study the effects of fouling and corrosion and the costs of their prevention. Many proposals have been made that must be analyzed in the context of the total system. Some such as AmerTap, where plastic foam balls are pumped through the tubes to clean the heat
transfer surfaces, add a cost penalty from the capital and operating cost of the Armetap system and from the increased pumping power required. Coatings add the capital costs of the coating and the added capital cost of increased heat transfer area required because of the increased thermal resistance of the coating.

A sensitivity analysis can be performed on the model to test the assumptions and the various constants. The sensitivity to changes in these factors can indicate how much one should be willing to pay for the improvement sought. High sensitivity indicates areas where the greatest effort for improvement should be desired or the priorities should be set on research into the unknown areas of the problem. The trade-off between cost and performance can be studied by changing the output power and looking for the lowest cost per kilowatt-hour, which is the measure by which conventional power plants are compared. One could look into the cost and the benefits of increasing the depth from which the cold water is pumped versus the improved temperature differential possible from using the colder water.

For the capital cost of the system to be complete, the turbine design must be included and cost estimates made. The turbine will be unique due to the very low pressure potential drop it must use. Some work has been done by other groups working on OTEC, Ref. 25 and 26. Reference 27, by Robert L. Bartlett, can provide costing and design information although he deals only with steam turbines. The remaining part of the system that is desirable for inclusion in the analysis presented herein is the cold seawater intake pipe. It will be on the order of 1,000 ft (304.8 m) long and 100 ft (30.4 m) in diameter.
APPENDIX A

C****main MAIN
MARCH 1971

C
C MAIN IS THE PROGRAM THAT INITIATES THE SUMT ALGORITHM. THE INPLT CF
C PARAMETERS OPTIONS, AND STARTING POINT IS READ IN MAIN. AFTER THE
C SOLUTION OF ONE NLP PROBLEM MAIN LOOKS FOR DATA FOR ANOTHER NLP PROBLEM.
C
C INPLTINCLUDES
C
C#INPLT
C INPLT REAL*8(A-L, O-Z, $)
C CCMON /SHARE/ X(100), DELX(100), A(100,100), N,M,MN,AF1,NM1
C CCMON /CALC/ HUJI, PZ
C CCMON /EMPLATE/ NT1, NT12, NT2, NT4, NT6, NT7, NT9, NT10
C CCMON /VALUE/ F, G, P0, RSIGMA, RJ(200), RHC
C CCMON /CRST/ DELX(100), DELX0(100), RH0IN, RATIC, EPSI, THETAO, RSIG1, GM1
C CCMON /CRST/ X(100), X2(100), X3(100), XRZ(100), XRI(100), PR1, PR2, P1, P1RJ(200)
C CCMON /PREV2/ DELX, NTCTR, NUMPHI, APHASE, ASATIS
C CCMON /EXPOT/ NEXCP1, NEXCP2, XEP1, XEP2
C CCMON /CIMEN/ VL, XA, EPSI, MAX, KMAX, PITCH, OI, CI, CLEAR, CS, S, TUBE, PS, NIG
C CCMON /CIMEN/ LG, ATCT, ATOTL, BANKE, TMX, ATC10, THICK, CC, CIC, CTBL, CPIT
C CCMON /CCST/ $BL, $FDP, $BIRC, $CCND, $CCFC, $TCT
C CCMON /CELLIF/ AREAFR
C CCMON /MESCI/ N1, N2, N3
C CCMON $F/ $X
C CCMON $C/ $X
C CCMON $C/ $X
C CCMON $F/ $X
C CCMON $F/ $X
C CCMON $F/ $X
C
C PARAMETERS
C
C PA1 = 1
C PA2 = 4
C PA3 = 9
C PA4 = 5
C PA5 = 10
C PA6 = 20
C PA7 = 40
C PA8 = 60
C
C REAL (5,80, END=60) EPSI, RH0IN, THETAO, RATIC, TMX, X1, X2, X3, XRZ
C REAL (5,50) (X(I), I=1, N)
C CALL READIN
C
C 3C CONTINUE
C
C INITIAL X VECTOR CARD FORMAT
ATCTR = 0
AF1 = N+1
AP1 = N-1
C SLEEP LINE REACTION IS UNDER PROGRAMMER CONTROL
C CRTICK CARDS FOLLOW PROGRAMMER CALL
WRITE (6,140) N,M,Z,WMX,RCIN,RATIC,EFSI,TFETAQ
WRITE (6,160)
WRITE (6,110) NT1,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
C--FEAC TOLERANCES
WRITE (6,120)
WRITE (6,100) XEP1,XEP2
C--REACTION CHOICE CARD
WRITE (6,130) NEXCP1,NEXOP2
CALL TIMEC
NPHASE = 4
FFR = 6
AREAFR
WRITE (6,70) AFR
C --- JUST TO GET AN INITIAL PRINTOUT
CALL COUT
I$ = STCT/1.E07+.0001
CALL EVALU
FC = 0
G = 0
F = 0
PSIGMA = 0
CALL OLTPLT (2)
CALL STCRE
IF (NEXCP1.EQ.1) CALL CHECKER
IF (NEXOP1.EQ.3) STOP 01072
IF (NEXOP1.EQ.5) STOP 01104
C -- FEAS
C NPHASE = 1 IS USED TO INDICATE NO FEASIBLE POINT EXIST
C RC TO (40,40,40,40,20), NPHASE
C RC TO (40,40,40,40,20), NPHASE
4C NPHASE = 2
ATCTR = 0
CALL EGCY
C C RESTART THE CURRENT PROBLEM IF THE LAST SOLUTION IS AN IMPROVEMENT
C C OVER THE PREVIOUS SOLUTION, ALSO MOVE THE BOUNDS OF THE CEJ FUNC
C C CONSTRAINT CLOSE TO THE PRESENT SCLLTION.
C IF (CABS($TCT-$SY).*LE.1TCT/1.E05) GC TO 50
$Y = $TCT
$X = $TCT/1.E07+.0001
MRN = MRN+1
CC TO 5C
MAIN 400
MAIN 410
MAIN 420
MAIN 430
MAIN 440
MAIN 450
MAIN 460
MAIN 470
MAIN 480
MAIN 490
MAIN 500
MAIN 510
MAIN 520
MAIN 530
MAIN 540
MAIN 550
MAIN 560
MAIN 570
MAIN 580
MAIN 590
MAIN 600
MAIN 610
MAIN 620
MAIN 630
MAIN 640
MAIN 650
MAIN 660
MAIN 670
MAIN 680
MAIN 690
MAIN 700
MAIN 710
MAIN 720
MAIN 730
MAIN 740
MAIN 750
MAIN 760
MAIN 770
MAIN 780
MAIN 790
MAIN 800
MAIN 810
MAIN 820
MAIN 830
MAIN 840
MAIN 850
MAIN 860
MAIN 870
50 CONTINUE
CALL GLTA
20 CG TO 20

C PARAMETER CARD
INITIAL X VECTOR CARD FORMAT
CFTION CARD FORMAT
CFTION CARD FORMAT

70 FORMAT ('OTUBE BUNCLE WALL CLEARANCE=','F8.4,' (IN)')
50 FCPMAT (5E12,0,314)
50 FCPMAT (6E12,0)
100 FCPMAT (6E20,7)
100 FCPMAT (1017)
100 FCPMAT (13-0 TOLERANCES)
100 FCPMAT (24-0 SECOND SET OF CPTIONS)
140 FCPMAT (56H1 NONLINEAR PROGRAMMING ROUTINE-SLMT VERSION 4 3/22/71)
140 FCPMAT (11)
150 FCPMAT (11-0.5X,2HA=13.6X,2HM=13.6X,3MT=12//8X,1GHMAX, TIME=E14.7,6X,4PRATIO=E14.7,6X,6PEPSILON=E14.7,4X,6HT ETA=E14.7)
160 FCPMAT (18FO CPTIONS SELECTED)
EAC
SUBROUTINE RESTNT (J, VAL)

This subroutine evaluates the objective function and the constraints one at a time as requested by the SLMT program.

!FLICIT REAL 8 (A-L:0-Z,$)
COMMON /DIMENG/ VL, SA, SPC, HMAX, PITCH, CD, CL, CLEAR, CS, STM, TUEG, FL, FESGREST
COMMON /RES/ PC, PR, DBK, BE, RK, RL, F, DELTA, T, TAC, TACT, TAC

SET THE VARIABLES

CALL SET

IF ANY VARIABLE IS NEGATIVE, BYPASS THE CONSTRAINTS.

IF (JUSN LE 0.0 OR CLUS LE 0.0 OR CTUBE LE 0.0 OR CTUBE LE 0.0) GOTO 230
IF (LCHE LE 0.0 OR DDE LE 0.0 OR COS LE 0.0 OR CMLL LE 0.0 OR CMLL LE 0.0) GOTO 470
IF (CF LE 0.0) GOTO 470
GO TO 230
IF (J = EC + 15) GO TO 40
CC TO 350
40 VAL = $>>
CC TO 350

CONSTRAINTS

EQUALITY CONSTRAINT 1: BCILER

5G RESW = 300. * DIW + US * RHFW/VISSW
FPCFPC = RHPC(PCOND)
FPCFP = RHCP(PO)
X2 = PRS**3
FPC = FPCFPPC
F1 = FPCF
F4 = FPPC

FIN THE ENTHALPY OF STATE POINT 2
C
CELFW = PO + 6.94444E-03 * RHFWF/COND
FACFW = 146. * DFWF/RHFWF
F2 = M1 * FACFW/(178.16 * EFFFWF)

FIN THE NUMBER OF TUBES IN THE BCILER
C
CALL AREA (I, MM)

FIN THE HEAT TRANSFER COEFFICIENT FOR THE SEAWATER
X1 = (PRSW * DI / (TLBFL * 12.1))**.333333
IF (RESW > 2000. AND RESW < 10000.) GO TO 60
CALL SETA (DI, TUBEL, PRSWH)
CALL CSIMC (A, B, K)
FCT = B(A) + RESW*B(2) + RESW*B(3)
NL = 2. * C2 * FCT * X1 * RESW**.333333 * (1. - FCT) * .023 * X2 * RESW**.8
IF (NL =< 0.0) WRITE (6, 400) NU
GO TO 80
60 IF (RESW = 2000.0) GO TO 70
NL = .023 * RESW**.8 * X2
CC TO 80

REST 670
REST 680
REST 690
REST 700
REST 710
REST 720
REST 730
REST 740
REST 750
REST 760
REST 770
REST 780
REST 790
REST 800
REST 810
REST 1020
REST 1030
REST 1040
REST 1050
REST 1060
REST 1070
REST 1080
REST 1090
REST 1100
REST 1110
REST 1120
REST 1130
REST 1140
REST 1150
REST 1160
REST 1170
REST 1180
REST 1190
REST 1200
REST 1210
REST 1220
REST 1230
REST 1240
REST 1250
REST 1260
REST 1270
REST 1280
REST 1290
REST 1300
REST 1310
REST 1320
REST 1330
REST 1340
REST 1350
REST 1360
REST 1370
REST 1380
REST 1390
REST 1400
REST 1410
REST 1420
REST 1430
REST 1440
CC

CC

PROCEDURE

CC

CC
EQUALITY CONSTRAINT 2: CONDENSER

50 CRESH = 300.*CID*CSWH*RF/CSWH/VISSH
T1 = TSAT(FCOND)
T2 = TSAT(FC)
PFC = RF*FC(FCOND)
RF = FFC(FCOND)

FINC THE ENTHALPY OF STATE POINT 5

FINC THE NUMBER OF TUBES IN THE CONDENSER
CALL AREA (2, MN)

FINC THE SEAWATER HEAT TRANSFER COEFFICIENT
C1 = (PRES*CID/(CTUBL*12.))**.333333
C2 = PRES**.3
IF (CRESH 00.0000) GC TO 100
CALL SETA (CID, CTUBL, PRES)
CALL DSMQ (A, B, C, D)
CPCT = B/4*CRESH+(B/3)*CRESH+(B/2)*CRESH+E(1))
CNU = 2.02*CPCT+0.023*CRESH**.8
IF (CNU 0.0) WRITE (6, 410) CNU
GC TO 120
100 IF (CRESH 2000.) GC TO 110
CNU = 0.23*CRESH**.8*CX2
GC TO 120
110 CNU = 2.02*CRESH**.333333*CX1
IF (CNU 3.66) CNU = 3.66
120 CFW = 12.*CNU/CSWH/CIC

FINC THE THERMAL RESISTANCES
C1 = 3.81572/(CFSH*CIC/CTUBL)
C2 = .159159*DLCE(COC/CID)/(CMET/CTUBL)
CFLCSW = 15.63495 R1CSWCUSM*CIC**2
CFL5WT = CFLOSW*CNI*CS
CC5W = CFLCSW*PSWC
CA = 6.42478*CS/CPS/CPS/CPSH-1.0
FG = FGPC-FPFC
EE = CPFT(11)
EC = CR1+CR2
EG = BC*CR4
EP = 2*BC*CN1-1.1/FG
EG = PFCFS*1361040.*(RHOFC-RHCPFC)*TKF(11)**3
EP = CN*CIC*VISC(T1)
EG = BC/BP
EP = T1-CTSWIN
EP = CTUBL
EP = 3*BB/B0
EFCA = 145
ES = 3.01572/(CHCA*BJ)

FINE THE HEAT TRANSFER RATE, THE SEAWATER OUTLET TEMP, AND THE
CLITHE WALL TEMP

CLA = 1./(BC+CR3)
CNLT = CUA/CCSW
E = B1*(1-G-CEXP(-CNTU))
CTUBE = CSSMD
CTHEL = CTSWIN+D
TML = (CTSWIN+CTW)/2.*CTUBE*EC
CDELT = T1-TWALL
CHFG = -FG*BC*DELT
C = 1.+BG*CDELT
C-C5W = 728*C*(EE*CHFG/CDELT)**25
CGRJ = CCTUBE*C5*CNI

FINE THE THERMODYNAMIC HEAT TRANSFER RATE
CGRJ = FLCHF*(HS-H1)
COMPUTE THE CONSTRAINT
VAL = (CGRJ-QREJ)/1.0E5
GC TO 350
EQUALITY CONSTRAINT 3: NET POWER CUT

13C RESH = 300.*D1*US3R*HCSW/HVSSWE
CFRES = 300.*CID*CLS*HCSW/HVSSWC
T1 = TSAT(PCOND)
T2 = TSAT(PC)
RFPC = RFPC(PCOND)
*PC = PC(PCOND)
*PS = PC(PCOND)
*1 = HP(PO)
*1 = HPFC

FINC THE ENTHALPY AT STATE POINTS 5S AND 2

DELFWF = PC+6.9444E-03*RHO*PC*FPC+T-PCOND
DELFW = 144.*DELFWF/RHO*PC
*PP = H1+(ENTG(T2)-ENTF(T1))**(HPCFC-HPCFC)/(ENTG(T1)-ENTF(T1))
*2 = H1+ENTW/(778.16*EFFPF)

FINC THE NUMBER OF TUBES IN THE BOILER AND THE CONDENSER

CALL AREA (1,MM)
CALL AREA (2,MM)

DETERMINE THE POWER REQUIRED FOR THE FEED PUMPS

X2 = PRSH**3
X1 = (PRSH)**D1/(TUBEL*12.))**3333333
PFPW = FLCPF*(H2-1)

FINC THE POWER REQUIRED FOR THE BOILER CIRC PUMPS

RFPC = CT2*BN/(144.*CS**2-1.*27324*SA))
IF (RFPC-LEQO) WRITE (6,420) RFC
RKE = 1.26529+RHO*(-2.51782+RHO*(1.6126+.176768*RFPC))
IF (RFPC-CT-2000.) GO TO 140
F = 16./RESH
KC = 1.-4.*RHO
GC TO 160

140 IF (RESH-LT-5000.) GO TC 150
F = .675/RESH**.25
KC = .62-4.*RHO
GC TO 160
15C LAMCMA = 1.666667E-3*333333E-04*RESW
KC = -52.46*LAMDA-4*RHO
F = 1.254E-01*1.71438E-04*RESW+5.05226E-6*RESW**2-2.2345E-11*RESW
1nk = 3.2*1.956E-15*RESW**4-1.193E-15*RESW**5
15C CELTAP = 1.078333E-04*RHCW*(US**2)*(4.6*TILEL/CI+KC-BKE)
PWSW = 4.62683*USW*C**2*S*CELTAF*ENTI/2*PPSW

** FINISH THE POWER REQUIRED FOR THE CONDENSER CIRC FLWPS
CRW = CIC**2*ENTI/(144.*(CDS**2))
CKE = 1.00929*CRHO/(1-2.51782*CRF+C*(1.1612E-17668*CRHO))
CC = 16.*CRESW
CRH = 1-4*CRHO
GC TO 150

17C IF (CRESW*LT.5000.) GC TO 180
CR = 0.79/CRESW**2.25
CRH = 12-4*CRH
GC TO 150

19C CPLCA = 1.666667E-3*333333E-04*CRESW
CF = 1.524E-01-1.71438E-04*CRESW+5.05226E-6*CRESW**2-2.2345E-11*CRESW
1CRW**2+2.5969E-15*CRESW**4-1.193E-15*CRESW**5
15C CELP = 1.078333E-04*RHCW*(CLSW**2)*(4.6*CFCLEL/CL*CCK-CKE)
PWSW = 4.62683*USW*CL**2*C12*CELPA*ENTI/2*PPSW

** FINISH THE POWER PROVIDED BY THE TURBINE
PWRTUR = EFFTUR*FLOW*(0.0-HPS)

** EVALUATE THE CONSTRAINT
VAL = (PWRTUR-NETPWR-PWPSW-PWPF-CPPSW)/1E-7
GC TO 350

** INEQUALITY CONSTRAINTS

20C T2 = TSAT(PO)
VAL = BTSWIN-T2
GC TO 350

21C T1 = TSAT(PCOND)
VAL = CTSWIN-T1
GC TO 350

22C T1 = TSAT(PCOND)
T2 = TSAT(FC)
VAL = T2-1
GE TO 350
220 VAL = -1.0
WRITE (6,430) (X(K),K=1,N)
GE TO 350
240 VAL = 440.-TUBEL
GE TO 350
250 VAL = 440.-CTUBL
GE TO 350
260 VAL = CID-25
GE TO 350
270 VAL = DI-25
GE TO 350
280 VAL = (S-2.1)/10.
GE TO 350
290 VAL = (CD-2.1)/10.
GE TO 350
300 VAL = TUBEL-2.
GE TO 350
310 VAL = CTUBL-2.
GE TO 350
320 VAL = D-DS
GE TO 350
330 VAL = 450.-CDS
GE TO 350
340 VAL = 155.5-S
GE TO 350
350 VAL = 155.5-CS
GE TO 350
360 CALL AREA (1,MM)
VAL = BRI/1000.
GE TO 350
370 RFCFP = RHCF(P)
HEIGHT = E*DS
F = PO+2*0.722*0.03*RHCF*HEIGHT
CELTCB = BLSWIN-TSAT(P)
VAL = CELTCB
GE TO 350
380 CALL AREA (2,MM)
VAL = CAIL/1000.
GE TO 350
390 CONTINUE
RETURN

400 FORMAT ('* 4U=',E16.4)
SLECSLTNE READIN

* THIS SUBR0UTINE READS IN THE NECESSARY CONSTANTS AND FINDS THE
 PROPERTIES OF SEAWATER.

IMPLICIT REAL*8(A-L,O-Z,$)
COMMON /SHARE/ X(100),DEL(100),A(100,100),A,P,NX,NF,NM1
COMMON /CIMEN/ VL,SA,FSC,MAX,PITCH,OD,CL,CLEAR,CS,S,TUBEL,H,HEIG
1F,T,AAVG,ATCT,ATOC,BANKHT,HTMAX,ATCTB,THICK,CN,OCI,CIC,CTPLB,CPIT
2L,CCTR,CCLR,CTH,CS,KNP,ADN,FMX,INEX,NI,NC
COMMON /FLSW/ FLOW,FLSLW,USW,RESW,WHN,UMAX,REAVG,FLCSHT,GMWF,GPRE
1M,CL,CLSHT,SWS,SWSW,CPSW,CMET,PKET,PCRIT,PFELR,FMCRF,FPFD,FMCCND,DEXLR,CDXCR
2F,CEXCR,CEXCRN
COMMON /PRESS/ PC,P,R,BKE,KC,KHC,RHC,F,DELTA,T,HEAC,HEACF,DELFFF,CKC,Cl,
Cl,CELF,CH,CRHO,CKL,CCND
COMMON /TID/ DELT3,TSWIN,TSWCT,DELTCE,TSCHB,DELT,WALL,CTSHIN
1,CTSHUT,CDLT
COMMON /EQ/ QTUBEC,QTUBE,B,STLBE,CTEMP,CTLE,E,CTT,CTTC,CTTLC,CTLBE
1GREJ,NETPWR,PAWCM,PAWSW,EFFFW,EFFTR,EFFPSW,EFTRUR,CMAX,SYSEFF,CMAX
2GREJ,CFPWSW,PS,QTLEBE,NET,CYCEFF
COMMON /CY'S/ H1,H2,H14,H5,H55,T1,T2
COMMON /MSC/ MSG1,MSG2,MSG3,MSG4,MSG5,MSG6,MSG7
COMMON /GCS/ GIS,GI,SEFPMF,SEFPM,S,COULC,MCOT,MTOT
COMMON /CS/ PT
COMMON /SHELL/ AREAFR
REAL *8,MSG1,MSG2,MSG3,MSG4(2),MSG5(2),MSG6(2),MSG7(2),STRG
REAL *8,CK,NTLC,NU,NETKWR,NET,NETUC

REAL (5,20) MSG1,MSG2,MSG3
REAL (5,30) CLEAR,CCLR,THICK,CTF,K,TSWIN,CTSHIN,FCRIT,BKMET,CMET
REAL (5,40) NETPWR
REAL (5,50) EFFFW,EFFPSW,EFFTR
REAL (5,60) MSG4,MSG5,MSG6,MSG7
REAL (5,70) FMFBL,FMCOND,FMFC,FMCRF,DEXLR,CEXCR,CEXNC,CEXFC,CEXRC
REAL (5,80) H1,CH4,R4
REAL (5,40) AREAFR

READ 10
READ 20
READ 30
READ 40
READ 50
READ 60
READ 70
READ 80
READ 90
IF (N.EQ.11) READ (5,40) S,CS

DETERMINE THE PROPERTIES OF THE WARM AND COLD SEAWATER

T1 = BSWIN
T2 = CTSWIN
VSSWH = 7.9554*15215*T1**2.0013672*T1**2-4.*642E-06*T1**3
VSSWCC = 7.9554*15215*T2**2.0013672*T2**2-4.*642E-06*T2**3
C3SFW = -3.02927+5.65E-04*T1
C3SFC = -3.02927+5.65E-04*T2
CFSWH = 1.02645-6.86411E-04*T1+4.0374E-06*T1**2
CFSWCC = 1.02645-6.86411E-04*T2+4.0374E-06*T2**2
RFSWH = 62.39+0.0036211*T1-7.625E-05*T1**2
RFSWCC = 62.39+0.0036211*T2-7.625E-05*T2**2
FFSWH = 26.173-5.54646*T1+0.05147*T1**2-1.861E-05*T1**3
FFSFC = 26.173-5.54646*T2+0.05147*T2**2-1.861E-05*T2**3

RETURN

20 FORMAT (3AE)
40 FORMAT (8F10.0)
2C FORMAT (3F10.0)
60 FORMAT (8E8)
7C FORMAT (8F3.2)
SLEQCLINE SETV

THIS SUBCLINE SETS THE VARIABLES TO THE CORRECT VALUES

IF (N.EQ.11) GO TO 20

RETURN

END
SELECT.GRAD1 (I)

This SELECT.GRAD1 call can sum to find the first derivative numerically.*

IMPLICIT REAL*8(A-D,0-Z,$)
COMMON /SHARE/ X(100),DEL(100),A(100,100),N,M,MN,NF1,NM1
REAL *8KC,MTUC,MTLE,NU,NETWR,NET,NETCUT
CALL DIFF1 (I)
RETURN
END

SELECT.MATRIX (J,L)

This SELECT.GRAD1 call can sum to find the second derivative numerically.*

IMPLICIT REAL*8(A-D,0-Z,$)
COMMON /SHARE/ X(100),DEL(100),A(100,100),N,M,MN,NP1,NM1
REAL *8KC,MTUC,MTLE,NU,NETWR,NET,NETCUT
CALL DIFF2 (J)
RETURN
END
SCLCUTINE SETA (CI,TLBEL,FRSW)

THIS SCLCUTINE SETS THE CONSTANTS FOR THE COMPUTER ROUTINE
SIM TO FIND THE COEFFICIENTS TO CURVE FIT THE ALSELT

IMPLICIT REAL*8(A-H,N-Z,$)
C(FMGN /SIM/ A(16),E(4))

THE RIGHT HAND SIDE VECTOR

E(1) = 1.
E(2) = 1.
E(3) = 0.
E(4) = 0.

SET THE VALUES OF THE A MATRIX

AE = .023*FRSW**.3
P = 2000.
CALL CLAM (R,NUL,CMUL,CI,TLBEL,FRSW)
A1 = NUL-AA**R**.8
E1 = CALL-.8*AA*R**(-.2)
AE = A1/81
A(1) = E*E05
A(2) = 1.2E07*AB+A(1)
A(3) = 4*E06
A(4) = 4*E03*AB+A(5)
A(5) = R
A(10) = AB+R
A(17) = 1.
A(18) = 1.
R = 10000.
CALL CLAM (R,NUL,CMUL,CI,TLBEL,FRSW)
A2 = NUL-AB**R**.8
E2 = CNUL+.8*AB**R**(-.2)
AE = A2/82
A(2) = 1*E12
A(4) = 2*E04*AB+A(2)
A(7) = 1*E08
A(8) = 2*E04*AB+A(7)
A(11) = R
A(12) = AB+R
A(15) = 1.*
A(16) = 1.*
RETURN
END
SERICAN CLAM (R,AUL,ANL,CI,TLCELE,PRSW)

CC THIS SERICAN CALCULATES THE NUSELIT NUMBER AND THE PARIAL CF
CC THE NUSELIT NUMBER W.R.T. THE REYNOLDS NUMBER IN THE LAMINAR REGION
CC CF FLOW.

C\IF\F\I\C\I\T\E\I\D\I\ \R\E\A\L*8(A-1,N-Z,$)
A = 2.02*(PRSW*(I/4*(TUBEL*12.1)**.333333
B = A/3.
CLLV = A**R**.333333
CALL = E**R**(-.6666661)

C\IF\T\E\H\E\L\S\E\E\L\T\E\L\U\R\T\E\L\V\E\H\I\T\L\ 0.0
IF (3.66 LE (A*12.55921)) GC TO 20
CLLV = 3.66
CALL = 0.0

20 RETURN
EAL
SUBROUTINE AREA (II, MM)

THIS SUBROUTINE CALCULATES THE NUMBER OF TUBES IN THE ECLER AND THE AREA OF CLEARANCE.

IMPLICIT REAL*8(A-H, O-Z, $)

COMMON /CMWEN/ VL, SA, HS, HM, PITCH, CD, DI, CLEAR, CS, TUBEL, FT, EIGAREA

1, 1AVG, ATOC, BARKT, HTPAX, ATCTB, THICK, CK, CCC, CTMLC, CTPCAREA

2, CCL, CLCLR, CTHK, CS, AUP, CD, AN, MMAX, INDEX, NI, IC

COMMON /FLOW/, FLOWA, FLOWB, USHA, USHB, UMA, FEAVG, FLCSHT, GPW, GPAREA

COMMON /PRESS/ PC, PR, BKE, KC, RFC, F, DELTAF, FEC, FEACHF, CELF, CKC, CAREA

1, CCELF, CCRG, CRGE, PCCND

COMMON /CTBLN/ BK, CNI

REAL *8K, NT, NC, NTE, NL, NETPR, NET, NETOUT

SAT(II, AA, BB, AS) = .25*AS**2*DS*CCS(II, AA, BB, AS)

CALL PTV

CS2 = CCS+CCLR

PITCH = (CC+CCLR)

FINISH THE CLEARANCE AREA

IF (II.EQ.2) GO TO 20

FINISH THE NO. OF TUBES IN THE ECLER

ATE = .8660254*PITCH**2

AT = .14*AT

AI = .2*AI/DS

BE = .2*CS**2-HS**2

SA = .5*AT*(II, AA, BB, CS)

CS = CS-APBFR

AFF = .2*SF/AS

EED = .25*AS**2-HS**2

EAE = .78539816*AS**2-SAT(II, AA, BB, AS)

EAI = 144.*AS/ATB

RETURN

FINISH THE NO. OF TUBES IN THE CONDENSER

20 CASE = CCS-AREAIR

ASC = .78539816*ASC**2

ATC = .6660254*CPITCH**2

CAI = .144.*ASC/ATC

RETURN

END
SUBROUTINE CUSTA

THIS SUBROUTINE PRINTS THE INFORMATION ABOUT THE SYSTEM

IMPLICIT REAL*8 (A-I,O-Z)$
COMMON /XATA/,XI(100,100),N,M,NP,N1,N2
COMMON /DIMEN/ VL,SA,H,CMAX,PITCH,OD,CL,CLEAR,CS,TUEL,TZ,FLCMTA
17,AVG,ATCT,ATGTC,BANK,F,TMAX,ATCTB,THICK,CN,CE,C,CLTBL,CLTCMTA
COMMON /FLCM/,FLSW,FLCH,USW,RES,ULM,PA,REAVG,FLCMTA
1MFH,FLFCSW,CUSW,CREW,CMPSW,CPAW
COMMON /RESIST/ R1,R2,R4,R3,R,B,PC,HSW,FB,FACT,CHC,CSH,CMAX,CMINCMTA
COMMON /PROP/ RHOSW,RHCSW,VISSW,VISSC,CKSW,CSHSW,CPWSH,CPSHCMTA
COMMON /PRESS/ PO,P,R,KE,KC,RHC,F,DELTAP,TCF,HEADF,DELFWF,CKCMTA
COMMON /TEMPER/ DELTOC,TSMC,TWOC,DELTE,TWOCB,DELW,TWALL,CTWHINCMTA
COMMON /HEAT/ OTUB,C,QTUBE,C,OSTLBE,OSTLBE,TEMP,CTUBE,CTC,CSTLCBMTA
COMMON /NETPWR,PWPW,PNPSW,EPFWM,EPFW,FUER,EEIFW,FRKTR,P,CMAX,SYSCF,CMTA
COMMON /CFWFS,CS,CCTLCB,NET,CYCFMTA
COMMON /ACST/ $BLR,*DPMP,CB1CR,4CNCD,$CBICF,4TCTMTA
COMMON /CYCLE/ $H1,F2,F4,HS,L5,T1,T2MTA
COMMON /MSC/ MSG1,MSG2,MSG3,MSG4,MSG5,MSG6,MSG7MTA
COMMON /SIM/ AL16,B14MTA
COMMON /MISC/ TMTA
COMMON /TUBE/ BN,NCMTA
COMMON /MSP/ N1,N3MTA
COMMON /SSS/ HBB,NCMTA
REAL *8,MSG1,MSG2,MSG3,MSG4,2,MSG5,MSG6,MSG7,STRCMTA
REAL *8,RC,NTUC,NTLBE,NU,NETPWR,NET,NETCUTMTA
CMTA

CALL RESTNT (0,VAL)
$TCT = VAL+1,EOT
CALL RESTNT (N,VAL)
CALL RESTNT (N2,VAL)
CALL RESTNT (N3,VAL)
CCT = CSEL*144/*HSWCMTA
CMAX = E03*PCRT*(@%25(1-E)*9)
CMAX = CMAX/3
CTLBE = 3.81972*CTLBEB/OD/TLBELMTA
NET = FWRTR-PWPWMTA
CMTA
CMTA
PRINT THE INFO ON THE PLMFS, THE COST DATA, AND THE POWER FLOWS

WRITE (*,50) (STRG(I),I=1,12)
WRITE (*,60)
WRITE (*,70)
WRITE (*,80)
WRITE (*,90)
WRITE (*,100,MSG5)
WRITE (*,110,TP1)
WRITE (*,120,DELTA,HEAD)
WRITE (*,130,DELP</CODE></PRE>
AN OPTIMIZATION STUDY OF A LOW THERMAL POTENTIAL POWER SYSTEM.

SEP 76 J R BUCKINGHAM; W M RAIKE

UNCLASSIFIED
10C FORMAT (*,T65, 'MATERIAL: ', '2AE') Cuta2410
12C FORMAT (*,T02, 'CONDENSER EXIT (1)', 'F7,3', '10X', 'F8.3') Cuta2420
14C FORMAT (*,T65, 'PRESSURE DROP=', 'F5.6', (FSIA) OR 'F9.6', (FT)) Cuta2430
16C FORMAT (*,T01, 'FLUID RATE PER SHELL=', 'F5.2', (GPM)') Cuta2440
18C FORMAT (*,T05, 'BORER EXIT (3) ', 'F7.3', '10X', 'F8.3') Cuta2460
20C FORMAT (*,T65, 'EFFICIENCY=', 'F6.4', (ASSUME)) Cuta2470
22C FORMAT (*,T04, 'TURBINE EXIT (4)', 'F7.3', '10X', 'F8.3') Cuta2480
24C FORMAT (0, 'SYSTEM POWER BUCKET+', 'F6.4') Cuta2490

16C FORMAT (*,T63, 'CIRC PUMP (CONDENSER)') Cuta2500
20C FORMAT (*,T03, 'REQUIRED HEAT ABSORPTION=', 'E16.7', (BTU/HR)') Cuta2520
22C FORMAT (*,T03, 'TYPE: AXIAL FLOW') Cuta2530
24C FORMAT (*,T10, 'ACTUAL ABSORPTION=', 'E16.7', (BTU/HR)') Cuta2540
26C FORMAT (*,T65, 'MATERIAL: ', '2AE') Cuta2550
28C FORMAT (*,T65, 'PRESSURE DROP=', 'F5.6', (FSIA) OR 'F9.6', (FT)) Cuta2560
30C FORMAT (*,T10, 'TURBINE POWER CLT=', 'E16.7', (BTU/HR)') Cuta2570
32C FORMAT (*,T65, 'FLOW RATE PER SHELL=', 'F5.2', (GPM)') Cuta2580
34C FORMAT (*,T65, 'EFFICIENCY=', 'F6.4', (ASSUME)) Cuta2590
36C FORMAT (*,T12, 'FEED PUMP POWER=', 'E16.7', (BTU/HR)') Cuta2600
38C FORMAT (0, T05, 'CIRC PUMP POWER (BRL)=', 'E16.7', (BTU/HR)') Cuta2610
40C FORMAT (*,T63, 'CIRCUIT FLUID FLOW') Cuta2620
42C FORMAT (*,T05, 'CIRC PUMP POWER (CCD)=', 'E16.7', (BTU/HR)') Cuta2630
44C FORMAT (*,T65, 'TYPE: CENTRIFUGAL') Cuta2640
46C FORMAT (*,T05, 'REQUIRED HEAT REJECTED=', 'E16.7', (BTU/HR)') Cuta2650
48C FORMAT (*,T65, 'MATERIAL: ', '2AE') Cuta2660
50C FORMAT (*,T12, 'ACTUAL REJECTED=', 'E16.7', (BTU/HR)') Cuta2670
52C FORMAT (*,T65, 'TOTAL HEAD=', 'F8.3', (FT CF FLUIDIC)', '2X', 'CR', '3X', 'F8.0') Cuta2680
53C FORMAT ('IPSR', 'A') Cuta2690

32C FORMAT (*,T65, 'FLOW RATE PER SHELL=', 'F5.2', (GPM)') Cuta2700
36C FORMAT (*,T05, 'REQUIRED NET POWER=', 'E16.7', (BTU/HR)') Cuta2710
38C FORMAT (*,T65, 'EFFICIENCY=', 'F6.4', (ASSUME)) Cuta2720
40C FORMAT (*,T15, 'ACTUAL POWER=', 'E16.7', (BTU/HR)') Cuta2730
42C FORMAT (*,T05, 'CIRCUIT EFFICIENCY=', 'F7.5') Cuta2740
44C FORMAT (*,T05, 'SYSTEM EFFICIENCY=', 'F7.5') Cuta2750
46C FORMAT (*,T09, 'TURBINE EFFICIENCY=', 'F6.2', (ASSUME)) Cuta2760
48C FORMAT (*,T09, 'COST DATA', '+', 'T02', '----------') Cuta2770
50C FORMAT (*,T03, 'BCLER=', 'F5.0', '3X', 'MTL=', '2AE') Cuta2780
52C FORMAT (*,T03, 'FEED PUMP=', 'F5.0', '3X', 'MTL=', '2AE') Cuta2790
54C FORMAT (*,T03, 'ELR CIRC=', 'F5.0', '3X', 'MTL=', '2AE') Cuta2810
56C FORMAT (*,T03, 'CCDENSEN=', 'F5.0', '3X', 'MTL=', '2AE') Cuta2820
58C FORMAT (*,T06, 'TOTAL=', 'F10.0') Cuta2840
60C FORMAT (1, 'T40, 'ECILER DATA', '+', 'T04', '+', 'T04', 'AB', +') Cuta2870
62C FORMAT (1, 'T62, TEMPERATURES=', 'T7, T4, T62') Cuta2880
64C FORMAT (*)
<table>
<thead>
<tr>
<th>40</th>
<th>FCRAF 10</th>
<th>SALAMAT: 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>FCRAF 10</td>
<td>TUBES: 40</td>
</tr>
<tr>
<td>40</td>
<td>FCRAF 10</td>
<td>INTERMEDIATE CALCULATIONS: 40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60</th>
<th>FCRAF</th>
<th>MATERIAL: 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>FCRAF</td>
<td>CONDUCTIVITY: 60</td>
</tr>
<tr>
<td>60</td>
<td>FCRAF</td>
<td>PROPERTIES ARE PRESS AND TEMP CEI: 60</td>
</tr>
<tr>
<td>60</td>
<td>FCRAF</td>
<td>CREDIT: 60</td>
</tr>
<tr>
<td>60</td>
<td>FCRAF</td>
<td>FEAT TRANSFER CEFFICIENCT: 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>70</th>
<th>FCRAF</th>
<th>DIMENSIONS: 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>FCRAF</td>
<td>TUBES: 70</td>
</tr>
<tr>
<td>70</td>
<td>FCRAF</td>
<td>SHELL CIRCUMFERENCE: 70</td>
</tr>
<tr>
<td>70</td>
<td>FCRAF</td>
<td>TUBE BANK WEIGHT: 70</td>
</tr>
<tr>
<td>70</td>
<td>FCRAF</td>
<td>TUBES OR SHELL: 70</td>
</tr>
<tr>
<td>70</td>
<td>FCRAF</td>
<td>FLOW RATE: 70</td>
</tr>
<tr>
<td>70</td>
<td>FCRAF</td>
<td>SALTWATER: 70</td>
</tr>
<tr>
<td>70</td>
<td>FCRAF</td>
<td>UNIT AREA: 70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>80</th>
<th>FCRAF</th>
<th>TUBES: 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>FCRAF</td>
<td>FLOW RATES: 80</td>
</tr>
<tr>
<td>80</td>
<td>FCRAF</td>
<td>SALTWATER: 80</td>
</tr>
<tr>
<td>80</td>
<td>FCRAF</td>
<td>UNIT AREA: 80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>90</th>
<th>FCRAF</th>
<th>TUBES: 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>FCRAF</td>
<td>FLOW RATES: 90</td>
</tr>
<tr>
<td>90</td>
<td>FCRAF</td>
<td>SALTWATER: 90</td>
</tr>
<tr>
<td>90</td>
<td>FCRAF</td>
<td>UNIT AREA: 90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>90</th>
<th>FCRAF</th>
<th>TUBES: 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>FCRAF</td>
<td>FLOW RATES: 90</td>
</tr>
<tr>
<td>90</td>
<td>FCRAF</td>
<td>SALTWATER: 90</td>
</tr>
<tr>
<td>90</td>
<td>FCRAF</td>
<td>UNIT AREA: 90</td>
</tr>
</tbody>
</table>
550 FORMAT ('**',T62,'HEAT EXCHANGER AREAS',/','**',T62,'') OUTA3370
1
100 FORMAT (****,SALTWATER='F10.1') OUTA3380
1010 FORMAT (****,T63='TOTAL PER SHELL (CC)=',E16.7,' (FT2)') CLTA3380
1020 FORMAT (****,T64='BUNDLE DATA',/,'**',T64,'') OUTA3400
1030 FORMAT (****,T65='ALLOWABLE VAPOR LOAD=',F25.7,' (LBS/MM=FT3)') OUTA3420
1040 FORMAT (****,T66='SEPARATION AREA REG.'=',F10.3,' (FT2)') OUTA3430
1050 FORMAT (****,T67='SPEAKERS*',/,'**',T67,'') OUTA3440
1060 FORMAT (****,T68='BOUTL9R CILLET',F7.2,' (PSIA)'), OUTA3460
1070 FORMAT (****,T69='BUNDLE AVERAGE=',F7.2,' (PSIA)'), OUTA3450
1080 FORMAT (****,T70='CONDENSER DATA',/,'**',T70,'') OUTA3470
1 4&R
1090 FORMAT (****,T71='INTERMEDIATE CALCULATIONS',/,'**',T71,'') OUTA3480
1100 FORMAT (****,T72='MATERIALS',/,'**',T72,'') OUTA3490
1110 FORMAT (****,T73='SALTWATER*'), OUTA3500
1120 FORMAT (****,T74='CENSI',F5.2,' {F2/FT2}'), OUTA3510
1130 FORMAT (****,T75='CENSI',F5.2,' {F2/FT2}'), OUTA3520
1140 FORMAT (****,T76='CENSI',F5.2,' {F2/FT2}'), OUTA3530
1150 FORMAT (****,T77='CENSI',F5.2,' {F2/FT2}'), OUTA3540
1160 FORMAT (****,T78='CENSI',F5.2,' {F2/FT2}'), OUTA3550
1170 FORMAT (****,T79='CENSI',F5.2,' {F2/FT2}'), OUTA3560
1180 FORMAT (****,T80='CENSI',F5.2,' {F2/FT2}'), OUTA3570
1190 FORMAT (****,T81='CENSI',F5.2,' {F2/FT2}'), OUTA3580
1200 FORMAT (****,T82='CENSI',F5.2,' {F2/FT2}'), OUTA3590
1210 FORMAT (****,T83='CENSI',F5.2,' {F2/FT2}'), OUTA3600
1220 FORMAT (****,T84='CENSI',F5.2,' {F2/FT2}'), OUTA3610
1230 FORMAT (****,T85='CENSI',F5.2,' {F2/FT2}'), OUTA3620
1240 FORMAT (****,T86='CENSI',F5.2,' {F2/FT2}'), OUTA3630
1250 FORMAT (****,T87='CENSI',F5.2,' {F2/FT2}'), OUTA3640
1260 FORMAT (****,T88='CENSI',F5.2,' {F2/FT2}'), OUTA3650
1270 FORMAT (****,T89='CENSI',F5.2,' {F2/FT2}'), OUTA3660
1280 FORMAT (****,T90='CENSI',F5.2,' {F2/FT2}'), OUTA3670
1290 FORMAT (****,T91='CENSI',F5.2,' {F2/FT2}'), OUTA3680
1300 FORMAT (****,T92='CENSI',F5.2,' {F2/FT2}'), OUTA3690
1310 FORMAT (****,T93='CENSI',F5.2,' {F2/FT2}'), OUTA3700
1320 FORMAT (****,T94='CENSI',F5.2,' {F2/FT2}'), OUTA3710
1330 FORMAT (****,T95='CENSI',F5.2,' {F2/FT2}'), OUTA3720
1340 FORMAT (****,T96='CENSI',F5.2,' {F2/FT2}'), OUTA3730
1350 FORMAT (****,T97='CENSI',F5.2,' {F2/FT2}'), OUTA3740
1360 FORMAT (****,T98='CENSI',F5.2,' {F2/FT2}'), OUTA3750
1370 FORMAT (****,T99='CENSI',F5.2,' {F2/FT2}'), OUTA3760
1380 FORMAT (****,T100='CENSI',F5.2,' {F2/FT2}'), OUTA3770
1390 FORMAT (****,T101='CENSI',F5.2,' {F2/FT2}'), OUTA3780
1400 FORMAT (****,T102='CENSI',F5.2,' {F2/FT2}'), OUTA3790
1410 FORMAT (****,T103='CENSI',F5.2,' {F2/FT2}'), OUTA3800
1420 FORMAT (****,T104='CENSI',F5.2,' {F2/FT2}'), OUTA3810
1430 FORMAT (****,T105='CENSI',F5.2,' {F2/FT2}'), OUTA3820
1440 FORMAT (****,T106='CENSI',F5.2,' {F2/FT2}'), OUTA3830
1450 FORMAT (****,T107='CENSI',F5.2,' {F2/FT2}'), OUTA3840
C SATURATION TEMP
C
C FLACTICA TSC (P)
C IMPLICIT REAL*8(A-T,0-Z, $)
C TSAT = -6.22162E01+2.08544E00*P-1.39456E-02*P**2+5.62940E-05*P**3-
C 11.00051E-07*P**4
C RETURN
C
C ENTALPY OF THE SATURATED LIQUID
C
C FLACTICA HF (P)
C IMPLICIT REAL*8(A-H,0-Z, $)
C HF = 8.51215E01+6.30546E-01*P-1.04930E-03*P**2
C RETURN
C
C ENTALPY OF THE SATURATED VAPOR
C
C FLACTICA HG (P)
C IMPLICIT REAL*8(A-H,0-Z, $)
C HG = 2.09566E02+2.02322E-01*P-5.05930E-04*P**2
C RETURN
C
C LIQUID DENSITY
C
C FLACTICA RHCF (P)
C IMPLICIT REAL*8(A-T,0-Z, $)
C RHCF = 3.04927E01-6.12291E-02*P+1.55928E-04*P**2+3.57024E-07*P**3
C RETURN
C
C VAPOR DENSITY
C
C FLACTICA RHCG (P)
C IMPLICIT REAL*8(A-T,0-Z, $)
C RHCG = 4.21853E-02+E.75332E-03*P
C RETURN
C
C SURFACE TENSION
C
C FLACTICA SLRFT (P)
C IMPLICIT REAL*8(A-T,0-Z, $)
C SLRFT = 5.5381E-10*(RHCF(P)-RHCG(P))**4
C RETURN
C
C HEAT CAPACITY OF THE LIGUI C
C
C FLACTCN CFF (T)
C IF IPLICIT REAL*8 (A-H,O-Z,S)
C CFF = 5.6202E-01+5.77 E-04*T+2.06525E-06*T**2
C RETURN
C END
C
C LI GIC'S VIS CO SITY
C
C FLACTCN VISCF (T)
C IF IPLICIT REAL*8 (A-H,O-Z,S)
C VISCF = (1.088666E01-6.0602E-02*T+2.60276E-04*T**2-1.18555E-06*T**3
C)+1.E-05
C RETURN
C END
C
C WAPCR VISCO SITY
C
C FLACTCN VISCSV (T)
C IF IPLICIT REAL*8 (A-H,O-Z,S)
C VISCSV = (4.78332+1.20747E-02*T+2.62346E-05*T**2)*1.E-06
C RETURN
C END
C
C FRACTNL NUMBER OF PRCFANE
C
C FLACTCN PRWF (T)
C IF IPLICIT REAL*8 (A-H,O-Z,S)
C PRWF = CDF(T)*VISCF(T)/1K(T)
C RETURN
C END
C
C SATURATED LIGULD ENTRCFY
C
C FLACTCN ENTF (T)
C IF IPLICIT REAL*8 (A-H,O-Z,S)
C ENTF = 2.28435E-01+1.17812E-03*T+1.85814E-06*T**2
C RETURN
C END
C
C SATURATED WAPCR ENTRCFY
C
C FLACTCN ENTC (T)
C IF IPLICIT REAL*8 (A-H,O-Z,S)
C ENTC = 6.0467E-01-2.2967E-04*T+1.0589E-06*T**2
C RETURN
C END
SAMPLE DATA

<table>
<thead>
<tr>
<th>PARAMETER CARD</th>
<th>E-071.</th>
<th>E 001.</th>
<th>E-054.</th>
<th>E 001.8</th>
<th>E C30C1E0C130003</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INITIAL X VECTOR</th>
<th>D 001.17</th>
<th>D CC 55</th>
<th>D 002.5</th>
<th>C 002.5</th>
<th>D 00TLCBLEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>C 003.</td>
<td>D 012.5</td>
<td>D 002.</td>
<td>E 001.5</td>
<td>C 00TLCBLEN</td>
</tr>
</tbody>
</table>

* DATA FOR THE PROBLEM *

- PROPANE CUSO-NI
- CO2
- STAINLESS STEEL CS/BRASS

| MAX | .5 | .028 | 75. | 40. | 661.5 | 35.5 |

<table>
<thead>
<tr>
<th>FIFST CCTION CARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOLERANCE CARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-040.0</td>
</tr>
<tr>
<td>E 00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND CCTION CARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

1. Defense Documentation Center
 Cameron Station
 Alexandria, VA 22314

2. Library
 Naval Postgraduate School
 Monterey, CA 93940

3. Chairman, Department of Mechanical Engineering
 Naval Postgraduate School
 Monterey, CA 93940

4. Chairman, Department of Operations Research
 Naval Postgraduate School
 Monterey, CA 93940

5. Dr. R. H. Nunn
 Office of Naval Research
 Branch Office, London
 P. O. Box 39
 FPO New York 09510

6. Associate Professor M. D. Kelleher
 Department of Mechanical Engineering
 Naval Postgraduate School
 Monterey, CA 93940

7. LCDR J. R. Buckingham
 USS AJAX AR-6
 FPO San Francisco, CA 96602

8. Associate Professor W. M. Raike
 Department of Operations Research
 Naval Postgraduate School
 Monterey, CA 93940

 Mare Island Naval Shipyard
 Vallejo, CA 94592

10. Dr. William E. Heronemus
 University of Massachusetts
 Department of Civil Engineering
 Amherst, MA 01002

11. Dr. Jon G. McGowan
 Department of Mechanical Engineering
 University of Massachusetts
 Amherst, MA 01002
12. Professor E. C. Haderlie
Department of Oceanography
Naval Postgraduate School
Monterey, CA 93940

13. Dr. Clarence Zener
University Professor
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

14. Dr. John Fetkovich
Department of Physics
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Attn: Mr. M. J. Slaminiski
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 73043

16. Dr. G. W. Leonard, Head
Propulsion Development Department
Code 45
Naval Weapons Center
China Lake, CA 93555

17. Dr. Arthur L. Austin
Project Leader
Geothermal Development Program
Lawrence Livermore Laboratory
P.O. Box 808
Livermore, CA 94551

18. Dr. Robert Cohen, Program Manager
Ocean Thermal Differences Projects
Advanced Energy Research and Technology Division
National Science Foundation, Rm. 401
Washington, D.C. 20550

19. Dr. Owen M. Griffin
Code 8441
Naval Research Laboratory
Washington, D.C. 20375

20. Mr. John B. Gregory
Ocean Technology Program
Office of Naval Research
Code 485
Arlington, VA 22213
21. Dr. Abraham Lavi
Department of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, PA 15213

22. Commander Paul A. Petzrich
(C.E.C.) U.S.N. Director
U.S. Navy Energy and Natural Resources R&D
NSRDC, Annapolis Laboratory
Annapolis, MD 21402

23. Dr. Earl R. Quandt
U.S. Naval Ship Research and Development Center
Annapolis Division
Bethesda, MD 20034

24. Dr. H. Tabor
Scientific Director
The Scientific Research Foundation
Dan Daniker Building
Hebrew University Campus
P.O.B. 3745
Jerusalem, ISRAEL

25. Dr. Lloyd Lewis
Naval Facilities Engineering Command
Chesapeake Division
Naval Station, Washington
Naval Yard Annex
Ace and M Streets S.E.
Washington, D.C. 20374

26. Associate Professor J. K. Hartman
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940

27. CAPT Vincent M. Skrinak
Code NAVMAT 03Z
824 CF6
Department of the Navy
2221 Jefferson-Davis Hwy
Arlington, Virginia 20360