INVESTIGATION OF THE FLOW PATTERNS OVER THE FORWARD HULL AND SO-ETC(U)

SEP 76 R J GRADY, N E OLIVER

INVESTIGATION OF THE FLOW PATTERNS OVER THE FORWARD HULL AND SO-ETC(U)

SEP 76 R J GRADY, N E OLIVER
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1965 A
INVESTIGATION OF THE FLOW PATTERNS OVER THE
FORWARD HULL AND SONAR DOMES OF THE DESTROYER DDG-2
REPRESENTED BY MODEL 4645

by

R.J. Grady and N.E. Oliver

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT
DEPARTMENTAL REPORT

SEPTEMBER 1976

 SPD-709-02
MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC
COMMANDER 00
TECHNICAL DIRECTOR 01

OFFICER IN CHARGE
CARDEROCK 05

SYSTEMS
DEVELOPMENT
DEPARTMENT 11

SHIP PERFORMANCE
DEPARTMENT 15

STRUCTURES
DEPARTMENT 17

SHIP ACOUSTICS
DEPARTMENT 19

MATERIALS
DEPARTMENT 28

OFFICER IN CHARGE
ANNAPOLIS 04

AVIATION AND
SURFACE EFFECTS
DEPARTMENT 16

COMPUTATION
AND MATHEMATICS
DEPARTMENT 18

PROPULSION AND
AUXILIARY SYSTEMS
DEPARTMENT 27

CENTRAL
INSTRUMENTATION
DEPARTMENT 29

R. J. Grady
N. E. Oliver

David W. Taylor Naval Ship R&D Center
Bethesda, Maryland 20084

Naval Ship Engineering Center (6136)
Hyattsville, Maryland 20782

Flow patterns about the forward hull and sonar domes were observed on a model of the DDG-2 through DDG-19 in the Circulating Water Channel. The speed was varied to simulate full-scale speeds from 18 knots (9.26 m/s) through 30 knots (15.43 m/s), with the yaw angle being set at zero degrees and 3 three degrees. Side and bottom views of the flow patterns were recorded on photographs, which are included in the report. The flow patterns are satisfactory for all the conditions investigated.
TABLE OF CONTENTS

INTRODUCTION .. 1
PROCEDURE ... 1
DISCUSSION AND CONCLUSIONS 3

LIST OF FIGURES

Figure 1 - DDG-2; Side and Bottom Views at Zero Speed and Zero Yaw
Figure 2 - DDG-2; Bottom Views at 18 Knots (9.26 m/s)
Figure 3 - DDG-2; Side Views at 18 Knots (9.26 m/s)
Figure 4 - DDG-2; Bottom Views at 22 Knots (11.32 m/s)
Figure 5 - DDG-2; Side Views at 22 Knots (11.32 m/s)
Figure 6 - DDG-2; Bottom Views at 26 Knots (13.37 m/s)
Figure 7 - DDG-2; Side Views at 26 Knots (13.37 m/s)
Figure 8 - DDG-2; Bottom Views at 30 Knots (15.43 m/s)
Figure 9 - DDG-2; Side Views at 30 Knots (15.43 m/s)
INTRODUCTION

This study was conducted by the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) to aid in the evaluation of the powering performance of the DDG-2 Class destroyer. The work was carried out as part of a larger effort in assistance to the Naval Ship Engineering Center (NAVSEC). This report presents the results of flow observation experiments at three yaw angles and various speeds. The results from the remainder of this effort have been published.

PROCEDURE

Model 4645 has a length at the design waterline of 19.513 ft (5.948 metres) and represents the 420 ft (128 metres) ship to a linear ratio of 21.524. This is the same model that was used in the powering performance experiments previously documented. The model specifically represents the hulls of DDG-2 through DDG-19. These hulls have two sonar domes mounted on the forward keel (see Figure 1). This configuration was selected for flow observations because of the possibility of adverse flow phenomena about the two domes.

The model was mounted in the circulating water channel (CWC) and ballasted with weights to a full-scale displacement of 4500 tons (4572 tonnes) at a trim of 8 inches (0.203 metres) by the stern. Although the model was not restrained in pitch or heave, it was restrained somewhat in roll (the mounting device allowed only small excursions in roll). Angles of yaw were obtained by the use of fixed holes in the mounting bracket arrangement. The restraining members were securely fixed to the channel I-beam structure.
Observations of flow patterns were made at yaw angles of three degrees to port, zero degrees, and three degrees to starboard. At each of these yaw angles, the flow was observed at speeds corresponding to 18, 22, 26, and 30 knots (9.26, 11.32, 13.37, and 15.43 m/s), full scale. Photographs were taken at each of these twelve conditions using cameras mounted at the side and bottom windows. Both cameras were at fixed locations throughout this investigation to facilitate subsequent comparisons between photographs of differing conditions. It should be noted that the side and bottom photographs at each condition were taken quasi-simultaneously using an oral countdown procedure. These photographs are presented in Figures 2 through 9, as follows:

<table>
<thead>
<tr>
<th>Velocity in Knots Ship (Model)</th>
<th>Yaw Angle (Degrees)</th>
<th>Side View</th>
<th>Bottom View</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td>Figure 1</td>
<td>Figure 1</td>
</tr>
<tr>
<td>18 (3.87)</td>
<td>0, +3, -3</td>
<td>---</td>
<td>Figure 2</td>
</tr>
<tr>
<td>18 (3.87)</td>
<td>0, +3, -3</td>
<td>Figure 3</td>
<td>---</td>
</tr>
<tr>
<td>22 (4.74)</td>
<td>0, +3, -3</td>
<td>---</td>
<td>Figure 4</td>
</tr>
<tr>
<td>22 (4.74)</td>
<td>0, +3, -3</td>
<td>Figure 5</td>
<td>---</td>
</tr>
<tr>
<td>26 (5.60)</td>
<td>0, +3, -3</td>
<td>---</td>
<td>Figure 6</td>
</tr>
<tr>
<td>26 (5.60)</td>
<td>0, +3, -3</td>
<td>Figure 7</td>
<td>---</td>
</tr>
<tr>
<td>30 (6.47)</td>
<td>0, +3, -3</td>
<td>---</td>
<td>Figure 9</td>
</tr>
<tr>
<td>30 (6.47)</td>
<td>0, +3, -3</td>
<td>Figure 9</td>
<td>---</td>
</tr>
</tbody>
</table>
DISCUSSIONS AND CONCLUSIONS

Since air is more readily ingested into the water at higher speeds, the photographs taken at these speeds are considerably marked with traces of air bubbles. Fortunately, the reduction in photographic quality is the only significant effect of these bubbles. Although these air bubbles do make it difficult to visualize the flow patterns recorded on the photographs, it was not very difficult to follow the flow with the naked eye during these experiments. Based on the photographs and the actual observations, the following conclusions have been drawn:

(1) The flow patterns about the bow and both sonar domes appeared to be entirely satisfactory.

(2) The flow patterns between the domes were marginally satisfactory. Although there was some instability in the flow in this area, it was certainly no worse than that for ships having similar configurations.

(3) Although the bow wave is significantly affected by both speed and yaw angle, it does not appear that either of these has a significant effect on the flow patterns about the domes.

It should be mentioned that cognizant representatives of both NAVSEC Code 6136 and NAVSEA Code 9344 were present at the Circulating Water Channel for the flow observations documented herein. On the basis of their observations, these representatives concur with the conclusions presented herein.
FIGURE 1
Side and Bottom Views at Zero Speed
Bottom Views of Bow with Keel Domes at $V = 18$ Kts. (9.259 m/sec.)

FIGURE 2

Yaw Angle 3 Degrees to Stbd.

Yaw Angle Zero Degrees

Yaw Angle 3 Degrees to Port
FIGURE 3

Side views of Bow with Keel Domes at V= 18 Kts. (9.259 m/sec)
FIGURE 4
Bottom Views of Bow with Keel Domes at V = 22 Kts. (11.317 m/sec)
FIGURE 5
Side Views of Bow with Keel Domes at V = 22 Kts. (11.317 m/sec)
FIGURE 6

Bottom Views of Bow with Keel Domes at V = 26 Kts. (13.374 m/sec)
FIGURE 7
Side Views of Bow with Keel Domes at $V = 26$ Kts. (13.374 m/sec)
Yaw Angle 3 Degrees to Stbd.

Yaw Angle Zero Degrees

Yaw Angle 3 Degrees to Port

FIGURE 8
Bottom Views of Bow with Keel Domes at V= 30 Kts. (15.432 m/sec)
Figure 9
Side Views of Bow with Keel Domes at V = 30 Kts. (15.432 m/sec)
DTNSRDC ISSUES THREE TYPES OF REPORTS

(1) DTNSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF PERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.

(2) DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, RECORDING INFORMATION OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST OR SIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.

(3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL WORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIES REPORTS; NOT FOR GENERAL DISTRIBUTION.