| Photographs of Bullet - Etc. |
MEMORANDUM REPORT NO. 2673

AMMUNITION FOR LAW ENFORCEMENT: PART III, PHOTOGRAPHS OF BULLETS RECOVERED AFTER IMPACTING TISSUE SIMULANT

William J. Bruchey, Jr.
Bernard Izdebski
Henry Offney
Bruce Rickter
James Haynie

September 1976

Approved for public release; distribution unlimited.

USA BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
A comprehensive study was conducted for the Department of Justice to determine what factors influence human incapacitation by handgun bullets. An evaluation of the effectiveness of nearly all commercial handgun bullets was made. As part of the study, each bullet was recovered after impacting and penetrating a tissue simulant target. This report is a supplement to the overall program methodology and results presented in a BRL Report entitled, "Ammunition for Law Enforcement: Part I, Methodology for Evaluating Relative Stopping Power."
Presented in this report are the photographs of bullets recovered after firing during this program.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>II. PHOTOGRAPHIC RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>105</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

In December 1972, the National Institute of Law Enforcement and Criminal Justice of the Law Enforcement Assistance Administration approved and funded a project, submitted by the Law Enforcement Standards Laboratory (LESL) of the National Bureau of Standards, to conduct a study of the terminal effects of police handgun ammunition. LESL late in 1973 contracted with the U.S. Army Ballistic Research Laboratories (BRL) to conduct the study and prepare a report of its findings. The purpose of the study was to provide federal, state and local law enforcement agencies with a criterion for use in selection of handgun ammunition; a criterion which considers not only the offensive capabilities of the ammunition, but also the safety factors concerning innocent bystanders. The purpose was not specifically to show that studies by previous investigators were invalid, but to bring the salient features of these previous studies together with a more detailed and updated description of the entire scenario to produce a unified approach to the problem which would allow an objective evaluation of handgun effectiveness.

To place the question of handgun effectiveness on the level of an objective approach, three primary terminal characteristics of handgun ammunition were studied:

1. Relative Incapacitation of Human Targets (i.e., relative stopping power).

2. Ricochet Hazards.

As the focus of the study was on commercially available handgun ammunition in the caliber range from 0.355 (9mm) through 0.45, an extensive laboratory investigation of all significantly different handgun bullets available to law enforcement agencies in the United States was conducted. This report deals with experiments performed for the relative incapacitation portion of the study from which the following data were extracted:

1A. Measurement of the formation and subsequent development of the temporary cavity produced in tissue simulant by each bullet as a function of striking velocity.

1B. Measurement of the general dynamic behavior of each bullet as it penetrated the tissue simulant, its stability, and deformation, as a function of striking velocity.
1C. Measurement of the impact velocity by factory loaded ammunition corresponding to each bullet under study when fired from various handguns currently used by law enforcement agencies.

The photographic data presented in the following section were gathered during Part 1B. The volume of the data generated for relative incapacitation requires that the results be presented in three separate reports as follows:

Ammunition for Law Enforcement: Part I, Methodology for Evaluating Relative Stopping Power and Results.

Ammunition for Law Enforcement: Part II, Data on Cavity Formation and Bullet Deformation During Penetration of Tissue Simulant.

Ammunition for Law Enforcement: Part III, Photographs of Bullets Recovered After Impacting Tissue Simulant.

II. PHOTOGRAPHIC RESULTS

During the conduct of the tests to evaluate the effectiveness of handgun bullets against personnel, each bullet was fired into a 30 cm long block of tissue simulant. For each test shot, the penetration of the bullet was recorded dynamically by both high-speed cinematography and flash x-ray photography. After each shot (when possible), the bullet was recovered from the tissue simulant and photographed. Presented on the following pages are these photographs.

The data are arranged in the following sequence:

1. Manufacturers are listed alphabetically.

2. Within manufacturer, the data are presented from smallest to largest caliber.

3. Within caliber, the data are presented in the following order for construction type:
a. Full Jacket (FJ)
b. Full Metal Case (FMC)
c. Full Metal Jacket (FMJ)
d. Jacketed Hollow Point (JHP)
e. Jacketed Soft Point (JFP) (JSP)
f. Lead (L)
g. Lead Hollow Point (LHP)
h. Lead Round Nose (LRN)
i. Lubaloy
j. Metal Piercing (MP)
k. Round Nose (RN)
l. Semi-Wadcutter (SWC)
m. Wadcutter (WC)

4. Within construction type, the data are presented from smallest to largest mass in grains.
Figure 1 Effects of Striking Velocity on Bullet Deformation for HIGH PRECISION, .357 MAG, JHP, 110 GRAIN
Figure 2 Effects of Striking Velocity on Bullet Deformation for HIGH PRECISION, .38 SPECIAL, JHP, 158 GRAIN
Figure 3 Effects of Striking Velocity on Bullet Deformation for HORNADY, .357 MAG, JFP, 158 GRAIN
Velocity $= 342$ m/s

Velocity $= 290$ m/s

Figure 4 Effects of Striking Velocity on Bullet Deformation for HIGH PRECISION, .45 ACP, JHP, 170 GRAIN
Figure 5 Effects of Striking Velocity on Bullet Deformation for HIGH PRECISION, .44 MAG, JHP, 240 GRAIN
Figure 6 Effects of Striking Velocity on Bullet Deformation for HORNADY, .38 SPECIAL, JHP, 110 GRAIN
Figure 7 Effects of Striking Velocity on Bullet Deformation for HORNADY, .357 MAG, JHP, 125 GRAIN
Figure 8 Effects of Striking Velocity on Bullet Deformation for HORNADY, .38 SPECIAL, JHP, 158 GRAIN
Figure 9 Effects of Striking Velocity on Bullet Deformation for HORNADY .41 MAG, JHP, 210 GRAIN
Figure 10 Effects of Striking Velocity on Bullet Deformation for HORNADY, .44 MAG, JHP, 240 GRAIN
Figure 11 Effects of Striking Velocity on Bullet Deformation for HORNADY, .44 MAG, JHP, 200 GRAIN
Figure 12 Effects of Striking Velocity on Bullet Deformation for REMINGTON, 9MM, FJ, 124 GRAIN
Figure 13 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, JHP, 96 GRAIN
Figure 14 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .357 MAG, JHP, 125 GRAIN
Figure 15 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .357 MAG, JHP, 158 GRAIN
Figure 16 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .357 MAG, JSP, 158 GRAIN
Figure 17 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .357-MAG, L, 158 GRAIN
Figure 18 Effects of Striking Velocity on bullet Deformation for REMINGTON, .38 SPECIAL, L, 200 GRAIN
Figure 19 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, HP, 158 GRAIN
Figure 20 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, RN, 158 GRAIN
Figure 21 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, SWC, 158 GRAIN
Figure 22 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, WC, 148 GRAIN

Velocity = 437 m/s

Velocity = 293 m/s

Velocity = 265 m/s

Velocity = 0 m/s
Figure 23 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .41 MAG, JSP, 210 GRAIN
Figure 24 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .41MAG, L, 210 GRAIN
Figure 25 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .45 ACP, WC, 185 GRAIN

Velocity = 375 m/s

Velocity = 0 m/s
Figure 26 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .45, JHP, 185 GRAIN
Figure 27 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .45 ACP, MC, 230 GRAIN
Figure 28 Effects of Striking Velocity on Bullet Deformation for SIERRA, .357 MAG, JHP, 110 GRAIN
Figure 29 Effects of Striking Velocity on Bullet Deformation for SIERRA, .38 SPECIAL, JHP, 125 GRAIN

Velocity = 387 m/s
Velocity = 329 m/s
Velocity = 274 m/s
Velocity = 230 m/s
Velocity = 350 m/s

Velocity = 292 m/s

Velocity = 245 m/s

Velocity = 152 m/s

Figure 30 Effects of Striking Velocity on Bullet Deformation for SIERRA, .38 SPECIAL, JHP, 150 GRAIN
Figure 31 Effects of Striking Velocity on Bullet Deformation for SIERRA, .357 MAG, JSP, 125 GRAIN

Velocity = 374 m/s

Velocity = 356 m/s
Figure 32 Effects of Striking Velocity on Bullet Deformation for SIERRA, .38 SPECIAL, JSP, 158 GRAIN
Velocity = 355 m/s

Figure 33 Effects of Striking Velocity on Bullet Deformation for SIERRA, .41 MAG, JHP, 170 GRAIN
Velocity = 353 m/s

Figure 34 Effects of Striking Velocity on Bullet Deformation for SIERRA, .41 MAG, JHP, 210 GRAIN
Figure 35 Effects of Striking Velocity on Bullet Deformation for SIERRA, .44 MAG, JHP, 180 GRAIN

Velocity = 371 m/s
Figure 36 Effects of Striking Velocity on Bullet Deformation for SIERRA, .44 MAG, JHP, 240 GRAIN

Velocity = 369 m/s
Figure 37 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, 9 MM, JHP, 100 GRAIN
Figure 38 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, 9 MM, JHP, 115 GRAIN
Velocity $= 475$ m/s
Velocity $= 418$ m/s
Velocity $= 328$ m/s
Velocity $= 257$ m/s
Velocity $= 133$ m/s

Figure 39 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, 9 MM, JSP, 90 GRAIN
Figure 40 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .357 MAG, JHP, 110 GRAIN
Figure 4.1 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .357 MAG, JHP, 125 GRAIN
Figure 4.2 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .357 MAG, JHP, 158 GRAIN
Figure 43 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .38 SPECIAL, JSP, 90 GRAIN
Figure 44: Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .357 MAG, JSP, 158 GRAIN

Velocity = 476 m/s

Velocity = 328 m/s

Velocity = 317 m/s

Velocity = 291 m/s

Velocity = 230 m/s
Figure 45 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .38 SPECIAL, RN, 158 GRAIN

Velocity = 265 m/s
Velocity = 250 m/s

Figure 46 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .38 SPECIAL, WC, 148 GRAIN
Figure 147 Effects of Striking Velocity on Bullet Deformation for SPEER, 9MM, JHP, 100 GRAIN

Velocity = 453 m/s
Velocity = 439 m/s

Velocity = 380 m/s
Velocity = 369 m/s

Velocity = 297 m/s
Velocity = 267 m/s
Figure 48 Effects of Striking Velocity on Bullet Deformation for SPEER, 9MM, JSP, 125 GRAIN
Figure 49 Effects of Striking Velocity on Bullet Deformation for SPEER, 9MM, RN, 125 GRAIN

Velocity = 418 m/s
Figure 50. Effects of Striking Velocity on Bullet Deformation for SPEER, .357, JHP, 110 GRAIN
Figure 51 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JHP, 125 GRAIN
Figure 52 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JHP, 140 GRAIN
Figure 53 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JHP, 146 GRAIN
Figure 54 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JSP, 125 GRAIN
Figure 55 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JSP, 158 GRAIN

Velocity = 513 m/s

Velocity = 416 m/s

Velocity = 405 m/s

Velocity = 336 m/s

Velocity = 312 m/s

Velocity = 308 m/s
Figure 56 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JSP, 160 GRAIN
Figure 27 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, SWC, 158 GRAIN
Figure 58 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, WC, 148 GRAIN
Figure 59 Effects of Striking Velocity on Bullet Deformation for SPEER, 41MAG, JHP, 200 GRAIN
Figure 60 Effects of Striking Velocity on Bullet Deformation for SPEER, 41MAG, JSP, 220 GRAIN
Figure 61 Effects of Striking Velocity on Bullet Deformation for SPEER, 44MAG, JHP, 200 GRAIN
Velocity = 356 m/s

Velocity = 353 m/s

Velocity = 304 m/s

Figure 62 Effects of Striking Velocity on Bullet Deformation for SPEER, 44MAG, JHP, 225 GRAIN
Figure 63 Effects of Striking Velocity on Bullet Deformation for SPEER, 44MAG, JSP, 240 GRAIN
Figure 64 Effects of Striking Velocity on Bullet Deformation for SPEER, 44MAG, SWC, 240 GRAIN
Figure 65 Effects of Striking Velocity on Bullet Deformation for SPEER, .45, JHP, 200 GRAIN

Velocity = 460 m/s Velocity = 374 m/s
Velocity = 319 m/s
Velocity = 283 m/s Velocity = 189 m/s
Figure 66 Effects of Striking Velocity on Bullet Deformation for SPEER, .45, JHP, 225 GRAIN
Figure 67 Effects of Striking Velocity on Bullet Deformation for SPEER, .45, SWC, 200 GRAIN
Velocity = 422 m/s

Velocity = 398 m/s

Velocity = 373 m/s

Velocity = 346 m/s

Figure 68 Effects of Striking Velocity on Bullet Deformation for SPEER, .45, SWC, 250 GRAIN
Figure 69 Effects of Striking Velocity on Bullet Deformation for
SUPER VEL, .38SP, JHP, 110 GRAIN

Velocity = 418 m/s

Velocity = 379 m/s

Velocity = 351 m/s

Velocity = 301 m/s

Velocity = 279 m/s

Velocity = 241 m/s
Figure 70 Effects of Striking Velocity on Bullet Deformation for SUPER VEL, .38SP, JSP, 110 GRAIN
Figure 71 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .22, LHP, 37 GRAIN

Velocity = 311 m/s

Velocity = 290 m/s

Velocity = 266 m/s
Figure 72 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, 9 MM, JSP, 100 GRAIN

Velocity = 478 m/s

Velocity = 411 m/s

Velocity = 216 m/s
Figure 73 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38 SPECIAL, JHP, 110 GRAIN
Figure 74 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, JHP, 158 GRAIN
Figure 75 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .357, JSP, 150 GRAIN

Velocity = 393 m/s
Figure 76 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .38, JSP, 158 GRAIN
Figure 77 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .357 MAG, JSP, 158 GRAIN

Velocity = 488 m/s
Velocity = 395 m/s Velocity = 360 m/s

Velocity = 351 m/s Velocity = 319 m/s

Velocity = 253 m/s Velocity = 221 m/s

Figure 78 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38 SPECIAL, LEAD, 158 GRAIN
Figure 79 Effects of striking velocity on bullet deformation for WINCHESTER-WESTERN, .357, LHP, 158 GRAIN!
Figure 80 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, LHP, 158 GRAIN
Figure 81 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .38, LRN, 150 GRAIN
Figure 82 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, LRN, 158 GRAIN
Velocity = 248 m/s

Figure 83 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38 LONG COLT, LUBALOY, 150 GRAIN
Figure 84 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .357 MAG, LUBALOY, 158 GRAIN
Velocity = 391 m/s

Figure 85 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .357, MP, 158 GRAIN
Figure 86 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, RN, 158 GRAIN
Figure 87 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, SJC, 158 GRAIN
Figure 88 Effects of Striking Velocity on Bullet Deformation for Winchester-Western, .38, WC, 148 Grain
Figure 89 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45, FMJ, 185 GRAIN
Velocity = 268 m/s

Figure 90 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45 AUTOMATIC, FMC, 185 GRAIN
Velocity = 323 m/s

Figure 91 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45 AUTOMATIC, FMC, 230 GRAIN
Figure 92 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45, FMJ, 230 GRAIN

Velocity = 355 m/s
Velocity = 335 m/s

Figure 93 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45, LRN, 255 GRAIN
Figure 94 Effects of Striking Velocity on Bullet Deformation for ZERO, .38 SPECIAL, JHP, 100 GRAIN
Figure 95 Effects of Striking Velocity on Bullet Deformation for ZERO, .357 MAG, JHP, 110 GRAIN
Figure 96 Effects of Striking Velocity on Bullet Deformation for ZERO, .357 MAG, JHP, 125 GRAIN
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Commander U.S. Army Electronics Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DDC-TCA</td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>1</td>
<td>Director of Defense Research and Engineering (OSD)</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20305</td>
</tr>
<tr>
<td>1</td>
<td>Director Defense Advanced Research Projects Agency</td>
</tr>
<tr>
<td></td>
<td>1400 Wilson Boulevard</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22209</td>
</tr>
<tr>
<td>1</td>
<td>Director Weapons Systems Evaluation Group</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20305</td>
</tr>
<tr>
<td>1</td>
<td>Chairman Defense Science Board</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20301</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Materiel Development & Readiness Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRCM-A-ST</td>
</tr>
<tr>
<td></td>
<td>5001 Eisenhower Avenue</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Mobility Research & Development Laboratory</td>
</tr>
<tr>
<td></td>
<td>Ames Research Center</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, CA 94035</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Aviation Systems Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSAV-E</td>
</tr>
<tr>
<td></td>
<td>12th & Spruce Streets</td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO 63166</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Electronics Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSEL-RD</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Missile Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMI-R</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Tank Automotive Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDTA-RWL</td>
</tr>
<tr>
<td></td>
<td>Warren, MI 48090</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Mobility Equipment Research & Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Docu Cen, Bldg 315</td>
</tr>
<tr>
<td></td>
<td>DRSME-RZT</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, VA 22060</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Armament Command</td>
</tr>
<tr>
<td></td>
<td>Rock Island, IL 61202</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Harry Diamond Laboratories</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRXDO-TI</td>
</tr>
<tr>
<td></td>
<td>2800 Powder Mill Road</td>
</tr>
<tr>
<td></td>
<td>Adelphi, MD 20783</td>
</tr>
<tr>
<td>2</td>
<td>Commander U.S. Army Frankford Arsenal</td>
</tr>
<tr>
<td></td>
<td>ATTN: SARFA-J7400</td>
</tr>
<tr>
<td></td>
<td>SARFA-J7600</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19137</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Picatinny Arsenal</td>
</tr>
<tr>
<td></td>
<td>ATTN: SARPA-DW-6</td>
</tr>
<tr>
<td></td>
<td>Dover, NJ 07801</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Watervliet Arsenal</td>
</tr>
<tr>
<td></td>
<td>ATTN: SARWV-RR-C Watervliet, NY 12189</td>
</tr>
<tr>
<td>1 Commander</td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td></td>
<td>ATTN: STEW-TE-PS, Mr. Findley White Sands, NM 88002</td>
</tr>
<tr>
<td>2 Commander</td>
<td>US Army Natick Research and Development Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. T. Bailey Mr. T. Keville Natick, MA 01760</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Foreign Science and Technology Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRXST-WS 220 Seventh Street, NW Charlottesville, VA 29901</td>
</tr>
<tr>
<td>1 Director</td>
<td>US Army TRADOC Systems Analysis Activity</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATAA-SA White Sands Missile Range NM 88002</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Armor School</td>
</tr>
<tr>
<td></td>
<td>ATTN: Armor Agency Fort Knox, KY 40121</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Field Artillery School</td>
</tr>
<tr>
<td></td>
<td>ATTN: Field Artillery Agency Fort Sill, OK 73405</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Aviation School</td>
</tr>
<tr>
<td></td>
<td>ATTN: Aviation Agency Fort Rucker, AL 36362</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>International Association of Chiefs of Police</td>
</tr>
<tr>
<td></td>
<td>Gaithersburg, MD 20760</td>
</tr>
<tr>
<td>1</td>
<td>Rockwell International Los Angeles Aircraft Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. W. Dotseth</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90009</td>
</tr>
<tr>
<td>1</td>
<td>Wilmington Bureau of Police Marine Corps Ln Ofc</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. J.G.P. Doherty</td>
</tr>
<tr>
<td></td>
<td>Wilmington, DE 19801</td>
</tr>
<tr>
<td>1</td>
<td>Deputy Attorney General</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. J. Denney</td>
</tr>
<tr>
<td></td>
<td>Wilmington Tower</td>
</tr>
<tr>
<td></td>
<td>Wilmington, DE 19801</td>
</tr>
</tbody>
</table>