Analytical relations have been derived for calculating developing thick, axisymmetric, turbulent boundary layer in a pressure gradient from two simultaneous differential equations: momentum and shape parameter. An entrainment method is used to obtain the shape parameter equation. Both equations incorporate the velocity similarity laws that provide a two-parameter velocity profile general enough to include any range of Reynolds numbers. Newly defined "quadratic" shape parameters which arise from the geometry (Continued on reverse side)
of the thick axisymmetric boundary layer are analytically related to the two-dimensional shape parameter by means of these velocity similarity laws.

The variation of momentum loss, boundary-layer thickness, local skin friction, and local velocity profile may be calculated for the axisymmetric turbulent boundary layers on underwater bodies, including the thick boundary layers on the tails. The various formulations are shown to correlate well with available experimental data.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ADMINISTRATIVE INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>AXISYMMETRIC TURBULENT BOUNDARY LAYERS</td>
<td>4</td>
</tr>
<tr>
<td>COORDINATE SYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>EQUATIONS OF MOTION</td>
<td>5</td>
</tr>
<tr>
<td>MOMENTUM EQUATION</td>
<td>5</td>
</tr>
<tr>
<td>ENTRAINMENT EQUATION</td>
<td>6</td>
</tr>
<tr>
<td>INTEGRAL VELOCITY FACTORS FOR AXISYMMETRIC FLOW</td>
<td>9</td>
</tr>
<tr>
<td>SIMILARITY LAWS AND ASSOCIATED INTEGRANTS</td>
<td>11</td>
</tr>
<tr>
<td>LOCAL SKIN FRICTION</td>
<td>13</td>
</tr>
<tr>
<td>ENTRAINMENT SHAPE PARAMETER AND ENTRAINMENT FACTOR</td>
<td>14</td>
</tr>
<tr>
<td>QUADRATIC SHAPE PARAMETERS</td>
<td>15</td>
</tr>
<tr>
<td>METHOD OF SOLUTION</td>
<td>22</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>25</td>
</tr>
<tr>
<td>APPENDIX A - CALCULATION PROCEDURE</td>
<td>27</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>32</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thick Axisymmetric Boundary Layer</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Quadratic Displacement Shape Parameter</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Quadratic Momentum Shape Parameter</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Quadratic Entrainment Shape Parameter</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Ratio of Boundary-Layer to Momentum thickness</td>
<td>23</td>
</tr>
<tr>
<td>NOTATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Slope of logarithmic velocity law</td>
<td></td>
</tr>
<tr>
<td>a_1, a_2, a_3</td>
<td>Constants in Equation (66)</td>
<td></td>
</tr>
<tr>
<td>B_1</td>
<td>Law-of-the-wall factor</td>
<td></td>
</tr>
<tr>
<td>B_2</td>
<td>Velocity-defect factor</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Entrainment factor, Equation (21)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Rotta-Clauser shape parameter, Equation (50)</td>
<td></td>
</tr>
<tr>
<td>(\tilde{G})</td>
<td>Part of G affected by pressure gradients</td>
<td></td>
</tr>
<tr>
<td>(\Delta G)</td>
<td>Part of G affected by low Reynolds number</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Shape parameter, Equation (30)</td>
<td></td>
</tr>
<tr>
<td>H_\Delta</td>
<td>"Quadratic" displacement shape parameter, Equation (35)</td>
<td></td>
</tr>
<tr>
<td>H_\phi</td>
<td>"Quadratic" momentum shape parameter, Equation (36)</td>
<td></td>
</tr>
<tr>
<td>H_\psi</td>
<td>"Quadratic" entrainment shape parameter, Equation (42)</td>
<td></td>
</tr>
<tr>
<td>(\tilde{H})</td>
<td>Entrainment shape parameter, Equation (41)</td>
<td></td>
</tr>
<tr>
<td>I_1</td>
<td>Velocity-defect integral, Equation (46)</td>
<td></td>
</tr>
<tr>
<td>I_2</td>
<td>Velocity-defect integral, Equation (48)</td>
<td></td>
</tr>
<tr>
<td>J_1</td>
<td>"Quadratic" velocity-defect integral, Equation (47)</td>
<td></td>
</tr>
<tr>
<td>J_2</td>
<td>"Quadratic" velocity-defect integral, Equation (49)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Length of body</td>
<td></td>
</tr>
<tr>
<td>\ell</td>
<td>Axial distance from nose of body</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>Exponent in power-law velocity profile</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
<td></td>
</tr>
<tr>
<td>(\hat{p})</td>
<td>Cross-pressure term</td>
<td></td>
</tr>
<tr>
<td>p_\delta</td>
<td>Pressure at outer edge of boundary layer</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>Wake-modification function</td>
<td></td>
</tr>
<tr>
<td>R_\theta</td>
<td>Momentum-thickness Reynolds number</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Radial distance from axis of body of revolution</td>
<td></td>
</tr>
<tr>
<td>r_w</td>
<td>Local radius of body of revolution</td>
<td></td>
</tr>
<tr>
<td>r_\delta</td>
<td>Value of r at outer edge of boundary layer</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Streamwise distance</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Velocity at outer edge of boundary layer</td>
<td></td>
</tr>
</tbody>
</table>
u Streamwise velocity component
u_τ Shear velocity
v Normal velocity component
v_δ Value of v at outer edge of boundary layer
w Wake function
x Relative axial distance $= \ell/L$
y Normal distance from wall
α Angle between contour tangent and axis
β Clauser pressure gradient parameter
Δ "Quadratic" displacement area, Equation (32)
δ Boundary-layer thickness
δ^* Two-dimensional displacement thickness, Equation (28)
θ Two-dimensional momentum thickness, Equation (29)
Λ^* Displacement area, Equation (7)
ν Kinematic viscosity of fluid
ρ Density of fluid
σ Local skin-friction coefficient
$\tilde{\sigma}$ Turbulent normal stress in y-direction
$\hat{\sigma}$ Normal stress term
σ_t Turbulent normal stress in s-direction
τ Shearing stress
τ_w Wall shearing stress
ϕ "Quadratic" momentum area, Equation (34)
ψ Axisymmetric entrainment area, Equation (27)
Ω Momentum area, Equation (6)
ABSTRACT

Analytical relations have been derived for calculating developing thick, axisymmetric, turbulent boundary layers in a pressure gradient from two simultaneous differential equations: momentum and shape parameter. An entrainment method is used to obtain the shape parameter equation. Both equations incorporate the velocity similarity laws that provide a two-parameter velocity profile general enough to include any range of Reynolds numbers. Newly defined “quadratic” shape parameters which arise from the geometry of the thick axisymmetric boundary layer are analytically related to the two-dimensional shape parameter by means of these velocity similarity laws.

The variation of momentum loss, boundary-layer thickness, local skin friction, and local velocity profile may be calculated for the axisymmetric turbulent boundary layers on underwater bodies, including the thick boundary layers on the tails. The various formulations are shown to correlate well with available experimental data.

ADMINISTRATIVE INFORMATION

The work described in this report was authorized and funded by the Independent Research Program of the David W. Taylor Naval Ship Research and Development Center under Project ZR-023-0101, Work Unit 1-1541-002.

INTRODUCTION

Accurate prediction of the viscous drag of bodies of revolution and the associated boundary-layer velocity profiles requires solving equations for the thick, axisymmetric, boundary layer on the tail. At the high Reynolds numbers of interest, the analysis involves the usual difficulties encountered with a turbulent boundary layer in a pressure gradient now accentuated by the boundary layer being thick relative to the body radius.

There are existing methods, having varying degrees of merit, for analyzing the thick, axisymmetric, turbulent boundary layer in a pressure gradient. Nelson1 derived an energy integral equation and used the similarity laws for the velocity profile. The Coles wake function is fitted by an awkward analytical relation which leads to complicated expressions for the required boundary-layer parameters. The axisymmetric energy dissipation factor which is an essential element in the solution is not separately evaluated but, instead, is

mistakenly linked back to the equation of motion. The result is that the energy equation is not independent of the momentum equation which is a fundamental error. To correct this, Nelson2 later empirically evaluated the dissipation integral from two-dimensional test data whose application to axisymmetric conditions has not been established.

Cebeci and Smith3 use a direct numerical approach in solving the partial differential equations of motion for the boundary layer by the method of finite differences. The unknown turbulent shear stress is modeled for the most part by an eddy viscosity relation previously obtained by Clauser for two-dimensional equilibrium pressure gradients. The eddy viscosity, originally related to the two-dimensional displacement thickness, is extended by Cebeci and Smith to what is essentially a thin axisymmetric displacement thickness. At the after end of a body of revolution where the radius of the body becomes zero, the eddy viscosity so defined becomes infinite and hence invalid.

Patel4,5 developed a one-parameter entrainment method for thick axisymmetric boundary layers by extending the Head one-parameter entrainment method for two-dimensional boundary layers. In the entrainment equation derived by physical argument for thick, axisymmetric boundary layers, Patel has assumed that the radius of the body is the length scale required to balance the equation dimensionally. On the contrary, an analytical derivation later in this paper shows that the proper length factor is the radial distance to the outside of the boundary layer, which is equal to the radius of the body plus the boundary layer thickness slightly modified by the slope of the body. Since the radius of the body becomes zero at the very end of the body, the Patel analysis shows no entrainment, unlike the more fundamental analysis in this paper. Part of the analysis of the thick, axisymmetric boundary layer involves additional integrations of the velocity profile with respect to the square of the transverse distance which may be termed "quadratic" integration. For these, Patel uses approximate simple power-law velocity profiles.

Günther⁶ presents a complicated energy method that will not be discussed herein. White et al.⁷ extend to thick, axisymmetric, turbulent boundary layers a procedure used previously for two-dimensional boundary layers which provides an ordinary differential equation for the streamwise distribution of local skin friction in lieu of the usual momentum equation. To obtain this equation, a constant shearing stress and the inner velocity similarity law are assumed to hold across the entire boundary layer. These two assumptions are quite contrary to experimental evidence.

In this paper the integral approach is followed wherein the axisymmetric boundary-layer equations are symbolically integrated, and an appropriate velocity profile is inserted to obtain a numerical solution. Integration of the streamwise equation of motion with the assistance of the equation of continuity gives the well-known momentum equation. The integration of the equation of continuity gives a new entrainment equation. The result is an entrainment factor multiplied by the radial distance to the outer edge of the boundary layer instead of the radius of the body as used by Patel.⁵

The required velocity profile is supplied by the well-established velocity similarity laws for turbulent boundary layers in pressure gradients which comprise an essentially two-parameter velocity profile system. A newly modified expression for the law of the wake is employed for the analytical description of the similarity laws. The local skin friction is supplied by the similarity laws.

The axisymmetric boundary layer developing downstream on the tail of a body of revolution becomes thicker from viscous losses and adverse pressure gradients — significantly thicker than the body radius, which is approaching zero at the tail end of the body. What happens is that geometrically the annular boundary layer in the transverse plane ends as a disk at the tail end. The thick boundary layer fills a thick annular space which leads to quadratic terms in integrations of the velocity profile which do not exist in two-dimensional flow or are negligible for thin, axisymmetric boundary layers. Newly defined quadratic shape parameters are accordingly introduced and are evaluated from the similarity laws.

For simplicity of solution, all parameters are expressed in terms of the usual two-dimensional momentum thickness and shape parameter.

It is shown that the momentum and entrainment equations which are ordinary differential equations may be readily solved in a stepwise fashion suitable for easily formulated

computer programs. Finally, the new formulas for the quadratic shape parameters are shown to agree with available experimental data.

AXISYMMETRIC TURBULENT BOUNDARY LAYERS

COORDINATE SYSTEM

The coordinate system for the boundary layer on a body of revolution is obtained from two families of surfaces. One family is given by surfaces parallel to the given body of revolution displaced by a normal distance \(y \). The other family is orthogonal to the family of parallel bodies of revolution and is separated by contour distance \(s \). The coordinate system then is \(s \) along a body meridian with \(s = 0 \) at the nose, and \(y \) is normal to the body surface with \(y = 0 \) on the body. For axisymmetric flow only two coordinates are required.

At any point \((s, y)\) there is a radial distance to the axis of the body of revolution \(r \) so that as seen in Figure 1

\[
r = r_w + y \cos \alpha
\]

where \(r_w \) is the radial distance to the body surface, and \(\alpha \) is the angle between the contour tangent and the axis.

![Figure 1 — Thick Axisymmetric Boundary Layer](image)
EQUATIONS OF MOTION

For turbulent flow the Reynolds equations, which are the averaged Navier-Stokes equations, are applied to the boundary-layer flow. For the body-of-revolution coordinate system the Reynolds equations of motion\(^8\) for incompressible flow, neglecting longitudinal curvature, are in the s-direction

\[
u \frac{\partial u}{\partial s} + v \frac{\partial u}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial s} + \frac{1}{\rho r} \frac{\partial}{\partial y} (\tau r) - \frac{1}{\rho r} \frac{\partial}{\partial s} (\sigma_t) \tag{2}
\]

and in the y-direction

\[
u \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{1}{\rho r} \frac{\partial}{\partial s} (\tau r) - \frac{1}{\rho r} \frac{\partial}{\partial y} (\sigma_t) \tag{3}
\]

and the equation of continuity is

\[rac{\partial (ru)}{\partial s} + \frac{\partial (rv)}{\partial y} = 0 \tag{4}
\]

where

- \(u\) = velocity in s-direction
- \(v\) = velocity in y-direction
- \(\tau\) = shearing stress, including that due to turbulence
- \(\sigma_t\) = turbulent normal stress in s-direction
- \(\tilde{\sigma}\) = turbulent normal stress in y-direction
- \(p\) = pressure
- \(\rho\) = density of fluid

MOMENTUM EQUATION

The momentum equation is obtained by integrating the s-equation of motion Equation (2) from \(y = 0\) to \(y = \delta\) and incorporating the equation of continuity Equation (4).

The result is the momentum equation for thick axisymmetric boundary layers

\[rac{d\Omega}{ds} + \frac{(\Lambda^* + 2\Omega)}{U} \frac{dU}{ds} = r_w \frac{\tau_w}{\rho U^2} - \frac{1}{\rho U^2} \frac{d}{ds} \int_0^\delta (p - p') r \, dy + \frac{1}{\rho U^2} \frac{d}{ds} \int_0^\delta a_t r \, dy \tag{5}
\]

where \(\Omega = \text{momentum area} \)

\[
\Omega \equiv \int_0^\delta \left(1 - \frac{u}{U} \right) r dy \quad (6)
\]

\(\Lambda^* = \text{displacement area} \)

\[
\Lambda^* \equiv \int_0^\delta \left(1 - \frac{u}{U} \right) r dy \quad (7)
\]

\(\tau_w = \text{wall shearing stress} \)

\(p_\delta = \text{pressure at outer edge of boundary layer} \)

\(U = \text{velocity at outer edge of boundary layer} \)

It is to be noted that no boundary-layer simplifications have been made other than neglect of longitudinal curvature. The only assumption is that a boundary layer of thickness \(\delta \) exists wherein all viscous effects are concentrated.

ENTRAINMENT EQUATION

Besides the momentum equation Equation (5), an additional “integral” equation is needed to calculate development of the boundary layer along the body. The entrainment method introduced by Head\(^9\) has proved effective in this regard for two-dimensional flows in pressure gradients.

The entrainment method will now be developed for the thick axisymmetric boundary layer. The procedure to be followed is to integrate the equation of continuity across the boundary layer and then to evaluate the ensuing entrainment velocity in terms of conditions at the outer edge of the boundary layer. The equation of continuity Equation (4) is integrated from \(y = 0 \) to \(y = \delta \)

\[
\int_0^\delta [s \frac{\partial (ru)}{\partial s}] dy + \int_0^\delta [s \frac{\partial (rv)}{\partial y}] dy = 0 \quad (8)
\]

to give by means of the Leibnitz formula and \(v = 0 \) at \(y = 0 \)

where the subscript δ refers to conditions at $y = \delta$. Now $v_\delta = v$ at $y = \delta$ is defined to be the entrainment velocity, and from Equation (1)

$$r_\delta = r_w + \delta \cos \alpha$$

To determine the entrainment velocity v_δ, the equation of motion Equation (2) is evaluated at the outer edge of the boundary layer, $y = \delta$

$$r_\delta U \left(\frac{\partial u}{\partial s} \delta \right) + r_\delta v_\delta \left(\frac{\partial u}{\partial y} \delta \right) = -\frac{r_\delta}{\rho} \left(\frac{\partial p}{\partial s} \delta \right) + \frac{1}{\rho} \left(\frac{\partial \tau}{\partial y} \delta \right) - \frac{1}{\rho} \left(\frac{\partial \sigma_t}{\partial s} \delta \right)$$

Various terms of this expression are to be examined. In general along a streamline

$$\frac{du}{ds} = \frac{\partial u}{\partial s} + \frac{\partial u}{\partial y} \frac{dy}{ds}$$

and then at $y = \delta$

$$\left(\frac{\partial u}{\partial s} \delta \right) = \frac{dU}{ds} - \left(\frac{\partial u}{\partial y} \right) \frac{d\delta}{ds}$$

Likewise

$$\left(\frac{\partial \sigma_t}{\partial s} \delta \right) = \left(\frac{d\sigma_t}{ds} \delta \right) - \left(\frac{\partial \sigma_t}{\partial y} \right) \frac{d\delta}{ds}$$

and

$$\left(\frac{\partial p}{\partial s} \delta \right) = -\rho U \left(\frac{dU}{ds} \right) - \left(\frac{\partial p}{\partial y} \delta \right) \frac{d\delta}{ds}$$

where the Bernoulli theorem has been applied at the outer edge of the boundary layer

$$\left(\frac{dp}{ds} \right) \delta + \rho U \frac{dU}{ds} = 0$$

Furthermore with $\tau = 0$, and $\sigma_t = 0$ at $y = \delta$

$$\left(\frac{\partial \tau}{\partial y} \delta \right) = r_\delta \left(\frac{\partial \tau}{\partial y} \delta \right) \cdot \left(\frac{d\sigma_t}{ds} \right) \delta = 0$$

and
With the foregoing the entrainment velocity given in Equation (11) becomes

\[
v_{\delta} = U \frac{d\delta}{ds} + \frac{1}{\rho} \left(\frac{\partial \tau}{\partial u} \right)_{\delta} + \frac{1}{\rho} \left[\frac{\partial (p + \alpha_1)}{\partial u} \right]_{\delta} \frac{d\delta}{ds}
\]

Then the entrainment equation Equation (9) becomes in turn

\[
\frac{d}{ds} \int_{0}^{\delta} ur \, dy = -\frac{r_{\delta}}{\rho} \left\{ \left(\frac{\partial \tau}{\partial u} \right)_{\delta} + \left[\frac{\partial (p + \alpha_1)}{\partial u} \right]_{\delta} \frac{d\delta}{ds} \right\}
\]

The nondimensional entrainment factor \(E \) is now defined as

\[
E = -\frac{1}{\rho U} \left\{ \left(\frac{\partial \tau}{\partial u} \right)_{\delta} + \left[\frac{\partial (p + \alpha_1)}{\partial u} \right]_{\delta} \frac{d\delta}{ds} \right\}
\]

This is an expanded definition of \(E \) to include the pressure \(p \) variation and normal stress \(\alpha_1 \) variation in the \(y \) direction. Finally the entrainment equation for the thick axisymmetric boundary layer is

\[
\frac{d}{ds} \int_{0}^{\delta} ur \, dy = r_{\delta} U E
\]

The entrainment equation Equation (22) is more fundamentally based than that introduced by Patel for the thick axisymmetric boundary layer, namely.

\[
\frac{d}{ds} \int_{0}^{\delta} ur \, dy = r_{w} U E
\]

where \(r_{w} \) is used instead of \(r_{\delta} \). Patel adopted \(r_{w} \) as a convenient nondimensionalizing factor in an analysis based mostly on physical argument.

For the thin axisymmetric boundary layer \(\delta \ll r_{w} \), the entrainment equation reduces to

\[
\frac{d}{ds} \left(r_{w} \int_{0}^{\delta} u \, dy \right) = r_{w} U E
\]
which is the same as the equation derived by Shanebrook and Sumner.10

For constant r_w, the entrainment equation reduces finally to

\[
\frac{d}{ds} \int_0^\delta u \, dy = U \, E
\] \hspace{1cm} (25)

This is the same as the Head9 two-dimensional equation.

For the thick axisymmetric boundary layer the entrainment equation may also be expressed as

\[
\frac{d\psi}{ds} = r \, E - \frac{\psi}{U} \frac{dU}{ds}
\] \hspace{1cm} (26)

where

\[
\psi = \int_0^\delta \frac{u}{U} \, r \, dy
\] \hspace{1cm} (27)

is a newly defined axisymmetric entrainment area.

INTEGRAL VELOCITY FACTORS FOR AXISYMMETRIC FLOW

In analysis of two-dimensional boundary layers, the displacement thickness δ^*, the momentum thickness θ, and their ratio H, the shape parameter, are defined as

\[
\delta^* \equiv \int_0^\delta \left(1 - \frac{u}{U} \right) \, dy
\] \hspace{1cm} (28)

\[
\theta \equiv \int_0^\delta \left(1 - \frac{u}{U} \right) \frac{u}{U} \, dy
\] \hspace{1cm} (29)

and

\[
H \equiv \delta^*/\theta
\] \hspace{1cm} (30)

For axisymmetric boundary layers, the displacement thickness δ^* becomes the displacement area Λ^*, which has been previously defined as

\[
\Lambda^* \equiv \int_0^\delta \left(1 - \frac{u}{U} \right) \, r \, dy
\] \hspace{1cm} (3)

and the momentum thickness θ becomes the momentum area Ω which has been previously defined as

$$\Omega \equiv \int_0^\delta \left(1 - \frac{u}{U}\right) \frac{u}{U} r \, dy$$ \hspace{1cm} (6)$$

Further analysis yields quadratic factors such as Δ and ϕ. From Equation (1)

$$\Lambda^* = r_w \delta^* + \Delta \cos \alpha$$ \hspace{1cm} (31)$$

where

$$\Delta \equiv \int_0^\delta \left(1 - \frac{u}{U}\right) y \, dy$$ \hspace{1cm} (32)$$

Likewise

$$\Omega = r_w \theta + \phi \cos \alpha$$ \hspace{1cm} (33)$$

where

$$\phi \equiv \int_0^\delta \left(1 - \frac{u}{U}\right) \frac{u}{U} y \, dy$$ \hspace{1cm} (34)$$

Additional quadratic shape factors may now be defined such as H_Δ and H_ϕ.

$$H_\Delta \equiv \frac{\Delta}{\theta^2}$$ \hspace{1cm} (35)$$

and

$$H_\phi \equiv \frac{\phi}{\theta^2}$$ \hspace{1cm} (36)$$

Consequently the displacement area and the momentum area may be related to momentum thickness θ by

$$\Lambda^* = r_w H \theta + H_\Delta \theta^2 \cos \alpha$$ \hspace{1cm} (37)$$

and

$$\Omega = r_w \theta + H_\phi \theta^2 \cos \alpha$$ \hspace{1cm} (38)$$

It follows from the definitions given in Equations (1), (7), and (27) that

$$\psi = r_w (\delta - \delta^*) + \left(\frac{\delta^2}{2} - \Delta\right) \cos \alpha$$ \hspace{1cm} (39)$$
or

\[\psi = r_w \tilde{H} \theta + H \psi \theta^2 \cos \alpha \]

(40)

where \(\tilde{H} \) is the two-dimensional entrainment shape parameter defined by

\[\tilde{H} \equiv \frac{\delta - \delta^*}{\theta} = \frac{\delta}{\theta} - H \]

(41)

and \(H \psi \) is a quadratic entrainment shape parameter newly defined

\[H \psi \equiv \frac{\delta^2}{\theta^2} - \frac{\Delta}{\theta^2} = \frac{1}{2} \left(\frac{\delta}{\theta} \right)^2 - \frac{\Delta}{\theta^2} \]

(42)

Consequently

\[H \psi = \frac{1}{2} \left(\frac{\delta}{\theta} \right)^2 - H \Delta = \frac{1}{2} (\tilde{H} + H)^2 - H \Delta \]

(43)

SIMILARITY LAWS AND ASSOCIATED INTEGRALS

From a study of experimental data Nelson\(^1\) has concluded that the similarity laws of the turbulent velocity profile apply to the thick, axisymmetric boundary layer in a pressure gradient as well as to the more thoroughly studied two-dimensional boundary layer.

The two velocity similarity laws\(^1\) implicitly provide a two-parameter system, an inner law

\[\frac{u}{u_r} = f \left(\frac{u_r y}{\nu} \right) \quad 0 \leq y \leq y_1 \]

(44)

and an outer law

\[\frac{U - u}{u_r} = f \left(\frac{y}{\delta} \right) \quad y_2 \leq y_1 \leq y \leq \delta \]

(45)

where \(u_r = \sqrt{r_w / \rho} \), the shear velocity.

The inner law as stated herein applies only to smooth surfaces. For rough surfaces and for drag-reducing polymer solutions, there are additional dimensionless ratios. The outer law, however, applies unchanged to rough surfaces and to drag-reducing polymer solutions. The two similarity laws overlap across the boundary layer, which leads to logarithmic relations.\(^1\)

Various new integral relations based on the outer-law form are required in the analysis to come. The usual two-dimensional relation

\[I_1 = \int_0^1 \left(\frac{U-u}{u_r} \right) d \left(\frac{\gamma}{\delta} \right) \]

(46)

is now extended to axisymmetric flow so that

\[J_1 = \int_0^1 \left(\frac{U-u}{u_r} \right) \left(\frac{\gamma}{\delta} \right) d \left(\frac{\gamma}{\delta} \right) \]

(47)

Also the usual two-dimensional relation

\[I_2 = \int_0^1 \left(\frac{U-u}{u_r} \right)^2 d \left(\frac{\gamma}{\delta} \right) \]

(48)

becomes now

\[J_2 = \int_0^1 \left(\frac{U-u}{u_r} \right)^2 \left(\frac{\gamma}{\delta} \right) d \left(\frac{\gamma}{\delta} \right) \]

(49)

In two-dimensional flow, the Rotta-Clauser shape parameter is defined as

\[G = \frac{I_2}{I_1} = \sigma \left(\frac{H-1}{H} \right) \]

(50)

where \(\sigma = U/u_r \).

The outer law may be expressed logarithmically12 as

\[\frac{U-u}{u_r} = -A \ln \left(\frac{\gamma}{\delta} \right) + B_2 \left(1 - \frac{w}{2} \right) - A q \]

(51)

where \(\frac{w}{2} \left(\frac{\gamma}{\delta} \right) \) is the Coles wake function, and \(q \left[\frac{\gamma}{\delta} \right] \), the wake-modification function, is added to make \(\frac{\partial u}{\partial y} = 0 \) at \(y = \delta \). \(A \) is a constant while \(B_2 \), the velocity-defect factor, is a function of \(s \) in arbitrary pressure gradients; \(\frac{w}{2} \) is given by Moses as

\[\frac{w}{2} = 3 \left(\frac{\gamma}{\delta} \right)^2 - 2 \left(\frac{\gamma}{\delta} \right)^3 \]

(52)

while \(q \) is given by Granville as

\[
q = \left(\frac{y}{\delta} \right)^2 - \left(\frac{y}{\delta} \right)^3
\]

(53)

If the outer law is assumed to hold up to wall, \(0 < y < \delta \), which is an excellent approximation at high Reynolds numbers, the integral parameters become

\[
I_1 = \frac{11}{12} A + \frac{B_2}{2}
\]

(54)

\[
I_2 = \frac{4819}{2520} A^2 + \frac{213}{140} A B_2 + \frac{13}{35} B_2^2
\]

(55)

\[
J_1 = \frac{1}{5} A + \frac{3}{20} B_2
\]

(56)

and

\[
J_2 = \frac{443}{2100} A^2 + \frac{359}{1400} A B_2 + \frac{3}{35} B_2^2
\]

(57)

where \(A \) is the reciprocal of the von Kármán constant and \(B_2 \) is the velocity-defect factor. For nonequilibrium pressure gradients, \(B_2 = f [s] \).

LOCAL SKIN FRICTION

For the solution of boundary-layer equations such as the momentum equation Equation (5), a most essential ingredient is relating the coefficient of wall shear stress or local skin friction \(\frac{\tau_w}{\rho U^2} = \frac{1}{\sigma^2} \) to the local Reynolds number \(R_{\theta} = \frac{U\theta}{\nu} \) and local shape parameter \(H \). As shown in detail in Reference 11, for two-dimensional boundary layers, this is derived from overlapping the inner and outer similarity laws to give implicit form

\[
\frac{0.3462(3.889 - H)}{H} \sigma + 0.9392 A \ln \sigma = A \ln R_{\theta} + B_1 - 2.0938 A
\]

\[- A \ln [(H - 1)^{0.9392/H^{1.9392}}]
\]

(58)

where

\[
\sigma = \left(\frac{\tau_w}{\rho U^2} \right)^{-1/2}
\]

(59)
and B_1 is a law-of-the-wall (inner) law factor which is constant for smooth surfaces and a variable for rough surfaces and drag-reducing polymer solutions.

The variation of σ with H and R_θ required in the next section is derived in Reference 11 for smooth surfaces ($B_1 = \text{constant}$) as

$$\frac{1}{\sigma} \frac{\partial \sigma}{\partial H} = \frac{2.8885}{H(H-1)} \left[\frac{1.3462(H-1)\sigma + A H(H - 1.9392)}{(3.889 - H)\sigma + 2.7129 A H} \right] \tag{60}$$

and

$$\frac{1}{\sigma} \frac{\partial \sigma}{\partial \ln R_\theta} = \frac{2.8885 A H}{(3.889 - H)\sigma + 2.7129 A H} \tag{61}$$

ENTRAINMENT SHAPE PARAMETER AND ENTRAINMENT FACTOR

The similarity laws provide a two-parameter evaluation of entrainment shape parameter \tilde{H}, which is derived in detail in Reference 11 as

$$\tilde{H} = \left(\frac{H^2}{H - 1} \right) \left(1.4857 + \frac{0.4739 A}{G} + \frac{5 A^2}{G^{2.75}} \right) - H \tag{62}$$

Also

$$\frac{\partial \tilde{H}}{\partial H} = \frac{\tilde{H}(H - 2) - H}{H^2} \left(\frac{0.4739 A}{G} + \frac{13.75 A^2}{G^{2.75}} \right) \left[1 + \frac{1}{H(H+1)} \frac{\partial \sigma}{\partial H} \right] \tag{63}$$

and

$$\frac{\partial \tilde{H}}{\partial \ln R_\theta} = \left(\frac{H^2}{H - 1} \right) \left(\frac{0.4739 A}{G} + \frac{13.75 A^2}{G^{2.75}} \right) \left(\frac{1}{\sigma} \frac{\partial \sigma}{\partial \ln R_\theta} \right) \tag{64}$$

The entrainment factor E, derived in detail from equilibrium pressure gradients in Reference 11, is

$$E = \left\{ H + \frac{\partial \tilde{H}}{\partial \ln R_\theta} \right\} \left\{ \frac{A H(H-1)^2}{A(H-1)^2 + G H} \right\} \left\{ \left[1 + \frac{(H+1)^2}{H} \right] \frac{1}{\sigma^2} + \frac{p + \tilde{H}}{\rho U^2} \right\} \tag{65}$$

where

$$\beta = \left(\frac{\tilde{G} + a_3}{a_1} \right)^2 - a_2 \tag{66}$$

$$\tilde{G} = G + \Delta G \tag{67}$$

$$\Delta G = -0.16 \sigma + 3.92 \quad 19.7 \leq \sigma \leq 24.5 \tag{68}$$

$$\Delta G = 0 \quad \sigma \geq 24.5 \tag{69}$$
\(\Delta G \) represents an effect due to low Reynolds number which is important in calculating the turbulent boundary layer just after transition from laminar flow.

QUADRATIC SHAPE PARAMETERS

From previous definitions, the quadratic displacement shape parameter \(H_\Delta \) may be written in the form

\[
H_\Delta = \frac{\Delta / \delta^2}{(\theta / \delta)^2}
\]

(70)

where

\[
\frac{\Delta}{\delta^2} = \int_0^1 \left(1 - \frac{u}{U}\right) \left(\frac{y}{\delta}\right) d\left(\frac{y}{\delta}\right)
\]

(71)

and

\[
\frac{\theta}{\delta} = \int_0^1 \left(1 - \frac{u}{U}\right) \left(\frac{u}{U}\right) d\left(\frac{y}{\delta}\right)
\]

(72)

Evaluation of \(H_\Delta \) depends on the choice of velocity profile \(\frac{u}{U} \left[\frac{y}{\delta}\right] \). First a simple power-law velocity profile will be used as a basis of comparison. Then a two-parameter velocity profile arising from the velocity similarity laws will be utilized to derive a relation for \(H_\Delta \).

The power-law velocity profile is given by

\[
\frac{u}{U} = \left(\frac{y}{\delta}\right)^n
\]

(73)

where \(n \) is a constant.

Elementary integration in Equations (71) and (72) results in

\[
H_\Delta = \frac{H^2 (H + 1)^2}{2 (H - 1) (H + 3)}
\]

(74)

where \(H \) obtained from integrations of Equations (28) and (29) is substituted for \(n \).

From the velocity-similarity laws, \(H_\Delta \) is derived as follows from the definition of \(J_1 \) in Equation (47) and from Equation (71)

\[
\frac{\Delta}{\delta^2} = \frac{J_1}{\sigma}
\]

(75)
From the definitions of \(I_1 \) in Equation (46), and \(H \) in Equation (30)

\[
\frac{\theta}{\delta} = \frac{I_1}{\sigma H}
\]

(76)

Then

\[
H_\Delta = \sigma H^2 \left(\frac{I_1}{I_1^2} \right)
\]

(77)

From the definition of \(G \) in Equation (50) and \(H \) in Equation (30)

\[
\sigma = \left(\frac{H}{H - 1} \right) G
\]

(78)

Consequently

\[
H_\Delta = \frac{H^3}{(H - 1)} \left(\frac{G J_1}{I_1^2} \right)
\]

(79)

\(\left(\frac{G J_1}{I_1^2} \right) \) is related to \(G \) by means of Equations (50), (54), (55), and (56) with \(B_2 \) as the implicit parameter. At the limiting condition of separation \(B_2 \to \infty \), and \(\frac{G J_1}{I_1^2} \to \frac{78}{175} \).

A numerical fit of calculated values of \(\frac{G J_1}{I_1^2} \) as a function of \(G \) gives the approximation

\[
\frac{G J_1}{I_1^2} = \frac{78}{175} + \frac{3 A}{G^3}
\]

(80)

which satisfies the condition at separation where \(G \to \infty \).

Then finally from Equations (79) and (78)

\[
H_\Delta = \frac{78}{175} \frac{H^3}{(H - 1)} + \frac{3 A H^6}{(H - 1)^4} \frac{1}{\sigma^3}
\]

(81)

The quadratic momentum shape parameter \(H_\phi \) may be written in the form

\[
H_\phi = \frac{\phi/\delta^2}{(\theta/\delta)^2}
\]

(82)

where
\[
\frac{\phi}{\delta^2} = \int_0^1 \left(1 - \frac{u}{U} \right) \left(\frac{\nu}{\delta} \right) d\left(\frac{\nu}{\delta} \right)
\]

(83)

and \(\frac{\theta}{\delta}\) is given by Equation (72).

Use of the power-law velocity Equation (73) results in

\[
H\phi = \frac{H^2 (H + 1)}{(H + 3) (H - 1)} = \frac{2H\Delta}{H + 1}
\]

(84)

For the velocity similarity laws \(H\phi\) is derived as follows. From the definition of \(J_1\) in Equation (47) and \(J_2\) in Equation (49)

\[
\frac{\phi}{\delta^2} = \frac{J_1}{\sigma} - \frac{J_2}{\sigma^2}
\]

(85)

Use of \(\frac{\theta}{\delta}\) in Equation (76) and Equation (78) for \(\sigma\) results in

\[
H\phi = \frac{H^3}{(H - 1)} \left(\frac{G J_1}{I_1^2} \right) - H^2 \left(\frac{J_2}{I_1^2} \right)
\]

(86)

\(\frac{G J_1}{I_1^2}\) has already been evaluated in Equation (80).

\(\frac{J_2}{I_1^2}\) is related to \(G\) by means of Equation (57) and (54) with \(B_2\) as the implicit parameter.

At the limiting condition of separation \(B_2 \to \infty\), and \(\frac{J_2}{I_1^2} \to \frac{12}{35}\). \(\frac{J_2}{I_1^2}\) as a function of \(G\) gives the approximation

\[
\frac{J_2}{I_1^2} = \frac{12}{35} - \frac{0.1821 A}{G}
\]

(87)

which satisfies the condition at separation where \(G \to \infty\). Using the relationship between \(\sigma\) and \(G\) in Equation (78) results in

\[
H\phi = \frac{0.1028 H^2 (H + 3.336)}{H - 1} + \left(\frac{0.1821 A H^3}{H - 1} \right) \frac{1}{\sigma} + \left(\frac{3 A H^6}{(H - 1)^4} \right) \frac{1}{\sigma^3}
\]

(88)

The quadratic entrainment shape parameter is given by Equation (43) as

\[
H\psi = \frac{1}{2} \frac{\delta^2}{\theta} - H\Delta
\]
For power-law velocity profiles Equation (73)

\[\frac{\delta}{\theta} = \frac{H(H + 1)}{H - 1} \]

Then from Equation (74) for \(H_\Delta \), it follows that

\[H_\psi = \frac{2H^2(H + 1)^2}{(H - 1)^2(H + 3)} \]

For the velocity similarity laws

\[\frac{\delta}{\theta} = \left(\frac{H^2}{H - 1} \right) \left(1.4857 - \frac{0.474A}{G} + \frac{5A^2}{G^{2.75}} \right) \]

using Equations (41) and (62).

Finally

\[H_\psi = \frac{H^4}{2(H - 1)^2} \left[1.4857 - \frac{0.474AH}{(H - 1)} \left(\frac{H}{H - 1} \right)^{2.75} \right] \left(\frac{1}{\sigma^{2.75}} - \frac{78}{175} \frac{H^3}{(H - 1)} - \frac{3AH^6}{(H - 1)^4} \right) \]

from Equations (78), (81), (43), and (91).

The quadratic shape parameters \(H_\Delta \), \(H_\phi \), and \(H_\psi \) are shown in Figures 2 through 4.

Calculations of the similarity law formulations are based on values of the constants for the similarity laws as given in Reference 11. Here the values of the constants are given by \(A = 2.606 \) and \(B_1 = 3.88 \), which are chosen so that the drag coefficient closely fits the well-accepted Schoenherr formula for smooth flat plates for the case of zero pressure gradient.

Since the similarity laws provide a two-parameter variation, the quadratic shape parameters vary with Reynolds numbers as well as \(H \). The plots show the variation of \(H_\Delta \), \(H_\phi \), and \(H_\psi \) at two momentum thickness Reynolds numbers, \(R_\theta = 10^3 \) and \(10^5 \). It is to be noted that the greatest effect of Reynolds number variations is at the lower values of \(H \). For comparison the power-law relations are also plotted. The agreement at high Reynolds numbers is surprisingly close.

Experimental values obtained by Patel et al.\(^\text{13,14}\) are also plotted. Values of \(H_\Delta \), \(H_\phi \), and \(H_\psi \) for a thin, axisymmetric boundary layer \(\frac{\delta}{r_w} < 0.2 \) are not plotted inasmuch as the

\(^{13}\text{Patel, V.C. et al., "An Experimental Study of the Thick Turbulent Boundary Layer Near the Tail of a Body of Rotation," Iowa Institute of Hydraulic Research Report 142 (Jan 1973).}\)

Figure 2 – Quadratic Displacement Shape Parameter
Figure 4 – Quadratic entrainment shape parameter
quadratic effect is minor. The values of \(H_\Delta, H_\varphi, \) and \(H_\psi \) at the high value of \(H = 2.23 \) are suspect because at the 99-percent station, the boundary layer is undergoing transition to a wake. In general, it should be noted that the agreement between the experimental values and the predicted values is excellent for \(H_\Delta \) and \(H_\varphi \).

In the case of \(H_\psi \), the experimental values are uncertain because of the functional dependence of \(H_\psi \) on the values of boundary-layer thickness \(\delta \). In general, the evaluation of boundary-layer thickness is an imprecise process unlike the evaluation of boundary-layer momentum thickness \(\theta \) which involves an integration. To illustrate this, the values of \(\frac{\delta}{\theta} \) are examined in Figure 5. Also given are values of \(\frac{\delta}{\theta} \) obtained from the Head formulation of the entrainment shape parameter \(\tilde{H} \) \(^{11} \)

\[
\tilde{H} = 1.535 (H - 0.7)^{-2.715} + 3.3 \tag{93}
\]

and

\[
\frac{\delta}{\theta} = \tilde{H} + H \tag{94}
\]

from Equation (41).

As seen in Figure 5, the experimental values of Patel et al.\(^{13,14} \) are uniformly higher than the computed values of \(\frac{\delta}{\theta} \). This may be due to the uncertainty in determining the value of boundary-layer thickness which is not a sharply defined quantity.

METHOD OF SOLUTION

For a given geometry \(r_w \) [s] and external flow velocity \(U \) [s], development of the boundary layer may be calculated from a stepwise solution of the momentum equation and the entrainment equation. The primary dependent variables to be calculated are \(\theta \) and \(H \). All other factors are functions of \(\theta \) and \(H \). The momentum area, displacement area, and entrainment area are

\[
\Omega = r_w \theta + H_\varphi \theta^2 \cos \alpha \tag{37}
\]

\[
A^* = r_w H \theta + H_\Delta \theta^2 \cos \alpha \tag{38}
\]

\[
\psi = r_w \tilde{H} \theta + H_\psi \theta^2 \cos \alpha \tag{40}
\]

Differentiating \(\Omega \) and \(\psi \) with respect to \(\theta \) and \(H \) gives
Figure 5 – Ratio of Boundary-Layer to Momentum Thicknesses
\[
\left[r_w + \theta (\cos \alpha) \left(2 H_\theta + \frac{\partial H_\phi}{\partial \ln R_\theta} \right) \right] d\theta + \left[(\cos \alpha) \theta^2 \frac{\partial H_\phi}{\partial H} \right] dH
\]

\[
= d\Omega - \theta dr_w - H_\phi \theta^2 d(\cos \alpha) - (\cos \alpha) \theta^2 \frac{\partial H_\phi}{\partial \ln R_\theta} \frac{dU}{U}
\] (93)

since

\[
dH_\phi = \frac{\partial H_\phi}{\partial H} dH + \frac{\partial H_\phi}{\partial \ln R_\theta} d\ln R_\theta
\] (94)

and

\[
d\ln R_\theta = \frac{d\theta}{\theta} + \frac{dU}{U}
\] (95)

and

\[
\left[r_w \left(H + \frac{\partial H}{\partial \ln R_\theta} \right) + \theta (\cos \alpha) H \psi \left(2 + \frac{\partial H_\psi}{\partial \ln R_\theta} \right) \right] d\theta + \left[r_w \theta \frac{\partial H}{\partial H} + (\cos \alpha) \theta^2 \frac{\partial H_\psi}{\partial H} \right] dH
\]

\[
= d\psi - \tilde{H} \theta dr_w - r_w \frac{\partial H}{\partial \ln R_\theta} \frac{\theta}{U} dU - H_\psi \theta^2 d(\cos \alpha) - (\cos \alpha) \left(\frac{\partial H_\psi}{\partial \ln R_\theta} \right) \theta^2 \frac{dU}{U}
\] (96)

d\Omega and d\psi are obtained from the momentum equation and entrainment equation

\[
d\Omega = \left(\frac{r_w}{\rho \mu^2} \right) ds - \left(\Lambda^* + 2\Omega \right) \frac{dU}{U}
\] (97)

and

\[
d\psi = \left[r_w + \left(\frac{\delta}{\theta} \right) \theta \cos \alpha \right] \dot{E} ds - \frac{\psi}{U} dU
\] (98)

Then Equations (93) and (96) are solved as simultaneous algebraic equations for d\theta and dH for each differential step ds.

The momentum equation Equation (5) is solved without including the transverse pressure and normal stress terms inasmuch as reliable formulations do not exist. Patel recommends the use of the measured pressure distribution on the surface of the body instead of \(p_\delta \) in determining U in Equation (16) as compensation for excluding the transverse pressure term. The normal stress term is usually negligible, except close to separation.
SUMMARY

A new entrainment equation is derived for thick axisymmetric boundary layers

\[\frac{d}{ds} \int_0^\delta u_r dy = r_5 U_E \]

(22)

New quadratic shape parameters, \(H_\Delta, H_\phi, \) and \(H_\psi \) are introduced and evaluated by the velocity-similarity laws in two-parameter relationships, namely, as functions of \(H \) and \(R_\theta \). Agreement with test data is excellent. This tends to corroborate the assumption that velocity similarity laws apply also to thick, axisymmetric, turbulent boundary layers.

All the necessary analytical relations have been derived for a two-parameter calculation of thick, turbulent boundary layers in pressure gradients. The momentum loss, the boundary-layer thickness, and the velocity profile may be determined at each station in the downstream direction. All the pertinent relations are assembled in the appendix for numerical calculation of the thick, axisymmetric, turbulent boundary layer and the associated velocity profiles.
APPENDIX A
CALCULATION PROCEDURE

All the necessary analytical relations for calculating development of the thick, axisymmetric, turbulent boundary layer and the associated velocity profiles are now listed.

The pertinent equations have been nondimensionalized:

\[L = \text{length of body} \]
\[\ell = \text{axial distance from nose} \]
\[x = \ell / L \]

\[\frac{U_\infty L}{\nu} \cdot \frac{U_\infty}{L} |x|, \quad \frac{r_w}{L} [x] \]

GIVEN

SOLUTION

for \(\frac{\theta}{L} \) and \(H \)

solving as simultaneous equations for \(\delta \left(\frac{\theta}{L} \right) \) and \(\delta H \) where \(\delta \) is a differential increment

\[
\left[\frac{r_w}{L} + \left(\frac{\theta}{L} \right) \cos \alpha \left(2 H_\phi + \frac{\partial H_\phi}{\partial \ln R_\theta} \right) \right] \delta \left(\frac{\theta}{L} \right) + \left[\left(\frac{\theta}{L} \right)^2 \cos \alpha \frac{\partial H_\phi}{\partial H} \right] \delta H
\]

\[= \left(\frac{\Omega}{L^2} \right) - \left(\frac{\theta}{L} \right) \delta \left(\frac{r_w}{L} \right) - H_\phi \left(\frac{\theta}{L} \right)^2 \delta (\cos \alpha) - \left(\frac{\theta}{L} \right)^2 (\cos \alpha) \frac{\partial H_\phi}{\partial \ln R_\theta} \left(\frac{U_\infty}{U_\infty} \right)^{-1} \delta \left(\frac{U_\infty}{U_\infty} \right) \]

\[+ \left[\left(\frac{r_w}{L} \right) \left(H + \frac{\partial \tilde{H}}{\partial \ln R_\theta} \right) + \left(\frac{\theta}{L} \right) \cos \alpha H_\psi \left(2 + \frac{\partial H_\psi}{\partial \ln R_\theta} \right) \right] \delta \left(\frac{\theta}{L} \right) + \left(\frac{r_w}{L} \right) \left(\frac{\theta}{L} \right) \frac{\partial \tilde{H}}{\partial \tilde{H}} \]

\[+ \left(\frac{\theta}{L} \right)^2 \cos \alpha \frac{\partial H_\psi}{\partial H} \] \(\delta H = \delta \left(\frac{\psi}{L^2} \right) - \tilde{H} \left(\frac{\theta}{L} \right) \delta \left(\frac{r_w}{L} \right) - H_\psi \left(\frac{\theta}{L} \right)^2 \delta (\cos \alpha) \)

\[- \left[\frac{r_w}{L} \frac{\partial \tilde{H}}{\partial \ln R_\theta} \left(\frac{\theta}{L} \right) \left(\frac{U_\infty}{U_\infty} \right)^{-1} + \left(\frac{\theta}{L} \right)^2 \frac{\partial H_\psi}{\partial \ln R_\theta} \cos \alpha \left(\frac{U_\infty}{U_\infty} \right)^{-1} \right] \delta \left(\frac{U_\infty}{U_\infty} \right) \]
\[
\cos \alpha = \left[1 + \frac{d \left(\frac{r_w}{L} \right)}{dx} \right]^{-1/2}
\]

\[
\delta \left(\frac{\Omega}{L^2} \right) = \frac{d \Omega}{d x} \delta x, \text{ etc.}
\]

\[
\frac{d (\Omega / L^2)}{dx} = \left(\frac{r_w}{L} \right) \sec \alpha \left(\frac{\Lambda^*}{L^2} + 2 \frac{\Omega}{L^2} \right) \left(\frac{U}{U_{\infty}} \right)^{-1} \frac{d (U / U_{\infty})}{dx} \tag{97}
\]

\[
\frac{d (\psi / L^2)}{dx} = \left[\frac{r_w}{L} \sec \alpha + \left(\frac{\delta}{\theta} \right) \left(\frac{\psi}{L^2} \right) \right] E - \left(\frac{\psi}{L^2} \right) \left(\frac{U}{U_{\infty}} \right)^{-1} \frac{d (U / U_{\infty})}{dx} \tag{98}
\]

\[
\frac{\delta}{\theta} = \tilde{H} + H \tag{41}
\]

\[
H_{\psi} = \frac{1}{2} \left(\tilde{H} + H \right)^2 - H_\Delta \tag{43}
\]

\[
\frac{\partial H_{\psi}}{\partial \ln R_\theta} = \left(\tilde{H} + H \right) \frac{\partial \tilde{H}}{\partial \ln R_\theta} - \frac{\partial H_\Delta}{\partial \ln R_\theta} \tag{58}
\]

\[
R_\theta = \left(\frac{U}{U_{\infty}} \right) \left(\frac{\theta}{L} \right) \left(\frac{U_{\infty} L}{\nu} \right)
\]

\[
\frac{0.3462 \left(3.889 - H \right)}{H} \sigma + 0.9392 A \ln \sigma = A \ln R_\theta + B_1
\]

\[
- 2.0938 A - A \ln \left((H - 1) \frac{0.9392}{H^{0.9392}} \right) \tag{58}
\]

\[
\frac{\Lambda^*}{L^2} = \left(\frac{r_w}{L} \right) \left(\frac{\theta}{L} \right) H + H_\Delta \left(\frac{\theta}{L} \right)^2 \cos \alpha \tag{37}
\]

\[
\frac{\Omega}{L^2} = \left(\frac{r_w}{L} \right) \left(\frac{\theta}{L} \right) H + H_\psi \left(\frac{\theta}{L} \right)^2 \cos \alpha \tag{38}
\]

\[
\frac{\psi}{L^2} = \left(\frac{r_w}{L} \right) \left(\frac{\theta}{L} \right) \tilde{H} + H_\psi \left(\frac{\theta}{L} \right)^2 \cos \alpha \tag{40}
\]

\[
G = \sigma \left(\frac{H - 1}{H} \right) \tag{50}
\]
\[\tilde{H} = \left(\frac{H^2}{H - 1} \right) \left(1.4857 + \frac{0.4739 A}{G} + \frac{5A^2}{G^{2.75}} \right) - H \]

(62)

\[\frac{\partial \tilde{H}}{\partial H} = \frac{\tilde{H}(H - 2) - H}{(H - 1)} - \frac{H^2}{H - 1} \left(\frac{0.4739 A}{G} + \frac{13.75 A^2}{G^{2.75}} \right) \left[\frac{1}{H(H + 1)} + \frac{1}{\sigma \partial H} \right] \]

(63)

\[\frac{\partial \tilde{H}}{\partial \ln R_\theta} = - \left(\frac{H^2}{H - 1} \right) \left(\frac{0.4739 A}{G} + \frac{13.75 A^2}{G^{2.75}} \right) \left(\frac{1}{\sigma \partial \ln R_\theta} \right) \]

(64)

\[\frac{1}{\sigma} \frac{\partial \sigma}{\partial H} = \frac{2.8885}{H(H - 1)} \left[\frac{1.3462 (H - 1) \sigma + A H(H - 1.9392)}{(3.889 - H) \sigma + 2.7129 A H} \right] \]

(60)

\[\frac{1}{\sigma} \frac{\partial \sigma}{\partial \ln R_\theta} = \frac{2.8885 A H}{(3.889 - H) \sigma + 2.7129 A H} \]

(61)

\[E = \left\{ \tilde{H} + \frac{\partial \tilde{H}}{\partial \ln R_\theta} \left(\frac{\partial \tilde{H}}{\partial H} \left[\frac{A H(H - 1)^2}{A(H - 1)^2 + G H} \right] \right) \right\} \left[1 + \frac{(H + 1)}{H} B \right] \frac{1}{\sigma^2} \]

(65)

\(\tilde{\sigma} \) and \(\tilde{\sigma} \) are assumed zero

\[\beta = \left(\frac{\tilde{G} + a_3}{a_1} \right)^2 - a_2 \]

(66)

\[\tilde{G} = G + \Delta G \]

(67)

\[\Delta G = -0.16 \sigma + 3.92 \quad 19.7 \leq \sigma < 24.5 \]

(68)

\[\Delta G = 0 \quad \sigma \geq 24.5 \]

(69)

\[H_\Delta = \frac{78}{175} \frac{H^3}{(H - 1)} + \frac{3A H^6}{(H - 1)^4} \frac{1}{\sigma^3} \]

(81)

\[H_\phi = \frac{0.1028 H^2(H + 3.336)}{H - 1} + \left(\frac{0.1821 A H^3}{H - 1} \right) \frac{1}{\sigma} + \left[\frac{3A H^6}{(H - 1)^4} \right] \frac{1}{\sigma^3} \]

(88)

\[\frac{\partial H_\Delta}{\partial H} = \frac{78}{175} \frac{H^2(2H - 3)}{(H - 1)^2} + \frac{6A H^5(H - 3)}{(H - 1)^5} \frac{1}{\sigma^3} - \frac{9A H^6}{(H - 1)^4} \frac{1}{\sigma^3} \left(\frac{1}{\sigma \partial H} \right) \]

(88)

\[\frac{\partial H_\Delta}{\partial \ln R_\theta} = - \frac{9A H^6}{(H - 1)^4} \sigma^3 \left(\frac{1}{\sigma \partial \ln R_\theta} \right) \]

(88)
\[\frac{\partial H_\phi}{\partial H} = \frac{0.2056 H(H^2 + 0.168 H - 3.336)}{(H - 1)^2} - \frac{A H^3}{(H - 1)} \left[\frac{0.1821}{\sigma} + \frac{9 H^3}{(H - 1)^3 \sigma^3} \right] \left(\frac{1}{\sigma} \frac{\partial \sigma}{\partial H} \right) \]

\[+ \frac{0.1821 A H^2 (2 H - 3)}{(H - 1)^2 \sigma} + \frac{6 A H^5 (H - 3)}{(H - 1)^5 \sigma^3} \]

\[\frac{\partial H_\phi}{\partial \ln R_\theta} = - \frac{A H^3}{(H - 1)} \left[\frac{0.1821}{\sigma} + \frac{9 H^3}{(H - 1)^3 \sigma^3} \right] \left(\frac{1}{\sigma} \frac{\partial \sigma}{\partial \ln R_\theta} \right) \]

\[A = 2.606 \]

\[B_1 = 3.88 \]

\[a_1 = 6.1, a_2 = 1.81, a_3 = 1.37 \]

INITIAL CONDITIONS AT TRANSITION (Reference 11)

\[(R_\theta)_{turb} = (R_\theta)_{lam} + \Delta R_\theta \]

\[\frac{1}{H_0} = 1 - \frac{\tilde{G}_0 + \Delta \sigma}{\sigma_0} \]

\[\tilde{G}_0 = 6.84 \]

\[\Delta G = 0.16 \sigma_0 + 3.92 \]

\[\sigma_0 = 3.22 \ln R_\theta - 1.46 \]

VELOCITY PROFILE (Reference 11)

\[I_1 = \frac{G}{1.4857 + \frac{0.4739 A}{G} + \frac{5 A^2}{G 2.75}} \]

\[B_2 = 2 I_1 - \frac{11}{6} A \]

\[u_r = \frac{U}{\sigma} \]

\[\frac{u_r \delta}{\nu} = e \frac{\sigma - B_1 - B_2}{A} \]

\[\delta = \frac{\nu}{u_r} \left(\frac{u_r \delta}{\nu} \right) \]

(54)
Velocity profile for \(\left(\frac{u_r y}{L} \right)_L < \frac{u_r y}{\nu} < \frac{u_r \delta}{\nu} \)

\[
\frac{u}{u_r} = A \ln \left(\frac{u_r y}{\nu} - J \right) + B_1 + B_2 \frac{w}{2} + A q
\]

\[
\frac{w}{2} = 3 \left(\frac{y}{\delta} \right)^2 - 2 \left(\frac{y}{\delta} \right)^3
\]

\[
q = \left(\frac{y}{\delta} \right)^2 \left(1 - \frac{y}{\delta} \right)
\]

\[
J = B_1 + A \ln A - A
\]

\[
\left(\frac{u_r y}{\nu} \right)_L = B_1 + A \ln A
\]

Velocity profile for \(0 \leq \frac{u_r y}{\nu} \leq \left(\frac{u_r y}{\nu} \right)_L \)

Laminar sublayer

\[
\frac{u}{u_r} = \frac{u_r y}{\nu}.
\]
REFERENCES

INITIAL DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 U.S. ARMY TRANS R&D</td>
<td>2 NAVAIRSYSCOM</td>
</tr>
<tr>
<td>Marine Trans Div</td>
<td></td>
</tr>
<tr>
<td>1 DOD, ARPA</td>
<td>4 NAVSEC</td>
</tr>
<tr>
<td>4 CHONR</td>
<td>1 SEC 6110.01</td>
</tr>
<tr>
<td>3 Code 438</td>
<td>1 SEC 6114</td>
</tr>
<tr>
<td>1 Code 460</td>
<td>1 SEC 6114D</td>
</tr>
<tr>
<td>2 NRL</td>
<td>1 SEC 6115</td>
</tr>
<tr>
<td>1 R.J. Hansen</td>
<td></td>
</tr>
<tr>
<td>2 USNA</td>
<td>12 DDC</td>
</tr>
<tr>
<td>1 Bruce Johnson</td>
<td></td>
</tr>
<tr>
<td>1 Library</td>
<td></td>
</tr>
<tr>
<td>3 NAVPSCSCOL</td>
<td>3 Bureau of Standards</td>
</tr>
<tr>
<td>1 T. Sarpkaya</td>
<td>Mechanics Div</td>
</tr>
<tr>
<td>1 R.J. Hansen</td>
<td>1 P.S. Klebanoff</td>
</tr>
<tr>
<td>1 NRL</td>
<td>1 G. Kulin</td>
</tr>
<tr>
<td>1 NROTC & NAVADMINU, MIT</td>
<td></td>
</tr>
<tr>
<td>1 NAVWARCOL</td>
<td>2 NASA HQS</td>
</tr>
<tr>
<td>1 NELC</td>
<td>1 A. Gessow</td>
</tr>
<tr>
<td>6 NAVUSEACEN San Diego</td>
<td>1 National Science Foundation</td>
</tr>
<tr>
<td>1 A.G. Fabula</td>
<td>Eng Sci Div</td>
</tr>
<tr>
<td>1 T. Lang</td>
<td>1 Univ of Bridgeport</td>
</tr>
<tr>
<td>1 J.W. Hoyt</td>
<td>E.M. Uram, Dept Mech Eng</td>
</tr>
<tr>
<td>1 G.L. Donahue</td>
<td>2 Univ of Calif Berkeley</td>
</tr>
<tr>
<td>1 D.M. Nelson</td>
<td>Dept of NA</td>
</tr>
<tr>
<td>1 NAVWPNSEC</td>
<td>3 Calif Inst of Technol</td>
</tr>
<tr>
<td>3 NSWC White Oak</td>
<td>1 A.J. Acosta</td>
</tr>
<tr>
<td>1 V.C. Dawson</td>
<td>1 Sabersky</td>
</tr>
<tr>
<td>1 J.E. Goeller</td>
<td>1 D. Coles</td>
</tr>
<tr>
<td>5 NUSC NPT</td>
<td>5 Calif Inst of Technol</td>
</tr>
<tr>
<td>1 P. Gibson</td>
<td>1 Dept of Mech Eng</td>
</tr>
<tr>
<td>1 J.F. Brady</td>
<td>1 M.J. Casarella</td>
</tr>
<tr>
<td>1 R.H. Nadolink</td>
<td>1 P.K. Chang</td>
</tr>
<tr>
<td>1 Nolonlab NUSC</td>
<td>2 Davidson Lab, Stevens</td>
</tr>
<tr>
<td>9 NAVSEASYSCOM</td>
<td>Inst of Tech</td>
</tr>
<tr>
<td>2 SEA 09G32</td>
<td>3 State Univ of Iowa</td>
</tr>
<tr>
<td>1 SEA 03C</td>
<td>Inst of Hydraulic Res</td>
</tr>
<tr>
<td>1 SEA 03</td>
<td>1 L. Landweber</td>
</tr>
<tr>
<td>2 SEA 033</td>
<td>1 V.C. Patel</td>
</tr>
<tr>
<td>1 SEA 035A</td>
<td></td>
</tr>
<tr>
<td>2 PMS-395</td>
<td></td>
</tr>
<tr>
<td>Copies</td>
<td>Institution and Details</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Mass Inst of Technol</td>
</tr>
<tr>
<td></td>
<td>Dept of Ocean Eng</td>
</tr>
<tr>
<td></td>
<td>1 Library</td>
</tr>
<tr>
<td></td>
<td>1 J.N. Newman</td>
</tr>
<tr>
<td></td>
<td>1 P. Mandel</td>
</tr>
<tr>
<td></td>
<td>1 M. Abkowitz</td>
</tr>
<tr>
<td>2</td>
<td>Univ of Michigan</td>
</tr>
<tr>
<td></td>
<td>Dept of NAME</td>
</tr>
<tr>
<td>3</td>
<td>Univ of Minnesota</td>
</tr>
<tr>
<td></td>
<td>St. Anthony Falls Hydr Lab</td>
</tr>
<tr>
<td></td>
<td>1 R. Arndt</td>
</tr>
<tr>
<td>4</td>
<td>Penn State Univ</td>
</tr>
<tr>
<td></td>
<td>Advanced Research Lab</td>
</tr>
<tr>
<td></td>
<td>1 J.L. Lumley</td>
</tr>
<tr>
<td></td>
<td>1 R.E. Henderson</td>
</tr>
<tr>
<td></td>
<td>1 B.R. Parkin</td>
</tr>
<tr>
<td>2</td>
<td>Univ of Rhode Island</td>
</tr>
<tr>
<td></td>
<td>1 F.M. White, Dept Mech Eng</td>
</tr>
<tr>
<td></td>
<td>1 T. Kowalski, Dept Ocean Eng</td>
</tr>
<tr>
<td>2</td>
<td>Stanford Univ</td>
</tr>
<tr>
<td></td>
<td>1 E.Y. Hsu, Dept Civil Eng</td>
</tr>
<tr>
<td></td>
<td>1 S.J. Kline, Dept Mech Eng</td>
</tr>
<tr>
<td>1</td>
<td>VPI</td>
</tr>
<tr>
<td>2</td>
<td>Worcester Polytech Inst</td>
</tr>
<tr>
<td></td>
<td>Alden Res Labs</td>
</tr>
<tr>
<td></td>
<td>1 L.C. Neale</td>
</tr>
<tr>
<td>1</td>
<td>SNAME</td>
</tr>
<tr>
<td>2</td>
<td>Boeing Aircraft, Seattle, Wash.</td>
</tr>
<tr>
<td>1</td>
<td>Douglas Aircraft, Long Beach, Calif</td>
</tr>
<tr>
<td></td>
<td>1 T. Cebeci</td>
</tr>
<tr>
<td>1</td>
<td>Exxon Math & Systems, Inc</td>
</tr>
<tr>
<td></td>
<td>R. Bernicker</td>
</tr>
<tr>
<td>3</td>
<td>Hydronautics, Inc</td>
</tr>
<tr>
<td></td>
<td>1 M.P. Tulin</td>
</tr>
<tr>
<td></td>
<td>1 R. Barr</td>
</tr>
<tr>
<td>1</td>
<td>LTV Adv Tech Center</td>
</tr>
<tr>
<td></td>
<td>C.S. Wells, Jr.</td>
</tr>
<tr>
<td>1</td>
<td>Oceanics, Inc</td>
</tr>
<tr>
<td></td>
<td>A. Lehman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copies</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Rand Corp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 E.R. van Driest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 J. Aroesty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 C. Gazley</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Westinghouse Electric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.S. Macovsky</td>
<td></td>
</tr>
</tbody>
</table>

CENTER DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1541</td>
<td>P.S. Granville</td>
</tr>
<tr>
<td>3</td>
<td>1552</td>
<td>J.H. McCarthy</td>
</tr>
<tr>
<td>1</td>
<td>1556</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1560</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1580</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1802.2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1802.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1802.4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1843</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1940</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1942</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5214.1</td>
<td>Reports Distribution</td>
</tr>
<tr>
<td>1</td>
<td>5221</td>
<td>Library (C)</td>
</tr>
<tr>
<td>1</td>
<td>5222</td>
<td>Library (A)</td>
</tr>
</tbody>
</table>