Dependence of the Ion Current on Voltage in a Reflex Triode

C. A. Kapetanakos, J. Golden and W. M. Black

Experimental Plasma Physics
Plasma Physics Division

September 1976

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
Title: Dependence of the Ion Current on Voltage in a Reflex Triode

Authors: C.A. Kapetanakos, J. Golden, and W.W. Black

Type of Report & Period Covered: Interim report on a continuing NRL problem.

Classifications:
- [] Unclassified
- [] DECLASSIFIED/DEREGRADING [Blank]
- [] SECURITY CLASS. (of this report) UNCLASSIFIED
- [] SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 251950

Controlled Office Name and Address:
Office of Naval Research
Arlington, Virginia 22217

Monitoring Agency Name and Address:
Naval Research Laboratory
Washington, D.C. 20375

Distribution Statement:
Approved for public release; distribution unlimited. NRL-MR-3372

Supplementary Notes:
Permanent address: George Mason University, 4400 University Drive, Fairfax, Virginia

Key Words:
- Intense ion beams
- Reflex triode (RT)
- Scaling of ion current in RT

Abstract:
Results are reported on the dependence of the current of a pulsed ion beam produced in a reflex triode upon the applied resistive voltage in the range 0.6 to 1.3 MV. The measured peak ion current at the maximum voltage tested is 20 kA, corresponding to a current density of 200 Am².
DEPENDENCE OF THE ION CURRENT ON VOLTAGE IN A REFLEX TRIODE

During the last few years there has been increased interest on the production of intense ion beams using the existing pulsed power technology initially developed for the generation of relativistic electron pulses. Recent intensive studies of such ion beams have furnished valuable information on their properties and propagation characteristics. However, presently very little is known about the scaling of their current with the applied voltage. In this paper we report experimental results on the variation of the ion current \(I_i\) with applied resistive voltage \(V_o\) in the range 0.6 to 1.3 MV.

A schematic of the experiment is shown in Fig. 1. Electrons emitted from the 23.0 cm O.D., 1.5 cm thick annular carbon cathode are accelerated by the 60 nsec duration positive voltage pulse that is applied on the anode from the VEBA generator\(^1\), pass through it and form a virtual cathode. The anode is constructed from 12 \(\mu\)m thick solid polyethylene film interwoven between 0.7 mm diameter metal wires spaced 2.8 cm apart as shown in Fig. 1. The metal wires serve the dual function of holding the plastic film in place and uniformly "turning-on" the cathode. The ions are extracted out of the plasma formed from the plastic by the oscillating electrons. The protons that are accelerated toward the virtual cathode pass through it and form a drifting beam. Both the triode and the drift region are immersed in a uniform magnetic field \(B_o\), which can be varied from 0 to 10 kG.

The anode voltage is measured using a capacitive voltage divider, which is located behind the insulator of the diode. The anode current is measured by integrating the output (dI/dt) of a small pick-up loop that is situated in the

Note: Manuscript submitted September 3, 1976.
vacuum side of the diode. Typical voltage (a), current (b) and dI/dt(c) waveforms are shown in Fig. 2. The origin of the first peak in the current waveform appearing about 10 nsec from the beginning of the pulse is not presently well understood.

The number of protons in the beam is measured by the nuclear activation technique2-8,13. Briefly, this technique consists of measuring the radioactivity induced on a 3 mm thick carbon target by the drifting protons. The numbers of protons is inferred from the measured number of \(\gamma \)-rays associated with the annihilation of positrons (\(p^+ \)), which are produced from the decay of \(^{13}\text{N} \). The nitrogen is generated by the resonant reaction \(^{12}\text{C}(p,\gamma)^{13}\text{N} \) that has a threshold of about 400 keV. At the higher energies, the number of counts is corrected13 for the activity of the \(^{12}\text{C}(d,n)^{13}\text{N} \) reaction induced by the natural isotopic abundance of deuterium in polyethylene.

The peak ion current is inferred from the measured number of protons by the activation technique and the ion pulse shape determined with a scintillator-photodiode system. A micron thick layer of aluminum on the face of the scintillator renders the detector light-tight. A typical oscilloscope trace of the scintillator-photodiode system is shown in Fig. 2d. It has been determined from time of flight measurements that the first peak is due to electrons and the second peak to protons. It is apparent from this trace that the proton pulse is triangular with a baseline of about 40 nsec. In addition, the time of flight measurements indicate that the energy of protons is approximately equal to the voltage applied to the anode. From the attenuation of the signal as a function of the plastic thickness placed in front of the scintillator, it has been determined that the energy of electrons is less than or equal to 85 keV. The presence of electrons while a positive pulse is applied on the anode, indicates that due to inductive effects, there is a potential difference between the cathode and the end wall. The
emission of these electrons has been further verified by Faraday cups, which also indicate that the proton beam is space charge neutralized.

It is found that at the corrected (resistive) voltage V_0

$[V_0 = \text{applied voltage - inductive voltage}]$ of 1.3 MV, the peak ion current is approximately 20 kA and the corresponding ion current density is about 200 A/cm2. At $V_0 = 1.3$ MV and $d = 5.3$ cm, the bipolar flow predicts (neglecting edge effects) proton current density of only 8 A/cm2. The 20 kA current appears to be the limit of the 20 Ω impedance generator. This is consistent with the fact that the ion current density increased to 1 kA/cm2, when the area of the cathode was reduced to 5 cm2.

From the measured V_0 and number of protons per pulse, the total energy of the ion pulse is computed. The computed energy is in agreement with calorimetry measurements.

It is of fundamental interest to know the dependence of the ion current I_p upon the resistive voltage V_0 applied on the anode of a reflex triode. When the shape of the ion pulse is not very sensitive to the applied voltage, the ion current is proportional to the total number of protons in the beam N_p, that can be measured accurately and ambiguously by the nuclear activation technique. Figure 3 shows the product $N_p d^2$, where d is the opening of the anode-cathode gap, as a function of the anode voltage V_0. Least square fitting of the data in the voltage range between 0.55 to 1.3 MV shows that $N_p d^2$ varies as $V_0^{4.0 \pm 0.7}$.

N_p has been determined by the activation technique assuming that the thick target yield of the $^{12}\text{C}(p,y)^{13}\text{N}$ reaction is 7.5×10^{-10} per proton. However, the yield of this reaction drops very rapidly below 0.55 MeV. Since the voltage V_0 is not known with an accuracy better than 15%, it is possible that the value of N_p for
the six low voltage shots in Fig. 3 has been grossly underestimated.
Least square fitting of the data, after omitting the six low voltage
shots gives that $N_d \times 2$ varies as $V_o^2 \pm 0.8$. A similar scaling is obtained
if the value of N_d for the six low voltage shots increased by a factor of
two.

Detailed comparison of the experimental results with theoretical pre-
dictions is not presently possible, because the theory of the reflex triode
has not been developed as yet. However, some insight in the current
versus voltage characteristics of the triode may be gained by solving Poisson's
equation near the cathode (crosshatched region in Fig. 4), where only ions of
mass M and monoenergetic electrons of mass m that have not as yet crossed the
anode are present. Under steady state conditions, the oscillating electrons
do not enter the crosshatched region because the potential V is less than
ΔV, where $e\Delta V$ is equal to twice the energy loss of a typical electron during
its first crossing of the anode. Introducing the dimensionless variables
$Y = V/V_o$, $\xi^2 = (m/2e)^{1/2} (J_e/eV_o^3/2) x^2$, and $a = (J_i/J_e) (M/m)^{1/2}$, Poisson's
equation becomes,

$$\frac{d^2Y}{d\xi^2} = \frac{1}{Y^{1/2}} - \frac{a}{(1-Y)^{1/2}},$$

where J_e is the electron current density emitted from the cathode, J_i is the
ion current density ε_0 is the permittivity of vacuum and V_o is the potential
applied on the anode. Integrating Eq. (1) from $Y = 0$ to Y, it is obtained

$$\left(\frac{dY}{d\xi}\right)^2 = 4 \left[Y^{1/2} + a(1-Y)^{1/2} - a\right].$$

Since $(dY/d\xi)^2 \geq 0$, and for thin anodes $\Delta V/V_o \ll 1$, Eq. (2) at $V = \Delta V$, gives
$a \equiv 2(V_o/\Delta V)^{1/2}$, or after using the definition of a

$$J_i/J_e \leq 2 \left(\frac{V_o}{\Delta V m}\right)^{1/2}$$
Equation (3) is exact and is valid for relativistic electrons as well. Because $\Delta V \sim V_0^{-0.4}$ in the energy range of interest, Eq. (3) demonstrates that J_1 varies with voltage faster than J_e by $V_0^{0.7}$. For $0.4 \leq V_0 \leq 1$ MV, the ratio $V_0/\Delta V$ is with better than 10% equal to the times an oscillating electron crosses the anode.

In addition, Antonsen and Ott have recently computed self-consistently the steady state ion and electron current densities in a double diode, assuming that the electrons are suffering only elastic collisions in the anode foil. In the non-relativistic limit, they predict that

$$J_i/J_e = (\nu+1) (zm/M)^{1/2},$$

where ze is the ion charge and ν^{-1} is proportional to the square of the mean scattering angle, i.e., $\nu = 2(1+n_4)/3<\Delta \theta^2>$. It can be shown from their results that for $10 < \nu < 45$, $J_e \sim V_0^{3/2}$. Since $<\Delta \theta^2> \sim V_0^{-2}$, their theoretical model predicts that J_i scales as $V_0^{3.5}$.

The above models are based on the assumption that the device operates in a steady state. Preliminary computer simulation results at NRL by Lee and Goldstein show that a steady state is reached for short pulses only for anodes that are considerably thicker than those used in the experiment. Under conditions pertinent to the experiment, the code predicts a J_i at the end of a 50 nsec pulse that scales as $V_0^{2.5}$.

Although the accuracy of the experimental results is not good enough to establish the exact relationship between J_1 and V_0, it is clear from these results that J_1 scales considerably faster than $V_0^{3/2}$ predicted by the Child-Langmuir law for bipolar flow. In addition, incomplete theoretical models and preliminary computer simulation experiments predict that J_i in a reflex triode scales faster than $V_0^{3/2}$.
Acknowledgements

We have benefited greatly from helpful discussions with Drs. A.E. Robson, S. Goldstein, R. Lee, R. Parker and A. Drobot. Also, we would like to thank Dr. V. Granatstein for making the VEGA generator available to us. The technical assistance of Ross Covington is very much appreciated.
References

14. Among the two ion sources based on the electron reflex action, only the steady state double diode has been investigated theoretically, because it is considerably simpler than the reflex triode. Although not appreciated initially, these two devices appear to have several dissimilar features.
Fig. 1 — Schematic of the experiment
Fig. 2 — Voltage (a), anode current (b), dI/dt (c), and ion current (d) waveforms. For all traces the time scale is 20 nsec/div.
Fig. 3 - Number of protons per pulse \((N_p) \) multiplied by the square of the anode-cathode spacing vs. corrected voltage \(V_0 \), at \(B_0 = 1.6 \) kG. Least square fitting gives for the slope of the solid-line \(4.0 \pm 0.7 \). The slope of the dotted-line is \(2.6 \pm 0.8 \).
Fig. 4 — Schematic of a reflex triode
Distribution List

1. Prof. R. Davidson
 Physics Department
 University of Maryland
 College Park, MD 20742

2. Dr. H.J. Doucet
 Director
 Laboratoire de Physique des Milieux Ionises
 Ecole Polytechnique
 17, Rue Descartes, P RIS-V
 France

3. Dr. Takaya Kawabe
 Institute of Plasma Physics
 Nagoya University
 Nagoya 464
 Japan

4. Prof. Norman Rostoker
 Dept. of Physics
 University of California
 Irvine, CA 92664

5. Prof. C.B. Wharton
 Laboratory of Plasma Studies
 Cornell University
 Ithaca, New York 14850

6. Prof. H.H. Fleichmann
 Lab. for Plasma Studies & School of Applied & Engr. Physics
 Cornell University
 Ithaca, New York 14850

7. Prof. M. Reiser
 Dept. of Physics & Astronomy
 University of Maryland
 College Park, MD 20742

8. Dr. S. Putnam
 Physics Intern. Co.
 2700 Merced St.
 San Leandro, CA 94577
9. Prof. S. Humphries
Lab. of Plasma Studies
Cornell University
Ithaca, New York 14850

10. Dr. Gerold Yonas
Sandia Lab.
Albuquerque, New Mexico 87115

11. Dr. D. A. McArthur
Sandia Lab.
Albuquerque, New Mexico 87115

12. Prof. N. Luhmann
Dept. of E. E.
Univ. of California at Los Angeles
Los Angeles, Calif. 90024

13. Dr. Jim Benford
Physics International Co.
2700 Merced St.
San Leandro, Calif. 94577

14. Dr. C. W. Roberson
Physics Dept.
Univ. of California
Irvine, Calif. 92664

15. Prof. C. Striffler
Dept. of E. E.
Univ. of Maryland
College Park, Md. 20742

16. Dr. Peter Korn
Maxwell Labs.
San Diego, Calif. 92123

17. Dr. C. L. Olson
Sandia Lab.
Albuquerque, New Mexico 87115

18. Prof. George Bekefi
Bldg. 36-213
Mass. Inst. of Technology
77 Massachusetts Ave.
Cambridge, Mass. 02139

19. Dr. D. Prosnitz
Dept. of Physics
Yale University
New Haven, Conn. 06520
20. Dr. J.A. Rome
 Oak Ridge National Lab.
 Oak Ridge, Tenn. 37830

21. Prof. George Schmidt
 Physics Dept.
 Stevens Institute of Technology
 Hoboken, New Jersey 07030

22. Prof. W.E. Drummond
 Dept. of Physics
 University of Texas
 Austin, Texas 78712

23. Prof. A.W. Trivelpiece
 Maxwell Lab.
 San Diego, CA 92123

24. Dr. B. Miller
 Energy Research & Development Administration
 Washington, DC 20545

25. Prof. A. Bers
 Dept. of Electrical Engr.
 Mass. Inst. of Technology
 77 Massachusetts Ave.
 Cambridge, Mass. 02139

26. Prof. J.E. McCune
 Dept. of Aero. & Astro.
 Mass. Institute of Tech.
 77 Massachusetts Ave.
 Cambridge, Mass. 02139

27. Dr. D.S. Prono
 Lawrence Livermore Laboratory
 P.O. Box 808
 Livermore, CA 94550

28. Dr. R. Briggs
 Lawrence Livermore Laboratory
 P.O. Box 808
 Livermore, CA 94550

29. Dr. P.D. Miller
 Physics Division
 Oak Ridge National Laboratory
 Oak Ridge, Tenn. 37830
30. Dr. E.S. Weibel
c/o Center de Recherches
en Physique des Plasmas
Ecole Polytechnique Federale
de Lausanne
Avenue des Bains 21
CH-1007, Lausanne, Switzerland

31. Prof. R. Uzan
Laboratoire D’emission Electronique
Faculte des Sciences
43, Bd du 11 Novembre 1918
69 - Villeurbanne, France

32. Dr. A.E. Blaugrund
Weizman Institute of Science
Rehovot, Israel

12 cys - Defense Documentation Center (DDC)
20 cys - Code 2628
25 cys - Code 7700