OPTIMAL CONTROL OF A BROWNIAN STORAGE SYSTEM

J. Michael Harrison
Allison J. Taylor
Stanford University
McMaster University

1. Introduction and Summary

We consider in this paper two highly structured problems of optimal stochastic control. The two problems will be precisely formulated, and optimal control policies of a simple form will be explicitly computed, in Sections 3 and 4. In this section we present an informal description of each problem and its solution, suppressing all technical detail.

Let \( X = \{X(t), \ t \geq 0\} \) be a Brownian Motion with starting state \( x \geq 0 \), drift \( \mu \) and variance \( \sigma^2 > 0 \). Thus \( \mathbb{E}[X(t)] = x + \mu t \) and \( \text{Var}[X(t)] = \sigma^2 t \). We define a control to be a non-decreasing process \( Y = \{Y(t), \ t \geq 0\} \), with \( Y(0) \geq 0 \), which is a non-anticipating functional (of \( X \)). Thus, for each \( t \geq 0 \), the partial control history \( \{Y(u), 0 \leq u \leq t\} \) may depend on \( \{X(u), 0 \leq u \leq t\} \) and possibly on other information as well, but it may not depend on \( \{X(t+u) - X(t), u \geq 0\} \). (See Section 2 for a precise definition.) In each of our problems, the objective is to find an input control \( Y \) and an output control \( Z \) which maximize expected discounted reward (over an infinite planning horizon) subject to the constraint that \( W(t) = X(t) + Y(t) - Z(t) \geq 0 \) for all \( t \geq 0 \) (almost surely). It is the hypothesized structure of costs and rewards that differs in the two problems.
Given a constant $k > 1$, the objective in our first problem is to find an admissible control policy $(Y,Z)$ which maximizes

$$E[Z(0) + \int_0^\infty e^{-\alpha t} dZ(t)] - kE[Y(0) + \int_0^\infty e^{-\alpha t} dY(t)]$$

where $\alpha > 0$ is the interest rate. By way of interpretation, we imagine a storage system (such as an inventory or a bank account) whose content evolves as the Brownian Motion $X$ in the absence of any control. In particular, $X(0)$ represents the initial content of the system. The controller may at any time withdraw material from the system, and $Z(t)$ represents the total withdrawal during the interval $[0,t]$, or cumulative output up to time $t$. He receives a reward of one dollar for each unit of material withdrawn. If the content of the system falls to zero, however, then the controller is obliged to inject material into the system so as to keep the net content positive, and he incurs a cost of $k > 1$ dollars for each unit of material injected. We interpret $Y(t)$ as the total injection during the interval $[0,t]$, or the cumulative input up to time $t$. We call $W = X - Y - Z$ the controlled process and $X$ the uncontrolled process.

In Section 3 it will be shown that an optimal policy for this first problem is the minimal pair of controls $(Y,Z)$ which achieves $0 \leq W(t) \leq S$ for all $t \geq 0$ (almost surely), where $S$ is the unique positive solution of a certain transcendental equation. Thus the controller should withdraw only as much material as is required to keep the net content below $S$, and he should inject the minimum amount necessary to keep the net content positive. The optimal controls are
explicitly described in terms of certain maximum and minimum functionals applied to \( X \), and the corresponding controlled process \( W \) behaves as the Brownian Motion \( X \) modified by (instantaneously) reflecting barriers at zero and \( S \). The optimal controls are (almost surely) continuous but not absolutely continuous, due to the unbounded variation of Brownian paths. Thus one cannot describe the optimal policy in terms of input and output rates. Still it is in a certain sense a bang-bang policy, as one would expect with our linear cost structure.

Our second problem differs only in that we require the input control \( Y \) to be a (random) step function, and we assume that a fixed change of \( K > 0 \) dollars is incurred each time an input jump occurs. (This is additional to the proportional charge of \( k \) dollars per unit of input.) In Section 4 it will be shown that the optimal policy is as follows. Each time that the net content \( W \) hits zero, the controller increases the cumulative input \( Y \) by \( s \) units, where \( s \) is the unique positive solution of a certain transcendental equation. Between these input events, the controller increases the cumulative output \( Z \) by the minimum amounts necessary to keep the controlled process below level \( s+S \), where the positive constant \( S \) is the same as in our first problem.

Section 2 contains a number of formal definitions and some important preliminary propositions. The central results are stated and proved in Sections 3 and 4. In Section 5 we discuss the application of our results to problems of inventory control and stochastic cash management. In particular, it is shown that our formulation need be altered only trivially to include problems where the controller continuously incurs holding costs at a rate proportional to the net content of the
system \( W(t) \). We also discuss the relationship between our model(s) and other (approximate) diffusion formulations that have been suggested for such problems. In Section 6 we discuss the difference between our formulation and various other theories of optimal stochastic control.

2. Preliminaries

Let \( \mathbb{R} = (-\infty, \infty), \mathbb{R}^+ = [0, \infty), I = \{0, 1, \ldots\} \) and \( I^+ = \{1, 2, \ldots\} \). Throughout the paper, let \( \alpha > 0, \mu \in \mathbb{R}, \sigma^2 > 0, k > 1 \) and \( K > 0 \) be fixed constants. We assume a measurable space \((\Omega, \mathcal{F})\) on which is defined a family of probability measures \( \{P_x, x \in \mathbb{R}\} \) and a process \( X = (X(t), t \geq 0) \) such that \( X \) is Brownian Motion with drift \( \mu \), variance \( \sigma^2 > 0 \), and starting state \( x \) with respect to \( P_x (x \in \mathbb{R}) \).

We denote by \( E \) the expectation operator associated with \( P_x \). The following proposition follows easily from standard properties of Brownian Motion.

**Proposition 1.** \( E_x \sup\{e^{-\alpha t} X(t) : t \geq 0\} < \infty, x \in \mathbb{R} \).

We further assume the existence of an increasing family of sub-\( \sigma \)-algebras \( \{\mathcal{F}_t, t \geq 0\} \) such that \( X \) is adapted to \( \{\mathcal{F}_t\} \) and \( X(t+u) - X(t) \) is independent (with respect to \( P_x \) for all \( x \in \mathbb{R} \)) of \( \mathcal{F}_t \) for all \( t \geq 0 \) and \( u \geq 0 \). We say that a random variable \( T \) is a stopping time if \( P_x [0 \leq T < \infty] = 1 \) for all \( x \in \mathbb{R} \) and \( \{T \leq t\} \in \mathcal{F}_t \) for all \( t \geq 0 \). Using the separability of \( X \) and our
assumptions on \( \mathcal{F}_t \), one easily obtains the following by a standard type of argument.

**Proposition 2.** If \( T \) is a stopping time and \( Z \) is measurable \( \mathcal{F}_T \), then, for all \( x \in \mathbb{R} \),

\[
P_x \{ Z + X(T+t) \leq y | \mathcal{F}_t \} = P_{Z+X(T)} \{ X(t) \leq y \}, \quad t \geq 0, \; y \in \mathbb{R}.
\]

**Proposition 3.** If \( T \) is a stopping time, then

\[
\alpha \mathbb{E} \int_0^T e^{-\alpha t} X(t) \, dt + \mathbb{E} e^{-\alpha T} X(T) = x + \mu [1 - A(x)] / \mu, \quad x \in \mathbb{R},
\]

where \( A(x) = \mathbb{E} e^{-\alpha T} X(t), \; x \in \mathbb{R} \).

**Proof:** Let \( f(x) = \alpha \mathbb{E} \int_0^\infty e^{-\alpha t} X(t) \, dt, \; x \in \mathbb{R} \). Then

\[
f(x) = \alpha \int_0^\infty e^{-\alpha t} \mathbb{E} X(t) \, dt = \alpha \int_0^\infty e^{-\alpha t} (x + \mu t) \, dt = x + \mu / \alpha
\]

by Fubini's Theorem. Using this and Proposition 2, we have

\[
x + \mu / \alpha - \mathbb{E}_x \int_0^T e^{-\alpha t} X(t) \, dt = f(x) - \mathbb{E}_x \int_0^T e^{-\alpha t} X(t) \, dt
\]

\[
= \mathbb{E}_x \int_0^\infty e^{-\alpha t} X(t) \, dt = \mathbb{E}_x \{ e^{-\alpha T} \mathbb{E}_x \{ \int_0^\infty e^{-\alpha t} X(t) \, dt | \mathcal{F}_T \} \}
\]

\[
= \mathbb{E}_x e^{-\alpha T} f(X(T)) = \mathbb{E}_x e^{-\alpha T} [X(T) + \mu / \alpha],
\]

which completes the proof.
If $f$ is a real-valued function on some interval subset of $\mathbb{R}$, we define $\mathcal{M}(x) = \mu f'(x) + \frac{1}{2} \sigma^2 f''(x)$ for all $x$ such that $f'(x)$ and $f''(x)$ exist.

**Proposition 4.** Let $f : \mathbb{R} \to \mathbb{R}$ be non-decreasing and twice continuously differentiable with $\mathcal{M} - \alpha f \leq 0$. Assume $x \in \mathbb{R}$ and let $T_x$ and $T^*$ be stopping times with $P_x(T_x < T^*) = 1$. Finally, let $Z$ be measurable $\mathcal{F}_{T^*}$. Then

$$E_x e^{-\alpha T^*} f(Z - X(T^*)) \leq E_x e^{-\alpha T^*} f(Z + X(T^*))$$

if both expectations exist and are finite.

**Proof:** Assume first that $f$ and its first two derivatives are bounded. We begin by proving a slight generalization of the discounted form of Dynkin's identity, c.f. Breiman (1968), equation (16.61). Let $g(x, \mathcal{M}(x)) = \alpha f(x)$ for $x \in \mathbb{R}$. Then a standard result for Markov processes (in this case the Brownian Motion $X$ with generator $\mathcal{M}$) and their resolvents gives us

$$f(x) = E_x \int_0^\infty e^{-\alpha t} g(X(t)) dt, \quad x \in \mathbb{R},$$

cf. Breiman (1968), Theorem 15.51. Since $Z$ is measurable $\mathcal{F}_{T^*}$, we can combine (2) with Proposition 2 to obtain
(3) \[ E_x \int_{T^*}^\infty e^{-\alpha t} g(Z + X(t)) dt = E_x \int_0^\infty e^{-\alpha t} g(Z + X(T^*+t)) dt \]

\[ = E_x \{ e^{-\alpha T^*} E \left[ \int_0^\infty e^{-\alpha t} g(Z + X(T^*+t)) dt \right] \} \]

\[ = E_x e^{-\alpha T^*} \int_0^\infty e^{-\alpha t} g(X(t)) dt \]

\[ = E_x e^{-\alpha T^*} E(Z + X(T^*)) . \]

But \( Z \) is measurable \( \mathcal{F}_{T^*} \) also, so an identical argument gives (4)

(4) \[ E_x \int_{T^*}^\infty e^{-\alpha t} g(Z + X(t)) = E_x e^{-\alpha T^*} f(Z + X(T^*)) . \]

Subtracting (3) from (4) gives

\[ E_x \int_{T^*}^\infty e^{-\alpha t} g(Z + X(t)) dt \]

\[ = E_x \int_{T^*}^\infty e^{-\alpha t} g(Z + X(t)) dt . \]

The right side is non-positive, since \( g(x) \leq 0 \) for all \( x \in \mathbb{R} \), so the proposition is proved.

If either \( f \) or one of its derivatives is unbounded, we can easily construct a sequence of bounded functions \( f_n \) having two bounded continuous derivatives and such that \( f_n(x) = f(x) \) if \( |f(x)| < n \) and \( |f_n| < |f|, n \in \mathbb{N} \). (The construction is particularly easy with our assumption that \( f \) is monotone.) We have shown that (1) holds with \( f_n \) in place of \( f \), and obviously \( f_n \to f \), so (1) holds by dominated convergence if both expectations exist and are finite. This completes the proof.
We define a **non-anticipating functional** to be a process
\[ Z = \{Z(t), \ t \geq 0; \ Z(0)\} \text{ taking values in } D(0, \infty) \text{ and such that} \]
\[ Z(t), \text{ is measurable } \mathcal{F}_t \text{ for each } t \geq 0. \]
We define \( \mathcal{C} \) to be the set of non-anticipating functionals \( Z \) which are non-decreasing with \( Z(0) \geq 0 \), and we define \( \mathcal{C}_x \) to be the set of \( Z \in \mathcal{C} \) such that \( \mathbb{E}_x R Z \rightarrow x \times \mathbb{R} \), where
\[
R Z = \alpha \int_0^\infty e^{-\alpha t} Z(t) dt, \quad Z \in \mathcal{C}.
\]
Then \( P_x \{ e^{-\alpha t} Z(t) \rightarrow 0 \text{ as } t \to \infty \} = 1 \) for all \( Z \in \mathcal{C}_x \), and path-wise (Riemann-Stieltjes) integration by parts gives
\[
P_x \{ R Z = Z(0) + \int_0^\infty e^{-\alpha t} dZ(t) \} = 1 \quad \text{for all } Z \in \mathcal{C}_x.
\]
We define \( \mathcal{S} \) to be the set of (random) step functions in \( \mathcal{C} \) having only finitely many jumps in any finite interval, and we take \( \mathcal{S}_x \) to be the set of \( Z \in \mathcal{S} \cap \mathcal{C}_x \) such that \( \mathbb{E}_x R^* Z \leq x \times (x \times \mathbb{R}) \), where
\[
R^* Z = 1 \{ Z(0) > 0 \} + \sum_{n=1}^\infty e^{-\alpha T_n} Z(T_n),
\]
where \( T_n Z \) is the \( n \)th jump time of \( Z \).

**Proposition**: \( \mathbb{E}_x \sup \{ e^{-\alpha t} Z(t) : t \geq 0 \} < \infty \) if \( x \in \mathbb{R} \), \( Z \in \mathcal{C}_x \).
Proof: Since $Z$ is non-decreasing, we have
\[ \int_{t}^{\infty} \alpha e^{-\alpha u} Z(u)du \leq \int_{t}^{\infty} \alpha e^{-\alpha u} Z(t)du = e^{-\alpha t} Z(t). \]
Taking the sup of each side over all $t \geq 0$, the left side becomes $R(Z)$, and the proposition follows from the fact that $E \sum R(Z) < \infty$.

Proposition 6. Suppose $f : \mathbb{R}^+ \to \mathbb{R}$ is non-decreasing with $f(x) \leq ax + bx$ for some $b > 0$, that $x \geq 0$, and that $Y \in C_x$ and $Z \in C_x$ satisfy
\[ P_x(X(t) + Y(t) - Z(t) > 0) = 1. \]
Then $E_x \sup_{t \geq 0} [e^{-\alpha t} f(X(t) + Y(t) - Z(t) : t \geq 0}] < \infty$.

Proof: Since $f$ is non-decreasing and $Z(\cdot) \geq 0$, we have
\[ e^{-\alpha t} f(0) \leq e^{-\alpha t} f(X(t) + Y(t) - Z(t)) \leq e^{-\alpha t} f(X(t) + Y(t)) \leq e^{-\alpha t} [a + bX(t) + bY(t)] \]
almost surely (with respect to $P_x$) for all $t \geq 0$. The desired result then follows immediately from Propositions 1 and 5.

Proposition 7. Let $f$, $x$, $Y$ and $Z$ be as in Proposition 6. If $(T_n, n \geq 1)$ are non-negative and $P_x \{ T_n \to \infty \} = 1$ then
\[ E_x e^{-\alpha T_n} f(X(T_n) + Y(T_n) - Z(T_n)) \to 0 \quad \text{as } n \to \infty. \]
Proof: From standard properties of Brownian Motion and the definition of $C_x$, it follows that $e^{-at}X(t) \to 0$ and $e^{-at}Y(t) \to 0$ as $t \to \infty$ almost surely (with respect to $P_x$). Using the bound (5) and the fact that $T_n \to \infty$ almost surely, we then have

$$e^{-aT_n} f(X(T_n)) - Y(T_n) - Z(T_n) \to 0 \quad \text{as } n \to \infty$$

almost surely. The desired result then follows, using Proposition 5 and dominated convergence.

5. The Control Problem with no Fixed Charges

For our first problem, we define an $x$-admissible policy $(x \geq 0)$ to be a pair of controls $Y, Z \in C_x$ satisfying (5). We say that an $x$-admissible policy $(Y', Z')$ is $x$-optimal $(x \geq 0)$ if, for every other $x$-admissible policy $(Y, Z)$,

$$E_x R(Y') - kE_x R(Z') \geq E_x R(Y) - kE_x R(Z)$$

We now construct a specific policy $(Y', Z')$ which will eventually be shown $x$-optimal for all $x \geq 0$. Let $\beta : \mathbb{R}^2$ and $\gamma = \left(\beta^2 + \beta \gamma \right)^{1/2}$, and let $S$ be the unique positive solution of

$$\frac{1}{2} \gamma Y - \beta Z = \left(1 + \gamma \right) S + (Y + \gamma) \left(1 + \beta \right) S - 2k$$
It is easy to verify that the left side of (7) is continuous, convex and strictly increasing in $S$, with value $Z_1$ at $S = 0$. Since $k > 1$, there is thus a unique positive solution. With $X(0) - x \geq 0$, we take $i_0 - T_0 = 0$ and $W(0) = 0$, and then for $n = 0, 1, \ldots$ we recursively define

$$X_{2n+1}(t) = W_{2n}^{-1}(T_{2n}) \cdot X(T_{2n} + t) - X(T_{2n}), \quad t \geq 0,$$

$$Z_{2n+1}(t) = \sup\{X_{2n+1}(u) : 0 \leq u \leq t \} - S,$$  

$$W_{2n+1}(t) = X_{2n+1}(t) - Z_{2n+1}(t), \quad t \geq 0,$$

$$\xi_{2n+1} = \inf\{t \geq 0 : W_{2n+1}(t) < 0\} \quad \text{and} \quad T_{2n+1} - T_{2n},$$

$$X_{2n+2}(t) = X(T_{2n+1} + t) - X(T_{2n+1}), \quad t \geq 0,$$

$$Y_{2n+2}(t) = \inf\{X_{2n+2}(u) : 0 \leq u \leq t\}, \quad t \geq 0,$$

$$W_{2n+2}(t) = X_{2n+2}(t) + Y_{2n+2}(t), \quad t \geq 0,$$

$$\xi_{2n+2} = \inf\{t \geq 0 : W_{2n+2}(t) \cdot S\} \quad \text{and} \quad T_{2n+2} - T_{2n+1}.$$

Also, let $Y_{2n+1}(t), Z_{2n+1}(t), Y_{2n+2}(t), Z_{2n+2}(t), \ldots = 0$ for all $t \geq 0$. It is easy to show that

$$P_{\infty}(0 : T_0 = T_1 = T_2 = \cdots) = 1 \quad \text{for all } x \geq 0.$$
Then for \( n \in I \) and \( t \in [0, T_{n+1}) \) we define

\[
Y^*(T_n + t) = \sum_{i=1}^{n} Y_1(T_i) + Y_{n+1}(t),
\]

\[
Z^*(T_n + t) = \sum_{i=1}^{n} Z_1(T_i) + Z_{n+1}(t),
\]

\[
W^*(T_n + t) = W_{n+1}(t),
\]

so that \( W^*(t) = X(t) + Y^*(t) - Z^*(t) \geq 0 \) for all \( t \geq 0 \). The initial time interval \([0, T_1]\) is a period of output control only. There is an initial output of size \( Z^*(0) = Z_1(0) = [X(0) - S]^+ \), and during the remainder of the period the cumulative output \( Z^* = Z_1 \) increases in the minimum amounts necessary to maintain \( X - Z_1 \leq S \). The controlled process \( W_1 = X - Z_1 \) has state space \( (-\infty, S] \) and \( W_1(0) = [X(0) \wedge S] \), and it is known to behave as the Brownian Motion \( X \) modified by an upper (instantaneously) reflecting barrier at \( S \). (We shall use this fact later without further comment.) The period ends when \( W^* = W_1 \) hits zero. Each subsequent interval of the form \([T_{2n}, T_{2n+1}]\) with \( n \in I^+ \) is similarly a period of output control only. The controlled process \( W^* \) starts in state \( S \), the cumulative input \( Y^* \) remains constant, and the cumulative output \( Z^* \) increases in the minimum amounts necessary to maintain \( W^* = X + Y^* - Z^* \leq S \).

Each interval of the form \([T_{2n+1}, T_{2n+2}]\) is a period of input control only. The controlled process \( W^* \) starts in state zero and behaves as the Brownian Motion \( X \) modified by a lower reflecting barrier at zero. The cumulative output \( Z^* \) remains constant, and the cumulative input \( Y^* \) increases in the minimum amounts necessary to maintain \( W^* \geq 0 \).
The period ends when \( W \) hits \( S \). In total, \( W^* \) has state space \([0,S]\) and behaves as \( X \) modified by reflecting barriers at both boundaries.

Observe that \((Y^*, Z^*)\) is an \( x \)-admissible policy for every starting state \( x \geq 0 \). We wish now to calculate

\[
f(x) = E_x[R(Y^*) - kR(Z^*)], \quad x \geq 0.
\]

As a first step, it is immediate from the construction that

\[(\alpha) \quad f(x) = (x-S) + f(S) \quad \text{for} \quad x \geq S.\]

Assuming now that \( X(0) \in [0,S] \), we define

\[
f_1(x) = E_x[\alpha \int_0^{T_1} e^{-\alpha t} Z_1(t) dt + e^{-\alpha T_1} Z_1(T_1)], \quad 0 \leq x \leq S,
\]

\[
A(x) = E_x e^{-\alpha T_1}, \quad 0 \leq x \leq S.
\]

Remembering that \( Y^*(t) = 0 \) if \( 0 \leq t \leq T_1 \), it follows easily from our construction, the strong Markov property of \( X \), and the definition of \( R(\cdot) \) that

\[
(\beta) \quad f(x) = f_1(x) + \alpha E_x \int_{T_1} e^{-\alpha t} [Z^*(t) - Z^*(T_1) - kY^*(t)] dt
\]

\[
f_1(x) = \alpha E_x e^{-\alpha T_1} f(W^*(T_1))
\]

\[
A(x) f(0), \quad 0 \leq x \leq S.
\]
Now to solve for $f_1$ we recall that $W_1(t) = X(t) - Z_1(t)$ for $0 \leq t \leq T_1$ and $X(T_1) = Z_1(T_1)$ since $W_1(T_1) = 0$. Thus

$$f_1(x) = \mathbb{E}_x \int_0^{T_1} e^{-\alpha t} [X(t) - W_1(t)] dt + \mathbb{E}_x e^{-\alpha T_1} X(T_1)$$

for $0 \leq x \leq S$. Defining $H(x) = \mathbb{E}_x \int_0^{T_1} e^{-\alpha t} W_1(t) dt$ for $0 \leq x \leq S$, Proposition 3 and (10) give us

$$f_1(x) = x + \mu [1 - A(x)]/\alpha - \alpha H(x), \quad 0 \leq x \leq S.$$ 

Recall that $T_1 = \inf\{t \geq 0 : W_1(t) = 0\}$ and that $W_1$ behaves as the Brownian Motion $X$ with an upper reflecting barrier at $S$. Then standard results for the first passage times and potentials of Markov processes (in our case $W_1$) show that $A$ and $H$ satisfy the differential equations

$$\mathcal{A} A(x) - \alpha A(x) = 0 \quad \text{and} \quad x + \mathcal{A} H(x) - \alpha H(x) = 0, \quad 0 \leq x \leq S,$$

with the boundary conditions

$$A(0) = 1, \; H(0) = 0, \; \text{and} \; A'(S) = H'(S) = 0.$$

Combining (9) - (13) we find that $f$ satisfies

$$\mathcal{H} f(x) - \alpha f(x) = 0, \quad 0 \leq x \leq S, \quad \text{and} \quad f'(S) = 1.$$
Furthermore, there is a precisely symmetric argument, (defining a new sequence of stopping times $T'_n$ such that the initial period $[0, T'_n]$ is one of input control only when $0 < X(0) < S$) to show that the second boundary condition is

\[ f'(0) = k. \]

Using standard methods, the unique solution of (14) and (15) is found to be

\[ f(x) = \alpha (e^{(Y-\beta)x} - be^{-(\gamma+\beta)x}), \quad 0 \leq x \leq S, \]

where the constants $\alpha$ and $b$ are chosen to satisfy the boundary conditions $f'(0) = k$ and $f'(S) = 1$. Elementary computations then give

\[ a = \frac{(e^{\beta S} - ke^{-\gamma S})/(Y-\beta)(e^{\gamma S} - e^{-\gamma S})}{}, \]

\[ b = \frac{(ke^{\gamma S} - e^{\beta S})/(\gamma+\beta)(e^{\gamma S} - e^{-\gamma S})}{}, \]

**Proposition 3.** The function $f: \mathbb{R}^+ \to \mathbb{R}$ is concave, increasing and twice continuously differentiable with $f(S) = u/\alpha$. Furthermore, $\Delta f(x) - uf(x) \leq 0$, $1 \leq f'(x) \leq k$ and $f(x) \leq (u/\alpha - S) + x$ for all $x \geq 0$. 

15
Proof: From (3) and (14) it is immediate that \( f' \) exists and is continuous on \( \mathbb{R}^+ \). For \( 0 < x < S \) we differentiate (16) twice to obtain

\[
(19) \quad f''(x) = a(y-\beta)^2 e^{(\mu-\beta)x} - b(\mu+\beta)^2 e^{-(\mu+\beta)x}.
\]

Setting this expression equal to zero, multiplying through by \( \exp(\beta x) \), and substituting (17) and (18) for \( a \) and \( b \), we find that \( f''(x) = 0 \) if and only if (7) holds with \( x \) in place of \( S \). Thus \( f''(S) = 0 \) with \( S \) chosen to satisfy (7). Clearly \( f''(x) = 0 \) for all \( x \geq S \) by (8), so \( f'' \) exists and is continuous. Since \( |\beta| < \gamma \), it is clear from (18) that \( b > 0 \). Since \( f''(S) = 0 \), it then follows from (19) that \( a > 0 \) and hence that \( f'' \) is strictly increasing on \([0,S]\). Thus \( f''(x) < 0 \) for \( 0 < x < S \), and it follows from (8) that \( f \) is strictly increasing and concave on \( \mathbb{R}^+ \). Since \( f'(0) = k \) and \( f'(x) = 1 \) for \( x \geq S \), this implies that \( 1 \leq f'(x) \leq k \) for all \( x \geq 0 \). With \( f'(S) = 1 \) and \( f''(S) = 0 \), we have \( f'(x) = k \). Since \( f - \alpha f = 0 \) on \([0,S]\) this gives us \( f(S) = \alpha/k \). Then (8) yields \( f(x) = \alpha/k \) for \( x \geq S \), implying

\[
\frac{\partial f}{\partial x} - \alpha f(x) = \frac{\mu}{\alpha} - \alpha \left[ \frac{\mu}{\alpha} + (x-S) \right] = -\alpha(x-S)
\]

for \( x \geq S \), so \( f - \alpha f \leq 0 \) on \( \mathbb{R}^+ \). Finally, \( f(x) = (\mu/\alpha - S) + x \) for \( x \geq S \) by (10), so the concavity of \( f \) gives \( f(x) \leq (\mu/\alpha - S) + x \) for \( x \geq 0 \).

Remark. As the proof shows, \( f' \) is continuous regardless of how one chooses \( S \), but \( f'' \) is continuous if and only if \( S \) is chosen to satisfy (7).
Theorem 1. If $x \geq 0$ and $(Y,Z)$ is an $x$-admissible policy, then

$$E_x R(Z) - kE_x R(Y) \leq f(x).$$

Thus the policy $(Y^*, Z^*)$ constructed above is $x$-optimal for all $x \geq 0$.

Proof: Let $x \geq 0$ and $(Y,Z)$ be fixed. When we speak of almost sure convergence, this refers to $P_x$. The idea of the proof is essentially to approximate $Y$ and $Z$ by (random) step functions. Given $\epsilon > 0$, we define an increasing sequence of stopping times $T_n$ (hoping the reader will forgive this re-use of previous notation) by setting $T_0 = 0$ and

$$T_{n+1} = \inf\{t \geq T_n : Y(t) > Y(T_n) + \epsilon \text{ or } Z(t) > Z(T_n) + \epsilon \text{ or } t = T_n + \epsilon\}$$

for $n \in \mathbb{N}$. That each $T_n$ is a stopping time follows immediately from the fact that $Y$ and $Z$ are nonanticipating functionals. Furthermore, $0 \leq T_1 < T_2 < \cdots$ because $Y$ and $Z$ are right continuous. Finally, $T_n \to \infty$ almost surely as $n \to \infty$ because both $R(Y)$ and $R(Z)$ are almost surely finite. Let

$$y_0 = Y(0) + \epsilon, \quad z_0 = Z(0), \quad q_0 = z_0 - ky_0,$$

$$A_0 = q_0 + f(X(0) + y_0 - z_0) - f(X(0)),$$

and then for $n \in \mathbb{N}$
With these definitions, we have

\[ A_{n+1} = e^{-\alpha T_{n+1}} \left( q_{n+1} + f(X(T_{n+1}) + D_{n+1}) - f(X(T_n)) \right), \]

\[ B_n = e^{-\alpha T_n} f(X(T_{n+1}) + D_n) - e^{-\alpha T_n} f(X(T_n) + D_n). \]

From our construction and the fact that \((Y, Z)\) is \(x\)-admissible it follows that \(X(T_n) + D_n \geq \epsilon\) and \(X(T_{n+1}) + D_n \geq 0\) almost surely for all \(n \in I\). Since \(1 \leq f'(x) \leq k\), it is then immediate that \(A_n \leq 0\) almost surely for all \(n \in I\). Furthermore, we can use Proposition 4 to show \(E_x B_n \leq 0\) by making the following associations. Let \(f\) be as defined above for \(x \geq 0\), and define \(f(x)\) by (16) for \(x \leq 0\). Then Proposition 8 shows that \(f\) satisfies the hypotheses of Proposition 4.

Let \(T^* = T_{n+1}, T = T_n\) and \(Z = D_n = Y(T_n') - Z(T_n) + \epsilon\), so \(Z\) is measurable \(\mathcal{F}_{T^*}\). Then Proposition 4 gives \(E_x B_n \leq 0\), it following immediately from Propositions 6 and 8 that both expectations exist and are finite. Thus, taking the expectation of both sides in (20), we have
\[(21) \quad \sum_{i=0}^{n} e^{-\alpha T} q_i \leq f(x) - E_x e^{-\alpha T} f(X(T_n) + D_n).\]

Noting again that \(D_n = Y(T_n) - Z(T_n) + \varepsilon\), it follows from Propositions 7 and 9 that the second term on the right side of (21) goes to zero as \(n \to \infty\), giving us

\[(22) \quad E_x \sum_{i=0}^{\infty} e^{-\alpha T} q_i \leq f(x).\]

Let \(Y^\#(t) = Y_n\) and \(Z^\#(t) = Z_n\) for \(T_n \leq t < T_{n+1}\) and \(n \in \mathbb{N}\). From our construction it follows that \((Y^\#, Z^\#)\) is an \(x\)-admissible policy with

\[Y(t) \leq Y^\#(t) \leq Y(t) + \varepsilon \quad \text{and} \quad Z(t) - \varepsilon \leq Z^\#(t) \leq Z(t)\]

for all \(t \geq 0\), from which we have

\[(23) \quad R(Z) - kR(Y) - (1+k)\varepsilon \leq R(Z^\#) - kR(Y^\#)\]

\[\quad \leq \sum_{i=0}^{\infty} e^{-\alpha T} q_i - R(Z) - kR(Y)\]

Thus \(E_x [R(Z) - kR(Y)] \leq f(x) + (1+k)\varepsilon\) by (22) and (23). Since \(\varepsilon > 0\) was chosen arbitrarily, the proof is complete.
4. The Control Problem with One Fixed Charge

For our second problem, we define an \( x \)-admissible policy (\( x \geq 0 \)) to be a pair of controls \( Y \in \mathcal{L}_x \) and \( Z \in \mathcal{C}_x \) such that (5) holds. We say that an \( x \)-admissible policy \( (Y^*, Z^*) \) is \( x \)-optimal (\( x \geq 0 \)) if,

\[ E_x [R(Z^*) - kR(Y^*) - KR(Y^*)] \geq E_x [R(Z) - kR(Y) - KR(Y)]. \]

As in the previous section, let \( S \) be the unique positive solution of (7), and let \( a > 0 \) and \( b > 0 \) be defined in terms of \( S \) by (17) and (18) respectively. (Recall that we showed \( a > 0 \) in the proof of Proposition 8.) Now let \( s \) be the unique positive solution of

\[ a[1 - e^{-(Y+\beta)s}] + b[e^{(Y+\beta)} - 1] = k + ks. \]  

Elementary calculations show that the left side of (24) is strictly convex and increasing with value zero at \( s = 0 \), and that its derivative increases without bound as \( s \) increases. Thus there is in fact a unique solution \( s \).

With \( X(0) \geq 0 \), we set \( \tau_0 = T_0 = 0 \) and then define \( Z_1(t), W_1(t) \), and \( \tau_1 = T_1 \) in terms of \( X \) and the positive constant \( (s+S) \) exactly as they were defined in terms of \( X \) and the positive constant \( S \) in the previous section. Then for \( n = 2, 3, \ldots \) let
\[ X_n(t) = s + X(T_{n-1} - t) - X_{n-1} , \quad t > 0 , \]
\[ Z_n(t) = \sup\{X_n(u) : 0 \leq u \leq t, \quad s > S_u \} , \quad t > 0 , \]
\[ W_n(t) = X_n(t) - Z_n(t) , \quad t > 0 , \]
\[ t_n = \inf\{t > 0 : W_n(t) = 0 \} \quad \text{and} \quad T_n = T_{n-1} + t_n . \]

Again it is easy to show that
\[ P_x\{0 < T_0 < T_1 < T_2 < \cdots \to \alpha\} = 1 \quad \text{for all} \quad x > 0 , \]

and for \( n \geq 1 \) and \( t \in [0, T_n) \) we define
\[ Y^*(t) = ns, \quad Z^*(t) = Z_1(t_1) + Z_{n+1}(t) , \]
and \( W^*(t) = W_{n+1}(t) \), so that \( W^*(t) = X(t) + Y^*(t) - Z^*(t) \) for all \( t > 0 \). The behavior of the controlled process \( W^* \cdot W_1 \) during the initial interval \([0, T_1]\) is as described in Section 5 except that now the upper reflecting barrier is at \((s+S)\). Each subsequent time interval \([T_n, T_{n+1})\) begins with a jump of \( s \) in the cumulative input \( Y^* \), this moving the controlled process \( W^* \) from state zero to state \( s \). During the remainder of the period, \( Y^* \) remains constant and the cumulative output \( Z^* \) increases in the minimum amounts necessary to maintain \( W^* \leq (s+S) \). The period ends when \( W^* \) hits zero and jumps upward by \( s \) again.
Using arguments very much like those employed in the previous section, it is straightforward to show that the function

\[ g(x) = E_\alpha \left[ R(Z^*) - kR(Y^*) - KS(Y^*) \right], \quad x \geq 0, \]

satisfies \( g'(x) - cg(x) = 0 \) for \( 0 \leq x \leq s + S \), with \( g'(s + S) = 1 \), \( g(0) = g(s) - K - ks \), and \( g(x) = g(s + S) + (x - s) \) for \( x \geq s + S \).

Again the unique solution has the form

\( g(x) = a_0 e^{(r-\beta)x} - b_0 e^{-(\tau+\beta)x} \) for \( 0 \leq x \leq s + S \),

where the constants \( a_0 \) and \( b_0 \) are selected to satisfy the boundary conditions \( g'(s + S) = 1 \) and \( g(0) = g(s) - K - ks \). The reader may easily verify that, with \( s \) chosen to satisfy (24), the selection

\( a_0 = a e^{-(\tau-\beta)s} \) and \( b_0 = b e^{(\tau+\beta)s} \)

meets the boundary condition \( g(0) = g(s) - K - ks \). We then further have (defining \( i \) by (16))

\( g(s + x) = a e^{(r-\beta)x} - b e^{-(\tau+\beta)x} = f(x) \) for \( 0 \leq x \leq S \).

In Section 3 we showed that \( f'(S) = 1 \), so our second boundary condition \( g'(s + S) = 1 \) is also satisfied, and the complete solution for \( g \) is given by (25), (26) and \( g(s + S + x) = g(s + S) + x \) for \( x \geq 0 \).
Proposition 2. The function \( g : \mathbb{R}^+ \rightarrow \mathbb{R} \) is concave, increasing and twice continuously differentiable with \( g(s+S) - u/\alpha \). Furthermore, \( \Delta g(x) = 0 \), \( g'(x) \geq 1 \) and \( g(x) \leq (u/\alpha - s - S) + x \) for all \( x \geq 0 \). Finally, \( g(x+y) - g(x) \leq K + ky \) for all \( x \geq 0 \) and \( y \geq 0 \).

**Proof:** Clearly \( a_0 = 0 \) and \( b_0 > 0 \), and differentiating (27) twice gives

\[
(25) \quad g''(x) = b_0(\gamma - \beta)^2 e^{(r-\beta)x} - b_0(\gamma + \beta)^2 e^{-(\gamma + \beta)x}, \quad 0 \leq x \leq s+S,
\]

so \( g'' \) is strictly increasing on \( [0, s+S] \). We showed in the proof of Proposition 3 that \( f(S) = u/\alpha \), \( f'(S) = 1 \) and \( f''(S) = 0 \), so (27) gives us \( g(s+S) - u/\alpha \), \( g'(s+S) = 1 \) and \( g''(s+S) = 0 \). It then follows as in the proof of Proposition 3 that \( g \) is concave, increasing and twice differentiable with \( \Delta f - \alpha<0 \). Since \( g'(x) \geq 1 \) for \( x \geq s+S \), the concavity implies \( g'(x) \geq 1 \) for all \( x \geq 0 \). Also, we showed in Section 2 that \( f'(0) = k \), so (27) gives \( g'(s) = k \). From the concavity of \( g \) we then have

\[
(28) \quad g(y) - k, 0 \leq y \leq g(s) - g(0) - ks - K \quad \text{for all} \quad y \geq 0.
\]

Finally, the concavity of \( g \) implies that \( g(x+y) - g(x) \) is a non-increasing function of \( x \) for all \( y \geq 0 \). Combining this with (28) proves the last statement of the proposition.
Theorem 2. If $x > 0$ and $(Y, Z)$ is an $x$-admissible policy, then

$$E_x[R(Z) - kR(Y) - KR^*(Y)] \leq f(x).$$

Thus the policy $(Y^*, Z^*)$ constructed above is $x$-optimal for all $x \geq 0$.

Proof: The proof is very similar to that of Proposition 8, and we shall only sketch it. We define the sequence of stopping times $T_n$ (again apologizing for the notation) by $T_0 = 0$ and

$$T_{n+1} = \inf\{t \geq T_n : Y(t) > Y(T_n) \text{ or } Z(t) > Z(T_n) + \varepsilon \}
$$

or $t = T_n + \varepsilon$ for $n \in I$. We proceed exactly as in the proof of Proposition 8 except that $f$ is replaced by $g$ throughout, we take $y_0 = Y(0)$, and we define

$$q_n = z_n - ky_n - K I_{\{y_n > 0\}}, n \in I.$$

To show that $A_n = 0$ almost surely with this change in the definition of $q_n$, we use the fact that $g' \geq 1$ and $g(x+y) - g(x) - K + ky$ by Proposition 1. That $E_x B_n \leq 0$ for all $n$ follows exactly as before.

Defining $Y^*(t) = Y_n$ and $Z^*(t) = Z_n$ for $T_n - t = T_{n+1}$ and $n \in I$, we arrive at

$$E_x[R(Z^*) - kR(Y^*) - KR^*(Z^*)] = E_x \sum_{l=0}^\infty e^{-l\beta} T_l q_l \leq f(x).$$

But $Y^*(t) = Y(t)$ and $Z(t) - \varepsilon \geq Z^*(t) \geq Z(t)$ for all $t \geq 0$, so the desired result follows directly.
Applications

Consider an inventory and production system involving a single type of item (product), and assume that the cumulative excess production of the item can be reasonably represented by the Brownian Motion
\[ X : (X(t), t \geq 0) \]. We have in mind a situation where there is a non-decreasing cumulative production process \( P : (P(t), t \geq 0) \) and a non-decreasing cumulative demand process \( D : (D(t), t \geq 0) \) such that \( P-D \) can be approximated by \( X \). We interpret \( P \) as the production from regular operations and assume that additional instantaneous increases in the stock level can be accomplished by some irregular means such as overtime production or ordering from an outside vendor at a cost of \( k > 0 \) dollars per item. We interpret \( D \) as the demand from regular customers and assume that unlimited additional quantities of excess stock can be sold by irregular means such as sale to a scavenger (as scrap) at a price of \( c \) dollars per item, where \( 0 < c < k \). Let \( Y : (Y(t), t \geq 0) \) and \( Z : (Z(t), t \geq 0) \) denote the cumulative irregular production and cumulative irregular sales respectively. Assuming that all regular demand must be met instantaneously (no backlogging), the controls \( Y \) and \( Z \) must be chosen so that the stock level \( W : (W(t), t \geq 0) = X - Y(t) - Z(t) \) is non-negative for all \( t \geq 0 \). Assuming that inventory holding costs are continuously incurred at rate \( hw(t) \), and that future costs and revenues are continuously discounted at interest rate \( r > 0 \), we wish to choose \( Y \) and \( Z \) so as to maximize...
If $\lambda(x) > 0$ for all $x \geq 0$, then the last term inside the brackets is just

$$
\left. h(t) \int_0^t e^{-\alpha t} (X(t) - Y(t) - Z(t)) dt \right|_{t=0} \left( R(Y) - R(Z) \right) + h \int_0^\infty e^{-\alpha t} X(t) dt.
$$

Observing that the last term is uncontrollable (depends on neither $Y$ nor $Z$), we then see that the total objective is to maximize $(c + h/\alpha) E[Z] - (k + h/\alpha) E[R]$. Assuming without loss of generality that $c + h/\alpha = 1$, this is precisely the problem formulated in Section 3. If the irregular production process $Z$ is a step function, and if a set-up cost of $K > 0$ is incurred each time that a jump in the irregular production occurs, then we similarly obtain the problem formulated in Section 4.

A closely related diffusion model of optimal inventory control has been advanced by Bather (1966). In our notation, Bather assumes $c < 0$ and $K > 0$, and he considers a linear holding cost function $h(\cdot)$. There is no provision for sale of excess inventory in his model $Z(\cdot) > 0$. The stock level is permitted to go negative (backlogging is permitted), but linear shortage costs are incurred when this happens. Attention is restricted to a simple class of input step functions $Y$ which jump by a fixed amount $(S-s)$ whenever the inventory on hand decreases to a fixed level $s$, the objective being to minimize average cost per unit time over an infinite planning horizon. Other diffusion formulations for problems of optimal control of dams, inventories and storage systems are given by Bather (1966), Faddy (1974a,b), Whitt (1973a,b),
Puterman (1982), and Prisk (1968). In all of these papers, attention is restricted to non-randomized and Markov stationary policies, and in all but the last there is a further restriction to stationary policies having a particular structure.

As a second application, we consider the stochastic cash management problem, discrete-time versions of which have been studied by Eppen and Fama (1976), Girgis (1976), and Neave (1970). Imagine a firm which maintains a cash fund, into which a certain amount of income or revenue is automatically channeled and out of which operating disbursements are made. We assume that the resulting fluctuations in the content of the fund can be adequately represented by the Brownian Motion X. Additional instantaneous increases in the content of the fund can be accomplished by converting securities into cash, but there is a transaction cost of \( k > 0 \) dollars incurred for each dollar of securities so converted. Also, cash from the fund can be converted into securities at a transaction cost of \( c > 0 \) dollars per dollar so converted. Finally an opportunity loss of \( h > 0 \) dollars per unit time is suffered for each dollar that is held within the fund. Denoting by \( Y(t) \) the cumulative conversion of securities to cash up to time \( t \), and by \( Z(t) \) the cumulative conversion cash to securities, we assume that the content of the fund must be kept non-negative. Then the problem is to find an admissible policy \( Y, Z \) that maximizes \( (h/\alpha - c) E[R] - (h/\alpha - k) E[R|Y] \), where the linear opportunity cost (holding cost) has been converted as in the previous example. If \( c = h/\alpha \) and \( c = k \), then we may assume without loss of generality that \( h/\alpha - c = 1 \), and we have precisely the problem formulated in Section 7. If the conversion of securities to cash entails
both a fixed charge $K > 0$ and the proportional charge $k$, then we get
the problem formulated in Section 4.

Constantinides (1976) has examined both of these cash management
problems with the objective of minimizing average cost (rather than
expected discounted cost) over an infinite planning horizon, and he has
further considered the case where both types of conversion entail both
fixed and proportional transaction costs. (See Section 6.) His results
are very similar to ours, but the methodology employed is quite different,
and we do not fully understand his proofs.

For both inventory control problems and stochastic cash manage-
ment problems, one finds that the diffusion formulations discussed
above are much more tractable than more traditional (usually discrete
review) models. For our particular problems, we have shown that the
optimal policy (from a very broad class of potential policies) has an
extremely simple structure, and the assumption of an underlying Brownian
Motion further permits explicit determination of the relevant critical
numbers. With traditional formulations, even the structural results may
fail, and the computation of optimal policies is typically a complicated
matter. See Girgis (1968) for a demonstration of this in the case of
cash management.

On the other side of the issue, it simply may not be reasonable
to represent the underlying (net demand or net production) process by
a Brownian motion. Bather (1966) suggested that a non-decreasing demand
process be approximated by Brownian Motion with positive drift, but as
Whitt (1973a) has pointed out, this is not a circumstance where one
expects a good approximation. In each of our applications, we have
emphasized problems where the underlying process $X$ represents the difference of two non-decreasing processes, and in this circumstance various theorems on the (weak) convergence of stochastic processes may be invoked (with further assumptions on the parameters of the relevant processes) to justify the Brownian approximation. See, for example, Harrison (1975). Even when this can be done, there remains the problem of justifying one's diffusion optimization problem as a reasonable approximation to the original optimization problem. If one restricts attention to policies which are explicit functionals (and continuous in the appropriate function space topology) of the underlying process, we believe that this might be a manageable task in the rather restrictive setting of our model, but the issue will not be pursued further here.

6. Concluding Remarks

If for each $t \geq 0$ we define $\mathcal{F}_t$ to be the sub-$\sigma$-algebra generated by $(X(u), 0 \leq u \leq t)$, then it follows from the stationary, independent increments property of $X$ that $X(t+u) - X(t)$ is independent of $\mathcal{F}_t$ for all $t \geq 0$ and $u \geq 0$. Thus we may take $\mathcal{F}_t = \mathcal{B}_t$ in our formulation (Section 2), and in general we must have $\mathcal{B}_t \subseteq \mathcal{F}_t$ for all $t \geq 0$. If a control policy $(Y,Z)$ has the property that $Y(t)$ and $Z(t)$ are measurable $\mathcal{B}_t$ for all $t \geq 0$, we shall call it a non-randomized policy. Given a non-randomized policy $(Y,Z)$, let $\mathcal{N}_t$ be the $\sigma$-algebra in $\mathcal{B}_t$ generated by $X(t) + Y(t) - Z(t)$ for $t \geq 0$. We shall say that $(Y,Z)$ is a Markov policy if $Y(t+u)$ and $Z(t+u)$ are measurable $\mathcal{N}_t$. 

for all \( t \geq 0 \) and \( u \geq 0 \). Finally, we shall say that a Markov policy \((Y,Z)\) is **stationary** if the conditional distribution of \((Y(t+u), Y(t), Z(t+u), Z(t) ; u \geq 0)\), given \( \mathcal{F}_t \), depends only on \( X(t) + Y(t) - Z(t) \) and not on \( t \) \((t \geq 0)\). All of this terminology conforms with the standard usage in (discrete time) dynamic programming, appropriately adapted to our setting. Roughly speaking, a policy \((Y,Z)\) is non-randomized if the controls applied up to time \( t \) depend only on the history of the underlying process \( X \) up to time \( t \) and not on any other "irrelevant" information contained in \( \mathcal{F}_t \). It is Markov if the controls to be applied after time \( t \) depend only on the history up to time \( t \) through the current "state of the system" \( W(t) = X(t) + Y(t) - Z(t) \), and it is stationary if this dependence on \( W(t) \) does not involve \( t \).

As the reader may easily verify, the policies that we have shown to be optimal for our two problems are both (non-randomized and Markov) stationary policies.

A natural successor for the two problems considered in this paper is one where both the input control \( Y \) and the output control \( Z \) must be step functions, and there are (different) fixed costs associated with both input jumps and output jumps. Similar (and much more complex) problems of pure impulse (jump) control have been considered by Bensoussan and Lions (1973, 1975) and by Richard (1976), but the method of proof used here can also be extended to the case of two fixed charges. As we shall demonstrate in a future paper, there exists an optimal solution for this problem which involves only three critical numbers, but the computation of those critical numbers is quite complicated. If we allow one (respectively, both) of the fixed
Charges to approach zero, we find that the optimal controls approach those displayed in Section 4 (respectively, Section 3) almost surely. Thus, roughly speaking, each of the problems treated here can be obtained as the limit of problems involving two fixed charges.

Our problem with no fixed charges (Section 3) can also be approximated by a formulation of the type considered by Mandl (1968) and Pliska (1973). Suppose that the non-decreasing controls \( Y \) and \( Z \) are both required to be absolutely continuous and non-decreasing with a density bounded by \( c > 0 \). We cannot then require that \( W(t) = X(t) + Y(t) - Z(t) \) remain positive, but we suppose that a large penalty cost of \( M \) (dollars per unit time) is continuously incurred so long as \( W(t) < 0 \). It can then be shown that there are critical numbers \( a \) and \( b \) with \( 0 < a < b < \infty \) such that one optimal policy is the following. When \( W(t) < a \), the controller increases \( Y \) at the maximum permissible rate \( c \), when \( W(t) > b \) he increases \( Z \) at rate \( c \), and when \( a \leq W(t) \leq b \) he does nothing. If we let \( c \to \infty \), we find that \( a \to 0 \), \( b \to \infty \) and the optimal controls converge almost surely to those displayed in Section 3.

Having indicated in the last two paragraphs that our problems can be approximated in either of two ways, we emphasize that either type of approximate formulation is harder to solve than the problems as we have stated them. Also, we repeat that the optimal controls displayed in Sections 3 and 4 are neither absolutely continuous nor step functions. We are not aware of any previous formulation of a stochastic control problem which permits controls of the type that we have found to be optimal.
Acknowledgement

We are indebted to David Kreps for his invaluable technical assistance during the preparation of this paper.

References


**REPORT DOCUMENTATION PAGE**

1. **REPORT NUMBER**
   - TR-697

2. **GOVT access NO.**
   - 697

3. **TITLE**
   - OPTIMAL CONTROL OF A BROWNIAN STORAGE SYSTEM

4. **AUTHORS**
   - J. Michael Harrison
   - Allison J. Taylor

5. **PERFORMING ORGANIZATION NAME AND ADDRESS**
   - Department of Operations Research
   - Stanford University
   - Stanford, CA 94305

6. **CONTRACT OR GRANT NUMBER(S)**
   - N00014-76-C-0418
   - NSF-E-25-19-1947

7. **PROJECT NUMBER(S)**
   - NR-947-061

8. **REPORT DATE**
   - Sep 30, 1976

9. **TOTAL NUMBER OF PAGES**
   - 12

10. **DISTRIBUTION STATEMENT (of this report)**
    - Approved for public release; distribution unlimited.

11. **ABSTRACT**
    - See reverse side

12. **KEY WORDS**
    - Stochastic Control
    - Diffusion Processes
    - Optimal Control of Diffusions
    - Stochastic Cash Management
    - Inventory and Production Control
    - Reflecting Brownian Motion

13. **ABSTRACT**
    - See reverse side

**UNCLASSIFIED**

**DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE**

**UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)**
"Optimal Control of a Brownian Storage System", by J. Michael Harrison and Allison J. Taylor

Abstract

Consider a storage system (such as an inventory or bank account) whose content fluctuates as a Brownian Motion $X = (X(t), t \geq 0)$ in the absence of any control. Let $Y = (Y(t), t \geq 0)$ and $Z = (Z(t), t \geq 0)$ be non-decreasing, non-anticipating functionals representing the cumulative input to the system and cumulative output from the system respectively. The problem is to choose $Y$ and $Z$ so as to maximize expected discounted reward subject to the requirement that $X(t) + Y(t) - Z(t) \geq 0$ for all $t \geq 0$ almost surely. In our first formulation, we assume that a reward of one dollar is received for every unit of output, while a cost of $k > 1$ dollars is incurred for every unit of input. We explicitly compute an optimal policy involving a single critical number. In our second formulation, the cumulative input $Y$ is required to be a step function, and an additional cost of $K > 0$ dollars is incurred each time that an input jump occurs. We explicitly compute an optimal policy involving two critical numbers. Applications to inventory/production control and stochastic cash management are discussed.