WEIGHT REDUCTION STUDY ON THE
20MM, M61A1, VULCAN GUN BARREL

PHILIP D. BENZKOFER

JUNE 1976

FINAL REPORT

RESEARCH DIRECTORATE

Approved for public release, distribution unlimited.

GENERAL THOMAS J. RODMAN LABORATORY
ROCK ISLAND ARSENAL
ROCK ISLAND, ILLINOIS 61201
DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY AUTHORIZED DOCUMENTS.
A thermal analysis of the M61A1 VULCAN gun barrel was performed. This analysis included the calculation of bore boundary conditions by methods previously developed by the Research Directorate and the application of these boundary conditions to an outer barrel profile analysis. Pressure stress analyses were also performed. The final results are proposed outer barrel profiles for particular performance requirements.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD Form 1473</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Discussion and Analysis</td>
<td>1</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>5</td>
</tr>
<tr>
<td>Table I</td>
<td>7</td>
</tr>
<tr>
<td>Table II</td>
<td>8</td>
</tr>
<tr>
<td>Distribution</td>
<td>81</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experimental vs. Fitted at 5" From Breech</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Experimental vs. Fitted at 10" From Breech</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Experimental vs. Fitted at 18" From Breech</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Experimental vs. Fitted at 35.5" From Breech</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Experimental vs. Fitted at 48" From Breech</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>Transient Average Temperatures at 5" From Breech</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Transient Bore Temperatures at 5" From Breech</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Transient External Temperatures at 5" From Breech</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Radial Temperature Distribution at 5" From Breech</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>Transient Average Temperatures at 10" From Breech</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>Transient Bore Temperatures at 10" From Breech</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>Transient External Temperatures at 10" From Breech</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>Radial Temperature Distribution at 10" From Breech</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>Transient Average Temperatures at 18" From Breech</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>Transient Bore Temperatures at 18" From Breech</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>Transient External Temperatures at 18" From Breech</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td>Radial Temperature Distribution at 18" From Breech</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>Transient Average Temperatures at 35.5" From Breech</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>Transient Bore Temperatures at 35.5" From Breech</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>Transient External Temperatures at 35.5" From Breech</td>
<td>28</td>
</tr>
<tr>
<td>21</td>
<td>Radial Temperature Distribution at 35.5" From Breech</td>
<td>29</td>
</tr>
<tr>
<td>22</td>
<td>Transient Average Temperatures at 48" From Breech</td>
<td>30</td>
</tr>
<tr>
<td>23</td>
<td>Transient Bore Temperatures at 48" From Breech</td>
<td>31</td>
</tr>
<tr>
<td>24</td>
<td>Transient External Temperatures at 48" From Breech</td>
<td>32</td>
</tr>
<tr>
<td>25</td>
<td>Radial Temperature Distribution at 48" From Breech</td>
<td>33</td>
</tr>
<tr>
<td>26</td>
<td>M61 Barrel Thermocouple Stations</td>
<td>34</td>
</tr>
<tr>
<td>27</td>
<td>Yield Strength vs. Temperature for CR-MO-V Steel</td>
<td>35</td>
</tr>
<tr>
<td>28</td>
<td>Proposed 20mm Lightweight Barrel</td>
<td>36</td>
</tr>
</tbody>
</table>
INTRODUCTION

Determination of the feasibility of a reduced barrel weight on the basis of thermal considerations requires experimental data. As a minimum, the outer barrel temperatures at various axial locations and the pressure versus time and distance data are required for the particular gun. Outside wall temperatures and pressure data for the 20mm M61AL barrel were obtained.

DISCUSSION AND ANALYSIS

The transient temperature data given above included outside temperatures at 5 axial locations – 5, 10, 18, 35.5, and 48 inches (measured from the breech end). The firing rate was 4000 spm for all 6 barrels or 667 spm for each barrel, 1050 total rounds fired or 175 rounds fired for each barrel. As a result of the application of both the technique and the computer programs developed by the Research Directorate to the experimental temperature data obtained, effective propellant gas temperatures \(T_g \) and effective gas convection coefficients \(h_g \) were calculated for each of the above-mentioned axial locations. Good correlation between these experimental temperature curves and those curves obtained by utilization of the effective values \((h_g, T_g) \) was obtained, as shown in Figures 1-5.

Once the effective gas temperature and gas convection coefficient are known, any combination of firing rate and rounds fired can be simulated by use of the available computer programs. In this study, the firing schedule established to satisfy the design criteria specified 540 rounds at a rate of 6000 spm or, 90 rounds at a rate of 1000 spm for each barrel. Since this firing rate is different from that of the experimental rate, the effective convection coefficients for the 1000 spm rate were adjusted accordingly. Since experimental results have shown that the convection coefficient is approximately linearly dependent upon the firing rate, the following relationship holds:

\[
\bar{h}_{\text{simulated}} = \frac{\text{simulated rate}}{\text{experimental rate}} \cdot \bar{h}_{\text{experimental}}
\]

The effective gas temperature value remains fairly constant with change in firing rate for any particular axial location. Knowing the bore boundary values for the convection coefficient and for the gas temperature at all 5 axial locations provides the means to perform a parametric study of varying wall thickness at each axial location.

\(^1\text{Adams, D. E., et. al., "Design Studies of the XM-140 Barrel", Cornell Aeronautical Laboratory, Inc., Feb. 1967.}

\(^3\) Benzkofer, P., "A theoretical and Experimental Thermal Analysis to Determine Wall Ratios for a 30mm Tactical Barrel", Technical Report R-TR-75-023.
The results of such a study for the 20mm, M61A1 Vulcan barrel with various wall ratios are given in Figures 6-25. The firing schedule, axial locations, h, T, inner radius, and various outer radii considered are given on the curves. For those figures which show temperature in °F versus time in seconds, note that temperature values may be either external, average or bore. Also, several figures give temperature versus distance from the bore. These temperatures are the final values at the end of the firing cycle. The present configuration of the M61A1 barrel is given in Figure 26.

Another aspect to consider is that of the stresses to which the gun barrel will be subjected. These stresses are of two types, thermal and pressure. One method or approach is that of combining these two stresses into a total equivalent stress. In the initial firing of a gun barrel, a large temperature difference exists across the barrel wall that induces large, negative, tangential thermal stresses which counteract the pressure stresses. Also, the timing of the peak thermal pulse is out of phase with the peak pressure pulse. One could conclude then, that by reduction of the wall thickness, the total equivalent stresses would be lower. This argument, however, does not hold in the situation in which heating is followed by cooling by which the large, negative, tangential thermal stresses increase in a positive sense because of lowered temperature gradients across the wall. Since the breech is subjected to considerably higher pressure, a safe method is that of considering a total equivalent stress, on the basis of pressure and axial stress only. The resulting stresses for a thick-walled cylinder due to the internal pressure are given by Lamé's solution

\[
\sigma_r = \frac{r_1^2 P_1}{r_o^2 - r_1^2} \left(1 - \frac{r_o^2}{r^2} \right) \quad (1)
\]

and

\[
\sigma_t = \frac{r_1^2 P_1}{r_o^2 - r_1^2} \left(1 + \frac{r_o^2}{r^2} \right) \quad (2)
\]

Since \(r_0^2 / r^2 \geq 1 \), \(\sigma_r \) is always a compressive stress and is maximum at \(r = r_i \). Similarly, \(\sigma_t \) is always a tensile stress, and its maximum value occurs at \(r = r_i \). Using the maximum shear theory of failure\(^4\),

\[
\tau_{\text{max}} = \frac{\sigma_1 - \sigma_2}{2} \tag{3}
\]

Because \(\sigma_t \) and \(\sigma_r \) are maximum principal stresses at the inner cylinder surface,

\[
\tau_{\text{max}} = \frac{(\sigma_t)_{\text{max}} - (\sigma_r)_{\text{max}}}{2} = \frac{P_i R_0^2}{r_0^2 - r_i^2} \tag{4}
\]

Since the yield stress \(Y = 2 \tau_{\text{max}} \), and if one uses Tresca's yield condition\(^4\) \((Y = \sigma_t - \sigma_r) \), then

\[
Y = 2 \frac{P_i}{[1 - (r_i/r_o)^2]} \tag{5}
\]

Now, the elastic yield stress at the bore surface can be calculated for any outer radius. A typical set of pressure data\(^5\) for the M61Al barrel is given in Table 1 and yield strength in KSI versus temperature in \(^\circ\)F for CR-MO-V is given in Figure 27. Consider the 5 inch axial location as an example. This section is subjected to the maximum pressure of 55000 psi. Substituting this pressure value into Equation 5, one obtains:

\[
Y = 2 \frac{(55,000)}{[1 - (0.3937)^2]} \]

\[
Y = 147,605 \text{ psi}
\]

A comparison of this value against the dynamic yield strength values in Figure 27 shows that the elastic yield stress has been exceeded at the bore surface; that is, the bore region is acting in the plastic regime. With the use of a computer program\(^5\) developed by the Research Directorate, total equivalent stresses for a radial cross-section of a gun barrel can be calculated, with a minor change to eliminate the thermal stress terms.

Now the depth of the plastic deformation into the radial section can be determined. Sound design practice allows for a small amount of plastic deformation. Therefore, one can vary the outer radius until approximately 10 per cent of the wall thickness is plastic for any particular temperature level desired from Figure 27. This temperature level is that temperature calculated for the prescribed firing schedule and outer radius in the parametric variation study, the results of which are given in Figures 6-25.

In summary, one can select an axial location, then use Equation 5 to determine the yield strength for the present outer radius. On the basis of this yield value, one can then determine whether the temperature value from Figure 27 is within the temperature range for the required firing schedule. The results for all axial locations are tabulated in Table 2. Further discussion of this data is presented later in this report.

A series of failure tests on a special reinforced, M197, 3-barrel weapon were conducted by General Electric in 1973. The actual barrel configuration was identical to that of the VULCAN barrel. Characteristically, the new barrels failed near the muzzle end, and the worn barrels, at the breech end. Since temperature data were not recorded during the tests, data on the temperature levels attained are unavailable. However, the firing rate and the number of rounds to failure are known. Since the barrel configuration is identical to the M61A1, values calculated for T and h in a previous section can be used to determine the temperature reached at failure.

Two tests that resulted in muzzle end failure were analyzed. The firing rates were 1333 spm per barrel and 2000 spm per barrel, and the rounds fired per barrel were 267 and 290, respectively. With the use of the computer programs referenced in an earlier section, the outside and average barrel temperatures were determined to be in the range of $1350^\circ - 1400^\circ$F. These temperature levels reflect large thermal stresses and as a consequence, a weakening of the barrel occurs that causes muzzle end droop and subsequent projectile exit through the side of the barrel. Clearly, the firing schedule was too severe for the barrel to sustain. As for the breech end problems, a different type of failure or combination of types of failures occurred. With the same procedure to determine barrel temperatures as used at the muzzle end, average and outside temperatures were found to be in the 800°F - 1000°F range. Bore inspection of the barrels showed radial cracking in the grooves and erosion measurements of .060 inch. Since this is the high-pressure region, pressure stresses are distinctly significant, and are most likely the cause of failure.

CONCLUSIONS AND RECOMMENDATIONS

An increase in material on the tapered down-section near the breech (Figure 26) would increase the factor of safety to avoid barrel rupture if the recommended firing schedule is exceeded. A rough estimate of plastic deformation for the 650°F - 1000°F operating temperatures is 10-16 per cent, as shown in Table 2. An increase of .2 to .4 inch to the diameter would substantially decrease the plastic penetration. This recommendation was also proposed by General Electric in their erosion studies of the M61Al.

Generally, pressure stresses do not cause problems involving the middle-to-muzzle end of the barrel, but thermal stresses are significant. Since single-shot heat flux data are unavailable for the 20mm, M61Al gun barrel, total equivalent stresses to include thermal stresses cannot be calculated. However, observing the temperature levels attained in the failure tests performed by General Electric, one notes that the firing schedule prescribed by SARRI-LW for this study is much less severe. On the basis of previous experience, one also notes that the temperature levels attained at the breech end for the present M61Al barrel are within safe limits, if the firing schedule proposed is followed. Caution should be taken, however, when the barrel is designed for the middle-to-muzzle end on the basis of values from Table 2. This tabulation is only a pressure analysis and is meant to point out that pressure stresses are not of paramount importance in the middle-to-muzzle locations. Temperatures of 1300°F - 1400°F are within the elastic limit, as shown in Table 2. These temperature levels are high for CR-MO-V steel, as the failure tests previously discussed indicates.

Thus, several recommendations can be made. On the assumption that the firing schedule prescribed is realistic, then the present design can be changed to reduce barrel weight. A proposed barrel that reduces the existing weight by 1/4 per cent or by 2.5 pounds is shown in Figure 28. The temperature and pressure stress results for this design are still conservative; but, hardware requirements necessarily limit the reduction of wall ratios at certain points on the barrel. The tapered section at the 3.215 to the 6 inch region adds .4 pound to the barrel weight, but it provides a better margin of safety against breech rupture. The other changes in this barrel decrease barrel weight from the existing profile. The built-up section from 6 to 9.75 inches in the existing profile has been eliminated in this lightweight concept. If the lightweight concept is not adopted, then the present built-up section in the 6 to 10 inch area could be retained, and the reduction in total barrel weight would still be 1.5 pounds.

Since the bore boundary conditions for the failure tests have been calculated for all 5 axial locations, upper limits for safe operating barrel temperatures can be calculated for more severe firing schedules. If complete redesign of the barrel is desired, then an optimum barrel profile could be defined prior to the design of the firing fixtures and hardware requirements. Additional constraints on design recommendations that include barrel material, propellant type, environmental conditions, and external loading (due to the motion of the aircraft) need to be considered prior to final design.
<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Travel (in)</th>
<th>Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.42</td>
<td>0.001</td>
<td>9100.0</td>
</tr>
<tr>
<td>0.82</td>
<td>0.780</td>
<td>48000.0</td>
</tr>
<tr>
<td>0.92</td>
<td>1.600</td>
<td>54500.0</td>
</tr>
<tr>
<td>0.98</td>
<td>2.230</td>
<td>55000.0</td>
</tr>
<tr>
<td>1.02</td>
<td>2.820</td>
<td>54180.0</td>
</tr>
<tr>
<td>1.22</td>
<td>6.420</td>
<td>43200.0</td>
</tr>
<tr>
<td>1.72</td>
<td>20.300</td>
<td>20100.0</td>
</tr>
<tr>
<td>2.32</td>
<td>41.900</td>
<td>9650.0</td>
</tr>
<tr>
<td>2.70</td>
<td>56.900</td>
<td>6760.0</td>
</tr>
<tr>
<td>Axial Locations (in)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Axial Locations (in)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>(r_o) (in)</td>
<td>.78</td>
<td>.88</td>
</tr>
<tr>
<td>(P) (psi)</td>
<td>55,000</td>
<td>55,000</td>
</tr>
<tr>
<td>(Y) (psi)</td>
<td>147,605</td>
<td>137,526</td>
</tr>
<tr>
<td>(T) (°F)</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>(\sigma) (psi) at bore</td>
<td>133,000</td>
<td>124,000</td>
</tr>
<tr>
<td>% plastic @650°F</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>% plastic @ 1,000°F</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

\(r_o \) (in) at bore:
5: .78, 10: .88, 18: .98, 35.5: .694, 48: .78

\(P \) (psi):
5: 55,000, 10: 55,000, 18: 43,200, 35.5: 30,156, 48: 10,000

\(Y \) (psi):
5: 147,605, 10: 137,526, 18: 131,169, 35.5: 115,937, 48: 80,930

\(T \) (°F):
5: 100, 10: 200, 18: 300, 35.5: 400, 48: 1300

\(\sigma \) (psi) at bore:
5: 133,000, 10: 124,000, 18: 118,000, 35.5: 110,000, 48: 121,000

% plastic @650°F:
5: 100% Elastic, 10: 100% Elastic, 18: 100% Elastic, 35.5: 100% Elastic, 48: 100% Elastic

% plastic @ 1,000°F:
5: 100% Elastic, 10: 100% Elastic, 18: 100% Elastic, 35.5: 100% Elastic, 48: 100% Elastic
FIRING SCHEDULE

175 Rounds at a Rate of
667 Rounds Per Minute

5" from breech
20mm, M61A1 barrel

Effective Bore Boundary Conditions

1 - Experimental Curve
2 - Fitted Curve

\[
\begin{align*}
\dot{h} &= 3210 \text{ BTU/HR} - \frac{\text{FT}^2}{\text{OF}} \\
\dot{g} &= 1350 \text{OF}
\end{align*}
\]
FIRING SCHEDULE

175 Rounds at a Rate of
667 Rounds Per Minute

10" from breech
20mm, M61Al barrel

1 - Experimental Curve
2 - Fitted Curve

Effective Bore Boundary Conditions

\[\dot{H}_g = 951 \text{ BTU/HR} - FT^2 - ^{\circ}F \]
\[\frac{T}{g} = 1850 ^{\circ}F \]
FIRING SCHEDULE

175 Rounds at a Rate of
667 Rounds Per Minute

18" from breech
20mm, M61A1 barrel

1 - Experimental Curve
2 - Fitted Curve

Effective Bore Boundary Conditions

\[h_g = 2340 \text{ BTU/HR - FT}^2 - \text{OF} \]
\[T_g = 1341 \text{ OF} \]
FIRING SCHEDULE

175 Rounds at a Rate of 667 Rounds Per Minute

35.5" from breech
20mm, M61A1 barrel

1 - Experimental Curve
2 - Fitted Curve

Effective Bore Boundary Conditions

\[\frac{H}{g} = 499 \text{ BTU/HR} - \text{FT}^2 - ^\circ\text{F} \]

\[\frac{h}{g} = 1527 ^\circ\text{F} \]
FIRING SCHEDULE
175 Rounds at a Rate of 667 Rounds Per Minute
48" from breech
20mm, M61AL barrel

Effective Bore Boundary Conditions
\[
\frac{h}{T} = 789 \text{ BTU/HR - FT}^2 \cdot \circ F
\]
\[
\frac{\theta}{g} = 1450 \circ F
\]

FIGURE 5
FIRING SCHEDULE

90 Rounds at a Rate of
1000 Rounds Per Minute

5" from breech
20mm, M61A1 barrel

Effective Bore Boundary

\[H_p = 3210 \text{ BTU/HR} - \text{FT}^2 - ^\circ F \]

\[T_s = 1350 \text{ } ^\circ F \]

1. \(r_{out} = 0.0650 \text{ ft.} \)
2. \(r_{out} = 0.0628 \text{ ft.} \)
3. \(r_{out} = 0.0611 \text{ ft.} \)
4. \(r_{out} = 0.0595 \text{ ft.} \)
5. \(r_{out} = 0.0576 \text{ ft.} \)
FIRING SCHEDULE

90 Rounds at a Rate of 1000 Rounds Per Minute

5" from breech
20mm, M61Al barrel

Effective Bore Boundary Conditions

\[h = 3210 \text{ BTU/HR} - \text{FT}^2 - \text{OF} \]

\[T_g = 1350^\circ \text{F} \]

1. \(r_{out} = 0.0650 \text{ ft.} \)
2. \(r_{out} = 0.0628 \text{ ft.} \)
3. \(r_{out} = 0.0611 \text{ ft.} \)
4. \(r_{out} = 0.0595 \text{ ft.} \)
5. \(r_{out} = 0.0578 \text{ ft.} \)
FIRING SCHEDULE

90 Rounds at a Rate of 1000 Rounds Per Minute

5" from breech
20mm, M61A1 barrel

Effective Bore Boundary Conditions

- \(H_c = 3210 \text{ BTU/HR - FT}^2 - ^\circ \text{F} \)
- \(T_e = 1350 \text{ °F} \)

Radii of .0650 ft., .0628 ft., .0611 ft., .0595 ft., .0570 ft.

FIGURE 8
FIRING SCHEDULE
90 Rounds at a Rate of
1000 Rounds Per Minute
5" from breech
20mm, M61A1 barrel

Effective Bore Boundary
Conditions
\[q = 3210 \text{ BTU/HR} = \frac{\text{ft}^2}{\text{ft}} \cdot \text{F} \]
\[T_8 = 1350 \text{ °F} \]

1. \(r_{out} = 0.0650 \text{ ft.} \)
2. \(r_{out} = 0.0626 \text{ ft.} \)
3. \(r_{out} = 0.0611 \text{ ft.} \)
4. \(r_{out} = 0.0595 \text{ ft.} \)
5. \(r_{out} = 0.0578 \text{ ft.} \)

FIGURE 9
FIRING SCHEDULE
90 Rounds at a Rate of
1000 Rounds Per Minute

10° from breech
20mm, MG1A1 barrel

Effective Bore Boundary
Conditions
\[F_s = 951 \text{ BTU/HR} \] \[R = 5^2 - 0 \text{F} \]
\[c_s = 1850 \text{F} \]
\[g \]

1. \(r_{out} = 0.0578 \text{ ft.} \)
2. \(r_{out} = 0.0545 \text{ ft.} \)
3. \(r_{out} = 0.0528 \text{ ft.} \)
4. \(r_{out} = 0.0511 \text{ ft.} \)

FIGURE 10
FIRING SCHEDULE

90 Rounds at a Rate of
1000 Rounds Per Minute

10" from breech
20mm, M61Al barrel

Effective Bore Boundary
Conditions

\[E = 951 \text{ BTU/HR} - \frac{F}{F^8} - \frac{T}{2F} \]

1. \(E = 1850 \text{ °F} \)

1. \(r_{\text{out}} = 0.0578 \text{ ft.} \)
2. \(r_{\text{out}} = 0.0545 \text{ ft.} \)
3. \(r_{\text{out}} = 0.0529 \text{ ft.} \)
4. \(r_{\text{out}} = 0.0511 \text{ ft.} \)
FIRING SCHEDULE

90 Rounds at a Rate of
1000 Rounds Per Minute

10" from breech
20mm, M61A1 barrel

Effective Bore Boundary
Conditions

\(\dot{Q} = 951 \text{ Btu/hr - ft}^{-2} - \circ F \)

\(T_g = 1850 \circ F \)

1. \(r_{out} = 0.0578 \text{ ft.} \)
2. \(r_{out} = 0.0545 \text{ ft.} \)
3. \(r_{out} = 0.0528 \text{ ft.} \)
4. \(r_{out} = 0.0511 \text{ ft.} \)
FIRING SCHEDULE

90 Rounds at a Rate of
1000 Rounds Per Minute

18" from breech
20mm, M61A1 barrel

Effective Bore Boundary
Conditions

\[h = 2340 \text{ BTU/HR - FT} - \frac{T}{\text{F}} \]

\[T_0 = 1341 \text{ F} \]

1. \(r_{in} = 0.0495 \text{ ft.} \)
2. \(r_{in} = 0.0478 \text{ ft.} \)
3. \(r_{out} = 0.0461 \text{ ft.} \)
4. \(r_{out} = 0.0445 \text{ ft.} \)
5. \(r_{out} = 0.0428 \text{ ft.} \)

FIGURE 14
FIRING SCHEDULE

90 Rounds at a Rate of 1000 Rounds Per Minute

18° from breech
20mm, M61Al barrel

Effective Bore Boundary Conditions

\[T_e = 2340 \text{ BTU/HR} - \frac{\text{FT}}{\text{FT}^2} - \degree F \]

\[T_g = 1341 \degree F \]

1. \(R_{out} = 0.0495 \) ft.
2. \(R_{out} = 0.0478 \) ft.
3. \(R_{out} = 0.0461 \) ft.
4. \(R_{out} = 0.0445 \) ft.
5. \(R_{out} = 0.0428 \) ft.
FIRING SCHEDULE

90 Rounds at a Rate of 1000 Rounds Per Minute

18" from breech
20mm, W&LA1 barrel

Effective Bore Boundary Conditions

$\dot{Q} = 2340 \text{ BTU/HR - FT}^2 \cdot \text{OF}$

$T_g = 1341 \text{OF}$

1. $r_{out} = .0495 \text{ ft.}$
2. $r_{out} = .0478 \text{ ft.}$
3. $r_{out} = .0461 \text{ ft.}$
4. $r_{out} = .0445 \text{ ft.}$
5. $r_{out} = .0428 \text{ ft.}$
FIRING SCHEDULE

90 Rounds at a Rate of
1000 Rounds Per Minute

18" from breech
20mm, M61Al barrel

Effective Bore Boundary
Conditions

\[\dot{q}_g = 2300 \text{ BTU/HR - FT}^2 \cdot \circ F \]

\[T_g = 1381 \circ F \]

\[r_{out} = 0.0495 \text{ ft.} \]
\[r_{out} = 0.0478 \text{ ft.} \]
\[r_{out} = 0.0461 \text{ ft.} \]
\[r_{out} = 0.0445 \text{ ft.} \]
\[r_{out} = 0.0428 \text{ ft.} \]
FIRING SCHEDULE

90 Rounds at a Rate of
1000 Rounds Per Minute

35.5" from breech
20mm, M61A1 barrel

Effective Bore Boundary Conditions

\[h = 877 \text{ Btu/hr ft}^2 \quad ^\circ\text{F} \]
\[T_e = 1515^\circ\text{F} \]

1. \[r_{out} = .0500 \text{ ft.} \]
2. \[r_{out} = .0495 \text{ ft.} \]
3. \[r_{out} = .0478 \text{ ft.} \]
4. \[r_{out} = .0461 \text{ ft.} \]
5. \[r_{out} = .0445 \text{ ft.} \]
FIRING SCHEDULE

90 Rounds at a Rate of
1000 Rounds Per Minute

35.5" from breech
20mm, M61A1 barrel

Effective Bore Boundary Conditions

\(\dot{R}_g = 877 \text{ BTU/HR} \cdot \text{FT}^2 \cdot \text{OF} \)
\(\bar{R}_g = 1515\text{OF} \)

1. \(r_{out} = 0.0508 \text{ ft.} \)
2. \(r_{out} = 0.0495 \text{ ft.} \)
3. \(r_{out} = 0.0478 \text{ ft.} \)
4. \(r_{out} = 0.0461 \text{ ft.} \)
5. \(r_{out} = 0.0445 \text{ ft.} \)
8.25" from breach
20m, WCL barrel

Firing Schedule
90 Rounds at a Rate of 2000 Rounds Per Minute

Effective Bore Boundary Conditions

F = 54177 BRN/HR - PFR - O

1. Test = 0.098 ft
2. Test = 0.098 ft
3. Test = 0.098 ft
4. Test = 0.098 ft
5. Test = 0.098 ft

Temperature (External) vs Time Seconds

0.00 0.40 0.80 1.20 1.60 2.00
t1.00 1.40 1.80 2.20 2.60 3.00

Figure 20
FIRING SCHEDULE

90 Rounds at a Rate of 1000 Rounds Per Minute

35.5" from breech
20mm, ME1AL barrel

Effective Bore Boundary Conditions

- $h = 877 \text{ Btu/ft}^2 \cdot \text{hr}$
- $T_{in} = 1515 \text{°F}$
- $T_{out} = 0.0506, 0.0495, 0.0478, 0.0461, 0.0445 \text{ ft}$
FIRING SCHEDULE

90 Rounds at a Rate of 1000 Rounds Per Minute

48" from breech
20mm, M61Al barrel

Effective Bore Boundary Conditions

\[q = \frac{993 \text{ Btu/HR}}{\text{in}^{2}} \cdot \text{°F} \]

\[T_g = 1492 \text{°F} \]

1. \(r_{out} = 0.0481 \text{ ft.} \)
2. \(r_{out} = 0.0458 \text{ ft.} \)
3. \(r_{out} = 0.0445 \text{ ft.} \)
4. \(r_{out} = 0.0428 \text{ ft.} \)
5. \(r_{out} = 0.0412 \text{ ft.} \)

Figure 22
Firing Schedule

90 Rounds at a Rate of 1000 Rounds Per Minute

48" from breech
20mm, M61A1 barrel

Effective Bore Boundary Conditions

\[E_s = 993 \text{ BTU/HR - FT}^2 - ^\circ F \]

\[T_s = 1492^\circ F \]

1. \(r_{out} = 0.0481 \text{ ft.} \)
2. \(r_{out} = 0.0458 \text{ ft.} \)
3. \(r_{out} = 0.0445 \text{ ft.} \)
4. \(r_{out} = 0.0426 \text{ ft.} \)
5. \(r_{out} = 0.0412 \text{ ft.} \)

Figure 23
FIRING SCHEDULE
90 Rounds at a Rate of 1000 Rounds Per Minute
48" from breech
20mm, M61A1 barrel

Effective Bore Boundary Conditions
\(h = 993 \text{ Btu/hr-ft}^2 - \text{OF} \)
\(T_g = 1492^\circ\text{OF} \)

1. \(r_{out} = .0481 \text{ ft.} \)
2. \(r_{out} = .0458 \text{ ft.} \)
3. \(r_{out} = .0445 \text{ ft.} \)
4. \(r_{out} = .0428 \text{ ft.} \)
5. \(r_{out} = .0412 \text{ ft.} \)
FIRING SCHEDULE

90 Rounds at a Rate of 1000 Rounds Per Minute

48" from breech
20mm, M61A1 barrel

Effective Bore Boundary Conditions

\[
\frac{E}{E_0} = 993 \text{ BTU/HR} \cdot \text{FT}^2 \cdot \circ F
\]

\[
T_s = 1492 \circ F
\]

1. \(r_{out} = 0.0415 \) ft.
2. \(r_{out} = 0.0450 \) ft.
3. \(r_{out} = 0.0485 \) ft.
4. \(r_{out} = 0.0428 \) ft.
5. \(r_{out} = 0.0412 \) ft.

FIGURE 25
M61 BARREL THERMOCOUPlE STATIONS

FIGURE 26
CR-MO-VA STEEL

RAPID HEATING
○ DYNAMIC (ε = 5 sec⁻¹)
● STATIC

YIELD STRENGTH CR-MO-VA

![Graph showing yield strength versus temperature for CR-MO-VA steel under dynamic and static conditions. The graph plots yield strength in ksi against temperature in °F.](image-url)
PROPOSED 20mm LIGHTWEIGHT BARREL

FIGURE 28
DISTRIBUTION

A. Department of Defense

Office of the Director of Defense Research & Engineering
ATTN: Mr. J. C. Barrett
Room 3D-1085, The Pentagon
Washington, DC 20301

Defense Documentation Center
ATTN: TIPDR
Cameron Station
Alexandria, VA 22314

B. Department of the Army

Commander
U.S. Army Materiel Development & Readiness Command
ATTN: DRCRD-TC
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
U.S. Army Armament Command
ATTN: DRSAR-RDP
DRSAR-PP
DRSAR-PPI
DRSAR-TDC
Rock Island, IL 61201

Commander
U.S. Army Electronics Command
ATTN: DRSEL-TL-ME
Ft. Monmouth, NJ 07703

Commander
Rock Island Arsenal
ATTN: SARRI-LA
SARRI-LE
SARRI-LS
SARRI-LW
SARRI-LPL
SARRI-LR
SARRI-LT
Rock Island, IL 61201
<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army Missile Command</td>
</tr>
<tr>
<td>ATTN: DRSMI-RP</td>
</tr>
<tr>
<td>DRSMI-RRS, Mr. R. E. Ely</td>
</tr>
<tr>
<td>DRSMI-RSM, Mr. Whellahan</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army MERDC</td>
</tr>
<tr>
<td>ATTN: STSFB-GL</td>
</tr>
<tr>
<td>Ft. Belvoir, VA 22060</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army Environmental Hygiene Agency</td>
</tr>
<tr>
<td>Edgewood Arsenal, MD 21010</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army Medical Biomechanical Research Laboratory</td>
</tr>
<tr>
<td>ATTN: Library</td>
</tr>
<tr>
<td>Ft. Detrick Bldg. 568</td>
</tr>
<tr>
<td>Frederick, MD 21701</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Natick Laboratories</td>
</tr>
<tr>
<td>Natick, MA 01760</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army Aviation School</td>
</tr>
<tr>
<td>ATTN: Office of the Librarian</td>
</tr>
<tr>
<td>Ft. Rucker, AL 36362</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Joint Military Packaging Training Center</td>
</tr>
<tr>
<td>ATTN: DRXPT-PT</td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD 21005</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army Tropic Test Center</td>
</tr>
<tr>
<td>ATTN: STETC-MO-A Technical Library</td>
</tr>
<tr>
<td>Drawer 942</td>
</tr>
<tr>
<td>Ft. Clayton, Canal Zone 09827</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Tobyhanna Army Depot</td>
</tr>
<tr>
<td>ATTN: DRC Packaging, Storage & Containerization Center</td>
</tr>
<tr>
<td>Tobyhanna, PA 18466</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>U.S. Army Production Equipment Agency</td>
</tr>
<tr>
<td>ATTN: DRXPE</td>
</tr>
<tr>
<td>Rock Island Arsenal</td>
</tr>
<tr>
<td>Rock Island, IL 61201</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army Tank-Automotive Command</td>
</tr>
<tr>
<td>ATTN: DRSTA-RPL, Technical Library</td>
</tr>
<tr>
<td>DRSTA-RK, Materials Laboratory</td>
</tr>
<tr>
<td>Warren, MI 48090</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army Research & Development Group (Europe)</td>
</tr>
<tr>
<td>ATTN: Chief, Chemistry Branch</td>
</tr>
<tr>
<td>FPO New York 09510</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Army Materials & Mechanics Research Center</td>
</tr>
<tr>
<td>ATTN: DRXMR-PL</td>
</tr>
<tr>
<td>Watertown, MA 02172</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Frankford Arsenal</td>
</tr>
<tr>
<td>ATTN: SARFA-L1000</td>
</tr>
<tr>
<td>SARFA-C2500</td>
</tr>
<tr>
<td>Philadelphia, PA 19137</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Picatinny Arsenal</td>
</tr>
<tr>
<td>ATTN: Plastics & Packaging Lab</td>
</tr>
<tr>
<td>PLASTEC</td>
</tr>
<tr>
<td>Dover, NJ 07801</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Edgewood Arsenal</td>
</tr>
<tr>
<td>ATTN: SAREA-CL-A</td>
</tr>
<tr>
<td>Edgewood, MD 21010</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Watervliet Arsenal</td>
</tr>
<tr>
<td>ATTN: SARWV-RDR</td>
</tr>
<tr>
<td>SARWV-RDT, Library</td>
</tr>
<tr>
<td>Watervliet, NY 12189</td>
</tr>
</tbody>
</table>
DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

C. Department of Navy

Office of Naval Research
ATTN: ONR-471
Room 928, Ballston Tower No. 1
Arlington, VA 22217

Commander
Naval Sea Systems Command
ATTN: SEA-03
RRMA-54
SP-271
Washington, DC 20362

Commander
Naval Supply Systems Command
ATTN: NSUP-048
Washington, DC 20376

Commander
U.S. Naval Surface Weapons Center
ATTN: NDL-211
Silver Springs, MD 20910

Commander
U.S. Naval Research Laboratory
ATTN: NRL-2600
Washington, DC 20375

Commander
U.S. Naval Ordnance Test Station
ATTN: Code 75? Technical Library
China Lake, CA 93555

Commander
Mare Island Naval Shipyard
ATTN: Rubber Laboratory
Vallejo, CA 94592
DISTRIBUTION

<table>
<thead>
<tr>
<th>Department of the Air Force</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ USAF RDP</td>
<td></td>
</tr>
<tr>
<td>Room 4D-313, The Pentagon</td>
<td>1</td>
</tr>
<tr>
<td>Washington, DC 20330</td>
<td></td>
</tr>
<tr>
<td>AFML/LTM</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson AFB, OH 45433</td>
<td>2</td>
</tr>
<tr>
<td>AFML/MB</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson AFB, OH 45433</td>
<td>1</td>
</tr>
<tr>
<td>AFFTC</td>
<td></td>
</tr>
<tr>
<td>Edwards AFB, CA 93523</td>
<td>1</td>
</tr>
</tbody>
</table>

E. Other Government Agencies

<table>
<thead>
<tr>
<th>Agency</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Research and Development Agency</td>
<td>1</td>
</tr>
<tr>
<td>Division of Reactor Development & Technology</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20545</td>
<td></td>
</tr>
<tr>
<td>George C. Marshall Space Flight Center, NASA</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: M-S&E</td>
<td></td>
</tr>
<tr>
<td>M-A&PS</td>
<td>1</td>
</tr>
<tr>
<td>Huntsville, AL 35812</td>
<td></td>
</tr>
</tbody>
</table>
Government regulations require the maintenance of up-to-date distribution lists for technical reports. This form is provided for your convenience to indicate necessary changes or corrections.

If a change in our mailing lists should be made, please check the appropriate boxes below. For changes or corrections, show old address exactly as it appeared on the mailing label. Fold on dotted lines, tape or staple the lower edge together, and mail.

☐ Remove Name from List

☐ Change or Correct Address

Old Address:

Corrected or New Address:

COMMENTS

Date: __________________ Signature: __________________

Technical Report #
Commander
Rock Island Arsenal
Attn: SARRI-LR
Rock Island, Illinois 61201
If a thermal analysis of the M1GAL VULCAN gun barrel was performed. This analysis included the calculation of bore boundary conditions by methods previously developed by the Research Directorate and the application of these boundary conditions to an outer barrel profile analysis. Pressure stress analyses were also performed. The final results are proposed outer barrel profiles for particular performance requirements.

<table>
<thead>
<tr>
<th>AD</th>
<th>ACCESSION NO.</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. M1GAL VULCAN Barrel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Thermal Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Bore Boundary Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Experimental Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Wall Ratios</td>
</tr>
</tbody>
</table>

Research Directorate
GDR Thomas J. Rodman Laboratory
Rock Island Arsenal, Rock Island, IL 62010

WEIGHT REDUCTION STUDY OF THE 20MM, M1GAL, VULCAN GUN BARREL
Prepared by: Philip D. Benecker
Technical Report No. R-TR-76-622
36 pages, incl Figures & Tables

A thermal analysis of the M1GAL VULCAN gun barrel was performed. This analysis included the calculation of bore boundary conditions by methods previously developed by the Research Directorate and the application of these boundary conditions to an outer barrel profile analysis. Pressure stress analyses were also performed. The final results are proposed outer barrel profiles for particular performance requirements.

<table>
<thead>
<tr>
<th>AD</th>
<th>ACCESSION NO.</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. M1GAL VULCAN Barrel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Thermal Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Bore Boundary Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Experimental Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Wall Ratios</td>
</tr>
</tbody>
</table>

Research Directorate
GDR Thomas J. Rodman Laboratory
Rock Island Arsenal, Rock Island, IL 62010

WEIGHT REDUCTION STUDY OF THE 20MM, M1GAL, VULCAN GUN BARREL
Prepared by: Philip D. Benecker
Technical Report No. R-TR-76-622
36 pages, incl Figures & Tables

A thermal analysis of the M1GAL VULCAN gun barrel was performed. This analysis included the calculation of bore boundary conditions by methods previously developed by the Research Directorate and the application of these boundary conditions to an outer barrel profile analysis. Pressure stress analyses were also performed. The final results are proposed outer barrel profiles for particular performance requirements.