SOME ASYMPTOTIC RESULTS FOR OCCUPANCY PROBLEMS

WISCONSIN UNIVERSITY

PREPARED FOR
Army Research Office

APRIL 1976
Consider a situation in which balls are falling into N cells with arbitrary probabilities. Limit distributions for the number of empty cells are considered when $N \to \infty$ and the number of balls $n \to \infty$ so that $n/N \to \infty$. Limit distributions for the number of balls to achieve exactly b empty cells are obtained when $N \to \infty$ for b fixed or $b \to \infty$ so that $b/N \to 0$.
MRC Technical Summary Report #1600

SOME ASYMPTOTIC RESULTS FOR OCCUPANCY PROBLEMS

Lars Holst

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

April, 1976

Received September 19, 1975

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709
SOME ASYMPTOTIC RESULTS FOR OCCUPANCY PROBLEMS

Lars Holst

Technical Summary Report #1600
April 1976

ABSTRACT

Consider a situation in which balls are falling into
N cells with arbitrary probabilities. Limit distributions for
the number of empty cells are considered when $N \to \infty$ and
the number of balls $n \to \infty$ so that $n/N \to \infty$. Limit distribu-
tions for the number of balls to achieve exactly b empty cells
are obtained when $N \to \infty$ for b fixed or $b \to \infty$ so that $b/N \to 0$.

AMS(MOS) Classification: Primary 60F05, Secondary 60C05
Key Words: Occupancy problems; coupon collectors problem;
limit theorems.

Work Unit No. 4 (Probability, Statistics and Combinatorics)
SOME ASYMPTOTIC RESULTS FOR OCCUPANCY PROBLEMS

Lars Holst

1. Introduction.

Suppose that balls are thrown independently of each other into N cells, so that each ball has the probability p_k of falling into the kth cell, $p_1 + \ldots + p_N = 1$. Let Y_n denote the number of empty cells after n throws and let T_b denote the throw on which for the first time exactly b cells remain empty, $0 < b < N$. The symmetrical case $p_1 = \ldots = p_N = 1/N$ is discussed in e.g. Feller (1968), see occupancy or waiting time problems.

Depending on how b, n, $N \to \infty$, different asymptotic distributions for Y_n and T_b can be obtained, see e.g. Holst (1971) and for the symmetric case see e.g. Samuel-Cahn (1974). In this paper some remaining problems are investigated for the nonsymmetrical case.

To give precise meanings of the limits obtained, double sequences e.g. $(p_{kN})_N$, $(Y_{nN})_N$ are considered. But in order to simplify the notation the extra index N will usually be omitted.

2. A bounded number of empty cells.

The following limit theorem for Y_n, the number of empty cells after n throws, was proved by Sevastyanov (1972).

Theorem 1. If the p's are such that

\[\max_{1 \leq k \leq N} (1 - p_k)^n \to 0 \]

and

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
\begin{equation}
E(Y_n) = \sum_{k=1}^{N} (1 - p_k)^n \to m < \infty,
\end{equation}

then
\begin{equation}
P(Y_n = y) \to m^y \cdot e^{-m/y},
\end{equation}
or equivalently
\begin{equation}
Y_n \Rightarrow Po(m), \text{ when } N \to \infty.
\end{equation}

Remark. When the \(p \)'s are equal an expression for \(P(Y_n = y) \) can be obtained from which (2.3) can be derived by elementary methods, see e.g. Feller (1968). In this case (2.1) and (2.2) are replaced by
\begin{equation}
N \cdot \exp(-n/N) \to m < \infty
\end{equation}
or
\begin{equation}
n/N - \log N \to - \log m \to -\infty.
\end{equation}

For \(T_b \), the number of balls until \(b \) empty cells remain, the limit distribution is given by:

Theorem 2. If \(b \) is a fixed integer and for some fixed numbers \(C \) and \(D \),

\begin{equation}
0 < C \leq Np_k \leq D < \infty, \text{ for all } k \text{ and } N,
\end{equation}

then, when \(N \to \infty \),
\begin{equation}
\sum_{k=1}^{N} (1 - p_k)^T_b \to \frac{1}{2} \chi^2(2(b+1)),
\end{equation}
and
\begin{equation}
\sum_{k=1}^{N} \exp(-T_b p_k) \to \frac{1}{2} \chi^2(2(b+1)).
\end{equation}

Before proving the theorem the following functions are considered:
\begin{equation}
f(t) = f_N(t) = \sum_{k=1}^{N} (1-p_k)^t, \quad t > 0,
\end{equation}
and
Lemma 1. If Condition (2.7) is satisfied, $y > 0$ is a fixed number, and $t = t_N = t(y)$ is defined by the equation
\begin{equation}
(2.12) \quad f(t) = y ,
\end{equation}
then
\begin{equation}
(2.13) \quad 0 < C \leq \lim \inf \frac{N \log N}{t_N} \leq \lim \sup \frac{N \log N}{t_N} < D < \infty
\end{equation}
and when $N \to \infty$
\begin{equation}
(2.14) \quad f([t]) \to y ,
\end{equation}
\begin{equation}
(2.15) \quad \max_{1 \leq k \leq N} (1 - p_k)[t] \to 0 ,
\end{equation}
\begin{equation}
(2.16) \quad g(t) \text{ and } g([t]) \to y .
\end{equation}

where $[t]$ denotes the integer part of t.

Lemma 2. If f is replaced by g and g by f in Lemma 1, then the same conclusions hold.

Proof of Lemma 1. From Condition (2.7), it follows that
\begin{equation}
(2.17) \quad y = \sum_{k=1}^{N} (1 - p_k)^t \geq N \cdot (1 - D/N)^t .
\end{equation}
Hence for $\varepsilon > 0$ and N sufficiently large
\begin{equation}
(2.18) \quad \log y \geq \log N - t \cdot (D+\varepsilon)/N
\end{equation}
and therefore
\begin{equation}
(2.19) \quad D+\varepsilon = (D+\varepsilon) \lim_{N \to \infty} \frac{1}{N} \left(1/(1-\log y/\log N)\right) \geq \lim \sup \frac{N \log N}{t_N} ,
\end{equation}
which proves the right inequality of (2.13).

To prove the left inequality of (2.13) the following estimate follows from (2.7):
\begin{equation}
(2.20) \quad y = \sum_{l}^{N} (1-p_k)^t \leq N \cdot (1 - C/N)^t ,
\end{equation}

#1600
or

\[(2.21)\]

\[
\log y \leq \log N - t \log(1 - C/N) \leq \log N - t C/N .
\]

From this it follows that

\[(2.22)\]

\[
C = C \lim (1 - \log y / \log N)^{-1} \leq \lim inf N \log N / t_N .
\]

To prove (2.14) we observe that

\[(2.23)\]

\[
(1 - p_k)^{t-1} \geq (1 - p_k)^{[t]} \geq (1 - p_k)^t ,
\]

and using (2.7)

\[(2.24)\]

\[
(1 - D/N)^{-1} \sum_1^N (1 - p_k)^t \geq \sum_1^N (1 - p_k)^{[t]} \geq \sum_1^N (1 - p_k)^t ,
\]

or from (2.12)

\[(2.25)\]

\[
(1 - D/N)^{-1} y \geq f([t]) \geq y .
\]

From which (2.14) follows.

Combining (2.7) and (2.13) give for some \(K > 0 \) and \(N \) sufficiently large that

\[(2.26)\]

\[
\max (1 - p_k)^{[t]} \leq (1 - C/N)^{[t]} \leq (1 - C/N)^1 \rightharpoonup 0, N \rightarrow \infty
\]

which proves (2.15).

Using (2.7) and (2.13) it follows that for some constant \(K \)

\[(2.27)\]

\[
|1 - e^{-tp_k^t} / (1 - p_k)^t| \leq K \cdot \log N / N ,
\]

and therefore

\[(2.28)\]

\[
|f(t) - g(t)| \leq \sum_1^N (1 - p_k)^t \cdot |1 - e^{-tp_k^t} / (1 - p_k)^t| \leq K \sum_1^N (1 - p_k)^t \log N / N = K y \log N / N \rightharpoonup 0 ,
\]

which proves (2.16).
Proof of Lemma 2. The proof is essentially the same as that for Lemma 1. ■

Proof of Theorem 2. From the definitions it follows that

\[(2.29) \quad Y_n \leq b \iff T_b \leq n,\]

and therefore

\[(2.30) \quad P(Y_n \leq b) = P(T_b \leq n) = \frac{P(f(T_b) \geq f(n))}{z}.\]

Let \(y > 0 \) be fixed and define \(n = [t] \) with \(t = t(y) \) as in Lemma 1. According to Lemma 1 the assumptions of Theorem 1 are satisfied. Hence

\[(2.31) \quad P(f(T_b) \geq y) = P(Y_n \leq b) \to P(Y \leq b),\]

where \(Y \) is \(P_c(y) \). Furthermore it is well-known that

\[(2.32) \quad P(Y \leq b) = P\left(\frac{1}{2} \chi^2(2(b+1)) \geq y\right).\]

(2.31) and (2.32) prove (2.8). Using Lemma 2, the assertion (2.9) follows. ■

Remark. When the \(p \)'s are equal the theorem can be written

\[(2.33) \quad N \cdot (1 - 1/N) T_b \Rightarrow \frac{1}{2} \chi^2(2(b+1)),\]

and therefore

\[(2.34) \quad T_b/N - \log N \Rightarrow \log \left(\frac{1}{2} \chi^2(2(b+1))\right).\]

This result was found by Baum and Billingsley (1965) using complicated calculations. Using the result in Feller (1968) and the method of proof of Theorem 2, (2.33) and (2.34) follows. A consequence of (2.34) is

\[(2.35) \quad T_b/N \log N \to 1, \text{ in probability, as } N \to \infty.\]

Now (2.35) will be generalized. First introduce the distribution function

\[(2.36) \quad H_N(x) = \# \{ p_k : N p_k \leq x \}/N.\]
Lemma 3. If \(t = t_N = t(y) \) is defined by

\[
(2.37) \quad g(t) = g_N(t_N) = y > 0 ,
\]

and there exists a distribution function \(H(x) \) on \([C, D]\) such that

\[
(2.38) \quad H_N(x) \rightarrow H(x) , \quad N \rightarrow \infty ,
\]

and

\[
(2.39) \quad 0 < C = \inf \{x ; H(x) > 0\} ,
\]

then for \(1/C > \varepsilon > 0 \), when \(N \rightarrow \infty \),

\[
(2.40) \quad g_N((\varepsilon + 1/C)(N \log N)) \rightarrow 0 ,
\]

and

\[
(2.41) \quad g_N((-\varepsilon + 1/C)(N \log N)) \rightarrow +\infty .
\]

Proof. From the definitions it follows that

\[
(2.42) \quad 0 < y = g_N(t_N) = N \cdot \int_C^D \exp(-t_N x/N)dH_N(x) =
\]

\[
= \int_C^D \exp((-1/C + 1/C)(N \log N) \log N) dH_N(x) .
\]

Consider

\[
(2.43) \quad g_N((\varepsilon + 1/C) N \log N) = \int_C^D \exp((1-x(1+\varepsilon C)/C) N \log N) dH_N(x) .
\]

Now for \(C < x < D \) it is true that \(1 - x(1+\varepsilon C)/C < 0 \) and therefore the exponent in (2.43) is negative so the integral tends to 0 when \(N \rightarrow \infty \), which proves (2.40).

For proving (2.41) consider

\[
(2.44) \quad g_N((-\varepsilon + 1/C) N \log N) = \int_C^D \exp((1-x(1-\varepsilon C)/C) N \log N) dH_N(x) .
\]

For \(C < x < C/(1-C\varepsilon) \) the exponent is positive and as the integrand is positive

(2.44) could be estimated by

\[
(2.45) \quad \int_C^{C/(1-C\varepsilon)} \exp((1 - x(1-\varepsilon C)/C) N \log N) dH_N(x) \rightarrow +\infty
\]

by Condition (2.39).
Corollary to Theorem 2. If the Conditions (2.38) and (2.39) are satisfied then

\[T_b / N \log N \rightarrow 1/C, \text{ in probability, } N \rightarrow \infty. \]

Proof. Let \(\varepsilon_1 > 0 \) and \(\varepsilon_2 > 0 \) be given. Take a \(\delta > 0 \) so that

\[P(\frac{1}{2} X^2 (2(b+1)) < \delta) < \varepsilon_2/2. \]

For \(N \) sufficiently large it follows from Theorem 2 that

\[P(g_N(T_b) < \delta) < \varepsilon_2/2 \]

and from Lemma 3 that

\[g_N((\varepsilon_1 + 1/C)(N \log N)) < \delta. \]

Hence

\[P(T_b / N \log N > \varepsilon_1 + 1/C) = P(g_N(T_b) < g_N((\varepsilon_1 + 1/C)(N \log N)) < P(g_N(T_b) < \delta) < \varepsilon_2/2. \]

In a similar way it is proven that

\[P(T_b / N \log N < -\varepsilon_1 + 1/C) < \varepsilon_2/2. \]

Hence for \(N \) sufficiently large

\[P(\vert T_b / N \log N - 1/C \vert > \varepsilon_1) < \varepsilon_2. \]

Thus the assertion is proved.

3. A small fraction of empty cells.

As above, \(Y_n \) denotes the number of empty cells after \(n \) throws.

Theorem 3. If

\[0 < C \leq Np_k \leq D < \infty, \text{ for all } k \text{ and } N, \]

\[n/N \rightarrow \infty, \]

and

\#1600
(3.3) \[f(n) = E(Y_n) = \sum_{k=1}^{N} (1 - p_k)^n \to +\infty, \]
then, when \(n \to \infty \),

(3.4) \[(Y_n - f(n))/(f(n))^{1/2} \xrightarrow{\text{D}} N(0,1), \]
and

(3.5) \[(Y_n - g(n))/(g(n))^{1/2} \xrightarrow{\text{D}} N(0,1), \]

where

(3.6) \[g(n) = \sum_{k=1}^{N} \exp(-np_k). \]

Proof. Using (3.1) and (3.3) it follows that

(3.7) \[\sum_{k=1}^{N} (1 - p_k)^n \leq N \cdot (1 - C/N)^n \to +\infty, \]
hence

(3.8) \[n/N \log N = O(1). \]

Using (3.1), (3.2), and (3.8) give

(3.9) \[|f(n) - g(n)| \leq \sum_{k=1}^{N} \exp(-np_k) \cdot \left| \exp(n \log (1-p_k) + np_k) - 1 \right| \leq \sum_{k=1}^{N} \exp(-np_k) \cdot K \cdot n/N^2 \leq K \cdot (n/N) \cdot \exp(-C n/N) \to 0. \]

Hence it is sufficient to prove (3.5). This will be established using convergence of characteristic functions.

In Holst (1971) p. 1672 the characteristic function of \(Y_n \) is given by

(3.10) \[E(\exp(\im t Y_n)) = (n! / 2\pi i N^n) \cdot \int \left(e^{Nz}/z^{n+1} \right) \prod_{k=1}^{N} \left((1 + (e^{it} - 1)\exp(-np_k z))dz \right), \]

\(|z| = n/N \)

Using Stirling's formula and changing to polar coordinates it follows that
\begin{align*}
(3.11) \quad E(\exp(it(Y_n - \mu)/\sigma)) &= (1 + o(1)).
\end{align*}

\begin{align*}
&\cdot \int_{-\pi}^{\pi} (n/2\pi)^{\frac{1}{2}} \cdot \exp(n(e^{i\theta} - 1 - i\theta)) \\
&\cdot \frac{N}{1} \prod (\exp(-it e^{-n\sigma^2}/\sigma) \cdot (1 + (e^{it/\sigma} - 1)\exp(-n\sigma^2 e^{i\theta})))d\theta \\
&= (1 + o(1)) \cdot \int_{-\pi}^{\pi} h_n(\theta, t)d\theta,
\end{align*}

where

\begin{align*}
(3.12) \quad \mu &= \sigma^2 = g(n) = \sum_{k=1}^{N} \exp(-n\sigma^2), \quad \sigma > 0.
\end{align*}

The integral will be studied by the same method as in Holst (1971).

Take $0 < a < 1/6$ and split the interval $-\pi \leq \theta \leq \pi$ into

\begin{align*}
(3.13) \quad A &= \{ \theta ; \ a \leq |\theta| \leq \pi \}, \\
(3.14) \quad B &= \{ \theta ; \ n^{a-\frac{1}{2}} \leq |\theta| < a \},
\end{align*}

and

\begin{align*}
(3.15) \quad C &= \{ \theta ; |\theta| < n^{a-\frac{1}{2}} \}.
\end{align*}

From Lemmas 4-6 below it follows that

\begin{align*}
(3.16) \quad E(\exp(it(Y_n - \mu)/\sigma)) &= (1 + o(1)).
\end{align*}

\begin{align*}
(\int_{A} h_n + \int_{B} h_n + \int_{C} h_n) \to 0 + 0 + \exp(-t^2/2), \quad n \to \infty.
\end{align*}

By the continuity theorem for characteristic functions assertion (3.5) is proved, and thus the theorem.

With the same conditions as in Theorem 3 the following lemmas hold.
Lemma 4. For every fixed real number t

\[(3.17) \quad \int_a^b h_n(\theta, t) d\theta \to 0, \quad n \to \infty.\]

Proof. As $n/N \to \infty$ and $\sigma \to \infty$ it follows that

\[(3.18) \quad \left| \int_a^b \right| \leq K_1 \cdot n^{\frac{1}{2}} e^{-n} \int_a^b \left| \exp(np_k e^{i\theta}) + e^{it/\sigma - 1} \right| d\theta \]

\[\leq K_2 n^{\frac{1}{2}} e^{-n} \int_a^b \left(\exp(np_k \cos \alpha) + o(1) \right) \]

\[\leq K_2 n^{\frac{1}{2}} e^{-n} N e^{n \cos \alpha} \to 0.\]

Lemma 5. For every fixed real number t

\[(3.19) \quad \int_{B^+} h_n(\theta, t) d\theta \to 0, \quad n \to \infty.\]

Proof. From the assumptions, it follows that there exist positive numbers $K_3 - K_9$ such that

\[(3.20) \quad \left| \int_{B^-} \right| \leq K_3 \cdot n^{\frac{1}{2}} e^{-n} \int_{B^-} \left(\exp(np_k \cos \theta) + o(1/\sigma) \right) d\theta \]

\[\leq K_4 n^{\frac{1}{2}} e^{-n} \int_{B^-} \exp(np_k \cos \alpha^{-\frac{1}{2}}) \cdot \left(1 + K_5 \cdot \exp(-K_6 n/N) / \sigma \right) \]

\[\leq K_7 n^{\frac{1}{2}} e^{-n} \exp(n (1 - K_8 n^{2a - 1})) \]

\[\leq \exp(-K_9 n^{2a}) \to 0, \quad n \to \infty.\]

Lemma 6. For every fixed real number t,

\[(3.21) \quad \int_c^d h_n(\theta, t) d\theta \to \exp(-t^2/2), \quad n \to \infty.\]

Proof. Expanding in series gives

\[(3.22) \quad \log h_n(\theta, t) = -n \theta^2/2 + o(1) \]

\[+ \sum_{l=1}^{N} \left(\log (1 + \exp(-np_k e^{i\theta}) (e^{it/\sigma - 1}) - \exp(-np_k \sqrt{\sigma}) + \frac{1}{2} \log(n/2\pi). \right) \]
Now, when \(n \to \infty \),

\[
(3.23) \quad \sum_{j=1}^{N} \left| \exp(-2np_k e^{i\theta})(e^{it/\sigma} - 1)^2 \right|
\]

\[= o(1) \cdot \sum_{j=1}^{N} \exp(-np_k) / \sigma^2 = o(1),\]

and therefore

\[
(3.24) \quad \sum_{j=1}^{N} (\log (1 + \ldots) - \ldots)
\]

\[= \sum_{j=1}^{N} (\exp(-np_k e^{i\theta})(e^{it/\sigma} - 1) - it \exp(-np_k) / \sigma + o(1)).\]

Furthermore, using (3.8), (3.9) and the assumptions, it follows that

\[
(3.25) \quad \sum_{j=1}^{N} \exp(-np_k e^{i\theta}) / \sigma^2 \to 1,
\]

and therefore (3.24) can be written

\[
(3.26) \quad \sum_{j=1}^{N} (\ldots) = \sum_{j=1}^{N} (\exp(-np_k e^{i\theta})(it/\sigma - t^2/2\sigma^2)
\]

\[- it \exp(-np_k) / \sigma + o(1)
\]

\[= it \sum_{j=1}^{N} (\exp(-np_k e^{i\theta} - 1) - 1) \exp(-np_k) / \sigma
\]

\[- t^2/2 + o(1).\]

Now, when \(n \to \infty \),

\[
(3.27) \quad \sum_{j=1}^{N} (np_k)^2 \theta^2 \exp(-np_k) / \sigma \leq
\]

\[\leq K_1 (n/N)^2 n^{2a-1} N^2 \exp(-K_2 n/N) \to 0.\]

From this it follows that

\[
(3.28) \quad \sum_{j=1}^{N} (\ldots) = \theta t \sum_{j=1}^{N} np_k \exp(-np_k) / \sigma - t^2/2 + o(1).
\]
Hence for θ in C,

$$\log h_n(\theta, t) - \frac{1}{2} \log(2\pi/n) = -n\theta^2/2 + \theta t \sum_{k=1}^{N} np_k \exp(-np_k)/\sigma$$

$$- t^2/2 + o(1) = -(n^2\theta - t \sum_{k=1}^{N} \frac{1}{2} np_k \exp(-np_k)/\sigma)^2/2$$

$$- t^2(1 - \sum_{k=1}^{N} \frac{1}{2} np_k \exp(-np_k)/\sigma)^2/2 + o(1) .$$

Now, when $n \to \infty$,

$$\sum_{k=1}^{N} \frac{1}{2} np_k \exp(-np_k)/\sigma \leq K_3 n^{\frac{1}{2}} N^{-1} \cdot N^\frac{1}{2} \cdot \exp(-K_4 n/N) \to 0 .$$

Thus with $\psi = n^\frac{1}{2} \theta$ the integral (3.21) can be written

$$\int h_n = \int_{C} h_n \left|\psi\right| \leq n^a (2\pi)^{-\frac{1}{2}}$$

$$\cdot \exp(-(\psi - o(1))^2/2 - t^2/2 + o(1)) \, d\psi ,$$

which converges to $\exp(-t^2/2)$ when $n \to \infty$.

4. The waiting time for a small fraction.

As above let T_b denote the number of balls thrown until exactly $b = b_N$ cells remain empty. Let t_b be the unique solution of the equation

$$b = g(t_b) = \sum_{k=1}^{N} \exp(-t_b p_k) .$$

Theorem 4. If, when $N \to \infty$,

$$b_N \to +\infty ,$$

$$b_N/N \to 0 ,$$

and

$$C < C \leq Np_k \leq D < \infty ,$$

then

$$b_N^{\frac{1}{2}} (T_b - t_b) \sum_{k=1}^{N} p_k \exp(-t_b p_k) \Rightarrow N(0,1) .$$
Proof. From the assumptions it follows that
\begin{equation}
C \frac{b}{N} \leq \Delta = \sum_{k=1}^{N} p_k \exp(-t_b p_k) \leq D \frac{b}{N}.
\end{equation}

Thus for \(N \) sufficiently large
\begin{equation}
0 < C \leq \Delta \cdot \frac{N}{b} \leq D < \infty.
\end{equation}

As in the proof of Theorem 2 the following relation holds
\begin{equation}
P((T_b - t_b) \Delta^{1/2} \leq x) = P(Y_n \leq b),
\end{equation}

where
\begin{equation}
n = \lfloor t_b + x \frac{b^{1/2}}{\Delta} \rfloor.
\end{equation}

It is seen that
\begin{equation}
g(n) (1 + o(1)) = g(t_b + x \frac{b^{1/2}}{\Delta})
= \sum \exp(-t_b p_k) \cdot (1 - x p_k \frac{b^{1/2}}{\Delta} + O(1/L),
= b - x \cdot b^{1/2} + O(1),
\end{equation}

and thus
\begin{equation}
g(n) \to +\infty,
\end{equation}

and from (3.9) it follows that
\begin{equation}
f(n) \to +\infty.
\end{equation}

Furthermore,
\begin{equation}
b = g(t_b) \geq N \exp(-D t_b/N),
\end{equation}

implying that
\begin{equation}
t_b /N \to +\infty,
\end{equation}

and therefore
\begin{equation}
n/N \to +\infty.
\end{equation}
Hence the assumptions of Theorem 3 are fulfilled and (4.8) and (4.10) give

\[(4.16) \quad P(T_n - t_n) \Delta / b^{\frac{1}{2}} \leq x) = P(Y_n \leq b) = \]

\[= \Phi \left((b - g(n)) / (g(n))^{\frac{1}{2}} \right) + o(1) = \]

\[= \Phi \left((x b^{\frac{1}{2}} + O(1)) / (b(1 + o(1)))^{\frac{1}{2}} \right) + o(1) \rightarrow \Phi(x), \]

where \(\Phi(x)\) is the standardized normal distribution function. This proves the theorem.

References

